timer.c 54.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3
/*
 *  linux/kernel/timer.c
 *
4
 *  Kernel internal timers
L
Linus Torvalds 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
 *
 *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
 *              "A Kernel Model for Precision Timekeeping" by Dave Mills
 *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
 *              serialize accesses to xtime/lost_ticks).
 *                              Copyright (C) 1998  Andrea Arcangeli
 *  1999-03-10  Improved NTP compatibility by Ulrich Windl
 *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
 *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
 *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
 *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
 */

#include <linux/kernel_stat.h>
23
#include <linux/export.h>
L
Linus Torvalds 已提交
24 25 26 27 28
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/swap.h>
29
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
30 31 32 33 34 35 36
#include <linux/notifier.h>
#include <linux/thread_info.h>
#include <linux/time.h>
#include <linux/jiffies.h>
#include <linux/posix-timers.h>
#include <linux/cpu.h>
#include <linux/syscalls.h>
A
Adrian Bunk 已提交
37
#include <linux/delay.h>
38
#include <linux/tick.h>
39
#include <linux/kallsyms.h>
40
#include <linux/irq_work.h>
41
#include <linux/sched.h>
42
#include <linux/sched/sysctl.h>
43
#include <linux/slab.h>
44
#include <linux/compat.h>
L
Linus Torvalds 已提交
45 46 47 48 49 50 51

#include <asm/uaccess.h>
#include <asm/unistd.h>
#include <asm/div64.h>
#include <asm/timex.h>
#include <asm/io.h>

52 53
#include "tick-internal.h"

54 55 56
#define CREATE_TRACE_POINTS
#include <trace/events/timer.h>

A
Andi Kleen 已提交
57
__visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
T
Thomas Gleixner 已提交
58 59 60

EXPORT_SYMBOL(jiffies_64);

L
Linus Torvalds 已提交
61
/*
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
 * level has a different granularity.
 *
 * The level granularity is:		LVL_CLK_DIV ^ lvl
 * The level clock frequency is:	HZ / (LVL_CLK_DIV ^ level)
 *
 * The array level of a newly armed timer depends on the relative expiry
 * time. The farther the expiry time is away the higher the array level and
 * therefor the granularity becomes.
 *
 * Contrary to the original timer wheel implementation, which aims for 'exact'
 * expiry of the timers, this implementation removes the need for recascading
 * the timers into the lower array levels. The previous 'classic' timer wheel
 * implementation of the kernel already violated the 'exact' expiry by adding
 * slack to the expiry time to provide batched expiration. The granularity
 * levels provide implicit batching.
 *
 * This is an optimization of the original timer wheel implementation for the
 * majority of the timer wheel use cases: timeouts. The vast majority of
 * timeout timers (networking, disk I/O ...) are canceled before expiry. If
 * the timeout expires it indicates that normal operation is disturbed, so it
 * does not matter much whether the timeout comes with a slight delay.
 *
 * The only exception to this are networking timers with a small expiry
 * time. They rely on the granularity. Those fit into the first wheel level,
 * which has HZ granularity.
 *
 * We don't have cascading anymore. timers with a expiry time above the
 * capacity of the last wheel level are force expired at the maximum timeout
 * value of the last wheel level. From data sampling we know that the maximum
 * value observed is 5 days (network connection tracking), so this should not
 * be an issue.
 *
 * The currently chosen array constants values are a good compromise between
 * array size and granularity.
 *
 * This results in the following granularity and range levels:
 *
 * HZ 1000 steps
 * Level Offset  Granularity            Range
 *  0      0         1 ms                0 ms -         63 ms
 *  1     64         8 ms               64 ms -        511 ms
 *  2    128        64 ms              512 ms -       4095 ms (512ms - ~4s)
 *  3    192       512 ms             4096 ms -      32767 ms (~4s - ~32s)
 *  4    256      4096 ms (~4s)      32768 ms -     262143 ms (~32s - ~4m)
 *  5    320     32768 ms (~32s)    262144 ms -    2097151 ms (~4m - ~34m)
 *  6    384    262144 ms (~4m)    2097152 ms -   16777215 ms (~34m - ~4h)
 *  7    448   2097152 ms (~34m)  16777216 ms -  134217727 ms (~4h - ~1d)
 *  8    512  16777216 ms (~4h)  134217728 ms - 1073741822 ms (~1d - ~12d)
 *
 * HZ  300
 * Level Offset  Granularity            Range
 *  0	   0         3 ms                0 ms -        210 ms
 *  1	  64        26 ms              213 ms -       1703 ms (213ms - ~1s)
 *  2	 128       213 ms             1706 ms -      13650 ms (~1s - ~13s)
 *  3	 192      1706 ms (~1s)      13653 ms -     109223 ms (~13s - ~1m)
 *  4	 256     13653 ms (~13s)    109226 ms -     873810 ms (~1m - ~14m)
 *  5	 320    109226 ms (~1m)     873813 ms -    6990503 ms (~14m - ~1h)
 *  6	 384    873813 ms (~14m)   6990506 ms -   55924050 ms (~1h - ~15h)
 *  7	 448   6990506 ms (~1h)   55924053 ms -  447392423 ms (~15h - ~5d)
 *  8    512  55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
 *
 * HZ  250
 * Level Offset  Granularity            Range
 *  0	   0         4 ms                0 ms -        255 ms
 *  1	  64        32 ms              256 ms -       2047 ms (256ms - ~2s)
 *  2	 128       256 ms             2048 ms -      16383 ms (~2s - ~16s)
 *  3	 192      2048 ms (~2s)      16384 ms -     131071 ms (~16s - ~2m)
 *  4	 256     16384 ms (~16s)    131072 ms -    1048575 ms (~2m - ~17m)
 *  5	 320    131072 ms (~2m)    1048576 ms -    8388607 ms (~17m - ~2h)
 *  6	 384   1048576 ms (~17m)   8388608 ms -   67108863 ms (~2h - ~18h)
 *  7	 448   8388608 ms (~2h)   67108864 ms -  536870911 ms (~18h - ~6d)
 *  8    512  67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
 *
 * HZ  100
 * Level Offset  Granularity            Range
 *  0	   0         10 ms               0 ms -        630 ms
 *  1	  64         80 ms             640 ms -       5110 ms (640ms - ~5s)
 *  2	 128        640 ms            5120 ms -      40950 ms (~5s - ~40s)
 *  3	 192       5120 ms (~5s)     40960 ms -     327670 ms (~40s - ~5m)
 *  4	 256      40960 ms (~40s)   327680 ms -    2621430 ms (~5m - ~43m)
 *  5	 320     327680 ms (~5m)   2621440 ms -   20971510 ms (~43m - ~5h)
 *  6	 384    2621440 ms (~43m) 20971520 ms -  167772150 ms (~5h - ~1d)
 *  7	 448   20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
L
Linus Torvalds 已提交
147 148
 */

149 150 151 152 153 154
/* Clock divisor for the next level */
#define LVL_CLK_SHIFT	3
#define LVL_CLK_DIV	(1UL << LVL_CLK_SHIFT)
#define LVL_CLK_MASK	(LVL_CLK_DIV - 1)
#define LVL_SHIFT(n)	((n) * LVL_CLK_SHIFT)
#define LVL_GRAN(n)	(1UL << LVL_SHIFT(n))
L
Linus Torvalds 已提交
155

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
/*
 * The time start value for each level to select the bucket at enqueue
 * time.
 */
#define LVL_START(n)	((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))

/* Size of each clock level */
#define LVL_BITS	6
#define LVL_SIZE	(1UL << LVL_BITS)
#define LVL_MASK	(LVL_SIZE - 1)
#define LVL_OFFS(n)	((n) * LVL_SIZE)

/* Level depth */
#if HZ > 100
# define LVL_DEPTH	9
# else
# define LVL_DEPTH	8
#endif

/* The cutoff (max. capacity of the wheel) */
#define WHEEL_TIMEOUT_CUTOFF	(LVL_START(LVL_DEPTH))
#define WHEEL_TIMEOUT_MAX	(WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))

/*
 * The resulting wheel size. If NOHZ is configured we allocate two
 * wheels so we have a separate storage for the deferrable timers.
 */
#define WHEEL_SIZE	(LVL_SIZE * LVL_DEPTH)

#ifdef CONFIG_NO_HZ_COMMON
# define NR_BASES	2
# define BASE_STD	0
# define BASE_DEF	1
#else
# define NR_BASES	1
# define BASE_STD	0
# define BASE_DEF	0
#endif
L
Linus Torvalds 已提交
194

195
struct timer_base {
196 197 198
	spinlock_t		lock;
	struct timer_list	*running_timer;
	unsigned long		clk;
199
	unsigned long		next_expiry;
200 201 202
	unsigned int		cpu;
	bool			migration_enabled;
	bool			nohz_active;
203
	bool			is_idle;
204 205
	DECLARE_BITMAP(pending_map, WHEEL_SIZE);
	struct hlist_head	vectors[WHEEL_SIZE];
206
} ____cacheline_aligned;
207

208
static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
209

210 211 212
#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
unsigned int sysctl_timer_migration = 1;

213
void timers_update_migration(bool update_nohz)
214 215 216 217 218
{
	bool on = sysctl_timer_migration && tick_nohz_active;
	unsigned int cpu;

	/* Avoid the loop, if nothing to update */
219
	if (this_cpu_read(timer_bases[BASE_STD].migration_enabled) == on)
220 221 222
		return;

	for_each_possible_cpu(cpu) {
223 224
		per_cpu(timer_bases[BASE_STD].migration_enabled, cpu) = on;
		per_cpu(timer_bases[BASE_DEF].migration_enabled, cpu) = on;
225
		per_cpu(hrtimer_bases.migration_enabled, cpu) = on;
226 227
		if (!update_nohz)
			continue;
228 229
		per_cpu(timer_bases[BASE_STD].nohz_active, cpu) = true;
		per_cpu(timer_bases[BASE_DEF].nohz_active, cpu) = true;
230
		per_cpu(hrtimer_bases.nohz_active, cpu) = true;
231 232 233 234 235 236 237 238 239 240 241 242 243
	}
}

int timer_migration_handler(struct ctl_table *table, int write,
			    void __user *buffer, size_t *lenp,
			    loff_t *ppos)
{
	static DEFINE_MUTEX(mutex);
	int ret;

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
	if (!ret && write)
244
		timers_update_migration(false);
245 246 247 248 249
	mutex_unlock(&mutex);
	return ret;
}
#endif

250 251
static unsigned long round_jiffies_common(unsigned long j, int cpu,
		bool force_up)
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
{
	int rem;
	unsigned long original = j;

	/*
	 * We don't want all cpus firing their timers at once hitting the
	 * same lock or cachelines, so we skew each extra cpu with an extra
	 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
	 * already did this.
	 * The skew is done by adding 3*cpunr, then round, then subtract this
	 * extra offset again.
	 */
	j += cpu * 3;

	rem = j % HZ;

	/*
	 * If the target jiffie is just after a whole second (which can happen
	 * due to delays of the timer irq, long irq off times etc etc) then
	 * we should round down to the whole second, not up. Use 1/4th second
	 * as cutoff for this rounding as an extreme upper bound for this.
273
	 * But never round down if @force_up is set.
274
	 */
275
	if (rem < HZ/4 && !force_up) /* round down */
276 277 278 279 280 281 282
		j = j - rem;
	else /* round up */
		j = j - rem + HZ;

	/* now that we have rounded, subtract the extra skew again */
	j -= cpu * 3;

283 284 285 286 287
	/*
	 * Make sure j is still in the future. Otherwise return the
	 * unmodified value.
	 */
	return time_is_after_jiffies(j) ? j : original;
288
}
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313

/**
 * __round_jiffies - function to round jiffies to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
 * __round_jiffies() rounds an absolute time in the future (in jiffies)
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
 * The exact rounding is skewed for each processor to avoid all
 * processors firing at the exact same time, which could lead
 * to lock contention or spurious cache line bouncing.
 *
 * The return value is the rounded version of the @j parameter.
 */
unsigned long __round_jiffies(unsigned long j, int cpu)
{
	return round_jiffies_common(j, cpu, false);
}
314 315 316 317 318 319 320
EXPORT_SYMBOL_GPL(__round_jiffies);

/**
 * __round_jiffies_relative - function to round jiffies to a full second
 * @j: the time in (relative) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
321
 * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
322 323 324 325 326 327 328 329 330 331 332 333
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
 * The exact rounding is skewed for each processor to avoid all
 * processors firing at the exact same time, which could lead
 * to lock contention or spurious cache line bouncing.
 *
334
 * The return value is the rounded version of the @j parameter.
335 336 337
 */
unsigned long __round_jiffies_relative(unsigned long j, int cpu)
{
338 339 340 341
	unsigned long j0 = jiffies;

	/* Use j0 because jiffies might change while we run */
	return round_jiffies_common(j + j0, cpu, false) - j0;
342 343 344 345 346 347 348
}
EXPORT_SYMBOL_GPL(__round_jiffies_relative);

/**
 * round_jiffies - function to round jiffies to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 *
349
 * round_jiffies() rounds an absolute time in the future (in jiffies)
350 351 352 353 354 355 356 357
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
358
 * The return value is the rounded version of the @j parameter.
359 360 361
 */
unsigned long round_jiffies(unsigned long j)
{
362
	return round_jiffies_common(j, raw_smp_processor_id(), false);
363 364 365 366 367 368 369
}
EXPORT_SYMBOL_GPL(round_jiffies);

/**
 * round_jiffies_relative - function to round jiffies to a full second
 * @j: the time in (relative) jiffies that should be rounded
 *
370
 * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
371 372 373 374 375 376 377 378
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
379
 * The return value is the rounded version of the @j parameter.
380 381 382 383 384 385 386
 */
unsigned long round_jiffies_relative(unsigned long j)
{
	return __round_jiffies_relative(j, raw_smp_processor_id());
}
EXPORT_SYMBOL_GPL(round_jiffies_relative);

387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
/**
 * __round_jiffies_up - function to round jiffies up to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
 * This is the same as __round_jiffies() except that it will never
 * round down.  This is useful for timeouts for which the exact time
 * of firing does not matter too much, as long as they don't fire too
 * early.
 */
unsigned long __round_jiffies_up(unsigned long j, int cpu)
{
	return round_jiffies_common(j, cpu, true);
}
EXPORT_SYMBOL_GPL(__round_jiffies_up);

/**
 * __round_jiffies_up_relative - function to round jiffies up to a full second
 * @j: the time in (relative) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
 * This is the same as __round_jiffies_relative() except that it will never
 * round down.  This is useful for timeouts for which the exact time
 * of firing does not matter too much, as long as they don't fire too
 * early.
 */
unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
{
	unsigned long j0 = jiffies;

	/* Use j0 because jiffies might change while we run */
	return round_jiffies_common(j + j0, cpu, true) - j0;
}
EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);

/**
 * round_jiffies_up - function to round jiffies up to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 *
 * This is the same as round_jiffies() except that it will never
 * round down.  This is useful for timeouts for which the exact time
 * of firing does not matter too much, as long as they don't fire too
 * early.
 */
unsigned long round_jiffies_up(unsigned long j)
{
	return round_jiffies_common(j, raw_smp_processor_id(), true);
}
EXPORT_SYMBOL_GPL(round_jiffies_up);

/**
 * round_jiffies_up_relative - function to round jiffies up to a full second
 * @j: the time in (relative) jiffies that should be rounded
 *
 * This is the same as round_jiffies_relative() except that it will never
 * round down.  This is useful for timeouts for which the exact time
 * of firing does not matter too much, as long as they don't fire too
 * early.
 */
unsigned long round_jiffies_up_relative(unsigned long j)
{
	return __round_jiffies_up_relative(j, raw_smp_processor_id());
}
EXPORT_SYMBOL_GPL(round_jiffies_up_relative);

452

453
static inline unsigned int timer_get_idx(struct timer_list *timer)
454
{
455
	return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
456 457
}

458
static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
L
Linus Torvalds 已提交
459
{
460 461 462
	timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
			idx << TIMER_ARRAYSHIFT;
}
L
Linus Torvalds 已提交
463

464 465 466 467 468 469 470 471 472 473
/*
 * Helper function to calculate the array index for a given expiry
 * time.
 */
static inline unsigned calc_index(unsigned expires, unsigned lvl)
{
	expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl);
	return LVL_OFFS(lvl) + (expires & LVL_MASK);
}

474
static int calc_wheel_index(unsigned long expires, unsigned long clk)
L
Linus Torvalds 已提交
475
{
476
	unsigned long delta = expires - clk;
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
	unsigned int idx;

	if (delta < LVL_START(1)) {
		idx = calc_index(expires, 0);
	} else if (delta < LVL_START(2)) {
		idx = calc_index(expires, 1);
	} else if (delta < LVL_START(3)) {
		idx = calc_index(expires, 2);
	} else if (delta < LVL_START(4)) {
		idx = calc_index(expires, 3);
	} else if (delta < LVL_START(5)) {
		idx = calc_index(expires, 4);
	} else if (delta < LVL_START(6)) {
		idx = calc_index(expires, 5);
	} else if (delta < LVL_START(7)) {
		idx = calc_index(expires, 6);
	} else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
		idx = calc_index(expires, 7);
	} else if ((long) delta < 0) {
496
		idx = clk & LVL_MASK;
L
Linus Torvalds 已提交
497
	} else {
498 499 500
		/*
		 * Force expire obscene large timeouts to expire at the
		 * capacity limit of the wheel.
L
Linus Torvalds 已提交
501
		 */
502 503
		if (expires >= WHEEL_TIMEOUT_CUTOFF)
			expires = WHEEL_TIMEOUT_MAX;
T
Thomas Gleixner 已提交
504

505
		idx = calc_index(expires, LVL_DEPTH - 1);
L
Linus Torvalds 已提交
506
	}
507 508
	return idx;
}
T
Thomas Gleixner 已提交
509

510 511 512 513 514 515 516 517
/*
 * Enqueue the timer into the hash bucket, mark it pending in
 * the bitmap and store the index in the timer flags.
 */
static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
			  unsigned int idx)
{
	hlist_add_head(&timer->entry, base->vectors + idx);
518 519
	__set_bit(idx, base->pending_map);
	timer_set_idx(timer, idx);
L
Linus Torvalds 已提交
520 521
}

522 523
static void
__internal_add_timer(struct timer_base *base, struct timer_list *timer)
524
{
525 526 527 528 529
	unsigned int idx;

	idx = calc_wheel_index(timer->expires, base->clk);
	enqueue_timer(base, timer, idx);
}
530

531 532 533
static void
trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
{
534 535
	if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active)
		return;
536

537
	/*
538 539
	 * TODO: This wants some optimizing similar to the code below, but we
	 * will do that when we switch from push to pull for deferrable timers.
540
	 */
541 542
	if (timer->flags & TIMER_DEFERRABLE) {
		if (tick_nohz_full_cpu(base->cpu))
543
			wake_up_nohz_cpu(base->cpu);
544
		return;
545
	}
546 547

	/*
548 549 550
	 * We might have to IPI the remote CPU if the base is idle and the
	 * timer is not deferrable. If the other CPU is on the way to idle
	 * then it can't set base->is_idle as we hold the base lock:
551
	 */
552 553 554 555 556 557 558 559 560 561 562 563
	if (!base->is_idle)
		return;

	/* Check whether this is the new first expiring timer: */
	if (time_after_eq(timer->expires, base->next_expiry))
		return;

	/*
	 * Set the next expiry time and kick the CPU so it can reevaluate the
	 * wheel:
	 */
	base->next_expiry = timer->expires;
564 565 566 567 568 569 570 571
		wake_up_nohz_cpu(base->cpu);
}

static void
internal_add_timer(struct timer_base *base, struct timer_list *timer)
{
	__internal_add_timer(base, timer);
	trigger_dyntick_cpu(base, timer);
572 573
}

574 575 576 577 578 579 580 581 582 583
#ifdef CONFIG_TIMER_STATS
void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
{
	if (timer->start_site)
		return;

	timer->start_site = addr;
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
}
584 585 586

static void timer_stats_account_timer(struct timer_list *timer)
{
587 588 589 590 591 592 593 594
	void *site;

	/*
	 * start_site can be concurrently reset by
	 * timer_stats_timer_clear_start_info()
	 */
	site = READ_ONCE(timer->start_site);
	if (likely(!site))
595
		return;
596

597
	timer_stats_update_stats(timer, timer->start_pid, site,
598 599
				 timer->function, timer->start_comm,
				 timer->flags);
600 601 602 603
}

#else
static void timer_stats_account_timer(struct timer_list *timer) {}
604 605
#endif

606 607 608 609
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr timer_debug_descr;

610 611 612 613 614
static void *timer_debug_hint(void *addr)
{
	return ((struct timer_list *) addr)->function;
}

615 616 617 618 619 620 621 622
static bool timer_is_static_object(void *addr)
{
	struct timer_list *timer = addr;

	return (timer->entry.pprev == NULL &&
		timer->entry.next == TIMER_ENTRY_STATIC);
}

623 624 625
/*
 * fixup_init is called when:
 * - an active object is initialized
626
 */
627
static bool timer_fixup_init(void *addr, enum debug_obj_state state)
628 629 630 631 632 633 634
{
	struct timer_list *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		del_timer_sync(timer);
		debug_object_init(timer, &timer_debug_descr);
635
		return true;
636
	default:
637
		return false;
638 639 640
	}
}

641 642 643 644 645 646
/* Stub timer callback for improperly used timers. */
static void stub_timer(unsigned long data)
{
	WARN_ON(1);
}

647 648 649
/*
 * fixup_activate is called when:
 * - an active object is activated
650
 * - an unknown non-static object is activated
651
 */
652
static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
653 654 655 656 657
{
	struct timer_list *timer = addr;

	switch (state) {
	case ODEBUG_STATE_NOTAVAILABLE:
658 659
		setup_timer(timer, stub_timer, 0);
		return true;
660 661 662 663 664

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
665
		return false;
666 667 668 669 670 671 672
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
673
static bool timer_fixup_free(void *addr, enum debug_obj_state state)
674 675 676 677 678 679 680
{
	struct timer_list *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		del_timer_sync(timer);
		debug_object_free(timer, &timer_debug_descr);
681
		return true;
682
	default:
683
		return false;
684 685 686
	}
}

687 688 689 690
/*
 * fixup_assert_init is called when:
 * - an untracked/uninit-ed object is found
 */
691
static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
692 693 694 695 696
{
	struct timer_list *timer = addr;

	switch (state) {
	case ODEBUG_STATE_NOTAVAILABLE:
697 698
		setup_timer(timer, stub_timer, 0);
		return true;
699
	default:
700
		return false;
701 702 703
	}
}

704
static struct debug_obj_descr timer_debug_descr = {
705 706
	.name			= "timer_list",
	.debug_hint		= timer_debug_hint,
707
	.is_static_object	= timer_is_static_object,
708 709 710 711
	.fixup_init		= timer_fixup_init,
	.fixup_activate		= timer_fixup_activate,
	.fixup_free		= timer_fixup_free,
	.fixup_assert_init	= timer_fixup_assert_init,
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
};

static inline void debug_timer_init(struct timer_list *timer)
{
	debug_object_init(timer, &timer_debug_descr);
}

static inline void debug_timer_activate(struct timer_list *timer)
{
	debug_object_activate(timer, &timer_debug_descr);
}

static inline void debug_timer_deactivate(struct timer_list *timer)
{
	debug_object_deactivate(timer, &timer_debug_descr);
}

static inline void debug_timer_free(struct timer_list *timer)
{
	debug_object_free(timer, &timer_debug_descr);
}

734 735 736 737 738
static inline void debug_timer_assert_init(struct timer_list *timer)
{
	debug_object_assert_init(timer, &timer_debug_descr);
}

T
Tejun Heo 已提交
739 740
static void do_init_timer(struct timer_list *timer, unsigned int flags,
			  const char *name, struct lock_class_key *key);
741

T
Tejun Heo 已提交
742 743
void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags,
			     const char *name, struct lock_class_key *key)
744 745
{
	debug_object_init_on_stack(timer, &timer_debug_descr);
T
Tejun Heo 已提交
746
	do_init_timer(timer, flags, name, key);
747
}
748
EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
749 750 751 752 753 754 755 756 757 758 759

void destroy_timer_on_stack(struct timer_list *timer)
{
	debug_object_free(timer, &timer_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_timer_on_stack);

#else
static inline void debug_timer_init(struct timer_list *timer) { }
static inline void debug_timer_activate(struct timer_list *timer) { }
static inline void debug_timer_deactivate(struct timer_list *timer) { }
760
static inline void debug_timer_assert_init(struct timer_list *timer) { }
761 762
#endif

763 764 765 766 767 768 769 770 771 772
static inline void debug_init(struct timer_list *timer)
{
	debug_timer_init(timer);
	trace_timer_init(timer);
}

static inline void
debug_activate(struct timer_list *timer, unsigned long expires)
{
	debug_timer_activate(timer);
773
	trace_timer_start(timer, expires, timer->flags);
774 775 776 777 778 779 780 781
}

static inline void debug_deactivate(struct timer_list *timer)
{
	debug_timer_deactivate(timer);
	trace_timer_cancel(timer);
}

782 783 784 785 786
static inline void debug_assert_init(struct timer_list *timer)
{
	debug_timer_assert_init(timer);
}

T
Tejun Heo 已提交
787 788
static void do_init_timer(struct timer_list *timer, unsigned int flags,
			  const char *name, struct lock_class_key *key)
789
{
790
	timer->entry.pprev = NULL;
791
	timer->flags = flags | raw_smp_processor_id();
792 793 794 795 796
#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
797
	lockdep_init_map(&timer->lockdep_map, name, key, 0);
798
}
799 800

/**
R
Randy Dunlap 已提交
801
 * init_timer_key - initialize a timer
802
 * @timer: the timer to be initialized
T
Tejun Heo 已提交
803
 * @flags: timer flags
R
Randy Dunlap 已提交
804 805 806
 * @name: name of the timer
 * @key: lockdep class key of the fake lock used for tracking timer
 *       sync lock dependencies
807
 *
R
Randy Dunlap 已提交
808
 * init_timer_key() must be done to a timer prior calling *any* of the
809 810
 * other timer functions.
 */
T
Tejun Heo 已提交
811 812
void init_timer_key(struct timer_list *timer, unsigned int flags,
		    const char *name, struct lock_class_key *key)
813
{
814
	debug_init(timer);
T
Tejun Heo 已提交
815
	do_init_timer(timer, flags, name, key);
816
}
817
EXPORT_SYMBOL(init_timer_key);
818

819
static inline void detach_timer(struct timer_list *timer, bool clear_pending)
820
{
821
	struct hlist_node *entry = &timer->entry;
822

823
	debug_deactivate(timer);
824

825
	__hlist_del(entry);
826
	if (clear_pending)
827 828
		entry->pprev = NULL;
	entry->next = LIST_POISON2;
829 830
}

831
static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
832 833
			     bool clear_pending)
{
834 835
	unsigned idx = timer_get_idx(timer);

836 837 838
	if (!timer_pending(timer))
		return 0;

839 840 841
	if (hlist_is_singular_node(&timer->entry, base->vectors + idx))
		__clear_bit(idx, base->pending_map);

842 843 844 845
	detach_timer(timer, clear_pending);
	return 1;
}

846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
{
	struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);

	/*
	 * If the timer is deferrable and nohz is active then we need to use
	 * the deferrable base.
	 */
	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active &&
	    (tflags & TIMER_DEFERRABLE))
		base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
	return base;
}

static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
{
	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);

	/*
	 * If the timer is deferrable and nohz is active then we need to use
	 * the deferrable base.
	 */
	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active &&
	    (tflags & TIMER_DEFERRABLE))
		base = this_cpu_ptr(&timer_bases[BASE_DEF]);
	return base;
}

static inline struct timer_base *get_timer_base(u32 tflags)
{
	return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
}

879 880 881
#ifdef CONFIG_NO_HZ_COMMON
static inline struct timer_base *
__get_target_base(struct timer_base *base, unsigned tflags)
882
{
883
#ifdef CONFIG_SMP
884 885 886 887 888 889 890 891
	if ((tflags & TIMER_PINNED) || !base->migration_enabled)
		return get_timer_this_cpu_base(tflags);
	return get_timer_cpu_base(tflags, get_nohz_timer_target());
#else
	return get_timer_this_cpu_base(tflags);
#endif
}

892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
static inline void forward_timer_base(struct timer_base *base)
{
	/*
	 * We only forward the base when it's idle and we have a delta between
	 * base clock and jiffies.
	 */
	if (!base->is_idle || (long) (jiffies - base->clk) < 2)
		return;

	/*
	 * If the next expiry value is > jiffies, then we fast forward to
	 * jiffies otherwise we forward to the next expiry value.
	 */
	if (time_after(base->next_expiry, jiffies))
		base->clk = jiffies;
	else
		base->clk = base->next_expiry;
}
#else
static inline struct timer_base *
__get_target_base(struct timer_base *base, unsigned tflags)
{
	return get_timer_this_cpu_base(tflags);
}

static inline void forward_timer_base(struct timer_base *base) { }
#endif

static inline struct timer_base *
get_target_base(struct timer_base *base, unsigned tflags)
{
	struct timer_base *target = __get_target_base(base, tflags);

	forward_timer_base(target);
	return target;
}

929
/*
930 931 932
 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
 * that all timers which are tied to this base are locked, and the base itself
 * is locked too.
933 934
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
935
 * be found in the base->vectors array.
936
 *
937 938
 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
 * to wait until the migration is done.
939
 */
940
static struct timer_base *lock_timer_base(struct timer_list *timer,
941
					  unsigned long *flags)
942
	__acquires(timer->base->lock)
943 944
{
	for (;;) {
945
		struct timer_base *base;
946 947 948
		u32 tf = timer->flags;

		if (!(tf & TIMER_MIGRATING)) {
949
			base = get_timer_base(tf);
950
			spin_lock_irqsave(&base->lock, *flags);
951
			if (timer->flags == tf)
952 953 954 955 956 957 958
				return base;
			spin_unlock_irqrestore(&base->lock, *flags);
		}
		cpu_relax();
	}
}

I
Ingo Molnar 已提交
959
static inline int
960
__mod_timer(struct timer_list *timer, unsigned long expires, bool pending_only)
L
Linus Torvalds 已提交
961
{
962
	struct timer_base *base, *new_base;
963 964
	unsigned int idx = UINT_MAX;
	unsigned long clk = 0, flags;
965
	int ret = 0;
L
Linus Torvalds 已提交
966

967
	/*
968 969 970
	 * This is a common optimization triggered by the networking code - if
	 * the timer is re-modified to have the same timeout or ends up in the
	 * same array bucket then just return:
971 972 973 974
	 */
	if (timer_pending(timer)) {
		if (timer->expires == expires)
			return 1;
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
		/*
		 * Take the current timer_jiffies of base, but without holding
		 * the lock!
		 */
		base = get_timer_base(timer->flags);
		clk = base->clk;

		idx = calc_wheel_index(expires, clk);

		/*
		 * Retrieve and compare the array index of the pending
		 * timer. If it matches set the expiry to the new value so a
		 * subsequent call will exit in the expires check above.
		 */
		if (idx == timer_get_idx(timer)) {
			timer->expires = expires;
			return 1;
		}
993 994
	}

995
	timer_stats_timer_set_start_info(timer);
L
Linus Torvalds 已提交
996 997
	BUG_ON(!timer->function);

998 999
	base = lock_timer_base(timer, &flags);

1000 1001 1002
	ret = detach_if_pending(timer, base, false);
	if (!ret && pending_only)
		goto out_unlock;
1003

1004
	debug_activate(timer, expires);
1005

1006
	new_base = get_target_base(base, timer->flags);
1007

1008
	if (base != new_base) {
L
Linus Torvalds 已提交
1009
		/*
1010
		 * We are trying to schedule the timer on the new base.
1011 1012
		 * However we can't change timer's base while it is running,
		 * otherwise del_timer_sync() can't detect that the timer's
1013 1014
		 * handler yet has not finished. This also guarantees that the
		 * timer is serialized wrt itself.
L
Linus Torvalds 已提交
1015
		 */
1016
		if (likely(base->running_timer != timer)) {
1017
			/* See the comment in lock_timer_base() */
1018 1019
			timer->flags |= TIMER_MIGRATING;

1020
			spin_unlock(&base->lock);
1021 1022
			base = new_base;
			spin_lock(&base->lock);
1023 1024
			WRITE_ONCE(timer->flags,
				   (timer->flags & ~TIMER_BASEMASK) | base->cpu);
L
Linus Torvalds 已提交
1025 1026 1027 1028
		}
	}

	timer->expires = expires;
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
	/*
	 * If 'idx' was calculated above and the base time did not advance
	 * between calculating 'idx' and taking the lock, only enqueue_timer()
	 * and trigger_dyntick_cpu() is required. Otherwise we need to
	 * (re)calculate the wheel index via internal_add_timer().
	 */
	if (idx != UINT_MAX && clk == base->clk) {
		enqueue_timer(base, timer, idx);
		trigger_dyntick_cpu(base, timer);
	} else {
		internal_add_timer(base, timer);
	}
I
Ingo Molnar 已提交
1041 1042

out_unlock:
1043
	spin_unlock_irqrestore(&base->lock, flags);
L
Linus Torvalds 已提交
1044 1045 1046 1047

	return ret;
}

1048
/**
I
Ingo Molnar 已提交
1049 1050 1051
 * mod_timer_pending - modify a pending timer's timeout
 * @timer: the pending timer to be modified
 * @expires: new timeout in jiffies
L
Linus Torvalds 已提交
1052
 *
I
Ingo Molnar 已提交
1053 1054 1055 1056
 * mod_timer_pending() is the same for pending timers as mod_timer(),
 * but will not re-activate and modify already deleted timers.
 *
 * It is useful for unserialized use of timers.
L
Linus Torvalds 已提交
1057
 */
I
Ingo Molnar 已提交
1058
int mod_timer_pending(struct timer_list *timer, unsigned long expires)
L
Linus Torvalds 已提交
1059
{
1060
	return __mod_timer(timer, expires, true);
L
Linus Torvalds 已提交
1061
}
I
Ingo Molnar 已提交
1062
EXPORT_SYMBOL(mod_timer_pending);
L
Linus Torvalds 已提交
1063

1064
/**
L
Linus Torvalds 已提交
1065 1066
 * mod_timer - modify a timer's timeout
 * @timer: the timer to be modified
1067
 * @expires: new timeout in jiffies
L
Linus Torvalds 已提交
1068
 *
1069
 * mod_timer() is a more efficient way to update the expire field of an
L
Linus Torvalds 已提交
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
 * active timer (if the timer is inactive it will be activated)
 *
 * mod_timer(timer, expires) is equivalent to:
 *
 *     del_timer(timer); timer->expires = expires; add_timer(timer);
 *
 * Note that if there are multiple unserialized concurrent users of the
 * same timer, then mod_timer() is the only safe way to modify the timeout,
 * since add_timer() cannot modify an already running timer.
 *
 * The function returns whether it has modified a pending timer or not.
 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
 * active timer returns 1.)
 */
int mod_timer(struct timer_list *timer, unsigned long expires)
{
1086
	return __mod_timer(timer, expires, false);
L
Linus Torvalds 已提交
1087 1088 1089
}
EXPORT_SYMBOL(mod_timer);

I
Ingo Molnar 已提交
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
/**
 * add_timer - start a timer
 * @timer: the timer to be added
 *
 * The kernel will do a ->function(->data) callback from the
 * timer interrupt at the ->expires point in the future. The
 * current time is 'jiffies'.
 *
 * The timer's ->expires, ->function (and if the handler uses it, ->data)
 * fields must be set prior calling this function.
 *
 * Timers with an ->expires field in the past will be executed in the next
 * timer tick.
 */
void add_timer(struct timer_list *timer)
{
	BUG_ON(timer_pending(timer));
	mod_timer(timer, timer->expires);
}
EXPORT_SYMBOL(add_timer);

/**
 * add_timer_on - start a timer on a particular CPU
 * @timer: the timer to be added
 * @cpu: the CPU to start it on
 *
 * This is not very scalable on SMP. Double adds are not possible.
 */
void add_timer_on(struct timer_list *timer, int cpu)
{
1120
	struct timer_base *new_base, *base;
I
Ingo Molnar 已提交
1121 1122 1123 1124
	unsigned long flags;

	timer_stats_timer_set_start_info(timer);
	BUG_ON(timer_pending(timer) || !timer->function);
1125

1126 1127
	new_base = get_timer_cpu_base(timer->flags, cpu);

1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
	/*
	 * If @timer was on a different CPU, it should be migrated with the
	 * old base locked to prevent other operations proceeding with the
	 * wrong base locked.  See lock_timer_base().
	 */
	base = lock_timer_base(timer, &flags);
	if (base != new_base) {
		timer->flags |= TIMER_MIGRATING;

		spin_unlock(&base->lock);
		base = new_base;
		spin_lock(&base->lock);
		WRITE_ONCE(timer->flags,
			   (timer->flags & ~TIMER_BASEMASK) | cpu);
	}

1144
	debug_activate(timer, timer->expires);
I
Ingo Molnar 已提交
1145 1146 1147
	internal_add_timer(base, timer);
	spin_unlock_irqrestore(&base->lock, flags);
}
A
Andi Kleen 已提交
1148
EXPORT_SYMBOL_GPL(add_timer_on);
I
Ingo Molnar 已提交
1149

1150
/**
L
Linus Torvalds 已提交
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
 * del_timer - deactive a timer.
 * @timer: the timer to be deactivated
 *
 * del_timer() deactivates a timer - this works on both active and inactive
 * timers.
 *
 * The function returns whether it has deactivated a pending timer or not.
 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
 * active timer returns 1.)
 */
int del_timer(struct timer_list *timer)
{
1163
	struct timer_base *base;
L
Linus Torvalds 已提交
1164
	unsigned long flags;
1165
	int ret = 0;
L
Linus Torvalds 已提交
1166

1167 1168
	debug_assert_init(timer);

1169
	timer_stats_timer_clear_start_info(timer);
1170 1171
	if (timer_pending(timer)) {
		base = lock_timer_base(timer, &flags);
1172
		ret = detach_if_pending(timer, base, true);
L
Linus Torvalds 已提交
1173 1174 1175
		spin_unlock_irqrestore(&base->lock, flags);
	}

1176
	return ret;
L
Linus Torvalds 已提交
1177 1178 1179
}
EXPORT_SYMBOL(del_timer);

1180 1181 1182 1183
/**
 * try_to_del_timer_sync - Try to deactivate a timer
 * @timer: timer do del
 *
1184 1185 1186 1187 1188
 * This function tries to deactivate a timer. Upon successful (ret >= 0)
 * exit the timer is not queued and the handler is not running on any CPU.
 */
int try_to_del_timer_sync(struct timer_list *timer)
{
1189
	struct timer_base *base;
1190 1191 1192
	unsigned long flags;
	int ret = -1;

1193 1194
	debug_assert_init(timer);

1195 1196
	base = lock_timer_base(timer, &flags);

1197 1198 1199
	if (base->running_timer != timer) {
		timer_stats_timer_clear_start_info(timer);
		ret = detach_if_pending(timer, base, true);
1200 1201 1202 1203 1204
	}
	spin_unlock_irqrestore(&base->lock, flags);

	return ret;
}
1205 1206
EXPORT_SYMBOL(try_to_del_timer_sync);

1207
#ifdef CONFIG_SMP
1208
/**
L
Linus Torvalds 已提交
1209 1210 1211 1212 1213 1214 1215
 * del_timer_sync - deactivate a timer and wait for the handler to finish.
 * @timer: the timer to be deactivated
 *
 * This function only differs from del_timer() on SMP: besides deactivating
 * the timer it also makes sure the handler has finished executing on other
 * CPUs.
 *
1216
 * Synchronization rules: Callers must prevent restarting of the timer,
L
Linus Torvalds 已提交
1217
 * otherwise this function is meaningless. It must not be called from
T
Tejun Heo 已提交
1218 1219 1220 1221
 * interrupt contexts unless the timer is an irqsafe one. The caller must
 * not hold locks which would prevent completion of the timer's
 * handler. The timer's handler must not call add_timer_on(). Upon exit the
 * timer is not queued and the handler is not running on any CPU.
L
Linus Torvalds 已提交
1222
 *
T
Tejun Heo 已提交
1223 1224 1225
 * Note: For !irqsafe timers, you must not hold locks that are held in
 *   interrupt context while calling this function. Even if the lock has
 *   nothing to do with the timer in question.  Here's why:
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
 *
 *    CPU0                             CPU1
 *    ----                             ----
 *                                   <SOFTIRQ>
 *                                   call_timer_fn();
 *                                     base->running_timer = mytimer;
 *  spin_lock_irq(somelock);
 *                                     <IRQ>
 *                                        spin_lock(somelock);
 *  del_timer_sync(mytimer);
 *   while (base->running_timer == mytimer);
 *
 * Now del_timer_sync() will never return and never release somelock.
 * The interrupt on the other CPU is waiting to grab somelock but
 * it has interrupted the softirq that CPU0 is waiting to finish.
 *
L
Linus Torvalds 已提交
1242 1243 1244 1245
 * The function returns whether it has deactivated a pending timer or not.
 */
int del_timer_sync(struct timer_list *timer)
{
1246
#ifdef CONFIG_LOCKDEP
1247 1248
	unsigned long flags;

1249 1250 1251 1252
	/*
	 * If lockdep gives a backtrace here, please reference
	 * the synchronization rules above.
	 */
1253
	local_irq_save(flags);
1254 1255
	lock_map_acquire(&timer->lockdep_map);
	lock_map_release(&timer->lockdep_map);
1256
	local_irq_restore(flags);
1257
#endif
1258 1259 1260 1261
	/*
	 * don't use it in hardirq context, because it
	 * could lead to deadlock.
	 */
1262
	WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
1263 1264 1265 1266
	for (;;) {
		int ret = try_to_del_timer_sync(timer);
		if (ret >= 0)
			return ret;
1267
		cpu_relax();
1268
	}
L
Linus Torvalds 已提交
1269
}
1270
EXPORT_SYMBOL(del_timer_sync);
L
Linus Torvalds 已提交
1271 1272
#endif

1273 1274 1275
static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
			  unsigned long data)
{
1276
	int count = preempt_count();
1277 1278 1279 1280 1281 1282 1283 1284 1285

#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the timer from inside the
	 * function that is called from it, this we need to take into
	 * account for lockdep too. To avoid bogus "held lock freed"
	 * warnings as well as problems when looking into
	 * timer->lockdep_map, make a copy and use that here.
	 */
1286 1287 1288
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
#endif
	/*
	 * Couple the lock chain with the lock chain at
	 * del_timer_sync() by acquiring the lock_map around the fn()
	 * call here and in del_timer_sync().
	 */
	lock_map_acquire(&lockdep_map);

	trace_timer_expire_entry(timer);
	fn(data);
	trace_timer_expire_exit(timer);

	lock_map_release(&lockdep_map);

1303
	if (count != preempt_count()) {
1304
		WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1305
			  fn, count, preempt_count());
1306 1307 1308 1309 1310 1311
		/*
		 * Restore the preempt count. That gives us a decent
		 * chance to survive and extract information. If the
		 * callback kept a lock held, bad luck, but not worse
		 * than the BUG() we had.
		 */
1312
		preempt_count_set(count);
1313 1314 1315
	}
}

1316
static void expire_timers(struct timer_base *base, struct hlist_head *head)
L
Linus Torvalds 已提交
1317
{
1318 1319 1320 1321
	while (!hlist_empty(head)) {
		struct timer_list *timer;
		void (*fn)(unsigned long);
		unsigned long data;
L
Linus Torvalds 已提交
1322

1323 1324
		timer = hlist_entry(head->first, struct timer_list, entry);
		timer_stats_account_timer(timer);
1325

1326 1327
		base->running_timer = timer;
		detach_timer(timer, true);
1328

1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
		fn = timer->function;
		data = timer->data;

		if (timer->flags & TIMER_IRQSAFE) {
			spin_unlock(&base->lock);
			call_timer_fn(timer, fn, data);
			spin_lock(&base->lock);
		} else {
			spin_unlock_irq(&base->lock);
			call_timer_fn(timer, fn, data);
			spin_lock_irq(&base->lock);
1340
		}
1341 1342
	}
}
1343

1344 1345
static int __collect_expired_timers(struct timer_base *base,
				    struct hlist_head *heads)
1346 1347 1348 1349 1350
{
	unsigned long clk = base->clk;
	struct hlist_head *vec;
	int i, levels = 0;
	unsigned int idx;
1351

1352 1353 1354 1355 1356 1357 1358
	for (i = 0; i < LVL_DEPTH; i++) {
		idx = (clk & LVL_MASK) + i * LVL_SIZE;

		if (__test_and_clear_bit(idx, base->pending_map)) {
			vec = base->vectors + idx;
			hlist_move_list(vec, heads++);
			levels++;
L
Linus Torvalds 已提交
1359
		}
1360 1361 1362 1363 1364
		/* Is it time to look at the next level? */
		if (clk & LVL_CLK_MASK)
			break;
		/* Shift clock for the next level granularity */
		clk >>= LVL_CLK_SHIFT;
L
Linus Torvalds 已提交
1365
	}
1366
	return levels;
L
Linus Torvalds 已提交
1367 1368
}

1369
#ifdef CONFIG_NO_HZ_COMMON
L
Linus Torvalds 已提交
1370
/*
1371 1372 1373
 * Find the next pending bucket of a level. Search from level start (@offset)
 * + @clk upwards and if nothing there, search from start of the level
 * (@offset) up to @offset + clk.
L
Linus Torvalds 已提交
1374
 */
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
static int next_pending_bucket(struct timer_base *base, unsigned offset,
			       unsigned clk)
{
	unsigned pos, start = offset + clk;
	unsigned end = offset + LVL_SIZE;

	pos = find_next_bit(base->pending_map, end, start);
	if (pos < end)
		return pos - start;

	pos = find_next_bit(base->pending_map, start, offset);
	return pos < start ? pos + LVL_SIZE - start : -1;
}

/*
1390 1391
 * Search the first expiring timer in the various clock levels. Caller must
 * hold base->lock.
L
Linus Torvalds 已提交
1392
 */
1393
static unsigned long __next_timer_interrupt(struct timer_base *base)
L
Linus Torvalds 已提交
1394
{
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
	unsigned long clk, next, adj;
	unsigned lvl, offset = 0;

	next = base->clk + NEXT_TIMER_MAX_DELTA;
	clk = base->clk;
	for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
		int pos = next_pending_bucket(base, offset, clk & LVL_MASK);

		if (pos >= 0) {
			unsigned long tmp = clk + (unsigned long) pos;

			tmp <<= LVL_SHIFT(lvl);
			if (time_before(tmp, next))
				next = tmp;
L
Linus Torvalds 已提交
1409
		}
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
		/*
		 * Clock for the next level. If the current level clock lower
		 * bits are zero, we look at the next level as is. If not we
		 * need to advance it by one because that's going to be the
		 * next expiring bucket in that level. base->clk is the next
		 * expiring jiffie. So in case of:
		 *
		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
		 *  0    0    0    0    0    0
		 *
		 * we have to look at all levels @index 0. With
		 *
		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
		 *  0    0    0    0    0    2
		 *
		 * LVL0 has the next expiring bucket @index 2. The upper
		 * levels have the next expiring bucket @index 1.
		 *
		 * In case that the propagation wraps the next level the same
		 * rules apply:
		 *
		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
		 *  0    0    0    0    F    2
		 *
		 * So after looking at LVL0 we get:
		 *
		 * LVL5 LVL4 LVL3 LVL2 LVL1
		 *  0    0    0    1    0
		 *
		 * So no propagation from LVL1 to LVL2 because that happened
		 * with the add already, but then we need to propagate further
		 * from LVL2 to LVL3.
		 *
		 * So the simple check whether the lower bits of the current
		 * level are 0 or not is sufficient for all cases.
		 */
		adj = clk & LVL_CLK_MASK ? 1 : 0;
		clk >>= LVL_CLK_SHIFT;
		clk += adj;
L
Linus Torvalds 已提交
1449
	}
1450
	return next;
1451
}
1452

1453 1454 1455 1456
/*
 * Check, if the next hrtimer event is before the next timer wheel
 * event:
 */
1457
static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1458
{
1459
	u64 nextevt = hrtimer_get_next_event();
1460

1461
	/*
1462 1463
	 * If high resolution timers are enabled
	 * hrtimer_get_next_event() returns KTIME_MAX.
1464
	 */
1465 1466
	if (expires <= nextevt)
		return expires;
1467 1468

	/*
1469 1470
	 * If the next timer is already expired, return the tick base
	 * time so the tick is fired immediately.
1471
	 */
1472 1473
	if (nextevt <= basem)
		return basem;
1474

1475
	/*
1476 1477 1478 1479 1480 1481
	 * Round up to the next jiffie. High resolution timers are
	 * off, so the hrtimers are expired in the tick and we need to
	 * make sure that this tick really expires the timer to avoid
	 * a ping pong of the nohz stop code.
	 *
	 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1482
	 */
1483
	return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
L
Linus Torvalds 已提交
1484
}
1485 1486

/**
1487 1488 1489 1490 1491 1492
 * get_next_timer_interrupt - return the time (clock mono) of the next timer
 * @basej:	base time jiffies
 * @basem:	base time clock monotonic
 *
 * Returns the tick aligned clock monotonic time of the next pending
 * timer or KTIME_MAX if no timer is pending.
1493
 */
1494
u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1495
{
1496
	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1497 1498
	u64 expires = KTIME_MAX;
	unsigned long nextevt;
1499
	bool is_max_delta;
1500

1501 1502 1503 1504 1505
	/*
	 * Pretend that there is no timer pending if the cpu is offline.
	 * Possible pending timers will be migrated later to an active cpu.
	 */
	if (cpu_is_offline(smp_processor_id()))
1506 1507
		return expires;

1508
	spin_lock(&base->lock);
1509
	nextevt = __next_timer_interrupt(base);
1510
	is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA);
1511 1512 1513 1514 1515 1516 1517 1518
	base->next_expiry = nextevt;
	/*
	 * We have a fresh next event. Check whether we can forward the base:
	 */
	if (time_after(nextevt, jiffies))
		base->clk = jiffies;
	else if (time_after(nextevt, base->clk))
		base->clk = nextevt;
1519

1520
	if (time_before_eq(nextevt, basej)) {
1521
		expires = basem;
1522 1523
		base->is_idle = false;
	} else {
1524 1525
		if (!is_max_delta)
			expires = basem + (nextevt - basej) * TICK_NSEC;
1526 1527 1528 1529 1530
		/*
		 * If we expect to sleep more than a tick, mark the base idle:
		 */
		if ((expires - basem) > TICK_NSEC)
			base->is_idle = true;
1531
	}
1532 1533
	spin_unlock(&base->lock);

1534
	return cmp_next_hrtimer_event(basem, expires);
1535
}
1536

1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
/**
 * timer_clear_idle - Clear the idle state of the timer base
 *
 * Called with interrupts disabled
 */
void timer_clear_idle(void)
{
	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);

	/*
	 * We do this unlocked. The worst outcome is a remote enqueue sending
	 * a pointless IPI, but taking the lock would just make the window for
	 * sending the IPI a few instructions smaller for the cost of taking
	 * the lock in the exit from idle path.
	 */
	base->is_idle = false;
}

1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
static int collect_expired_timers(struct timer_base *base,
				  struct hlist_head *heads)
{
	/*
	 * NOHZ optimization. After a long idle sleep we need to forward the
	 * base to current jiffies. Avoid a loop by searching the bitfield for
	 * the next expiring timer.
	 */
	if ((long)(jiffies - base->clk) > 2) {
		unsigned long next = __next_timer_interrupt(base);

		/*
		 * If the next timer is ahead of time forward to current
1568
		 * jiffies, otherwise forward to the next expiry time:
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
		 */
		if (time_after(next, jiffies)) {
			/* The call site will increment clock! */
			base->clk = jiffies - 1;
			return 0;
		}
		base->clk = next;
	}
	return __collect_expired_timers(base, heads);
}
#else
static inline int collect_expired_timers(struct timer_base *base,
					 struct hlist_head *heads)
{
	return __collect_expired_timers(base, heads);
}
L
Linus Torvalds 已提交
1585 1586 1587
#endif

/*
D
Daniel Walker 已提交
1588
 * Called from the timer interrupt handler to charge one tick to the current
L
Linus Torvalds 已提交
1589 1590 1591 1592 1593 1594 1595
 * process.  user_tick is 1 if the tick is user time, 0 for system.
 */
void update_process_times(int user_tick)
{
	struct task_struct *p = current;

	/* Note: this timer irq context must be accounted for as well. */
1596
	account_process_tick(p, user_tick);
L
Linus Torvalds 已提交
1597
	run_local_timers();
1598
	rcu_check_callbacks(user_tick);
1599 1600
#ifdef CONFIG_IRQ_WORK
	if (in_irq())
1601
		irq_work_tick();
1602
#endif
L
Linus Torvalds 已提交
1603
	scheduler_tick();
1604
	run_posix_cpu_timers(p);
L
Linus Torvalds 已提交
1605 1606
}

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
/**
 * __run_timers - run all expired timers (if any) on this CPU.
 * @base: the timer vector to be processed.
 */
static inline void __run_timers(struct timer_base *base)
{
	struct hlist_head heads[LVL_DEPTH];
	int levels;

	if (!time_after_eq(jiffies, base->clk))
		return;

	spin_lock_irq(&base->lock);

	while (time_after_eq(jiffies, base->clk)) {

		levels = collect_expired_timers(base, heads);
		base->clk++;

		while (levels--)
			expire_timers(base, heads + levels);
	}
	base->running_timer = NULL;
	spin_unlock_irq(&base->lock);
}

L
Linus Torvalds 已提交
1633 1634 1635 1636 1637
/*
 * This function runs timers and the timer-tq in bottom half context.
 */
static void run_timer_softirq(struct softirq_action *h)
{
1638
	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
L
Linus Torvalds 已提交
1639

1640 1641 1642
	__run_timers(base);
	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active)
		__run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
L
Linus Torvalds 已提交
1643 1644 1645 1646 1647 1648 1649
}

/*
 * Called by the local, per-CPU timer interrupt on SMP.
 */
void run_local_timers(void)
{
1650 1651
	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);

1652
	hrtimer_run_queues();
1653 1654 1655 1656 1657 1658 1659 1660 1661
	/* Raise the softirq only if required. */
	if (time_before(jiffies, base->clk)) {
		if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active)
			return;
		/* CPU is awake, so check the deferrable base. */
		base++;
		if (time_before(jiffies, base->clk))
			return;
	}
L
Linus Torvalds 已提交
1662 1663 1664 1665 1666 1667 1668 1669 1670
	raise_softirq(TIMER_SOFTIRQ);
}

#ifdef __ARCH_WANT_SYS_ALARM

/*
 * For backwards compatibility?  This can be done in libc so Alpha
 * and all newer ports shouldn't need it.
 */
1671
SYSCALL_DEFINE1(alarm, unsigned int, seconds)
L
Linus Torvalds 已提交
1672
{
1673
	return alarm_setitimer(seconds);
L
Linus Torvalds 已提交
1674 1675 1676 1677 1678 1679
}

#endif

static void process_timeout(unsigned long __data)
{
1680
	wake_up_process((struct task_struct *)__data);
L
Linus Torvalds 已提交
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
}

/**
 * schedule_timeout - sleep until timeout
 * @timeout: timeout value in jiffies
 *
 * Make the current task sleep until @timeout jiffies have
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
 * pass before the routine returns. The routine will return 0
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task. In this case the remaining time
 * in jiffies will be returned, or 0 if the timer expired in time
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
 * the CPU away without a bound on the timeout. In this case the return
 * value will be %MAX_SCHEDULE_TIMEOUT.
 *
 * In all cases the return value is guaranteed to be non-negative.
 */
1709
signed long __sched schedule_timeout(signed long timeout)
L
Linus Torvalds 已提交
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
{
	struct timer_list timer;
	unsigned long expire;

	switch (timeout)
	{
	case MAX_SCHEDULE_TIMEOUT:
		/*
		 * These two special cases are useful to be comfortable
		 * in the caller. Nothing more. We could take
		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
		 * but I' d like to return a valid offset (>=0) to allow
		 * the caller to do everything it want with the retval.
		 */
		schedule();
		goto out;
	default:
		/*
		 * Another bit of PARANOID. Note that the retval will be
		 * 0 since no piece of kernel is supposed to do a check
		 * for a negative retval of schedule_timeout() (since it
		 * should never happens anyway). You just have the printk()
		 * that will tell you if something is gone wrong and where.
		 */
1734
		if (timeout < 0) {
L
Linus Torvalds 已提交
1735
			printk(KERN_ERR "schedule_timeout: wrong timeout "
1736 1737
				"value %lx\n", timeout);
			dump_stack();
L
Linus Torvalds 已提交
1738 1739 1740 1741 1742 1743 1744
			current->state = TASK_RUNNING;
			goto out;
		}
	}

	expire = timeout + jiffies;

1745
	setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1746
	__mod_timer(&timer, expire, false);
L
Linus Torvalds 已提交
1747 1748 1749
	schedule();
	del_singleshot_timer_sync(&timer);

1750 1751 1752
	/* Remove the timer from the object tracker */
	destroy_timer_on_stack(&timer);

L
Linus Torvalds 已提交
1753 1754 1755 1756 1757 1758 1759
	timeout = expire - jiffies;

 out:
	return timeout < 0 ? 0 : timeout;
}
EXPORT_SYMBOL(schedule_timeout);

1760 1761 1762 1763
/*
 * We can use __set_current_state() here because schedule_timeout() calls
 * schedule() unconditionally.
 */
1764 1765
signed long __sched schedule_timeout_interruptible(signed long timeout)
{
A
Andrew Morton 已提交
1766 1767
	__set_current_state(TASK_INTERRUPTIBLE);
	return schedule_timeout(timeout);
1768 1769 1770
}
EXPORT_SYMBOL(schedule_timeout_interruptible);

M
Matthew Wilcox 已提交
1771 1772 1773 1774 1775 1776 1777
signed long __sched schedule_timeout_killable(signed long timeout)
{
	__set_current_state(TASK_KILLABLE);
	return schedule_timeout(timeout);
}
EXPORT_SYMBOL(schedule_timeout_killable);

1778 1779
signed long __sched schedule_timeout_uninterruptible(signed long timeout)
{
A
Andrew Morton 已提交
1780 1781
	__set_current_state(TASK_UNINTERRUPTIBLE);
	return schedule_timeout(timeout);
1782 1783 1784
}
EXPORT_SYMBOL(schedule_timeout_uninterruptible);

1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
/*
 * Like schedule_timeout_uninterruptible(), except this task will not contribute
 * to load average.
 */
signed long __sched schedule_timeout_idle(signed long timeout)
{
	__set_current_state(TASK_IDLE);
	return schedule_timeout(timeout);
}
EXPORT_SYMBOL(schedule_timeout_idle);

L
Linus Torvalds 已提交
1796
#ifdef CONFIG_HOTPLUG_CPU
1797
static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
L
Linus Torvalds 已提交
1798 1799
{
	struct timer_list *timer;
1800
	int cpu = new_base->cpu;
L
Linus Torvalds 已提交
1801

1802 1803
	while (!hlist_empty(head)) {
		timer = hlist_entry(head->first, struct timer_list, entry);
1804
		detach_timer(timer, false);
1805
		timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
L
Linus Torvalds 已提交
1806 1807 1808 1809
		internal_add_timer(new_base, timer);
	}
}

1810
int timers_dead_cpu(unsigned int cpu)
L
Linus Torvalds 已提交
1811
{
1812 1813
	struct timer_base *old_base;
	struct timer_base *new_base;
1814
	int b, i;
L
Linus Torvalds 已提交
1815 1816

	BUG_ON(cpu_online(cpu));
1817

1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
	for (b = 0; b < NR_BASES; b++) {
		old_base = per_cpu_ptr(&timer_bases[b], cpu);
		new_base = get_cpu_ptr(&timer_bases[b]);
		/*
		 * The caller is globally serialized and nobody else
		 * takes two locks at once, deadlock is not possible.
		 */
		spin_lock_irq(&new_base->lock);
		spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);

		BUG_ON(old_base->running_timer);

		for (i = 0; i < WHEEL_SIZE; i++)
			migrate_timer_list(new_base, old_base->vectors + i);
1832

1833 1834 1835 1836
		spin_unlock(&old_base->lock);
		spin_unlock_irq(&new_base->lock);
		put_cpu_ptr(&timer_bases);
	}
1837
	return 0;
L
Linus Torvalds 已提交
1838 1839
}

1840
#endif /* CONFIG_HOTPLUG_CPU */
L
Linus Torvalds 已提交
1841

1842
static void __init init_timer_cpu(int cpu)
1843
{
1844 1845
	struct timer_base *base;
	int i;
1846

1847 1848 1849 1850 1851 1852
	for (i = 0; i < NR_BASES; i++) {
		base = per_cpu_ptr(&timer_bases[i], cpu);
		base->cpu = cpu;
		spin_lock_init(&base->lock);
		base->clk = jiffies;
	}
1853 1854 1855
}

static void __init init_timer_cpus(void)
L
Linus Torvalds 已提交
1856
{
1857 1858
	int cpu;

1859 1860
	for_each_possible_cpu(cpu)
		init_timer_cpu(cpu);
1861
}
1862

1863 1864 1865
void __init init_timers(void)
{
	init_timer_cpus();
1866
	init_timer_stats();
1867
	open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
L
Linus Torvalds 已提交
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
}

/**
 * msleep - sleep safely even with waitqueue interruptions
 * @msecs: Time in milliseconds to sleep for
 */
void msleep(unsigned int msecs)
{
	unsigned long timeout = msecs_to_jiffies(msecs) + 1;

1878 1879
	while (timeout)
		timeout = schedule_timeout_uninterruptible(timeout);
L
Linus Torvalds 已提交
1880 1881 1882 1883 1884
}

EXPORT_SYMBOL(msleep);

/**
1885
 * msleep_interruptible - sleep waiting for signals
L
Linus Torvalds 已提交
1886 1887 1888 1889 1890 1891
 * @msecs: Time in milliseconds to sleep for
 */
unsigned long msleep_interruptible(unsigned int msecs)
{
	unsigned long timeout = msecs_to_jiffies(msecs) + 1;

1892 1893
	while (timeout && !signal_pending(current))
		timeout = schedule_timeout_interruptible(timeout);
L
Linus Torvalds 已提交
1894 1895 1896 1897
	return jiffies_to_msecs(timeout);
}

EXPORT_SYMBOL(msleep_interruptible);
1898

1899
static void __sched do_usleep_range(unsigned long min, unsigned long max)
1900 1901
{
	ktime_t kmin;
1902
	u64 delta;
1903 1904

	kmin = ktime_set(0, min * NSEC_PER_USEC);
1905
	delta = (u64)(max - min) * NSEC_PER_USEC;
1906
	schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
1907 1908 1909
}

/**
1910
 * usleep_range - Sleep for an approximate time
1911 1912
 * @min: Minimum time in usecs to sleep
 * @max: Maximum time in usecs to sleep
1913 1914 1915 1916 1917 1918
 *
 * In non-atomic context where the exact wakeup time is flexible, use
 * usleep_range() instead of udelay().  The sleep improves responsiveness
 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
 * power usage by allowing hrtimers to take advantage of an already-
 * scheduled interrupt instead of scheduling a new one just for this sleep.
1919
 */
1920
void __sched usleep_range(unsigned long min, unsigned long max)
1921 1922 1923 1924 1925
{
	__set_current_state(TASK_UNINTERRUPTIBLE);
	do_usleep_range(min, max);
}
EXPORT_SYMBOL(usleep_range);