sparse.c 16.2 KB
Newer Older
A
Andy Whitcroft 已提交
1 2 3 4 5 6
/*
 * sparse memory mappings.
 */
#include <linux/mm.h>
#include <linux/mmzone.h>
#include <linux/bootmem.h>
7
#include <linux/highmem.h>
A
Andy Whitcroft 已提交
8
#include <linux/module.h>
9
#include <linux/spinlock.h>
10
#include <linux/vmalloc.h>
11
#include "internal.h"
A
Andy Whitcroft 已提交
12
#include <asm/dma.h>
13 14
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
15
#include "internal.h"
A
Andy Whitcroft 已提交
16 17 18 19 20 21

/*
 * Permanent SPARSEMEM data:
 *
 * 1) mem_section	- memory sections, mem_map's for valid memory
 */
22
#ifdef CONFIG_SPARSEMEM_EXTREME
B
Bob Picco 已提交
23
struct mem_section *mem_section[NR_SECTION_ROOTS]
24
	____cacheline_internodealigned_in_smp;
25 26
#else
struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
27
	____cacheline_internodealigned_in_smp;
28 29 30
#endif
EXPORT_SYMBOL(mem_section);

31 32 33 34 35 36 37 38 39 40 41 42
#ifdef NODE_NOT_IN_PAGE_FLAGS
/*
 * If we did not store the node number in the page then we have to
 * do a lookup in the section_to_node_table in order to find which
 * node the page belongs to.
 */
#if MAX_NUMNODES <= 256
static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
#else
static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
#endif

43
int page_to_nid(struct page *page)
44 45 46 47
{
	return section_to_node_table[page_to_section(page)];
}
EXPORT_SYMBOL(page_to_nid);
48 49 50 51 52 53 54 55 56

static void set_section_nid(unsigned long section_nr, int nid)
{
	section_to_node_table[section_nr] = nid;
}
#else /* !NODE_NOT_IN_PAGE_FLAGS */
static inline void set_section_nid(unsigned long section_nr, int nid)
{
}
57 58
#endif

59
#ifdef CONFIG_SPARSEMEM_EXTREME
S
Sam Ravnborg 已提交
60
static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
61 62 63 64 65
{
	struct mem_section *section = NULL;
	unsigned long array_size = SECTIONS_PER_ROOT *
				   sizeof(struct mem_section);

66
	if (slab_is_available())
67 68 69
		section = kmalloc_node(array_size, GFP_KERNEL, nid);
	else
		section = alloc_bootmem_node(NODE_DATA(nid), array_size);
70 71 72 73 74

	if (section)
		memset(section, 0, array_size);

	return section;
75
}
B
Bob Picco 已提交
76

77
static int __meminit sparse_index_init(unsigned long section_nr, int nid)
B
Bob Picco 已提交
78
{
I
Ingo Molnar 已提交
79
	static DEFINE_SPINLOCK(index_init_lock);
80 81 82
	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
	struct mem_section *section;
	int ret = 0;
B
Bob Picco 已提交
83 84

	if (mem_section[root])
85
		return -EEXIST;
86

87
	section = sparse_index_alloc(nid);
88 89
	if (!section)
		return -ENOMEM;
90 91 92 93 94
	/*
	 * This lock keeps two different sections from
	 * reallocating for the same index
	 */
	spin_lock(&index_init_lock);
95

96 97 98 99 100 101 102 103 104 105 106 107 108 109
	if (mem_section[root]) {
		ret = -EEXIST;
		goto out;
	}

	mem_section[root] = section;
out:
	spin_unlock(&index_init_lock);
	return ret;
}
#else /* !SPARSEMEM_EXTREME */
static inline int sparse_index_init(unsigned long section_nr, int nid)
{
	return 0;
B
Bob Picco 已提交
110
}
111 112
#endif

113 114
/*
 * Although written for the SPARSEMEM_EXTREME case, this happens
115
 * to also work for the flat array case because
116 117 118 119 120 121 122
 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
 */
int __section_nr(struct mem_section* ms)
{
	unsigned long root_nr;
	struct mem_section* root;

123 124
	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
125 126 127 128 129 130 131 132 133 134
		if (!root)
			continue;

		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
		     break;
	}

	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
}

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
/*
 * During early boot, before section_mem_map is used for an actual
 * mem_map, we use section_mem_map to store the section's NUMA
 * node.  This keeps us from having to use another data structure.  The
 * node information is cleared just before we store the real mem_map.
 */
static inline unsigned long sparse_encode_early_nid(int nid)
{
	return (nid << SECTION_NID_SHIFT);
}

static inline int sparse_early_nid(struct mem_section *section)
{
	return (section->section_mem_map >> SECTION_NID_SHIFT);
}

151 152 153
/* Validate the physical addressing limitations of the model */
void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
						unsigned long *end_pfn)
A
Andy Whitcroft 已提交
154
{
155
	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
A
Andy Whitcroft 已提交
156

I
Ingo Molnar 已提交
157 158 159 160
	/*
	 * Sanity checks - do not allow an architecture to pass
	 * in larger pfns than the maximum scope of sparsemem:
	 */
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
	if (*start_pfn > max_sparsemem_pfn) {
		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
			*start_pfn, *end_pfn, max_sparsemem_pfn);
		WARN_ON_ONCE(1);
		*start_pfn = max_sparsemem_pfn;
		*end_pfn = max_sparsemem_pfn;
	}

	if (*end_pfn > max_sparsemem_pfn) {
		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
			*start_pfn, *end_pfn, max_sparsemem_pfn);
		WARN_ON_ONCE(1);
		*end_pfn = max_sparsemem_pfn;
	}
}

/* Record a memory area against a node. */
void __init memory_present(int nid, unsigned long start, unsigned long end)
{
	unsigned long pfn;
I
Ingo Molnar 已提交
183

A
Andy Whitcroft 已提交
184
	start &= PAGE_SECTION_MASK;
185
	mminit_validate_memmodel_limits(&start, &end);
A
Andy Whitcroft 已提交
186 187
	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
		unsigned long section = pfn_to_section_nr(pfn);
B
Bob Picco 已提交
188 189 190
		struct mem_section *ms;

		sparse_index_init(section, nid);
191
		set_section_nid(section, nid);
B
Bob Picco 已提交
192 193 194

		ms = __nr_to_section(section);
		if (!ms->section_mem_map)
195 196
			ms->section_mem_map = sparse_encode_early_nid(nid) |
							SECTION_MARKED_PRESENT;
A
Andy Whitcroft 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209
	}
}

/*
 * Only used by the i386 NUMA architecures, but relatively
 * generic code.
 */
unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
						     unsigned long end_pfn)
{
	unsigned long pfn;
	unsigned long nr_pages = 0;

210
	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
A
Andy Whitcroft 已提交
211 212 213 214
	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
		if (nid != early_pfn_to_nid(pfn))
			continue;

215
		if (pfn_present(pfn))
A
Andy Whitcroft 已提交
216 217 218 219 220 221
			nr_pages += PAGES_PER_SECTION;
	}

	return nr_pages * sizeof(struct page);
}

A
Andy Whitcroft 已提交
222 223 224 225 226 227 228 229 230 231 232
/*
 * Subtle, we encode the real pfn into the mem_map such that
 * the identity pfn - section_mem_map will return the actual
 * physical page frame number.
 */
static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
{
	return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
}

/*
233
 * Decode mem_map from the coded memmap
A
Andy Whitcroft 已提交
234 235 236
 */
struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
{
237 238
	/* mask off the extra low bits of information */
	coded_mem_map &= SECTION_MAP_MASK;
A
Andy Whitcroft 已提交
239 240 241
	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
}

242
static int __meminit sparse_init_one_section(struct mem_section *ms,
243 244
		unsigned long pnum, struct page *mem_map,
		unsigned long *pageblock_bitmap)
A
Andy Whitcroft 已提交
245
{
246
	if (!present_section(ms))
A
Andy Whitcroft 已提交
247 248
		return -EINVAL;

249
	ms->section_mem_map &= ~SECTION_MAP_MASK;
250 251
	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
							SECTION_HAS_MEM_MAP;
252
 	ms->pageblock_flags = pageblock_bitmap;
A
Andy Whitcroft 已提交
253 254 255 256

	return 1;
}

257
unsigned long usemap_size(void)
258 259 260 261 262 263 264 265 266 267 268 269 270 271
{
	unsigned long size_bytes;
	size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
	size_bytes = roundup(size_bytes, sizeof(unsigned long));
	return size_bytes;
}

#ifdef CONFIG_MEMORY_HOTPLUG
static unsigned long *__kmalloc_section_usemap(void)
{
	return kmalloc(usemap_size(), GFP_KERNEL);
}
#endif /* CONFIG_MEMORY_HOTPLUG */

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
#ifdef CONFIG_MEMORY_HOTREMOVE
static unsigned long * __init
sparse_early_usemap_alloc_pgdat_section(struct pglist_data *pgdat)
{
	unsigned long section_nr;

	/*
	 * A page may contain usemaps for other sections preventing the
	 * page being freed and making a section unremovable while
	 * other sections referencing the usemap retmain active. Similarly,
	 * a pgdat can prevent a section being removed. If section A
	 * contains a pgdat and section B contains the usemap, both
	 * sections become inter-dependent. This allocates usemaps
	 * from the same section as the pgdat where possible to avoid
	 * this problem.
	 */
	section_nr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
	return alloc_bootmem_section(usemap_size(), section_nr);
}

static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
{
	unsigned long usemap_snr, pgdat_snr;
	static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
	static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
	struct pglist_data *pgdat = NODE_DATA(nid);
	int usemap_nid;

	usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
	if (usemap_snr == pgdat_snr)
		return;

	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
		/* skip redundant message */
		return;

	old_usemap_snr = usemap_snr;
	old_pgdat_snr = pgdat_snr;

	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
	if (usemap_nid != nid) {
		printk(KERN_INFO
		       "node %d must be removed before remove section %ld\n",
		       nid, usemap_snr);
		return;
	}
	/*
	 * There is a circular dependency.
	 * Some platforms allow un-removable section because they will just
	 * gather other removable sections for dynamic partitioning.
	 * Just notify un-removable section's number here.
	 */
	printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr,
	       pgdat_snr, nid);
	printk(KERN_CONT
	       " have a circular dependency on usemap and pgdat allocations\n");
}
#else
static unsigned long * __init
sparse_early_usemap_alloc_pgdat_section(struct pglist_data *pgdat)
{
	return NULL;
}

static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
{
}
#endif /* CONFIG_MEMORY_HOTREMOVE */

342
static unsigned long *__init sparse_early_usemap_alloc(unsigned long pnum)
343
{
344
	unsigned long *usemap;
345 346 347
	struct mem_section *ms = __nr_to_section(pnum);
	int nid = sparse_early_nid(ms);

348
	usemap = sparse_early_usemap_alloc_pgdat_section(NODE_DATA(nid));
349 350 351
	if (usemap)
		return usemap;

352 353 354 355 356 357
	usemap = alloc_bootmem_node(NODE_DATA(nid), usemap_size());
	if (usemap) {
		check_usemap_section_nr(nid, usemap);
		return usemap;
	}

358 359 360
	/* Stupid: suppress gcc warning for SPARSEMEM && !NUMA */
	nid = 0;

361
	printk(KERN_WARNING "%s: allocation failed\n", __func__);
362 363 364
	return NULL;
}

365
#ifndef CONFIG_SPARSEMEM_VMEMMAP
366
struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
A
Andy Whitcroft 已提交
367 368 369 370 371 372 373
{
	struct page *map;

	map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
	if (map)
		return map;

374 375
	map = alloc_bootmem_pages_node(NODE_DATA(nid),
		       PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION));
376 377 378 379 380 381 382 383 384 385
	return map;
}
#endif /* !CONFIG_SPARSEMEM_VMEMMAP */

struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
{
	struct page *map;
	struct mem_section *ms = __nr_to_section(pnum);
	int nid = sparse_early_nid(ms);

386
	map = sparse_mem_map_populate(pnum, nid);
A
Andy Whitcroft 已提交
387 388 389
	if (map)
		return map;

390
	printk(KERN_ERR "%s: sparsemem memory map backing failed "
391
			"some memory will not be available.\n", __func__);
B
Bob Picco 已提交
392
	ms->section_mem_map = 0;
A
Andy Whitcroft 已提交
393 394 395
	return NULL;
}

396 397 398
void __attribute__((weak)) __meminit vmemmap_populate_print_last(void)
{
}
399 400 401 402 403 404 405 406
/*
 * Allocate the accumulated non-linear sections, allocate a mem_map
 * for each and record the physical to section mapping.
 */
void __init sparse_init(void)
{
	unsigned long pnum;
	struct page *map;
407
	unsigned long *usemap;
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
	unsigned long **usemap_map;
	int size;

	/*
	 * map is using big page (aka 2M in x86 64 bit)
	 * usemap is less one page (aka 24 bytes)
	 * so alloc 2M (with 2M align) and 24 bytes in turn will
	 * make next 2M slip to one more 2M later.
	 * then in big system, the memory will have a lot of holes...
	 * here try to allocate 2M pages continously.
	 *
	 * powerpc need to call sparse_init_one_section right after each
	 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
	 */
	size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
	usemap_map = alloc_bootmem(size);
	if (!usemap_map)
		panic("can not allocate usemap_map\n");
426 427

	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
428
		if (!present_section_nr(pnum))
429
			continue;
430 431
		usemap_map[pnum] = sparse_early_usemap_alloc(pnum);
	}
432

433 434
	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
		if (!present_section_nr(pnum))
435
			continue;
436

437
		usemap = usemap_map[pnum];
438 439 440
		if (!usemap)
			continue;

441 442 443 444
		map = sparse_early_mem_map_alloc(pnum);
		if (!map)
			continue;

445 446
		sparse_init_one_section(__nr_to_section(pnum), pnum, map,
								usemap);
447
	}
448

449 450
	vmemmap_populate_print_last();

451
	free_bootmem(__pa(usemap_map), size);
452 453 454
}

#ifdef CONFIG_MEMORY_HOTPLUG
455 456 457 458 459 460 461 462 463 464 465
#ifdef CONFIG_SPARSEMEM_VMEMMAP
static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
						 unsigned long nr_pages)
{
	/* This will make the necessary allocations eventually. */
	return sparse_mem_map_populate(pnum, nid);
}
static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
{
	return; /* XXX: Not implemented yet */
}
466 467 468
static void free_map_bootmem(struct page *page, unsigned long nr_pages)
{
}
469
#else
470 471 472 473 474
static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
{
	struct page *page, *ret;
	unsigned long memmap_size = sizeof(struct page) * nr_pages;

475
	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
	if (page)
		goto got_map_page;

	ret = vmalloc(memmap_size);
	if (ret)
		goto got_map_ptr;

	return NULL;
got_map_page:
	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
got_map_ptr:
	memset(ret, 0, memmap_size);

	return ret;
}

492 493 494 495 496 497
static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
						  unsigned long nr_pages)
{
	return __kmalloc_section_memmap(nr_pages);
}

498 499
static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
{
500
	if (is_vmalloc_addr(memmap))
501 502 503 504 505
		vfree(memmap);
	else
		free_pages((unsigned long)memmap,
			   get_order(sizeof(struct page) * nr_pages));
}
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531

static void free_map_bootmem(struct page *page, unsigned long nr_pages)
{
	unsigned long maps_section_nr, removing_section_nr, i;
	int magic;

	for (i = 0; i < nr_pages; i++, page++) {
		magic = atomic_read(&page->_mapcount);

		BUG_ON(magic == NODE_INFO);

		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
		removing_section_nr = page->private;

		/*
		 * When this function is called, the removing section is
		 * logical offlined state. This means all pages are isolated
		 * from page allocator. If removing section's memmap is placed
		 * on the same section, it must not be freed.
		 * If it is freed, page allocator may allocate it which will
		 * be removed physically soon.
		 */
		if (maps_section_nr != removing_section_nr)
			put_page_bootmem(page);
	}
}
532
#endif /* CONFIG_SPARSEMEM_VMEMMAP */
533

534 535
static void free_section_usemap(struct page *memmap, unsigned long *usemap)
{
536 537 538
	struct page *usemap_page;
	unsigned long nr_pages;

539 540 541
	if (!usemap)
		return;

542
	usemap_page = virt_to_page(usemap);
543 544 545
	/*
	 * Check to see if allocation came from hot-plug-add
	 */
546
	if (PageSlab(usemap_page)) {
547 548 549 550 551 552 553
		kfree(usemap);
		if (memmap)
			__kfree_section_memmap(memmap, PAGES_PER_SECTION);
		return;
	}

	/*
554 555
	 * The usemap came from bootmem. This is packed with other usemaps
	 * on the section which has pgdat at boot time. Just keep it as is now.
556
	 */
557 558 559 560 561 562 563 564 565 566

	if (memmap) {
		struct page *memmap_page;
		memmap_page = virt_to_page(memmap);

		nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
			>> PAGE_SHIFT;

		free_map_bootmem(memmap_page, nr_pages);
	}
567 568
}

A
Andy Whitcroft 已提交
569 570 571 572 573
/*
 * returns the number of sections whose mem_maps were properly
 * set.  If this is <=0, then that means that the passed-in
 * map was not consumed and must be freed.
 */
574 575
int sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
			   int nr_pages)
A
Andy Whitcroft 已提交
576
{
577 578 579 580
	unsigned long section_nr = pfn_to_section_nr(start_pfn);
	struct pglist_data *pgdat = zone->zone_pgdat;
	struct mem_section *ms;
	struct page *memmap;
581
	unsigned long *usemap;
582 583
	unsigned long flags;
	int ret;
A
Andy Whitcroft 已提交
584

585 586 587 588
	/*
	 * no locking for this, because it does its own
	 * plus, it does a kmalloc
	 */
589 590 591
	ret = sparse_index_init(section_nr, pgdat->node_id);
	if (ret < 0 && ret != -EEXIST)
		return ret;
592
	memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
593 594
	if (!memmap)
		return -ENOMEM;
595
	usemap = __kmalloc_section_usemap();
596 597 598 599
	if (!usemap) {
		__kfree_section_memmap(memmap, nr_pages);
		return -ENOMEM;
	}
600 601

	pgdat_resize_lock(pgdat, &flags);
A
Andy Whitcroft 已提交
602

603 604 605 606 607
	ms = __pfn_to_section(start_pfn);
	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
		ret = -EEXIST;
		goto out;
	}
608

A
Andy Whitcroft 已提交
609 610
	ms->section_mem_map |= SECTION_MARKED_PRESENT;

611
	ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
612 613 614

out:
	pgdat_resize_unlock(pgdat, &flags);
615 616
	if (ret <= 0) {
		kfree(usemap);
617
		__kfree_section_memmap(memmap, nr_pages);
618
	}
619
	return ret;
A
Andy Whitcroft 已提交
620
}
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636

void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
{
	struct page *memmap = NULL;
	unsigned long *usemap = NULL;

	if (ms->section_mem_map) {
		usemap = ms->pageblock_flags;
		memmap = sparse_decode_mem_map(ms->section_mem_map,
						__section_nr(ms));
		ms->section_mem_map = 0;
		ms->pageblock_flags = NULL;
	}

	free_section_usemap(memmap, usemap);
}
637
#endif