qla_sup.c 74.3 KB
Newer Older
A
Andrew Vasquez 已提交
1 2
/*
 * QLogic Fibre Channel HBA Driver
3
 * Copyright (c)  2003-2008 QLogic Corporation
L
Linus Torvalds 已提交
4
 *
A
Andrew Vasquez 已提交
5 6
 * See LICENSE.qla2xxx for copyright and licensing details.
 */
L
Linus Torvalds 已提交
7 8 9
#include "qla_def.h"

#include <linux/delay.h>
10
#include <linux/slab.h>
11
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
12 13 14 15 16 17 18
#include <asm/uaccess.h>

/*
 * NVRAM support routines
 */

/**
A
Andrew Vasquez 已提交
19
 * qla2x00_lock_nvram_access() -
L
Linus Torvalds 已提交
20 21
 * @ha: HA context
 */
A
Adrian Bunk 已提交
22
static void
23
qla2x00_lock_nvram_access(struct qla_hw_data *ha)
L
Linus Torvalds 已提交
24 25
{
	uint16_t data;
26
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
L
Linus Torvalds 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
		data = RD_REG_WORD(&reg->nvram);
		while (data & NVR_BUSY) {
			udelay(100);
			data = RD_REG_WORD(&reg->nvram);
		}

		/* Lock resource */
		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
		udelay(5);
		data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
		while ((data & BIT_0) == 0) {
			/* Lock failed */
			udelay(100);
			WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
			RD_REG_WORD(&reg->u.isp2300.host_semaphore);
			udelay(5);
			data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
		}
	}
}

/**
A
Andrew Vasquez 已提交
52
 * qla2x00_unlock_nvram_access() -
L
Linus Torvalds 已提交
53 54
 * @ha: HA context
 */
A
Adrian Bunk 已提交
55
static void
56
qla2x00_unlock_nvram_access(struct qla_hw_data *ha)
L
Linus Torvalds 已提交
57
{
58
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
L
Linus Torvalds 已提交
59 60 61 62 63 64 65

	if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
		WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0);
		RD_REG_WORD(&reg->u.isp2300.host_semaphore);
	}
}

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
/**
 * qla2x00_nv_write() - Prepare for NVRAM read/write operation.
 * @ha: HA context
 * @data: Serial interface selector
 */
static void
qla2x00_nv_write(struct qla_hw_data *ha, uint16_t data)
{
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();
	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_CLOCK |
	    NVR_WRT_ENABLE);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();
	WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();
}

/**
 * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
 *	NVRAM.
 * @ha: HA context
 * @nv_cmd: NVRAM command
 *
 * Bit definitions for NVRAM command:
 *
 *	Bit 26     = start bit
 *	Bit 25, 24 = opcode
 *	Bit 23-16  = address
 *	Bit 15-0   = write data
 *
 * Returns the word read from nvram @addr.
 */
static uint16_t
qla2x00_nvram_request(struct qla_hw_data *ha, uint32_t nv_cmd)
{
	uint8_t		cnt;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
	uint16_t	data = 0;
	uint16_t	reg_data;

	/* Send command to NVRAM. */
	nv_cmd <<= 5;
	for (cnt = 0; cnt < 11; cnt++) {
		if (nv_cmd & BIT_31)
			qla2x00_nv_write(ha, NVR_DATA_OUT);
		else
			qla2x00_nv_write(ha, 0);
		nv_cmd <<= 1;
	}

	/* Read data from NVRAM. */
	for (cnt = 0; cnt < 16; cnt++) {
		WRT_REG_WORD(&reg->nvram, NVR_SELECT | NVR_CLOCK);
		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
		NVRAM_DELAY();
		data <<= 1;
		reg_data = RD_REG_WORD(&reg->nvram);
		if (reg_data & NVR_DATA_IN)
			data |= BIT_0;
		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
		NVRAM_DELAY();
	}

	/* Deselect chip. */
	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();

	return data;
}


L
Linus Torvalds 已提交
144 145 146 147 148 149 150 151
/**
 * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
 *	request routine to get the word from NVRAM.
 * @ha: HA context
 * @addr: Address in NVRAM to read
 *
 * Returns the word read from nvram @addr.
 */
A
Adrian Bunk 已提交
152
static uint16_t
153
qla2x00_get_nvram_word(struct qla_hw_data *ha, uint32_t addr)
L
Linus Torvalds 已提交
154 155 156 157 158 159 160 161 162 163 164
{
	uint16_t	data;
	uint32_t	nv_cmd;

	nv_cmd = addr << 16;
	nv_cmd |= NV_READ_OP;
	data = qla2x00_nvram_request(ha, nv_cmd);

	return (data);
}

165 166 167 168 169 170 171 172 173 174 175 176 177 178
/**
 * qla2x00_nv_deselect() - Deselect NVRAM operations.
 * @ha: HA context
 */
static void
qla2x00_nv_deselect(struct qla_hw_data *ha)
{
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	NVRAM_DELAY();
}

L
Linus Torvalds 已提交
179 180 181 182 183 184
/**
 * qla2x00_write_nvram_word() - Write NVRAM data.
 * @ha: HA context
 * @addr: Address in NVRAM to write
 * @data: word to program
 */
A
Adrian Bunk 已提交
185
static void
186
qla2x00_write_nvram_word(struct qla_hw_data *ha, uint32_t addr, uint16_t data)
L
Linus Torvalds 已提交
187 188 189
{
	int count;
	uint16_t word;
190
	uint32_t nv_cmd, wait_cnt;
191
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
L
Linus Torvalds 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218

	qla2x00_nv_write(ha, NVR_DATA_OUT);
	qla2x00_nv_write(ha, 0);
	qla2x00_nv_write(ha, 0);

	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_DATA_OUT);

	qla2x00_nv_deselect(ha);

	/* Write data */
	nv_cmd = (addr << 16) | NV_WRITE_OP;
	nv_cmd |= data;
	nv_cmd <<= 5;
	for (count = 0; count < 27; count++) {
		if (nv_cmd & BIT_31)
			qla2x00_nv_write(ha, NVR_DATA_OUT);
		else
			qla2x00_nv_write(ha, 0);

		nv_cmd <<= 1;
	}

	qla2x00_nv_deselect(ha);

	/* Wait for NVRAM to become ready */
	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
219
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
220
	wait_cnt = NVR_WAIT_CNT;
L
Linus Torvalds 已提交
221
	do {
222
		if (!--wait_cnt) {
223 224
			DEBUG9_10(qla_printk(KERN_WARNING, ha,
			    "NVRAM didn't go ready...\n"));
225 226
			break;
		}
L
Linus Torvalds 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240
		NVRAM_DELAY();
		word = RD_REG_WORD(&reg->nvram);
	} while ((word & NVR_DATA_IN) == 0);

	qla2x00_nv_deselect(ha);

	/* Disable writes */
	qla2x00_nv_write(ha, NVR_DATA_OUT);
	for (count = 0; count < 10; count++)
		qla2x00_nv_write(ha, 0);

	qla2x00_nv_deselect(ha);
}

241
static int
242 243
qla2x00_write_nvram_word_tmo(struct qla_hw_data *ha, uint32_t addr,
	uint16_t data, uint32_t tmo)
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
{
	int ret, count;
	uint16_t word;
	uint32_t nv_cmd;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	ret = QLA_SUCCESS;

	qla2x00_nv_write(ha, NVR_DATA_OUT);
	qla2x00_nv_write(ha, 0);
	qla2x00_nv_write(ha, 0);

	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_DATA_OUT);

	qla2x00_nv_deselect(ha);

	/* Write data */
	nv_cmd = (addr << 16) | NV_WRITE_OP;
	nv_cmd |= data;
	nv_cmd <<= 5;
	for (count = 0; count < 27; count++) {
		if (nv_cmd & BIT_31)
			qla2x00_nv_write(ha, NVR_DATA_OUT);
		else
			qla2x00_nv_write(ha, 0);

		nv_cmd <<= 1;
	}

	qla2x00_nv_deselect(ha);

	/* Wait for NVRAM to become ready */
	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
278
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
	do {
		NVRAM_DELAY();
		word = RD_REG_WORD(&reg->nvram);
		if (!--tmo) {
			ret = QLA_FUNCTION_FAILED;
			break;
		}
	} while ((word & NVR_DATA_IN) == 0);

	qla2x00_nv_deselect(ha);

	/* Disable writes */
	qla2x00_nv_write(ha, NVR_DATA_OUT);
	for (count = 0; count < 10; count++)
		qla2x00_nv_write(ha, 0);

	qla2x00_nv_deselect(ha);

	return ret;
}

/**
 * qla2x00_clear_nvram_protection() -
 * @ha: HA context
 */
static int
305
qla2x00_clear_nvram_protection(struct qla_hw_data *ha)
306 307 308
{
	int ret, stat;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
309
	uint32_t word, wait_cnt;
310 311 312 313
	uint16_t wprot, wprot_old;

	/* Clear NVRAM write protection. */
	ret = QLA_FUNCTION_FAILED;
314 315 316

	wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
	stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base,
317
	    __constant_cpu_to_le16(0x1234), 100000);
318 319
	wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
	if (stat != QLA_SUCCESS || wprot != 0x1234) {
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
		/* Write enable. */
		qla2x00_nv_write(ha, NVR_DATA_OUT);
		qla2x00_nv_write(ha, 0);
		qla2x00_nv_write(ha, 0);
		for (word = 0; word < 8; word++)
			qla2x00_nv_write(ha, NVR_DATA_OUT);

		qla2x00_nv_deselect(ha);

		/* Enable protection register. */
		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
		qla2x00_nv_write(ha, NVR_PR_ENABLE);
		qla2x00_nv_write(ha, NVR_PR_ENABLE);
		for (word = 0; word < 8; word++)
			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);

		qla2x00_nv_deselect(ha);

		/* Clear protection register (ffff is cleared). */
		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
		qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
		for (word = 0; word < 8; word++)
			qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);

		qla2x00_nv_deselect(ha);

		/* Wait for NVRAM to become ready. */
		WRT_REG_WORD(&reg->nvram, NVR_SELECT);
349
		RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
350
		wait_cnt = NVR_WAIT_CNT;
351
		do {
352
			if (!--wait_cnt) {
353
				DEBUG9_10(qla_printk(KERN_WARNING, ha,
354
				    "NVRAM didn't go ready...\n"));
355 356
				break;
			}
357 358 359 360
			NVRAM_DELAY();
			word = RD_REG_WORD(&reg->nvram);
		} while ((word & NVR_DATA_IN) == 0);

361 362
		if (wait_cnt)
			ret = QLA_SUCCESS;
363
	} else
364
		qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old);
365 366 367 368 369

	return ret;
}

static void
370
qla2x00_set_nvram_protection(struct qla_hw_data *ha, int stat)
371 372
{
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
373
	uint32_t word, wait_cnt;
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407

	if (stat != QLA_SUCCESS)
		return;

	/* Set NVRAM write protection. */
	/* Write enable. */
	qla2x00_nv_write(ha, NVR_DATA_OUT);
	qla2x00_nv_write(ha, 0);
	qla2x00_nv_write(ha, 0);
	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_DATA_OUT);

	qla2x00_nv_deselect(ha);

	/* Enable protection register. */
	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
	qla2x00_nv_write(ha, NVR_PR_ENABLE);
	qla2x00_nv_write(ha, NVR_PR_ENABLE);
	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);

	qla2x00_nv_deselect(ha);

	/* Enable protection register. */
	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
	qla2x00_nv_write(ha, NVR_PR_ENABLE);
	qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
	for (word = 0; word < 8; word++)
		qla2x00_nv_write(ha, NVR_PR_ENABLE);

	qla2x00_nv_deselect(ha);

	/* Wait for NVRAM to become ready. */
	WRT_REG_WORD(&reg->nvram, NVR_SELECT);
408
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
409
	wait_cnt = NVR_WAIT_CNT;
410
	do {
411
		if (!--wait_cnt) {
412 413
			DEBUG9_10(qla_printk(KERN_WARNING, ha,
			    "NVRAM didn't go ready...\n"));
414 415
			break;
		}
416 417 418 419 420 421 422 423 424 425 426
		NVRAM_DELAY();
		word = RD_REG_WORD(&reg->nvram);
	} while ((word & NVR_DATA_IN) == 0);
}


/*****************************************************************************/
/* Flash Manipulation Routines                                               */
/*****************************************************************************/

static inline uint32_t
427
flash_conf_addr(struct qla_hw_data *ha, uint32_t faddr)
428
{
429
	return ha->flash_conf_off | faddr;
430 431 432
}

static inline uint32_t
433
flash_data_addr(struct qla_hw_data *ha, uint32_t faddr)
434
{
435
	return ha->flash_data_off | faddr;
436 437 438
}

static inline uint32_t
439
nvram_conf_addr(struct qla_hw_data *ha, uint32_t naddr)
440
{
441
	return ha->nvram_conf_off | naddr;
442 443 444
}

static inline uint32_t
445
nvram_data_addr(struct qla_hw_data *ha, uint32_t naddr)
446
{
447
	return ha->nvram_data_off | naddr;
448 449
}

450
static uint32_t
451
qla24xx_read_flash_dword(struct qla_hw_data *ha, uint32_t addr)
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
{
	int rval;
	uint32_t cnt, data;
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	WRT_REG_DWORD(&reg->flash_addr, addr & ~FARX_DATA_FLAG);
	/* Wait for READ cycle to complete. */
	rval = QLA_SUCCESS;
	for (cnt = 3000;
	    (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) == 0 &&
	    rval == QLA_SUCCESS; cnt--) {
		if (cnt)
			udelay(10);
		else
			rval = QLA_FUNCTION_TIMEOUT;
467
		cond_resched();
468 469 470 471 472 473 474 475 476 477 478
	}

	/* TODO: What happens if we time out? */
	data = 0xDEADDEAD;
	if (rval == QLA_SUCCESS)
		data = RD_REG_DWORD(&reg->flash_data);

	return data;
}

uint32_t *
479
qla24xx_read_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
480 481 482
    uint32_t dwords)
{
	uint32_t i;
483 484
	struct qla_hw_data *ha = vha->hw;

485 486
	/* Dword reads to flash. */
	for (i = 0; i < dwords; i++, faddr++)
487 488
		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
		    flash_data_addr(ha, faddr)));
489 490 491 492

	return dwptr;
}

493
static int
494
qla24xx_write_flash_dword(struct qla_hw_data *ha, uint32_t addr, uint32_t data)
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
{
	int rval;
	uint32_t cnt;
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	WRT_REG_DWORD(&reg->flash_data, data);
	RD_REG_DWORD(&reg->flash_data);		/* PCI Posting. */
	WRT_REG_DWORD(&reg->flash_addr, addr | FARX_DATA_FLAG);
	/* Wait for Write cycle to complete. */
	rval = QLA_SUCCESS;
	for (cnt = 500000; (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) &&
	    rval == QLA_SUCCESS; cnt--) {
		if (cnt)
			udelay(10);
		else
			rval = QLA_FUNCTION_TIMEOUT;
511
		cond_resched();
512 513 514 515
	}
	return rval;
}

516
static void
517
qla24xx_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
518 519 520 521
    uint8_t *flash_id)
{
	uint32_t ids;

522
	ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x03ab));
523 524
	*man_id = LSB(ids);
	*flash_id = MSB(ids);
525 526 527 528 529 530 531 532 533

	/* Check if man_id and flash_id are valid. */
	if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) {
		/* Read information using 0x9f opcode
		 * Device ID, Mfg ID would be read in the format:
		 *   <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
		 * Example: ATMEL 0x00 01 45 1F
		 * Extract MFG and Dev ID from last two bytes.
		 */
534
		ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x009f));
535 536 537
		*man_id = LSB(ids);
		*flash_id = MSB(ids);
	}
538 539
}

540
static int
541
qla2xxx_find_flt_start(scsi_qla_host_t *vha, uint32_t *start)
542 543 544 545 546 547 548
{
	const char *loc, *locations[] = { "DEF", "PCI" };
	uint32_t pcihdr, pcids;
	uint32_t *dcode;
	uint8_t *buf, *bcode, last_image;
	uint16_t cnt, chksum, *wptr;
	struct qla_flt_location *fltl;
549
	struct qla_hw_data *ha = vha->hw;
550
	struct req_que *req = ha->req_q_map[0];
551 552 553 554 555 556 557

	/*
	 * FLT-location structure resides after the last PCI region.
	 */

	/* Begin with sane defaults. */
	loc = locations[0];
558 559 560 561 562 563 564
	*start = 0;
	if (IS_QLA24XX_TYPE(ha))
		*start = FA_FLASH_LAYOUT_ADDR_24;
	else if (IS_QLA25XX(ha))
		*start = FA_FLASH_LAYOUT_ADDR;
	else if (IS_QLA81XX(ha))
		*start = FA_FLASH_LAYOUT_ADDR_81;
565 566 567 568
	else if (IS_QLA82XX(ha)) {
		*start = FA_FLASH_LAYOUT_ADDR_82;
		goto end;
	}
569
	/* Begin with first PCI expansion ROM header. */
570 571
	buf = (uint8_t *)req->ring;
	dcode = (uint32_t *)req->ring;
572 573 574 575
	pcihdr = 0;
	last_image = 1;
	do {
		/* Verify PCI expansion ROM header. */
576
		qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
577 578 579 580 581 582
		bcode = buf + (pcihdr % 4);
		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa)
			goto end;

		/* Locate PCI data structure. */
		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
583
		qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
584 585 586 587 588 589 590 591 592 593 594 595 596 597
		bcode = buf + (pcihdr % 4);

		/* Validate signature of PCI data structure. */
		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
		    bcode[0x2] != 'I' || bcode[0x3] != 'R')
			goto end;

		last_image = bcode[0x15] & BIT_7;

		/* Locate next PCI expansion ROM. */
		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
	} while (!last_image);

	/* Now verify FLT-location structure. */
598 599
	fltl = (struct qla_flt_location *)req->ring;
	qla24xx_read_flash_data(vha, dcode, pcihdr >> 2,
600 601 602 603 604
	    sizeof(struct qla_flt_location) >> 2);
	if (fltl->sig[0] != 'Q' || fltl->sig[1] != 'F' ||
	    fltl->sig[2] != 'L' || fltl->sig[3] != 'T')
		goto end;

605
	wptr = (uint16_t *)req->ring;
606 607 608 609 610 611 612 613 614 615 616 617
	cnt = sizeof(struct qla_flt_location) >> 1;
	for (chksum = 0; cnt; cnt--)
		chksum += le16_to_cpu(*wptr++);
	if (chksum) {
		qla_printk(KERN_ERR, ha,
		    "Inconsistent FLTL detected: checksum=0x%x.\n", chksum);
		qla2x00_dump_buffer(buf, sizeof(struct qla_flt_location));
		return QLA_FUNCTION_FAILED;
	}

	/* Good data.  Use specified location. */
	loc = locations[1];
618 619
	*start = (le16_to_cpu(fltl->start_hi) << 16 |
	    le16_to_cpu(fltl->start_lo)) >> 2;
620 621 622 623 624 625
end:
	DEBUG2(qla_printk(KERN_DEBUG, ha, "FLTL[%s] = 0x%x.\n", loc, *start));
	return QLA_SUCCESS;
}

static void
626
qla2xxx_get_flt_info(scsi_qla_host_t *vha, uint32_t flt_addr)
627 628
{
	const char *loc, *locations[] = { "DEF", "FLT" };
629 630 631 632 633 634
	const uint32_t def_fw[] =
		{ FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR_81 };
	const uint32_t def_boot[] =
		{ FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR_81 };
	const uint32_t def_vpd_nvram[] =
		{ FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR_81 };
635 636 637 638 639 640 641 642
	const uint32_t def_vpd0[] =
		{ 0, 0, FA_VPD0_ADDR_81 };
	const uint32_t def_vpd1[] =
		{ 0, 0, FA_VPD1_ADDR_81 };
	const uint32_t def_nvram0[] =
		{ 0, 0, FA_NVRAM0_ADDR_81 };
	const uint32_t def_nvram1[] =
		{ 0, 0, FA_NVRAM1_ADDR_81 };
643 644 645 646 647 648 649 650 651
	const uint32_t def_fdt[] =
		{ FA_FLASH_DESCR_ADDR_24, FA_FLASH_DESCR_ADDR,
			FA_FLASH_DESCR_ADDR_81 };
	const uint32_t def_npiv_conf0[] =
		{ FA_NPIV_CONF0_ADDR_24, FA_NPIV_CONF0_ADDR,
			FA_NPIV_CONF0_ADDR_81 };
	const uint32_t def_npiv_conf1[] =
		{ FA_NPIV_CONF1_ADDR_24, FA_NPIV_CONF1_ADDR,
			FA_NPIV_CONF1_ADDR_81 };
S
Sarang Radke 已提交
652 653 654 655 656 657
	const uint32_t fcp_prio_cfg0[] =
		{ FA_FCP_PRIO0_ADDR, FA_FCP_PRIO0_ADDR_25,
			0 };
	const uint32_t fcp_prio_cfg1[] =
		{ FA_FCP_PRIO1_ADDR, FA_FCP_PRIO1_ADDR_25,
			0 };
658
	uint32_t def;
659 660 661 662 663
	uint16_t *wptr;
	uint16_t cnt, chksum;
	uint32_t start;
	struct qla_flt_header *flt;
	struct qla_flt_region *region;
664
	struct qla_hw_data *ha = vha->hw;
665
	struct req_que *req = ha->req_q_map[0];
666

667 668 669 670 671
	def = 0;
	if (IS_QLA25XX(ha))
		def = 1;
	else if (IS_QLA81XX(ha))
		def = 2;
672
	ha->flt_region_flt = flt_addr;
673 674
	wptr = (uint16_t *)req->ring;
	flt = (struct qla_flt_header *)req->ring;
675
	region = (struct qla_flt_region *)&flt[1];
676
	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
	    flt_addr << 2, OPTROM_BURST_SIZE);
	if (*wptr == __constant_cpu_to_le16(0xffff))
		goto no_flash_data;
	if (flt->version != __constant_cpu_to_le16(1)) {
		DEBUG2(qla_printk(KERN_INFO, ha, "Unsupported FLT detected: "
		    "version=0x%x length=0x%x checksum=0x%x.\n",
		    le16_to_cpu(flt->version), le16_to_cpu(flt->length),
		    le16_to_cpu(flt->checksum)));
		goto no_flash_data;
	}

	cnt = (sizeof(struct qla_flt_header) + le16_to_cpu(flt->length)) >> 1;
	for (chksum = 0; cnt; cnt--)
		chksum += le16_to_cpu(*wptr++);
	if (chksum) {
		DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent FLT detected: "
		    "version=0x%x length=0x%x checksum=0x%x.\n",
		    le16_to_cpu(flt->version), le16_to_cpu(flt->length),
		    chksum));
		goto no_flash_data;
	}

699 700 701 702
	/* Assign FCP prio region since older FLT's may not have it */
	ha->flt_region_fcp_prio = ha->flags.port0 ?
	    fcp_prio_cfg0[def] : fcp_prio_cfg1[def];

703 704 705 706 707 708 709 710 711 712
	loc = locations[1];
	cnt = le16_to_cpu(flt->length) / sizeof(struct qla_flt_region);
	for ( ; cnt; cnt--, region++) {
		/* Store addresses as DWORD offsets. */
		start = le32_to_cpu(region->start) >> 2;

		DEBUG3(qla_printk(KERN_DEBUG, ha, "FLT[%02x]: start=0x%x "
		    "end=0x%x size=0x%x.\n", le32_to_cpu(region->code), start,
		    le32_to_cpu(region->end) >> 2, le32_to_cpu(region->size)));

713
		switch (le32_to_cpu(region->code) & 0xff) {
714 715 716 717 718 719 720 721
		case FLT_REG_FW:
			ha->flt_region_fw = start;
			break;
		case FLT_REG_BOOT_CODE:
			ha->flt_region_boot = start;
			break;
		case FLT_REG_VPD_0:
			ha->flt_region_vpd_nvram = start;
722 723
			if (IS_QLA82XX(ha))
				break;
724
			if (ha->flags.port0)
725 726 727
				ha->flt_region_vpd = start;
			break;
		case FLT_REG_VPD_1:
728 729
			if (IS_QLA82XX(ha))
				break;
730
			if (!ha->flags.port0)
731 732 733
				ha->flt_region_vpd = start;
			break;
		case FLT_REG_NVRAM_0:
734
			if (ha->flags.port0)
735 736 737
				ha->flt_region_nvram = start;
			break;
		case FLT_REG_NVRAM_1:
738
			if (!ha->flags.port0)
739
				ha->flt_region_nvram = start;
740 741 742 743
			break;
		case FLT_REG_FDT:
			ha->flt_region_fdt = start;
			break;
744
		case FLT_REG_NPIV_CONF_0:
745
			if (ha->flags.port0)
746 747 748
				ha->flt_region_npiv_conf = start;
			break;
		case FLT_REG_NPIV_CONF_1:
749
			if (!ha->flags.port0)
750 751
				ha->flt_region_npiv_conf = start;
			break;
752 753 754
		case FLT_REG_GOLD_FW:
			ha->flt_region_gold_fw = start;
			break;
S
Sarang Radke 已提交
755
		case FLT_REG_FCP_PRIO_0:
756
			if (ha->flags.port0)
S
Sarang Radke 已提交
757 758 759
				ha->flt_region_fcp_prio = start;
			break;
		case FLT_REG_FCP_PRIO_1:
760
			if (!ha->flags.port0)
S
Sarang Radke 已提交
761 762
				ha->flt_region_fcp_prio = start;
			break;
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
		case FLT_REG_BOOT_CODE_82XX:
			ha->flt_region_boot = start;
			break;
		case FLT_REG_FW_82XX:
			ha->flt_region_fw = start;
			break;
		case FLT_REG_GOLD_FW_82XX:
			ha->flt_region_gold_fw = start;
			break;
		case FLT_REG_BOOTLOAD_82XX:
			ha->flt_region_bootload = start;
			break;
		case FLT_REG_VPD_82XX:
			ha->flt_region_vpd = start;
			break;
778 779 780 781 782 783 784
		}
	}
	goto done;

no_flash_data:
	/* Use hardcoded defaults. */
	loc = locations[0];
785 786 787
	ha->flt_region_fw = def_fw[def];
	ha->flt_region_boot = def_boot[def];
	ha->flt_region_vpd_nvram = def_vpd_nvram[def];
788
	ha->flt_region_vpd = ha->flags.port0 ?
S
Sarang Radke 已提交
789
	    def_vpd0[def] : def_vpd1[def];
790
	ha->flt_region_nvram = ha->flags.port0 ?
S
Sarang Radke 已提交
791
	    def_nvram0[def] : def_nvram1[def];
792
	ha->flt_region_fdt = def_fdt[def];
793
	ha->flt_region_npiv_conf = ha->flags.port0 ?
S
Sarang Radke 已提交
794
	    def_npiv_conf0[def] : def_npiv_conf1[def];
795 796
done:
	DEBUG2(qla_printk(KERN_DEBUG, ha, "FLT[%s]: boot=0x%x fw=0x%x "
797
	    "vpd_nvram=0x%x vpd=0x%x nvram=0x%x fdt=0x%x flt=0x%x "
798 799 800 801
	    "npiv=0x%x. fcp_prio_cfg=0x%x\n", loc, ha->flt_region_boot,
	    ha->flt_region_fw, ha->flt_region_vpd_nvram, ha->flt_region_vpd,
	    ha->flt_region_nvram, ha->flt_region_fdt, ha->flt_region_flt,
	    ha->flt_region_npiv_conf, ha->flt_region_fcp_prio));
802 803 804
}

static void
805
qla2xxx_get_fdt_info(scsi_qla_host_t *vha)
806
{
807
#define FLASH_BLK_SIZE_4K	0x1000
808 809
#define FLASH_BLK_SIZE_32K	0x8000
#define FLASH_BLK_SIZE_64K	0x10000
810
	const char *loc, *locations[] = { "MID", "FDT" };
811 812 813 814
	uint16_t cnt, chksum;
	uint16_t *wptr;
	struct qla_fdt_layout *fdt;
	uint8_t	man_id, flash_id;
815
	uint16_t mid = 0, fid = 0;
816
	struct qla_hw_data *ha = vha->hw;
817
	struct req_que *req = ha->req_q_map[0];
818

819 820 821
	wptr = (uint16_t *)req->ring;
	fdt = (struct qla_fdt_layout *)req->ring;
	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
822
	    ha->flt_region_fdt << 2, OPTROM_BURST_SIZE);
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
	if (*wptr == __constant_cpu_to_le16(0xffff))
		goto no_flash_data;
	if (fdt->sig[0] != 'Q' || fdt->sig[1] != 'L' || fdt->sig[2] != 'I' ||
	    fdt->sig[3] != 'D')
		goto no_flash_data;

	for (cnt = 0, chksum = 0; cnt < sizeof(struct qla_fdt_layout) >> 1;
	    cnt++)
		chksum += le16_to_cpu(*wptr++);
	if (chksum) {
		DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent FDT detected: "
		    "checksum=0x%x id=%c version=0x%x.\n", chksum, fdt->sig[0],
		    le16_to_cpu(fdt->version)));
		DEBUG9(qla2x00_dump_buffer((uint8_t *)fdt, sizeof(*fdt)));
		goto no_flash_data;
	}

840 841 842
	loc = locations[1];
	mid = le16_to_cpu(fdt->man_id);
	fid = le16_to_cpu(fdt->id);
843
	ha->fdt_wrt_disable = fdt->wrt_disable_bits;
844
	ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0300 | fdt->erase_cmd);
845 846
	ha->fdt_block_size = le32_to_cpu(fdt->block_size);
	if (fdt->unprotect_sec_cmd) {
847
		ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0300 |
848 849
		    fdt->unprotect_sec_cmd);
		ha->fdt_protect_sec_cmd = fdt->protect_sec_cmd ?
850 851
		    flash_conf_addr(ha, 0x0300 | fdt->protect_sec_cmd):
		    flash_conf_addr(ha, 0x0336);
852
	}
853
	goto done;
854
no_flash_data:
855
	loc = locations[0];
856 857 858 859
	if (IS_QLA82XX(ha)) {
		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
		goto done;
	}
860
	qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id);
861 862
	mid = man_id;
	fid = flash_id;
863
	ha->fdt_wrt_disable = 0x9c;
864
	ha->fdt_erase_cmd = flash_conf_addr(ha, 0x03d8);
865 866 867 868 869 870 871 872
	switch (man_id) {
	case 0xbf: /* STT flash. */
		if (flash_id == 0x8e)
			ha->fdt_block_size = FLASH_BLK_SIZE_64K;
		else
			ha->fdt_block_size = FLASH_BLK_SIZE_32K;

		if (flash_id == 0x80)
873
			ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0352);
874 875 876 877 878
		break;
	case 0x13: /* ST M25P80. */
		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
		break;
	case 0x1f: /* Atmel 26DF081A. */
879
		ha->fdt_block_size = FLASH_BLK_SIZE_4K;
880 881 882
		ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0320);
		ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0339);
		ha->fdt_protect_sec_cmd = flash_conf_addr(ha, 0x0336);
883 884 885 886 887 888
		break;
	default:
		/* Default to 64 kb sector size. */
		ha->fdt_block_size = FLASH_BLK_SIZE_64K;
		break;
	}
889 890
done:
	DEBUG2(qla_printk(KERN_DEBUG, ha, "FDT[%s]: (0x%x/0x%x) erase=0x%x "
891
	    "pro=%x upro=%x wrtd=0x%x blk=0x%x.\n", loc, mid, fid,
892
	    ha->fdt_erase_cmd, ha->fdt_protect_sec_cmd,
893
	    ha->fdt_unprotect_sec_cmd, ha->fdt_wrt_disable,
894 895 896
	    ha->fdt_block_size));
}

897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
static void
qla2xxx_get_idc_param(scsi_qla_host_t *vha)
{
#define QLA82XX_IDC_PARAM_ADDR       0x003e885c
	uint32_t *wptr;
	struct qla_hw_data *ha = vha->hw;
	struct req_que *req = ha->req_q_map[0];

	if (!IS_QLA82XX(ha))
		return;

	wptr = (uint32_t *)req->ring;
	ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
		QLA82XX_IDC_PARAM_ADDR , 8);

	if (*wptr == __constant_cpu_to_le32(0xffffffff)) {
		ha->nx_dev_init_timeout = QLA82XX_ROM_DEV_INIT_TIMEOUT;
		ha->nx_reset_timeout = QLA82XX_ROM_DRV_RESET_ACK_TIMEOUT;
	} else {
		ha->nx_dev_init_timeout = le32_to_cpu(*wptr++);
		ha->nx_reset_timeout = le32_to_cpu(*wptr);
	}
	return;
}

922
int
923
qla2xxx_get_flash_info(scsi_qla_host_t *vha)
924 925 926
{
	int ret;
	uint32_t flt_addr;
927
	struct qla_hw_data *ha = vha->hw;
928

929
	if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) && !IS_QLA8XXX_TYPE(ha))
930 931
		return QLA_SUCCESS;

932
	ret = qla2xxx_find_flt_start(vha, &flt_addr);
933 934 935
	if (ret != QLA_SUCCESS)
		return ret;

936 937
	qla2xxx_get_flt_info(vha, flt_addr);
	qla2xxx_get_fdt_info(vha);
938
	qla2xxx_get_idc_param(vha);
939 940 941 942

	return QLA_SUCCESS;
}

943
void
944
qla2xxx_flash_npiv_conf(scsi_qla_host_t *vha)
945 946 947 948 949
{
#define NPIV_CONFIG_SIZE	(16*1024)
	void *data;
	uint16_t *wptr;
	uint16_t cnt, chksum;
950
	int i;
951 952
	struct qla_npiv_header hdr;
	struct qla_npiv_entry *entry;
953
	struct qla_hw_data *ha = vha->hw;
954

955
	if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) && !IS_QLA8XXX_TYPE(ha))
956 957
		return;

958
	ha->isp_ops->read_optrom(vha, (uint8_t *)&hdr,
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
	    ha->flt_region_npiv_conf << 2, sizeof(struct qla_npiv_header));
	if (hdr.version == __constant_cpu_to_le16(0xffff))
		return;
	if (hdr.version != __constant_cpu_to_le16(1)) {
		DEBUG2(qla_printk(KERN_INFO, ha, "Unsupported NPIV-Config "
		    "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
		    le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
		    le16_to_cpu(hdr.checksum)));
		return;
	}

	data = kmalloc(NPIV_CONFIG_SIZE, GFP_KERNEL);
	if (!data) {
		DEBUG2(qla_printk(KERN_INFO, ha, "NPIV-Config: Unable to "
		    "allocate memory.\n"));
		return;
	}

977
	ha->isp_ops->read_optrom(vha, (uint8_t *)data,
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
	    ha->flt_region_npiv_conf << 2, NPIV_CONFIG_SIZE);

	cnt = (sizeof(struct qla_npiv_header) + le16_to_cpu(hdr.entries) *
	    sizeof(struct qla_npiv_entry)) >> 1;
	for (wptr = data, chksum = 0; cnt; cnt--)
		chksum += le16_to_cpu(*wptr++);
	if (chksum) {
		DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent NPIV-Config "
		    "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
		    le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
		    chksum));
		goto done;
	}

	entry = data + sizeof(struct qla_npiv_header);
	cnt = le16_to_cpu(hdr.entries);
994
	for (i = 0; cnt; cnt--, entry++, i++) {
995 996 997 998
		uint16_t flags;
		struct fc_vport_identifiers vid;
		struct fc_vport *vport;

999 1000
		memcpy(&ha->npiv_info[i], entry, sizeof(struct qla_npiv_entry));

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
		flags = le16_to_cpu(entry->flags);
		if (flags == 0xffff)
			continue;
		if ((flags & BIT_0) == 0)
			continue;

		memset(&vid, 0, sizeof(vid));
		vid.roles = FC_PORT_ROLE_FCP_INITIATOR;
		vid.vport_type = FC_PORTTYPE_NPIV;
		vid.disable = false;
		vid.port_name = wwn_to_u64(entry->port_name);
		vid.node_name = wwn_to_u64(entry->node_name);

1014
		DEBUG2(qla_printk(KERN_INFO, ha, "NPIV[%02x]: wwpn=%llx "
1015
			"wwnn=%llx vf_id=0x%x Q_qos=0x%x F_qos=0x%x.\n", cnt,
1016 1017 1018
			(unsigned long long)vid.port_name,
			(unsigned long long)vid.node_name,
			le16_to_cpu(entry->vf_id),
1019 1020 1021 1022 1023 1024 1025 1026
			entry->q_qos, entry->f_qos));

		if (i < QLA_PRECONFIG_VPORTS) {
			vport = fc_vport_create(vha->host, 0, &vid);
			if (!vport)
				qla_printk(KERN_INFO, ha,
				"NPIV-Config: Failed to create vport [%02x]: "
				"wwpn=%llx wwnn=%llx.\n", cnt,
1027 1028
				(unsigned long long)vid.port_name,
				(unsigned long long)vid.node_name);
1029
		}
1030 1031 1032 1033 1034
	}
done:
	kfree(data);
}

1035 1036
static int
qla24xx_unprotect_flash(scsi_qla_host_t *vha)
1037
{
1038
	struct qla_hw_data *ha = vha->hw;
1039 1040
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

1041 1042 1043
	if (ha->flags.fac_supported)
		return qla81xx_fac_do_write_enable(vha, 1);

1044 1045 1046 1047 1048
	/* Enable flash write. */
	WRT_REG_DWORD(&reg->ctrl_status,
	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */

1049
	if (!ha->fdt_wrt_disable)
1050
		goto done;
1051

1052
	/* Disable flash write-protection, first clear SR protection bit */
1053
	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
1054
	/* Then write zero again to clear remaining SR bits.*/
1055
	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
1056 1057
done:
	return QLA_SUCCESS;
1058 1059
}

1060 1061
static int
qla24xx_protect_flash(scsi_qla_host_t *vha)
1062 1063
{
	uint32_t cnt;
1064
	struct qla_hw_data *ha = vha->hw;
1065 1066
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

1067 1068 1069
	if (ha->flags.fac_supported)
		return qla81xx_fac_do_write_enable(vha, 0);

1070 1071 1072
	if (!ha->fdt_wrt_disable)
		goto skip_wrt_protect;

1073
	/* Enable flash write-protection and wait for completion. */
1074
	qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101),
1075
	    ha->fdt_wrt_disable);
1076
	for (cnt = 300; cnt &&
1077
	    qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x005)) & BIT_0;
1078 1079 1080 1081
	    cnt--) {
		udelay(10);
	}

1082
skip_wrt_protect:
1083 1084 1085 1086
	/* Disable flash write. */
	WRT_REG_DWORD(&reg->ctrl_status,
	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106

	return QLA_SUCCESS;
}

static int
qla24xx_erase_sector(scsi_qla_host_t *vha, uint32_t fdata)
{
	struct qla_hw_data *ha = vha->hw;
	uint32_t start, finish;

	if (ha->flags.fac_supported) {
		start = fdata >> 2;
		finish = start + (ha->fdt_block_size >> 2) - 1;
		return qla81xx_fac_erase_sector(vha, flash_data_addr(ha,
		    start), flash_data_addr(ha, finish));
	}

	return qla24xx_write_flash_dword(ha, ha->fdt_erase_cmd,
	    (fdata & 0xff00) | ((fdata << 16) & 0xff0000) |
	    ((fdata >> 16) & 0xff));
1107 1108
}

1109
static int
1110
qla24xx_write_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
1111 1112 1113
    uint32_t dwords)
{
	int ret;
1114
	uint32_t liter;
1115
	uint32_t sec_mask, rest_addr;
1116
	uint32_t fdata;
1117 1118
	dma_addr_t optrom_dma;
	void *optrom = NULL;
1119
	struct qla_hw_data *ha = vha->hw;
1120

1121
	/* Prepare burst-capable write on supported ISPs. */
1122
	if ((IS_QLA25XX(ha) || IS_QLA81XX(ha)) && !(faddr & 0xfff) &&
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
	    dwords > OPTROM_BURST_DWORDS) {
		optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
		    &optrom_dma, GFP_KERNEL);
		if (!optrom) {
			qla_printk(KERN_DEBUG, ha,
			    "Unable to allocate memory for optrom burst write "
			    "(%x KB).\n", OPTROM_BURST_SIZE / 1024);
		}
	}

1133
	rest_addr = (ha->fdt_block_size >> 2) - 1;
1134
	sec_mask = ~rest_addr;
1135

1136 1137 1138 1139 1140 1141
	ret = qla24xx_unprotect_flash(vha);
	if (ret != QLA_SUCCESS) {
		qla_printk(KERN_WARNING, ha,
		    "Unable to unprotect flash for update.\n");
		goto done;
	}
1142

1143
	for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) {
1144
		fdata = (faddr & sec_mask) << 2;
1145

1146
		/* Are we at the beginning of a sector? */
1147
		if ((faddr & rest_addr) == 0) {
1148 1149
			/* Do sector unprotect. */
			if (ha->fdt_unprotect_sec_cmd)
1150
				qla24xx_write_flash_dword(ha,
1151
				    ha->fdt_unprotect_sec_cmd,
1152
				    (fdata & 0xff00) | ((fdata << 16) &
1153
				    0xff0000) | ((fdata >> 16) & 0xff));
1154
			ret = qla24xx_erase_sector(vha, fdata);
1155
			if (ret != QLA_SUCCESS) {
1156 1157 1158
				DEBUG9(qla_printk(KERN_WARNING, ha,
				    "Unable to erase sector: address=%x.\n",
				    faddr));
1159
				break;
1160
			}
1161 1162 1163
		}

		/* Go with burst-write. */
1164
		if (optrom && (liter + OPTROM_BURST_DWORDS) <= dwords) {
1165
			/* Copy data to DMA'ble buffer. */
1166
			memcpy(optrom, dwptr, OPTROM_BURST_SIZE);
1167

1168
			ret = qla2x00_load_ram(vha, optrom_dma,
1169
			    flash_data_addr(ha, faddr),
1170
			    OPTROM_BURST_DWORDS);
1171
			if (ret != QLA_SUCCESS) {
1172 1173 1174
				qla_printk(KERN_WARNING, ha,
				    "Unable to burst-write optrom segment "
				    "(%x/%x/%llx).\n", ret,
1175
				    flash_data_addr(ha, faddr),
A
Andrew Morton 已提交
1176
				    (unsigned long long)optrom_dma);
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
				qla_printk(KERN_WARNING, ha,
				    "Reverting to slow-write.\n");

				dma_free_coherent(&ha->pdev->dev,
				    OPTROM_BURST_SIZE, optrom, optrom_dma);
				optrom = NULL;
			} else {
				liter += OPTROM_BURST_DWORDS - 1;
				faddr += OPTROM_BURST_DWORDS - 1;
				dwptr += OPTROM_BURST_DWORDS - 1;
				continue;
1188
			}
1189
		}
1190

1191
		ret = qla24xx_write_flash_dword(ha,
1192
		    flash_data_addr(ha, faddr), cpu_to_le32(*dwptr));
1193 1194 1195
		if (ret != QLA_SUCCESS) {
			DEBUG9(printk("%s(%ld) Unable to program flash "
			    "address=%x data=%x.\n", __func__,
1196
			    vha->host_no, faddr, *dwptr));
1197
			break;
1198
		}
1199

1200 1201
		/* Do sector protect. */
		if (ha->fdt_unprotect_sec_cmd &&
1202 1203
		    ((faddr & rest_addr) == rest_addr))
			qla24xx_write_flash_dword(ha,
1204
			    ha->fdt_protect_sec_cmd,
1205 1206 1207
			    (fdata & 0xff00) | ((fdata << 16) &
			    0xff0000) | ((fdata >> 16) & 0xff));
	}
1208

1209 1210 1211 1212 1213
	ret = qla24xx_protect_flash(vha);
	if (ret != QLA_SUCCESS)
		qla_printk(KERN_WARNING, ha,
		    "Unable to protect flash after update.\n");
done:
1214 1215 1216 1217
	if (optrom)
		dma_free_coherent(&ha->pdev->dev,
		    OPTROM_BURST_SIZE, optrom, optrom_dma);

1218 1219 1220 1221
	return ret;
}

uint8_t *
1222
qla2x00_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1223 1224 1225 1226
    uint32_t bytes)
{
	uint32_t i;
	uint16_t *wptr;
1227
	struct qla_hw_data *ha = vha->hw;
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240

	/* Word reads to NVRAM via registers. */
	wptr = (uint16_t *)buf;
	qla2x00_lock_nvram_access(ha);
	for (i = 0; i < bytes >> 1; i++, naddr++)
		wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha,
		    naddr));
	qla2x00_unlock_nvram_access(ha);

	return buf;
}

uint8_t *
1241
qla24xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1242 1243 1244 1245
    uint32_t bytes)
{
	uint32_t i;
	uint32_t *dwptr;
1246
	struct qla_hw_data *ha = vha->hw;
1247

1248 1249 1250
	if (IS_QLA82XX(ha))
		return  buf;

1251 1252 1253
	/* Dword reads to flash. */
	dwptr = (uint32_t *)buf;
	for (i = 0; i < bytes >> 2; i++, naddr++)
1254 1255
		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
		    nvram_data_addr(ha, naddr)));
1256 1257 1258 1259 1260

	return buf;
}

int
1261
qla2x00_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1262 1263 1264 1265 1266
    uint32_t bytes)
{
	int ret, stat;
	uint32_t i;
	uint16_t *wptr;
1267
	unsigned long flags;
1268
	struct qla_hw_data *ha = vha->hw;
1269 1270 1271

	ret = QLA_SUCCESS;

1272
	spin_lock_irqsave(&ha->hardware_lock, flags);
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
	qla2x00_lock_nvram_access(ha);

	/* Disable NVRAM write-protection. */
	stat = qla2x00_clear_nvram_protection(ha);

	wptr = (uint16_t *)buf;
	for (i = 0; i < bytes >> 1; i++, naddr++) {
		qla2x00_write_nvram_word(ha, naddr,
		    cpu_to_le16(*wptr));
		wptr++;
	}

	/* Enable NVRAM write-protection. */
	qla2x00_set_nvram_protection(ha, stat);

	qla2x00_unlock_nvram_access(ha);
1289
	spin_unlock_irqrestore(&ha->hardware_lock, flags);
1290 1291 1292 1293 1294

	return ret;
}

int
1295
qla24xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1296 1297 1298 1299 1300
    uint32_t bytes)
{
	int ret;
	uint32_t i;
	uint32_t *dwptr;
1301
	struct qla_hw_data *ha = vha->hw;
1302 1303 1304 1305
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	ret = QLA_SUCCESS;

1306 1307 1308
	if (IS_QLA82XX(ha))
		return ret;

1309 1310 1311 1312 1313 1314
	/* Enable flash write. */
	WRT_REG_DWORD(&reg->ctrl_status,
	    RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */

	/* Disable NVRAM write-protection. */
1315 1316
	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1317 1318 1319 1320 1321

	/* Dword writes to flash. */
	dwptr = (uint32_t *)buf;
	for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) {
		ret = qla24xx_write_flash_dword(ha,
1322
		    nvram_data_addr(ha, naddr), cpu_to_le32(*dwptr));
1323
		if (ret != QLA_SUCCESS) {
1324 1325 1326
			DEBUG9(qla_printk(KERN_WARNING, ha,
			    "Unable to program nvram address=%x data=%x.\n",
			    naddr, *dwptr));
1327 1328 1329 1330 1331
			break;
		}
	}

	/* Enable NVRAM write-protection. */
1332
	qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0x8c);
1333 1334 1335 1336 1337 1338 1339 1340

	/* Disable flash write. */
	WRT_REG_DWORD(&reg->ctrl_status,
	    RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
	RD_REG_DWORD(&reg->ctrl_status);	/* PCI Posting. */

	return ret;
}
1341

1342
uint8_t *
1343
qla25xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1344 1345 1346 1347
    uint32_t bytes)
{
	uint32_t i;
	uint32_t *dwptr;
1348
	struct qla_hw_data *ha = vha->hw;
1349 1350 1351 1352 1353

	/* Dword reads to flash. */
	dwptr = (uint32_t *)buf;
	for (i = 0; i < bytes >> 2; i++, naddr++)
		dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1354
		    flash_data_addr(ha, ha->flt_region_vpd_nvram | naddr)));
1355 1356 1357 1358 1359

	return buf;
}

int
1360
qla25xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1361 1362
    uint32_t bytes)
{
1363
	struct qla_hw_data *ha = vha->hw;
1364 1365 1366 1367 1368 1369
#define RMW_BUFFER_SIZE	(64 * 1024)
	uint8_t *dbuf;

	dbuf = vmalloc(RMW_BUFFER_SIZE);
	if (!dbuf)
		return QLA_MEMORY_ALLOC_FAILED;
1370
	ha->isp_ops->read_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1371 1372
	    RMW_BUFFER_SIZE);
	memcpy(dbuf + (naddr << 2), buf, bytes);
1373
	ha->isp_ops->write_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1374 1375 1376 1377
	    RMW_BUFFER_SIZE);
	vfree(dbuf);

	return QLA_SUCCESS;
1378
}
1379 1380

static inline void
1381
qla2x00_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
{
	if (IS_QLA2322(ha)) {
		/* Flip all colors. */
		if (ha->beacon_color_state == QLA_LED_ALL_ON) {
			/* Turn off. */
			ha->beacon_color_state = 0;
			*pflags = GPIO_LED_ALL_OFF;
		} else {
			/* Turn on. */
			ha->beacon_color_state = QLA_LED_ALL_ON;
			*pflags = GPIO_LED_RGA_ON;
		}
	} else {
		/* Flip green led only. */
		if (ha->beacon_color_state == QLA_LED_GRN_ON) {
			/* Turn off. */
			ha->beacon_color_state = 0;
			*pflags = GPIO_LED_GREEN_OFF_AMBER_OFF;
		} else {
			/* Turn on. */
			ha->beacon_color_state = QLA_LED_GRN_ON;
			*pflags = GPIO_LED_GREEN_ON_AMBER_OFF;
		}
	}
}

1408 1409
#define PIO_REG(h, r) ((h)->pio_address + offsetof(struct device_reg_2xxx, r))

1410
void
1411
qla2x00_beacon_blink(struct scsi_qla_host *vha)
1412 1413 1414 1415 1416
{
	uint16_t gpio_enable;
	uint16_t gpio_data;
	uint16_t led_color = 0;
	unsigned long flags;
1417
	struct qla_hw_data *ha = vha->hw;
1418 1419
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

1420 1421 1422
	if (IS_QLA82XX(ha))
		return;

1423 1424 1425 1426
	spin_lock_irqsave(&ha->hardware_lock, flags);

	/* Save the Original GPIOE. */
	if (ha->pio_address) {
1427 1428
		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1429 1430 1431 1432 1433 1434 1435 1436 1437
	} else {
		gpio_enable = RD_REG_WORD(&reg->gpioe);
		gpio_data = RD_REG_WORD(&reg->gpiod);
	}

	/* Set the modified gpio_enable values */
	gpio_enable |= GPIO_LED_MASK;

	if (ha->pio_address) {
1438
		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
	} else {
		WRT_REG_WORD(&reg->gpioe, gpio_enable);
		RD_REG_WORD(&reg->gpioe);
	}

	qla2x00_flip_colors(ha, &led_color);

	/* Clear out any previously set LED color. */
	gpio_data &= ~GPIO_LED_MASK;

	/* Set the new input LED color to GPIOD. */
	gpio_data |= led_color;

	/* Set the modified gpio_data values */
	if (ha->pio_address) {
1454
		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1455 1456 1457 1458 1459 1460 1461 1462 1463
	} else {
		WRT_REG_WORD(&reg->gpiod, gpio_data);
		RD_REG_WORD(&reg->gpiod);
	}

	spin_unlock_irqrestore(&ha->hardware_lock, flags);
}

int
1464
qla2x00_beacon_on(struct scsi_qla_host *vha)
1465 1466 1467 1468
{
	uint16_t gpio_enable;
	uint16_t gpio_data;
	unsigned long flags;
1469
	struct qla_hw_data *ha = vha->hw;
1470 1471 1472 1473 1474
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
	ha->fw_options[1] |= FO1_DISABLE_GPIO6_7;

1475
	if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1476 1477 1478 1479 1480 1481 1482 1483
		qla_printk(KERN_WARNING, ha,
		    "Unable to update fw options (beacon on).\n");
		return QLA_FUNCTION_FAILED;
	}

	/* Turn off LEDs. */
	spin_lock_irqsave(&ha->hardware_lock, flags);
	if (ha->pio_address) {
1484 1485
		gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
		gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1486 1487 1488 1489 1490 1491 1492 1493
	} else {
		gpio_enable = RD_REG_WORD(&reg->gpioe);
		gpio_data = RD_REG_WORD(&reg->gpiod);
	}
	gpio_enable |= GPIO_LED_MASK;

	/* Set the modified gpio_enable values. */
	if (ha->pio_address) {
1494
		WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1495 1496 1497 1498 1499 1500 1501 1502
	} else {
		WRT_REG_WORD(&reg->gpioe, gpio_enable);
		RD_REG_WORD(&reg->gpioe);
	}

	/* Clear out previously set LED colour. */
	gpio_data &= ~GPIO_LED_MASK;
	if (ha->pio_address) {
1503
		WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
	} else {
		WRT_REG_WORD(&reg->gpiod, gpio_data);
		RD_REG_WORD(&reg->gpiod);
	}
	spin_unlock_irqrestore(&ha->hardware_lock, flags);

	/*
	 * Let the per HBA timer kick off the blinking process based on
	 * the following flags. No need to do anything else now.
	 */
	ha->beacon_blink_led = 1;
	ha->beacon_color_state = 0;

	return QLA_SUCCESS;
}

int
1521
qla2x00_beacon_off(struct scsi_qla_host *vha)
1522 1523
{
	int rval = QLA_SUCCESS;
1524
	struct qla_hw_data *ha = vha->hw;
1525 1526 1527 1528 1529 1530 1531 1532 1533

	ha->beacon_blink_led = 0;

	/* Set the on flag so when it gets flipped it will be off. */
	if (IS_QLA2322(ha))
		ha->beacon_color_state = QLA_LED_ALL_ON;
	else
		ha->beacon_color_state = QLA_LED_GRN_ON;

1534
	ha->isp_ops->beacon_blink(vha);	/* This turns green LED off */
1535 1536 1537 1538

	ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
	ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7;

1539
	rval = qla2x00_set_fw_options(vha, ha->fw_options);
1540 1541 1542 1543 1544 1545 1546 1547
	if (rval != QLA_SUCCESS)
		qla_printk(KERN_WARNING, ha,
		    "Unable to update fw options (beacon off).\n");
	return rval;
}


static inline void
1548
qla24xx_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
{
	/* Flip all colors. */
	if (ha->beacon_color_state == QLA_LED_ALL_ON) {
		/* Turn off. */
		ha->beacon_color_state = 0;
		*pflags = 0;
	} else {
		/* Turn on. */
		ha->beacon_color_state = QLA_LED_ALL_ON;
		*pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON;
	}
}

void
1563
qla24xx_beacon_blink(struct scsi_qla_host *vha)
1564 1565 1566 1567
{
	uint16_t led_color = 0;
	uint32_t gpio_data;
	unsigned long flags;
1568
	struct qla_hw_data *ha = vha->hw;
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	/* Save the Original GPIOD. */
	spin_lock_irqsave(&ha->hardware_lock, flags);
	gpio_data = RD_REG_DWORD(&reg->gpiod);

	/* Enable the gpio_data reg for update. */
	gpio_data |= GPDX_LED_UPDATE_MASK;

	WRT_REG_DWORD(&reg->gpiod, gpio_data);
	gpio_data = RD_REG_DWORD(&reg->gpiod);

	/* Set the color bits. */
	qla24xx_flip_colors(ha, &led_color);

	/* Clear out any previously set LED color. */
	gpio_data &= ~GPDX_LED_COLOR_MASK;

	/* Set the new input LED color to GPIOD. */
	gpio_data |= led_color;

	/* Set the modified gpio_data values. */
	WRT_REG_DWORD(&reg->gpiod, gpio_data);
	gpio_data = RD_REG_DWORD(&reg->gpiod);
	spin_unlock_irqrestore(&ha->hardware_lock, flags);
}

int
1597
qla24xx_beacon_on(struct scsi_qla_host *vha)
1598 1599 1600
{
	uint32_t gpio_data;
	unsigned long flags;
1601
	struct qla_hw_data *ha = vha->hw;
1602 1603
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

1604 1605 1606
	if (IS_QLA82XX(ha))
		return QLA_SUCCESS;

1607 1608 1609 1610
	if (ha->beacon_blink_led == 0) {
		/* Enable firmware for update */
		ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL;

1611
		if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS)
1612 1613
			return QLA_FUNCTION_FAILED;

1614
		if (qla2x00_get_fw_options(vha, ha->fw_options) !=
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
		    QLA_SUCCESS) {
			qla_printk(KERN_WARNING, ha,
			    "Unable to update fw options (beacon on).\n");
			return QLA_FUNCTION_FAILED;
		}

		spin_lock_irqsave(&ha->hardware_lock, flags);
		gpio_data = RD_REG_DWORD(&reg->gpiod);

		/* Enable the gpio_data reg for update. */
		gpio_data |= GPDX_LED_UPDATE_MASK;
		WRT_REG_DWORD(&reg->gpiod, gpio_data);
		RD_REG_DWORD(&reg->gpiod);

		spin_unlock_irqrestore(&ha->hardware_lock, flags);
	}

	/* So all colors blink together. */
	ha->beacon_color_state = 0;

	/* Let the per HBA timer kick off the blinking process. */
	ha->beacon_blink_led = 1;

	return QLA_SUCCESS;
}

int
1642
qla24xx_beacon_off(struct scsi_qla_host *vha)
1643 1644 1645
{
	uint32_t gpio_data;
	unsigned long flags;
1646
	struct qla_hw_data *ha = vha->hw;
1647 1648
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

1649 1650 1651
	if (IS_QLA82XX(ha))
		return QLA_SUCCESS;

1652 1653 1654
	ha->beacon_blink_led = 0;
	ha->beacon_color_state = QLA_LED_ALL_ON;

1655
	ha->isp_ops->beacon_blink(vha);	/* Will flip to all off. */
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668

	/* Give control back to firmware. */
	spin_lock_irqsave(&ha->hardware_lock, flags);
	gpio_data = RD_REG_DWORD(&reg->gpiod);

	/* Disable the gpio_data reg for update. */
	gpio_data &= ~GPDX_LED_UPDATE_MASK;
	WRT_REG_DWORD(&reg->gpiod, gpio_data);
	RD_REG_DWORD(&reg->gpiod);
	spin_unlock_irqrestore(&ha->hardware_lock, flags);

	ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL;

1669
	if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1670 1671 1672 1673 1674
		qla_printk(KERN_WARNING, ha,
		    "Unable to update fw options (beacon off).\n");
		return QLA_FUNCTION_FAILED;
	}

1675
	if (qla2x00_get_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1676 1677 1678 1679 1680 1681 1682
		qla_printk(KERN_WARNING, ha,
		    "Unable to get fw options (beacon off).\n");
		return QLA_FUNCTION_FAILED;
	}

	return QLA_SUCCESS;
}
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693


/*
 * Flash support routines
 */

/**
 * qla2x00_flash_enable() - Setup flash for reading and writing.
 * @ha: HA context
 */
static void
1694
qla2x00_flash_enable(struct qla_hw_data *ha)
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
{
	uint16_t data;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	data = RD_REG_WORD(&reg->ctrl_status);
	data |= CSR_FLASH_ENABLE;
	WRT_REG_WORD(&reg->ctrl_status, data);
	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
}

/**
 * qla2x00_flash_disable() - Disable flash and allow RISC to run.
 * @ha: HA context
 */
static void
1710
qla2x00_flash_disable(struct qla_hw_data *ha)
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
{
	uint16_t data;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	data = RD_REG_WORD(&reg->ctrl_status);
	data &= ~(CSR_FLASH_ENABLE);
	WRT_REG_WORD(&reg->ctrl_status, data);
	RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
}

/**
 * qla2x00_read_flash_byte() - Reads a byte from flash
 * @ha: HA context
 * @addr: Address in flash to read
 *
 * A word is read from the chip, but, only the lower byte is valid.
 *
 * Returns the byte read from flash @addr.
 */
static uint8_t
1731
qla2x00_read_flash_byte(struct qla_hw_data *ha, uint32_t addr)
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
{
	uint16_t data;
	uint16_t bank_select;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	bank_select = RD_REG_WORD(&reg->ctrl_status);

	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
		/* Specify 64K address range: */
		/*  clear out Module Select and Flash Address bits [19:16]. */
		bank_select &= ~0xf8;
		bank_select |= addr >> 12 & 0xf0;
		bank_select |= CSR_FLASH_64K_BANK;
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */

		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
		data = RD_REG_WORD(&reg->flash_data);

		return (uint8_t)data;
	}

	/* Setup bit 16 of flash address. */
	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
		bank_select |= CSR_FLASH_64K_BANK;
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
	} else if (((addr & BIT_16) == 0) &&
	    (bank_select & CSR_FLASH_64K_BANK)) {
		bank_select &= ~(CSR_FLASH_64K_BANK);
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
	}

	/* Always perform IO mapped accesses to the FLASH registers. */
	if (ha->pio_address) {
		uint16_t data2;

1770
		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1771
		do {
1772
			data = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1773 1774
			barrier();
			cpu_relax();
1775
			data2 = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
		} while (data != data2);
	} else {
		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
		data = qla2x00_debounce_register(&reg->flash_data);
	}

	return (uint8_t)data;
}

/**
 * qla2x00_write_flash_byte() - Write a byte to flash
 * @ha: HA context
 * @addr: Address in flash to write
 * @data: Data to write
 */
static void
1792
qla2x00_write_flash_byte(struct qla_hw_data *ha, uint32_t addr, uint8_t data)
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
{
	uint16_t bank_select;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	bank_select = RD_REG_WORD(&reg->ctrl_status);
	if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
		/* Specify 64K address range: */
		/*  clear out Module Select and Flash Address bits [19:16]. */
		bank_select &= ~0xf8;
		bank_select |= addr >> 12 & 0xf0;
		bank_select |= CSR_FLASH_64K_BANK;
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */

		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */

		return;
	}

	/* Setup bit 16 of flash address. */
	if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
		bank_select |= CSR_FLASH_64K_BANK;
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
	} else if (((addr & BIT_16) == 0) &&
	    (bank_select & CSR_FLASH_64K_BANK)) {
		bank_select &= ~(CSR_FLASH_64K_BANK);
		WRT_REG_WORD(&reg->ctrl_status, bank_select);
		RD_REG_WORD(&reg->ctrl_status);	/* PCI Posting. */
	}

	/* Always perform IO mapped accesses to the FLASH registers. */
	if (ha->pio_address) {
1829 1830
		WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
		WRT_REG_WORD_PIO(PIO_REG(ha, flash_data), (uint16_t)data);
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
	} else {
		WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
		WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
		RD_REG_WORD(&reg->ctrl_status);		/* PCI Posting. */
	}
}

/**
 * qla2x00_poll_flash() - Polls flash for completion.
 * @ha: HA context
 * @addr: Address in flash to poll
 * @poll_data: Data to be polled
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 *
 * This function polls the device until bit 7 of what is read matches data
 * bit 7 or until data bit 5 becomes a 1.  If that hapens, the flash ROM timed
 * out (a fatal error).  The flash book recommeds reading bit 7 again after
 * reading bit 5 as a 1.
 *
 * Returns 0 on success, else non-zero.
 */
static int
1855
qla2x00_poll_flash(struct qla_hw_data *ha, uint32_t addr, uint8_t poll_data,
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
    uint8_t man_id, uint8_t flash_id)
{
	int status;
	uint8_t flash_data;
	uint32_t cnt;

	status = 1;

	/* Wait for 30 seconds for command to finish. */
	poll_data &= BIT_7;
	for (cnt = 3000000; cnt; cnt--) {
		flash_data = qla2x00_read_flash_byte(ha, addr);
		if ((flash_data & BIT_7) == poll_data) {
			status = 0;
			break;
		}

		if (man_id != 0x40 && man_id != 0xda) {
			if ((flash_data & BIT_5) && cnt > 2)
				cnt = 2;
		}
		udelay(10);
		barrier();
1879
		cond_resched();
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
	}
	return status;
}

/**
 * qla2x00_program_flash_address() - Programs a flash address
 * @ha: HA context
 * @addr: Address in flash to program
 * @data: Data to be written in flash
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 *
 * Returns 0 on success, else non-zero.
 */
static int
1895 1896
qla2x00_program_flash_address(struct qla_hw_data *ha, uint32_t addr,
    uint8_t data, uint8_t man_id, uint8_t flash_id)
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
{
	/* Write Program Command Sequence. */
	if (IS_OEM_001(ha)) {
		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
		qla2x00_write_flash_byte(ha, 0x555, 0x55);
		qla2x00_write_flash_byte(ha, 0xaaa, 0xa0);
		qla2x00_write_flash_byte(ha, addr, data);
	} else {
		if (man_id == 0xda && flash_id == 0xc1) {
			qla2x00_write_flash_byte(ha, addr, data);
			if (addr & 0x7e)
				return 0;
		} else {
			qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
			qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
			qla2x00_write_flash_byte(ha, 0x5555, 0xa0);
			qla2x00_write_flash_byte(ha, addr, data);
		}
	}

	udelay(150);

	/* Wait for write to complete. */
	return qla2x00_poll_flash(ha, addr, data, man_id, flash_id);
}

/**
 * qla2x00_erase_flash() - Erase the flash.
 * @ha: HA context
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 *
 * Returns 0 on success, else non-zero.
 */
static int
1932
qla2x00_erase_flash(struct qla_hw_data *ha, uint8_t man_id, uint8_t flash_id)
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
{
	/* Individual Sector Erase Command Sequence */
	if (IS_OEM_001(ha)) {
		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
		qla2x00_write_flash_byte(ha, 0x555, 0x55);
		qla2x00_write_flash_byte(ha, 0xaaa, 0x80);
		qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
		qla2x00_write_flash_byte(ha, 0x555, 0x55);
		qla2x00_write_flash_byte(ha, 0xaaa, 0x10);
	} else {
		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
		qla2x00_write_flash_byte(ha, 0x5555, 0x80);
		qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
		qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
		qla2x00_write_flash_byte(ha, 0x5555, 0x10);
	}

	udelay(150);

	/* Wait for erase to complete. */
	return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id);
}

/**
 * qla2x00_erase_flash_sector() - Erase a flash sector.
 * @ha: HA context
 * @addr: Flash sector to erase
 * @sec_mask: Sector address mask
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 *
 * Returns 0 on success, else non-zero.
 */
static int
1968
qla2x00_erase_flash_sector(struct qla_hw_data *ha, uint32_t addr,
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
    uint32_t sec_mask, uint8_t man_id, uint8_t flash_id)
{
	/* Individual Sector Erase Command Sequence */
	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
	qla2x00_write_flash_byte(ha, 0x5555, 0x80);
	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
	if (man_id == 0x1f && flash_id == 0x13)
		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10);
	else
		qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30);

	udelay(150);

	/* Wait for erase to complete. */
	return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id);
}

/**
 * qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
 * @man_id: Flash manufacturer ID
 * @flash_id: Flash ID
 */
static void
1994
qla2x00_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
    uint8_t *flash_id)
{
	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
	qla2x00_write_flash_byte(ha, 0x5555, 0x90);
	*man_id = qla2x00_read_flash_byte(ha, 0x0000);
	*flash_id = qla2x00_read_flash_byte(ha, 0x0001);
	qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
	qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
	qla2x00_write_flash_byte(ha, 0x5555, 0xf0);
}

2007
static void
2008 2009
qla2x00_read_flash_data(struct qla_hw_data *ha, uint8_t *tmp_buf,
	uint32_t saddr, uint32_t length)
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
{
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
	uint32_t midpoint, ilength;
	uint8_t data;

	midpoint = length / 2;

	WRT_REG_WORD(&reg->nvram, 0);
	RD_REG_WORD(&reg->nvram);
	for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) {
		if (ilength == midpoint) {
			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
			RD_REG_WORD(&reg->nvram);
		}
		data = qla2x00_read_flash_byte(ha, saddr);
		if (saddr % 100)
			udelay(10);
		*tmp_buf = data;
2028
		cond_resched();
2029 2030
	}
}
2031 2032

static inline void
2033
qla2x00_suspend_hba(struct scsi_qla_host *vha)
2034 2035 2036
{
	int cnt;
	unsigned long flags;
2037
	struct qla_hw_data *ha = vha->hw;
2038 2039 2040
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	/* Suspend HBA. */
2041
	scsi_block_requests(vha->host);
2042
	ha->isp_ops->disable_intrs(ha);
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);

	/* Pause RISC. */
	spin_lock_irqsave(&ha->hardware_lock, flags);
	WRT_REG_WORD(&reg->hccr, HCCR_PAUSE_RISC);
	RD_REG_WORD(&reg->hccr);
	if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
		for (cnt = 0; cnt < 30000; cnt++) {
			if ((RD_REG_WORD(&reg->hccr) & HCCR_RISC_PAUSE) != 0)
				break;
			udelay(100);
		}
	} else {
		udelay(10);
	}
	spin_unlock_irqrestore(&ha->hardware_lock, flags);
}

static inline void
2062
qla2x00_resume_hba(struct scsi_qla_host *vha)
2063
{
2064 2065
	struct qla_hw_data *ha = vha->hw;

2066 2067
	/* Resume HBA. */
	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2068 2069
	set_bit(ISP_ABORT_NEEDED, &vha->dpc_flags);
	qla2xxx_wake_dpc(vha);
2070
	qla2x00_wait_for_chip_reset(vha);
2071
	scsi_unblock_requests(vha->host);
2072 2073 2074
}

uint8_t *
2075
qla2x00_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2076 2077 2078 2079
    uint32_t offset, uint32_t length)
{
	uint32_t addr, midpoint;
	uint8_t *data;
2080
	struct qla_hw_data *ha = vha->hw;
2081 2082 2083
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	/* Suspend HBA. */
2084
	qla2x00_suspend_hba(vha);
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102

	/* Go with read. */
	midpoint = ha->optrom_size / 2;

	qla2x00_flash_enable(ha);
	WRT_REG_WORD(&reg->nvram, 0);
	RD_REG_WORD(&reg->nvram);		/* PCI Posting. */
	for (addr = offset, data = buf; addr < length; addr++, data++) {
		if (addr == midpoint) {
			WRT_REG_WORD(&reg->nvram, NVR_SELECT);
			RD_REG_WORD(&reg->nvram);	/* PCI Posting. */
		}

		*data = qla2x00_read_flash_byte(ha, addr);
	}
	qla2x00_flash_disable(ha);

	/* Resume HBA. */
2103
	qla2x00_resume_hba(vha);
2104 2105 2106 2107 2108

	return buf;
}

int
2109
qla2x00_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2110 2111 2112 2113 2114 2115 2116
    uint32_t offset, uint32_t length)
{

	int rval;
	uint8_t man_id, flash_id, sec_number, data;
	uint16_t wd;
	uint32_t addr, liter, sec_mask, rest_addr;
2117
	struct qla_hw_data *ha = vha->hw;
2118 2119 2120
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	/* Suspend HBA. */
2121
	qla2x00_suspend_hba(vha);
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314

	rval = QLA_SUCCESS;
	sec_number = 0;

	/* Reset ISP chip. */
	WRT_REG_WORD(&reg->ctrl_status, CSR_ISP_SOFT_RESET);
	pci_read_config_word(ha->pdev, PCI_COMMAND, &wd);

	/* Go with write. */
	qla2x00_flash_enable(ha);
	do {	/* Loop once to provide quick error exit */
		/* Structure of flash memory based on manufacturer */
		if (IS_OEM_001(ha)) {
			/* OEM variant with special flash part. */
			man_id = flash_id = 0;
			rest_addr = 0xffff;
			sec_mask   = 0x10000;
			goto update_flash;
		}
		qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id);
		switch (man_id) {
		case 0x20: /* ST flash. */
			if (flash_id == 0xd2 || flash_id == 0xe3) {
				/*
				 * ST m29w008at part - 64kb sector size with
				 * 32kb,8kb,8kb,16kb sectors at memory address
				 * 0xf0000.
				 */
				rest_addr = 0xffff;
				sec_mask = 0x10000;
				break;   
			}
			/*
			 * ST m29w010b part - 16kb sector size
			 * Default to 16kb sectors
			 */
			rest_addr = 0x3fff;
			sec_mask = 0x1c000;
			break;
		case 0x40: /* Mostel flash. */
			/* Mostel v29c51001 part - 512 byte sector size. */
			rest_addr = 0x1ff;
			sec_mask = 0x1fe00;
			break;
		case 0xbf: /* SST flash. */
			/* SST39sf10 part - 4kb sector size. */
			rest_addr = 0xfff;
			sec_mask = 0x1f000;
			break;
		case 0xda: /* Winbond flash. */
			/* Winbond W29EE011 part - 256 byte sector size. */
			rest_addr = 0x7f;
			sec_mask = 0x1ff80;
			break;
		case 0xc2: /* Macronix flash. */
			/* 64k sector size. */
			if (flash_id == 0x38 || flash_id == 0x4f) {
				rest_addr = 0xffff;
				sec_mask = 0x10000;
				break;
			}
			/* Fall through... */

		case 0x1f: /* Atmel flash. */
			/* 512k sector size. */
			if (flash_id == 0x13) {
				rest_addr = 0x7fffffff;
				sec_mask =   0x80000000;
				break;
			}
			/* Fall through... */

		case 0x01: /* AMD flash. */
			if (flash_id == 0x38 || flash_id == 0x40 ||
			    flash_id == 0x4f) {
				/* Am29LV081 part - 64kb sector size. */
				/* Am29LV002BT part - 64kb sector size. */
				rest_addr = 0xffff;
				sec_mask = 0x10000;
				break;
			} else if (flash_id == 0x3e) {
				/*
				 * Am29LV008b part - 64kb sector size with
				 * 32kb,8kb,8kb,16kb sector at memory address
				 * h0xf0000.
				 */
				rest_addr = 0xffff;
				sec_mask = 0x10000;
				break;
			} else if (flash_id == 0x20 || flash_id == 0x6e) {
				/*
				 * Am29LV010 part or AM29f010 - 16kb sector
				 * size.
				 */
				rest_addr = 0x3fff;
				sec_mask = 0x1c000;
				break;
			} else if (flash_id == 0x6d) {
				/* Am29LV001 part - 8kb sector size. */
				rest_addr = 0x1fff;
				sec_mask = 0x1e000;
				break;
			}
		default:
			/* Default to 16 kb sector size. */
			rest_addr = 0x3fff;
			sec_mask = 0x1c000;
			break;
		}

update_flash:
		if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
			if (qla2x00_erase_flash(ha, man_id, flash_id)) {
				rval = QLA_FUNCTION_FAILED;
				break;
			}
		}

		for (addr = offset, liter = 0; liter < length; liter++,
		    addr++) {
			data = buf[liter];
			/* Are we at the beginning of a sector? */
			if ((addr & rest_addr) == 0) {
				if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
					if (addr >= 0x10000UL) {
						if (((addr >> 12) & 0xf0) &&
						    ((man_id == 0x01 &&
							flash_id == 0x3e) ||
						     (man_id == 0x20 &&
							 flash_id == 0xd2))) {
							sec_number++;
							if (sec_number == 1) {
								rest_addr =
								    0x7fff;
								sec_mask =
								    0x18000;
							} else if (
							    sec_number == 2 ||
							    sec_number == 3) {
								rest_addr =
								    0x1fff;
								sec_mask =
								    0x1e000;
							} else if (
							    sec_number == 4) {
								rest_addr =
								    0x3fff;
								sec_mask =
								    0x1c000;
							}
						}
					}
				} else if (addr == ha->optrom_size / 2) {
					WRT_REG_WORD(&reg->nvram, NVR_SELECT);
					RD_REG_WORD(&reg->nvram);
				}

				if (flash_id == 0xda && man_id == 0xc1) {
					qla2x00_write_flash_byte(ha, 0x5555,
					    0xaa);
					qla2x00_write_flash_byte(ha, 0x2aaa,
					    0x55);
					qla2x00_write_flash_byte(ha, 0x5555,
					    0xa0);
				} else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) {
					/* Then erase it */
					if (qla2x00_erase_flash_sector(ha,
					    addr, sec_mask, man_id,
					    flash_id)) {
						rval = QLA_FUNCTION_FAILED;
						break;
					}
					if (man_id == 0x01 && flash_id == 0x6d)
						sec_number++;
				}
			}

			if (man_id == 0x01 && flash_id == 0x6d) {
				if (sec_number == 1 &&
				    addr == (rest_addr - 1)) {
					rest_addr = 0x0fff;
					sec_mask   = 0x1f000;
				} else if (sec_number == 3 && (addr & 0x7ffe)) {
					rest_addr = 0x3fff;
					sec_mask   = 0x1c000;
				}
			}

			if (qla2x00_program_flash_address(ha, addr, data,
			    man_id, flash_id)) {
				rval = QLA_FUNCTION_FAILED;
				break;
			}
2315
			cond_resched();
2316 2317 2318 2319 2320
		}
	} while (0);
	qla2x00_flash_disable(ha);

	/* Resume HBA. */
2321
	qla2x00_resume_hba(vha);
2322 2323 2324 2325 2326

	return rval;
}

uint8_t *
2327
qla24xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2328 2329
    uint32_t offset, uint32_t length)
{
2330 2331
	struct qla_hw_data *ha = vha->hw;

2332
	/* Suspend HBA. */
2333
	scsi_block_requests(vha->host);
2334 2335 2336
	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);

	/* Go with read. */
2337
	qla24xx_read_flash_data(vha, (uint32_t *)buf, offset >> 2, length >> 2);
2338 2339 2340

	/* Resume HBA. */
	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2341
	scsi_unblock_requests(vha->host);
2342 2343 2344 2345 2346

	return buf;
}

int
2347
qla24xx_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2348 2349 2350
    uint32_t offset, uint32_t length)
{
	int rval;
2351
	struct qla_hw_data *ha = vha->hw;
2352 2353

	/* Suspend HBA. */
2354
	scsi_block_requests(vha->host);
2355 2356 2357
	set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);

	/* Go with write. */
2358
	rval = qla24xx_write_flash_data(vha, (uint32_t *)buf, offset >> 2,
2359 2360 2361
	    length >> 2);

	clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2362
	scsi_unblock_requests(vha->host);
2363 2364 2365

	return rval;
}
2366

2367
uint8_t *
2368
qla25xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2369 2370 2371 2372 2373 2374 2375
    uint32_t offset, uint32_t length)
{
	int rval;
	dma_addr_t optrom_dma;
	void *optrom;
	uint8_t *pbuf;
	uint32_t faddr, left, burst;
2376
	struct qla_hw_data *ha = vha->hw;
2377

2378 2379
	if (IS_QLA25XX(ha) || IS_QLA81XX(ha))
		goto try_fast;
2380
	if (offset & 0xfff)
2381 2382 2383 2384
		goto slow_read;
	if (length < OPTROM_BURST_SIZE)
		goto slow_read;

2385
try_fast:
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
	optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
	    &optrom_dma, GFP_KERNEL);
	if (!optrom) {
		qla_printk(KERN_DEBUG, ha,
		    "Unable to allocate memory for optrom burst read "
		    "(%x KB).\n", OPTROM_BURST_SIZE / 1024);

		goto slow_read;
	}

	pbuf = buf;
	faddr = offset >> 2;
	left = length >> 2;
	burst = OPTROM_BURST_DWORDS;
	while (left != 0) {
		if (burst > left)
			burst = left;

2404
		rval = qla2x00_dump_ram(vha, optrom_dma,
2405
		    flash_data_addr(ha, faddr), burst);
2406 2407 2408 2409
		if (rval) {
			qla_printk(KERN_WARNING, ha,
			    "Unable to burst-read optrom segment "
			    "(%x/%x/%llx).\n", rval,
2410
			    flash_data_addr(ha, faddr),
A
Andrew Morton 已提交
2411
			    (unsigned long long)optrom_dma);
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
			qla_printk(KERN_WARNING, ha,
			    "Reverting to slow-read.\n");

			dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
			    optrom, optrom_dma);
			goto slow_read;
		}

		memcpy(pbuf, optrom, burst * 4);

		left -= burst;
		faddr += burst;
		pbuf += burst * 4;
	}

	dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom,
	    optrom_dma);

	return buf;

slow_read:
2433
    return qla24xx_read_optrom_data(vha, buf, offset, length);
2434 2435
}

2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
/**
 * qla2x00_get_fcode_version() - Determine an FCODE image's version.
 * @ha: HA context
 * @pcids: Pointer to the FCODE PCI data structure
 *
 * The process of retrieving the FCODE version information is at best
 * described as interesting.
 *
 * Within the first 100h bytes of the image an ASCII string is present
 * which contains several pieces of information including the FCODE
 * version.  Unfortunately it seems the only reliable way to retrieve
 * the version is by scanning for another sentinel within the string,
 * the FCODE build date:
 *
 *	... 2.00.02 10/17/02 ...
 *
 * Returns QLA_SUCCESS on successful retrieval of version.
 */
static void
2455
qla2x00_get_fcode_version(struct qla_hw_data *ha, uint32_t pcids)
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
{
	int ret = QLA_FUNCTION_FAILED;
	uint32_t istart, iend, iter, vend;
	uint8_t do_next, rbyte, *vbyte;

	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));

	/* Skip the PCI data structure. */
	istart = pcids +
	    ((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) |
		qla2x00_read_flash_byte(ha, pcids + 0x0A));
	iend = istart + 0x100;
	do {
		/* Scan for the sentinel date string...eeewww. */
		do_next = 0;
		iter = istart;
		while ((iter < iend) && !do_next) {
			iter++;
			if (qla2x00_read_flash_byte(ha, iter) == '/') {
				if (qla2x00_read_flash_byte(ha, iter + 2) ==
				    '/')
					do_next++;
				else if (qla2x00_read_flash_byte(ha,
				    iter + 3) == '/')
					do_next++;
			}
		}
		if (!do_next)
			break;

		/* Backtrack to previous ' ' (space). */
		do_next = 0;
		while ((iter > istart) && !do_next) {
			iter--;
			if (qla2x00_read_flash_byte(ha, iter) == ' ')
				do_next++;
		}
		if (!do_next)
			break;

		/*
		 * Mark end of version tag, and find previous ' ' (space) or
		 * string length (recent FCODE images -- major hack ahead!!!).
		 */
		vend = iter - 1;
		do_next = 0;
		while ((iter > istart) && !do_next) {
			iter--;
			rbyte = qla2x00_read_flash_byte(ha, iter);
			if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10)
				do_next++;
		}
		if (!do_next)
			break;

		/* Mark beginning of version tag, and copy data. */
		iter++;
		if ((vend - iter) &&
		    ((vend - iter) < sizeof(ha->fcode_revision))) {
			vbyte = ha->fcode_revision;
			while (iter <= vend) {
				*vbyte++ = qla2x00_read_flash_byte(ha, iter);
				iter++;
			}
			ret = QLA_SUCCESS;
		}
	} while (0);

	if (ret != QLA_SUCCESS)
		memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
}

int
2529
qla2x00_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2530 2531 2532 2533 2534 2535
{
	int ret = QLA_SUCCESS;
	uint8_t code_type, last_image;
	uint32_t pcihdr, pcids;
	uint8_t *dbyte;
	uint16_t *dcode;
2536
	struct qla_hw_data *ha = vha->hw;
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555

	if (!ha->pio_address || !mbuf)
		return QLA_FUNCTION_FAILED;

	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));

	qla2x00_flash_enable(ha);

	/* Begin with first PCI expansion ROM header. */
	pcihdr = 0;
	last_image = 1;
	do {
		/* Verify PCI expansion ROM header. */
		if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 ||
		    qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) {
			/* No signature */
2556 2557
			DEBUG2(qla_printk(KERN_DEBUG, ha, "No matching ROM "
			    "signature.\n"));
2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
			ret = QLA_FUNCTION_FAILED;
			break;
		}

		/* Locate PCI data structure. */
		pcids = pcihdr +
		    ((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) |
			qla2x00_read_flash_byte(ha, pcihdr + 0x18));

		/* Validate signature of PCI data structure. */
		if (qla2x00_read_flash_byte(ha, pcids) != 'P' ||
		    qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' ||
		    qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' ||
		    qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') {
			/* Incorrect header. */
2573 2574
			DEBUG2(qla_printk(KERN_INFO, ha, "PCI data struct not "
			    "found pcir_adr=%x.\n", pcids));
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
			ret = QLA_FUNCTION_FAILED;
			break;
		}

		/* Read version */
		code_type = qla2x00_read_flash_byte(ha, pcids + 0x14);
		switch (code_type) {
		case ROM_CODE_TYPE_BIOS:
			/* Intel x86, PC-AT compatible. */
			ha->bios_revision[0] =
			    qla2x00_read_flash_byte(ha, pcids + 0x12);
			ha->bios_revision[1] =
			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2588
			DEBUG3(qla_printk(KERN_DEBUG, ha, "read BIOS %d.%d.\n",
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
			    ha->bios_revision[1], ha->bios_revision[0]));
			break;
		case ROM_CODE_TYPE_FCODE:
			/* Open Firmware standard for PCI (FCode). */
			/* Eeeewww... */
			qla2x00_get_fcode_version(ha, pcids);
			break;
		case ROM_CODE_TYPE_EFI:
			/* Extensible Firmware Interface (EFI). */
			ha->efi_revision[0] =
			    qla2x00_read_flash_byte(ha, pcids + 0x12);
			ha->efi_revision[1] =
			    qla2x00_read_flash_byte(ha, pcids + 0x13);
2602
			DEBUG3(qla_printk(KERN_DEBUG, ha, "read EFI %d.%d.\n",
2603 2604 2605
			    ha->efi_revision[1], ha->efi_revision[0]));
			break;
		default:
2606 2607
			DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized code "
			    "type %x at pcids %x.\n", code_type, pcids));
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
			break;
		}

		last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7;

		/* Locate next PCI expansion ROM. */
		pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) |
		    qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512;
	} while (!last_image);

	if (IS_QLA2322(ha)) {
		/* Read firmware image information. */
		memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
		dbyte = mbuf;
		memset(dbyte, 0, 8);
		dcode = (uint16_t *)dbyte;

2625
		qla2x00_read_flash_data(ha, dbyte, ha->flt_region_fw * 4 + 10,
2626
		    8);
2627 2628
		DEBUG3(qla_printk(KERN_DEBUG, ha, "dumping fw ver from "
		    "flash:\n"));
2629 2630 2631 2632 2633 2634
		DEBUG3(qla2x00_dump_buffer((uint8_t *)dbyte, 8));

		if ((dcode[0] == 0xffff && dcode[1] == 0xffff &&
		    dcode[2] == 0xffff && dcode[3] == 0xffff) ||
		    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
		    dcode[3] == 0)) {
2635 2636
			DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized fw "
			    "revision at %x.\n", ha->flt_region_fw * 4));
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
		} else {
			/* values are in big endian */
			ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1];
			ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3];
			ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5];
		}
	}

	qla2x00_flash_disable(ha);

	return ret;
}

int
2651
qla24xx_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2652 2653 2654 2655 2656 2657 2658
{
	int ret = QLA_SUCCESS;
	uint32_t pcihdr, pcids;
	uint32_t *dcode;
	uint8_t *bcode;
	uint8_t code_type, last_image;
	int i;
2659
	struct qla_hw_data *ha = vha->hw;
2660

2661 2662 2663
	if (IS_QLA82XX(ha))
		return ret;

2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
	if (!mbuf)
		return QLA_FUNCTION_FAILED;

	memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
	memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
	memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));

	dcode = mbuf;

	/* Begin with first PCI expansion ROM header. */
2675
	pcihdr = ha->flt_region_boot << 2;
2676 2677 2678
	last_image = 1;
	do {
		/* Verify PCI expansion ROM header. */
2679
		qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
2680 2681 2682
		bcode = mbuf + (pcihdr % 4);
		if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
			/* No signature */
2683 2684
			DEBUG2(qla_printk(KERN_DEBUG, ha, "No matching ROM "
			    "signature.\n"));
2685 2686 2687 2688 2689 2690 2691
			ret = QLA_FUNCTION_FAILED;
			break;
		}

		/* Locate PCI data structure. */
		pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);

2692
		qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
2693 2694 2695 2696 2697 2698
		bcode = mbuf + (pcihdr % 4);

		/* Validate signature of PCI data structure. */
		if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
		    bcode[0x2] != 'I' || bcode[0x3] != 'R') {
			/* Incorrect header. */
2699 2700
			DEBUG2(qla_printk(KERN_INFO, ha, "PCI data struct not "
			    "found pcir_adr=%x.\n", pcids));
2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
			ret = QLA_FUNCTION_FAILED;
			break;
		}

		/* Read version */
		code_type = bcode[0x14];
		switch (code_type) {
		case ROM_CODE_TYPE_BIOS:
			/* Intel x86, PC-AT compatible. */
			ha->bios_revision[0] = bcode[0x12];
			ha->bios_revision[1] = bcode[0x13];
2712
			DEBUG3(qla_printk(KERN_DEBUG, ha, "read BIOS %d.%d.\n",
2713 2714 2715 2716 2717 2718
			    ha->bios_revision[1], ha->bios_revision[0]));
			break;
		case ROM_CODE_TYPE_FCODE:
			/* Open Firmware standard for PCI (FCode). */
			ha->fcode_revision[0] = bcode[0x12];
			ha->fcode_revision[1] = bcode[0x13];
2719
			DEBUG3(qla_printk(KERN_DEBUG, ha, "read FCODE %d.%d.\n",
2720 2721 2722 2723 2724 2725
			    ha->fcode_revision[1], ha->fcode_revision[0]));
			break;
		case ROM_CODE_TYPE_EFI:
			/* Extensible Firmware Interface (EFI). */
			ha->efi_revision[0] = bcode[0x12];
			ha->efi_revision[1] = bcode[0x13];
2726
			DEBUG3(qla_printk(KERN_DEBUG, ha, "read EFI %d.%d.\n",
2727 2728 2729
			    ha->efi_revision[1], ha->efi_revision[0]));
			break;
		default:
2730 2731
			DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized code "
			    "type %x at pcids %x.\n", code_type, pcids));
2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
			break;
		}

		last_image = bcode[0x15] & BIT_7;

		/* Locate next PCI expansion ROM. */
		pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
	} while (!last_image);

	/* Read firmware image information. */
	memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
	dcode = mbuf;

2745
	qla24xx_read_flash_data(vha, dcode, ha->flt_region_fw + 4, 4);
2746 2747 2748 2749 2750 2751 2752
	for (i = 0; i < 4; i++)
		dcode[i] = be32_to_cpu(dcode[i]);

	if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff &&
	    dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) ||
	    (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
	    dcode[3] == 0)) {
2753 2754
		DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized fw "
		    "revision at %x.\n", ha->flt_region_fw * 4));
2755 2756 2757 2758 2759 2760 2761
	} else {
		ha->fw_revision[0] = dcode[0];
		ha->fw_revision[1] = dcode[1];
		ha->fw_revision[2] = dcode[2];
		ha->fw_revision[3] = dcode[3];
	}

2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
	/* Check for golden firmware and get version if available */
	if (!IS_QLA81XX(ha)) {
		/* Golden firmware is not present in non 81XX adapters */
		return ret;
	}

	memset(ha->gold_fw_version, 0, sizeof(ha->gold_fw_version));
	dcode = mbuf;
	ha->isp_ops->read_optrom(vha, (uint8_t *)dcode,
	    ha->flt_region_gold_fw << 2, 32);

	if (dcode[4] == 0xFFFFFFFF && dcode[5] == 0xFFFFFFFF &&
	    dcode[6] == 0xFFFFFFFF && dcode[7] == 0xFFFFFFFF) {
		DEBUG2(qla_printk(KERN_INFO, ha,
		    "%s(%ld): Unrecognized golden fw at 0x%x.\n",
		    __func__, vha->host_no, ha->flt_region_gold_fw * 4));
		return ret;
	}

	for (i = 4; i < 8; i++)
		ha->gold_fw_version[i-4] = be32_to_cpu(dcode[i]);

2784 2785
	return ret;
}
2786

2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
static int
qla2xxx_is_vpd_valid(uint8_t *pos, uint8_t *end)
{
	if (pos >= end || *pos != 0x82)
		return 0;

	pos += 3 + pos[1];
	if (pos >= end || *pos != 0x90)
		return 0;

	pos += 3 + pos[1];
	if (pos >= end || *pos != 0x78)
		return 0;

	return 1;
}

int
2805
qla2xxx_get_vpd_field(scsi_qla_host_t *vha, char *key, char *str, size_t size)
2806
{
2807
	struct qla_hw_data *ha = vha->hw;
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
	uint8_t *pos = ha->vpd;
	uint8_t *end = pos + ha->vpd_size;
	int len = 0;

	if (!IS_FWI2_CAPABLE(ha) || !qla2xxx_is_vpd_valid(pos, end))
		return 0;

	while (pos < end && *pos != 0x78) {
		len = (*pos == 0x82) ? pos[1] : pos[2];

		if (!strncmp(pos, key, strlen(key)))
			break;

		if (*pos != 0x90 && *pos != 0x91)
			pos += len;

		pos += 3;
	}

	if (pos < end - len && *pos != 0x78)
		return snprintf(str, size, "%.*s", len, pos + 3);

	return 0;
}
S
Sarang Radke 已提交
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878

int
qla24xx_read_fcp_prio_cfg(scsi_qla_host_t *vha)
{
	int len, max_len;
	uint32_t fcp_prio_addr;
	struct qla_hw_data *ha = vha->hw;

	if (!ha->fcp_prio_cfg) {
		ha->fcp_prio_cfg = vmalloc(FCP_PRIO_CFG_SIZE);
		if (!ha->fcp_prio_cfg) {
			qla_printk(KERN_WARNING, ha,
			"Unable to allocate memory for fcp priority data "
					"(%x).\n", FCP_PRIO_CFG_SIZE);
			return QLA_FUNCTION_FAILED;
		}
	}
	memset(ha->fcp_prio_cfg, 0, FCP_PRIO_CFG_SIZE);

	fcp_prio_addr = ha->flt_region_fcp_prio;

	/* first read the fcp priority data header from flash */
	ha->isp_ops->read_optrom(vha, (uint8_t *)ha->fcp_prio_cfg,
			fcp_prio_addr << 2, FCP_PRIO_CFG_HDR_SIZE);

	if (!qla24xx_fcp_prio_cfg_valid(ha->fcp_prio_cfg, 0))
		goto fail;

	/* read remaining FCP CMD config data from flash */
	fcp_prio_addr += (FCP_PRIO_CFG_HDR_SIZE >> 2);
	len = ha->fcp_prio_cfg->num_entries * FCP_PRIO_CFG_ENTRY_SIZE;
	max_len = FCP_PRIO_CFG_SIZE - FCP_PRIO_CFG_HDR_SIZE;

	ha->isp_ops->read_optrom(vha, (uint8_t *)&ha->fcp_prio_cfg->entry[0],
			fcp_prio_addr << 2, (len < max_len ? len : max_len));

	/* revalidate the entire FCP priority config data, including entries */
	if (!qla24xx_fcp_prio_cfg_valid(ha->fcp_prio_cfg, 1))
		goto fail;

	ha->flags.fcp_prio_enabled = 1;
	return QLA_SUCCESS;
fail:
	vfree(ha->fcp_prio_cfg);
	ha->fcp_prio_cfg = NULL;
	return QLA_FUNCTION_FAILED;
}