timer.c 44.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3
/*
 *  linux/kernel/timer.c
 *
4
 *  Kernel internal timers
L
Linus Torvalds 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
 *
 *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
 *              "A Kernel Model for Precision Timekeeping" by Dave Mills
 *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
 *              serialize accesses to xtime/lost_ticks).
 *                              Copyright (C) 1998  Andrea Arcangeli
 *  1999-03-10  Improved NTP compatibility by Ulrich Windl
 *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
 *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
 *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
 *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
 */

#include <linux/kernel_stat.h>
23
#include <linux/export.h>
L
Linus Torvalds 已提交
24 25 26 27 28
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/swap.h>
29
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
30 31 32 33 34 35 36
#include <linux/notifier.h>
#include <linux/thread_info.h>
#include <linux/time.h>
#include <linux/jiffies.h>
#include <linux/posix-timers.h>
#include <linux/cpu.h>
#include <linux/syscalls.h>
A
Adrian Bunk 已提交
37
#include <linux/delay.h>
38
#include <linux/tick.h>
39
#include <linux/kallsyms.h>
40
#include <linux/irq_work.h>
41
#include <linux/sched.h>
42
#include <linux/sched/sysctl.h>
43
#include <linux/slab.h>
44
#include <linux/compat.h>
L
Linus Torvalds 已提交
45 46 47 48 49 50 51

#include <asm/uaccess.h>
#include <asm/unistd.h>
#include <asm/div64.h>
#include <asm/timex.h>
#include <asm/io.h>

52 53
#include "tick-internal.h"

54 55 56
#define CREATE_TRACE_POINTS
#include <trace/events/timer.h>

A
Andi Kleen 已提交
57
__visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
T
Thomas Gleixner 已提交
58 59 60

EXPORT_SYMBOL(jiffies_64);

L
Linus Torvalds 已提交
61 62 63 64 65 66 67 68 69
/*
 * per-CPU timer vector definitions:
 */
#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
#define TVN_SIZE (1 << TVN_BITS)
#define TVR_SIZE (1 << TVR_BITS)
#define TVN_MASK (TVN_SIZE - 1)
#define TVR_MASK (TVR_SIZE - 1)
70
#define MAX_TVAL ((unsigned long)((1ULL << (TVR_BITS + 4*TVN_BITS)) - 1))
L
Linus Torvalds 已提交
71

72
struct tvec {
73
	struct hlist_head vec[TVN_SIZE];
74
};
L
Linus Torvalds 已提交
75

76
struct tvec_root {
77
	struct hlist_head vec[TVR_SIZE];
78
};
L
Linus Torvalds 已提交
79

80
struct tvec_base {
81 82
	spinlock_t lock;
	struct timer_list *running_timer;
L
Linus Torvalds 已提交
83
	unsigned long timer_jiffies;
84
	unsigned long next_timer;
85
	unsigned long active_timers;
86
	unsigned long all_timers;
87
	int cpu;
88 89 90 91 92
	struct tvec_root tv1;
	struct tvec tv2;
	struct tvec tv3;
	struct tvec tv4;
	struct tvec tv5;
93
} ____cacheline_aligned;
L
Linus Torvalds 已提交
94

95

96
static DEFINE_PER_CPU(struct tvec_base, tvec_bases);
97

98 99
static unsigned long round_jiffies_common(unsigned long j, int cpu,
		bool force_up)
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
{
	int rem;
	unsigned long original = j;

	/*
	 * We don't want all cpus firing their timers at once hitting the
	 * same lock or cachelines, so we skew each extra cpu with an extra
	 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
	 * already did this.
	 * The skew is done by adding 3*cpunr, then round, then subtract this
	 * extra offset again.
	 */
	j += cpu * 3;

	rem = j % HZ;

	/*
	 * If the target jiffie is just after a whole second (which can happen
	 * due to delays of the timer irq, long irq off times etc etc) then
	 * we should round down to the whole second, not up. Use 1/4th second
	 * as cutoff for this rounding as an extreme upper bound for this.
121
	 * But never round down if @force_up is set.
122
	 */
123
	if (rem < HZ/4 && !force_up) /* round down */
124 125 126 127 128 129 130
		j = j - rem;
	else /* round up */
		j = j - rem + HZ;

	/* now that we have rounded, subtract the extra skew again */
	j -= cpu * 3;

131 132 133 134 135
	/*
	 * Make sure j is still in the future. Otherwise return the
	 * unmodified value.
	 */
	return time_is_after_jiffies(j) ? j : original;
136
}
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

/**
 * __round_jiffies - function to round jiffies to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
 * __round_jiffies() rounds an absolute time in the future (in jiffies)
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
 * The exact rounding is skewed for each processor to avoid all
 * processors firing at the exact same time, which could lead
 * to lock contention or spurious cache line bouncing.
 *
 * The return value is the rounded version of the @j parameter.
 */
unsigned long __round_jiffies(unsigned long j, int cpu)
{
	return round_jiffies_common(j, cpu, false);
}
162 163 164 165 166 167 168
EXPORT_SYMBOL_GPL(__round_jiffies);

/**
 * __round_jiffies_relative - function to round jiffies to a full second
 * @j: the time in (relative) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
169
 * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
170 171 172 173 174 175 176 177 178 179 180 181
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
 * The exact rounding is skewed for each processor to avoid all
 * processors firing at the exact same time, which could lead
 * to lock contention or spurious cache line bouncing.
 *
182
 * The return value is the rounded version of the @j parameter.
183 184 185
 */
unsigned long __round_jiffies_relative(unsigned long j, int cpu)
{
186 187 188 189
	unsigned long j0 = jiffies;

	/* Use j0 because jiffies might change while we run */
	return round_jiffies_common(j + j0, cpu, false) - j0;
190 191 192 193 194 195 196
}
EXPORT_SYMBOL_GPL(__round_jiffies_relative);

/**
 * round_jiffies - function to round jiffies to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 *
197
 * round_jiffies() rounds an absolute time in the future (in jiffies)
198 199 200 201 202 203 204 205
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
206
 * The return value is the rounded version of the @j parameter.
207 208 209
 */
unsigned long round_jiffies(unsigned long j)
{
210
	return round_jiffies_common(j, raw_smp_processor_id(), false);
211 212 213 214 215 216 217
}
EXPORT_SYMBOL_GPL(round_jiffies);

/**
 * round_jiffies_relative - function to round jiffies to a full second
 * @j: the time in (relative) jiffies that should be rounded
 *
218
 * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
219 220 221 222 223 224 225 226
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
227
 * The return value is the rounded version of the @j parameter.
228 229 230 231 232 233 234
 */
unsigned long round_jiffies_relative(unsigned long j)
{
	return __round_jiffies_relative(j, raw_smp_processor_id());
}
EXPORT_SYMBOL_GPL(round_jiffies_relative);

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
/**
 * __round_jiffies_up - function to round jiffies up to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
 * This is the same as __round_jiffies() except that it will never
 * round down.  This is useful for timeouts for which the exact time
 * of firing does not matter too much, as long as they don't fire too
 * early.
 */
unsigned long __round_jiffies_up(unsigned long j, int cpu)
{
	return round_jiffies_common(j, cpu, true);
}
EXPORT_SYMBOL_GPL(__round_jiffies_up);

/**
 * __round_jiffies_up_relative - function to round jiffies up to a full second
 * @j: the time in (relative) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
 * This is the same as __round_jiffies_relative() except that it will never
 * round down.  This is useful for timeouts for which the exact time
 * of firing does not matter too much, as long as they don't fire too
 * early.
 */
unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
{
	unsigned long j0 = jiffies;

	/* Use j0 because jiffies might change while we run */
	return round_jiffies_common(j + j0, cpu, true) - j0;
}
EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);

/**
 * round_jiffies_up - function to round jiffies up to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 *
 * This is the same as round_jiffies() except that it will never
 * round down.  This is useful for timeouts for which the exact time
 * of firing does not matter too much, as long as they don't fire too
 * early.
 */
unsigned long round_jiffies_up(unsigned long j)
{
	return round_jiffies_common(j, raw_smp_processor_id(), true);
}
EXPORT_SYMBOL_GPL(round_jiffies_up);

/**
 * round_jiffies_up_relative - function to round jiffies up to a full second
 * @j: the time in (relative) jiffies that should be rounded
 *
 * This is the same as round_jiffies_relative() except that it will never
 * round down.  This is useful for timeouts for which the exact time
 * of firing does not matter too much, as long as they don't fire too
 * early.
 */
unsigned long round_jiffies_up_relative(unsigned long j)
{
	return __round_jiffies_up_relative(j, raw_smp_processor_id());
}
EXPORT_SYMBOL_GPL(round_jiffies_up_relative);

300 301
/**
 * set_timer_slack - set the allowed slack for a timer
302
 * @timer: the timer to be modified
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
 * @slack_hz: the amount of time (in jiffies) allowed for rounding
 *
 * Set the amount of time, in jiffies, that a certain timer has
 * in terms of slack. By setting this value, the timer subsystem
 * will schedule the actual timer somewhere between
 * the time mod_timer() asks for, and that time plus the slack.
 *
 * By setting the slack to -1, a percentage of the delay is used
 * instead.
 */
void set_timer_slack(struct timer_list *timer, int slack_hz)
{
	timer->slack = slack_hz;
}
EXPORT_SYMBOL_GPL(set_timer_slack);

319 320
static void
__internal_add_timer(struct tvec_base *base, struct timer_list *timer)
L
Linus Torvalds 已提交
321 322 323
{
	unsigned long expires = timer->expires;
	unsigned long idx = expires - base->timer_jiffies;
324
	struct hlist_head *vec;
L
Linus Torvalds 已提交
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345

	if (idx < TVR_SIZE) {
		int i = expires & TVR_MASK;
		vec = base->tv1.vec + i;
	} else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
		int i = (expires >> TVR_BITS) & TVN_MASK;
		vec = base->tv2.vec + i;
	} else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
		int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
		vec = base->tv3.vec + i;
	} else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
		int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
		vec = base->tv4.vec + i;
	} else if ((signed long) idx < 0) {
		/*
		 * Can happen if you add a timer with expires == jiffies,
		 * or you set a timer to go off in the past
		 */
		vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
	} else {
		int i;
346 347 348
		/* If the timeout is larger than MAX_TVAL (on 64-bit
		 * architectures or with CONFIG_BASE_SMALL=1) then we
		 * use the maximum timeout.
L
Linus Torvalds 已提交
349
		 */
350 351
		if (idx > MAX_TVAL) {
			idx = MAX_TVAL;
L
Linus Torvalds 已提交
352 353 354 355 356
			expires = idx + base->timer_jiffies;
		}
		i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
		vec = base->tv5.vec + i;
	}
T
Thomas Gleixner 已提交
357

358
	hlist_add_head(&timer->entry, vec);
L
Linus Torvalds 已提交
359 360
}

361 362
static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
{
363 364 365 366
	/* Advance base->jiffies, if the base is empty */
	if (!base->all_timers++)
		base->timer_jiffies = jiffies;

367 368
	__internal_add_timer(base, timer);
	/*
369
	 * Update base->active_timers and base->next_timer
370
	 */
371
	if (!(timer->flags & TIMER_DEFERRABLE)) {
372 373
		if (!base->active_timers++ ||
		    time_before(timer->expires, base->next_timer))
374 375
			base->next_timer = timer->expires;
	}
376 377 378 379 380 381 382 383 384 385 386 387 388 389

	/*
	 * Check whether the other CPU is in dynticks mode and needs
	 * to be triggered to reevaluate the timer wheel.
	 * We are protected against the other CPU fiddling
	 * with the timer by holding the timer base lock. This also
	 * makes sure that a CPU on the way to stop its tick can not
	 * evaluate the timer wheel.
	 *
	 * Spare the IPI for deferrable timers on idle targets though.
	 * The next busy ticks will take care of it. Except full dynticks
	 * require special care against races with idle_cpu(), lets deal
	 * with that later.
	 */
390
	if (!(timer->flags & TIMER_DEFERRABLE) || tick_nohz_full_cpu(base->cpu))
391
		wake_up_nohz_cpu(base->cpu);
392 393
}

394 395 396 397 398 399 400 401 402 403
#ifdef CONFIG_TIMER_STATS
void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
{
	if (timer->start_site)
		return;

	timer->start_site = addr;
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
}
404 405 406

static void timer_stats_account_timer(struct timer_list *timer)
{
407 408
	if (likely(!timer->start_site))
		return;
409 410

	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
411 412
				 timer->function, timer->start_comm,
				 timer->flags);
413 414 415 416
}

#else
static void timer_stats_account_timer(struct timer_list *timer) {}
417 418
#endif

419 420 421 422
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr timer_debug_descr;

423 424 425 426 427
static void *timer_debug_hint(void *addr)
{
	return ((struct timer_list *) addr)->function;
}

428 429 430
/*
 * fixup_init is called when:
 * - an active object is initialized
431
 */
432 433 434 435 436 437 438 439 440 441 442 443 444 445
static int timer_fixup_init(void *addr, enum debug_obj_state state)
{
	struct timer_list *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		del_timer_sync(timer);
		debug_object_init(timer, &timer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

446 447 448 449 450 451
/* Stub timer callback for improperly used timers. */
static void stub_timer(unsigned long data)
{
	WARN_ON(1);
}

452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int timer_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct timer_list *timer = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The timer was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
469 470
		if (timer->entry.pprev == NULL &&
		    timer->entry.next == TIMER_ENTRY_STATIC) {
471 472 473 474
			debug_object_init(timer, &timer_debug_descr);
			debug_object_activate(timer, &timer_debug_descr);
			return 0;
		} else {
475 476
			setup_timer(timer, stub_timer, 0);
			return 1;
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
		}
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int timer_fixup_free(void *addr, enum debug_obj_state state)
{
	struct timer_list *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		del_timer_sync(timer);
		debug_object_free(timer, &timer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

506 507 508 509 510 511 512 513 514 515
/*
 * fixup_assert_init is called when:
 * - an untracked/uninit-ed object is found
 */
static int timer_fixup_assert_init(void *addr, enum debug_obj_state state)
{
	struct timer_list *timer = addr;

	switch (state) {
	case ODEBUG_STATE_NOTAVAILABLE:
516
		if (timer->entry.next == TIMER_ENTRY_STATIC) {
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
			/*
			 * This is not really a fixup. The timer was
			 * statically initialized. We just make sure that it
			 * is tracked in the object tracker.
			 */
			debug_object_init(timer, &timer_debug_descr);
			return 0;
		} else {
			setup_timer(timer, stub_timer, 0);
			return 1;
		}
	default:
		return 0;
	}
}

533
static struct debug_obj_descr timer_debug_descr = {
534 535 536 537 538 539
	.name			= "timer_list",
	.debug_hint		= timer_debug_hint,
	.fixup_init		= timer_fixup_init,
	.fixup_activate		= timer_fixup_activate,
	.fixup_free		= timer_fixup_free,
	.fixup_assert_init	= timer_fixup_assert_init,
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
};

static inline void debug_timer_init(struct timer_list *timer)
{
	debug_object_init(timer, &timer_debug_descr);
}

static inline void debug_timer_activate(struct timer_list *timer)
{
	debug_object_activate(timer, &timer_debug_descr);
}

static inline void debug_timer_deactivate(struct timer_list *timer)
{
	debug_object_deactivate(timer, &timer_debug_descr);
}

static inline void debug_timer_free(struct timer_list *timer)
{
	debug_object_free(timer, &timer_debug_descr);
}

562 563 564 565 566
static inline void debug_timer_assert_init(struct timer_list *timer)
{
	debug_object_assert_init(timer, &timer_debug_descr);
}

T
Tejun Heo 已提交
567 568
static void do_init_timer(struct timer_list *timer, unsigned int flags,
			  const char *name, struct lock_class_key *key);
569

T
Tejun Heo 已提交
570 571
void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags,
			     const char *name, struct lock_class_key *key)
572 573
{
	debug_object_init_on_stack(timer, &timer_debug_descr);
T
Tejun Heo 已提交
574
	do_init_timer(timer, flags, name, key);
575
}
576
EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
577 578 579 580 581 582 583 584 585 586 587

void destroy_timer_on_stack(struct timer_list *timer)
{
	debug_object_free(timer, &timer_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_timer_on_stack);

#else
static inline void debug_timer_init(struct timer_list *timer) { }
static inline void debug_timer_activate(struct timer_list *timer) { }
static inline void debug_timer_deactivate(struct timer_list *timer) { }
588
static inline void debug_timer_assert_init(struct timer_list *timer) { }
589 590
#endif

591 592 593 594 595 596 597 598 599 600
static inline void debug_init(struct timer_list *timer)
{
	debug_timer_init(timer);
	trace_timer_init(timer);
}

static inline void
debug_activate(struct timer_list *timer, unsigned long expires)
{
	debug_timer_activate(timer);
601
	trace_timer_start(timer, expires, timer->flags);
602 603 604 605 606 607 608 609
}

static inline void debug_deactivate(struct timer_list *timer)
{
	debug_timer_deactivate(timer);
	trace_timer_cancel(timer);
}

610 611 612 613 614
static inline void debug_assert_init(struct timer_list *timer)
{
	debug_timer_assert_init(timer);
}

T
Tejun Heo 已提交
615 616
static void do_init_timer(struct timer_list *timer, unsigned int flags,
			  const char *name, struct lock_class_key *key)
617
{
618
	timer->entry.pprev = NULL;
619
	timer->flags = flags | raw_smp_processor_id();
620
	timer->slack = -1;
621 622 623 624 625
#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
626
	lockdep_init_map(&timer->lockdep_map, name, key, 0);
627
}
628 629

/**
R
Randy Dunlap 已提交
630
 * init_timer_key - initialize a timer
631
 * @timer: the timer to be initialized
T
Tejun Heo 已提交
632
 * @flags: timer flags
R
Randy Dunlap 已提交
633 634 635
 * @name: name of the timer
 * @key: lockdep class key of the fake lock used for tracking timer
 *       sync lock dependencies
636
 *
R
Randy Dunlap 已提交
637
 * init_timer_key() must be done to a timer prior calling *any* of the
638 639
 * other timer functions.
 */
T
Tejun Heo 已提交
640 641
void init_timer_key(struct timer_list *timer, unsigned int flags,
		    const char *name, struct lock_class_key *key)
642
{
643
	debug_init(timer);
T
Tejun Heo 已提交
644
	do_init_timer(timer, flags, name, key);
645
}
646
EXPORT_SYMBOL(init_timer_key);
647

648
static inline void detach_timer(struct timer_list *timer, bool clear_pending)
649
{
650
	struct hlist_node *entry = &timer->entry;
651

652
	debug_deactivate(timer);
653

654
	__hlist_del(entry);
655
	if (clear_pending)
656 657
		entry->pprev = NULL;
	entry->next = LIST_POISON2;
658 659
}

660 661 662 663
static inline void
detach_expired_timer(struct timer_list *timer, struct tvec_base *base)
{
	detach_timer(timer, true);
664
	if (!(timer->flags & TIMER_DEFERRABLE))
665
		base->active_timers--;
666
	base->all_timers--;
667 668
}

669 670 671 672 673 674 675
static int detach_if_pending(struct timer_list *timer, struct tvec_base *base,
			     bool clear_pending)
{
	if (!timer_pending(timer))
		return 0;

	detach_timer(timer, clear_pending);
676
	if (!(timer->flags & TIMER_DEFERRABLE)) {
677
		base->active_timers--;
678 679 680
		if (timer->expires == base->next_timer)
			base->next_timer = base->timer_jiffies;
	}
681 682 683
	/* If this was the last timer, advance base->jiffies */
	if (!--base->all_timers)
		base->timer_jiffies = jiffies;
684 685 686
	return 1;
}

687
/*
688
 * We are using hashed locking: holding per_cpu(tvec_bases).lock
689 690 691 692 693 694
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on ->tvX lists.
 *
695 696
 * When the timer's base is locked and removed from the list, the
 * TIMER_MIGRATING flag is set, FIXME
697
 */
698
static struct tvec_base *lock_timer_base(struct timer_list *timer,
699
					unsigned long *flags)
700
	__acquires(timer->base->lock)
701 702
{
	for (;;) {
703 704 705 706 707
		u32 tf = timer->flags;
		struct tvec_base *base;

		if (!(tf & TIMER_MIGRATING)) {
			base = per_cpu_ptr(&tvec_bases, tf & TIMER_CPUMASK);
708
			spin_lock_irqsave(&base->lock, *flags);
709
			if (timer->flags == tf)
710 711 712 713 714 715 716
				return base;
			spin_unlock_irqrestore(&base->lock, *flags);
		}
		cpu_relax();
	}
}

I
Ingo Molnar 已提交
717
static inline int
718 719
__mod_timer(struct timer_list *timer, unsigned long expires,
						bool pending_only, int pinned)
L
Linus Torvalds 已提交
720
{
721
	struct tvec_base *base, *new_base;
L
Linus Torvalds 已提交
722
	unsigned long flags;
723
	int ret = 0 , cpu;
L
Linus Torvalds 已提交
724

725
	timer_stats_timer_set_start_info(timer);
L
Linus Torvalds 已提交
726 727
	BUG_ON(!timer->function);

728 729
	base = lock_timer_base(timer, &flags);

730 731 732
	ret = detach_if_pending(timer, base, false);
	if (!ret && pending_only)
		goto out_unlock;
733

734
	debug_activate(timer, expires);
735

736
	cpu = get_nohz_timer_target(pinned);
737
	new_base = per_cpu_ptr(&tvec_bases, cpu);
738

739
	if (base != new_base) {
L
Linus Torvalds 已提交
740
		/*
741 742 743 744 745
		 * We are trying to schedule the timer on the local CPU.
		 * However we can't change timer's base while it is running,
		 * otherwise del_timer_sync() can't detect that the timer's
		 * handler yet has not finished. This also guarantees that
		 * the timer is serialized wrt itself.
L
Linus Torvalds 已提交
746
		 */
747
		if (likely(base->running_timer != timer)) {
748
			/* See the comment in lock_timer_base() */
749 750
			timer->flags |= TIMER_MIGRATING;

751
			spin_unlock(&base->lock);
752 753
			base = new_base;
			spin_lock(&base->lock);
754
			timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
L
Linus Torvalds 已提交
755 756 757 758
		}
	}

	timer->expires = expires;
759
	internal_add_timer(base, timer);
I
Ingo Molnar 已提交
760 761

out_unlock:
762
	spin_unlock_irqrestore(&base->lock, flags);
L
Linus Torvalds 已提交
763 764 765 766

	return ret;
}

767
/**
I
Ingo Molnar 已提交
768 769 770
 * mod_timer_pending - modify a pending timer's timeout
 * @timer: the pending timer to be modified
 * @expires: new timeout in jiffies
L
Linus Torvalds 已提交
771
 *
I
Ingo Molnar 已提交
772 773 774 775
 * mod_timer_pending() is the same for pending timers as mod_timer(),
 * but will not re-activate and modify already deleted timers.
 *
 * It is useful for unserialized use of timers.
L
Linus Torvalds 已提交
776
 */
I
Ingo Molnar 已提交
777
int mod_timer_pending(struct timer_list *timer, unsigned long expires)
L
Linus Torvalds 已提交
778
{
779
	return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
L
Linus Torvalds 已提交
780
}
I
Ingo Molnar 已提交
781
EXPORT_SYMBOL(mod_timer_pending);
L
Linus Torvalds 已提交
782

783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
/*
 * Decide where to put the timer while taking the slack into account
 *
 * Algorithm:
 *   1) calculate the maximum (absolute) time
 *   2) calculate the highest bit where the expires and new max are different
 *   3) use this bit to make a mask
 *   4) use the bitmask to round down the maximum time, so that all last
 *      bits are zeros
 */
static inline
unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
{
	unsigned long expires_limit, mask;
	int bit;

799
	if (timer->slack >= 0) {
800
		expires_limit = expires + timer->slack;
801
	} else {
802 803 804 805
		long delta = expires - jiffies;

		if (delta < 256)
			return expires;
806

807
		expires_limit = expires + delta / 256;
808
	}
809 810 811 812 813 814
	mask = expires ^ expires_limit;
	if (mask == 0)
		return expires;

	bit = find_last_bit(&mask, BITS_PER_LONG);

815
	mask = (1UL << bit) - 1;
816 817 818 819 820 821

	expires_limit = expires_limit & ~(mask);

	return expires_limit;
}

822
/**
L
Linus Torvalds 已提交
823 824
 * mod_timer - modify a timer's timeout
 * @timer: the timer to be modified
825
 * @expires: new timeout in jiffies
L
Linus Torvalds 已提交
826
 *
827
 * mod_timer() is a more efficient way to update the expire field of an
L
Linus Torvalds 已提交
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
 * active timer (if the timer is inactive it will be activated)
 *
 * mod_timer(timer, expires) is equivalent to:
 *
 *     del_timer(timer); timer->expires = expires; add_timer(timer);
 *
 * Note that if there are multiple unserialized concurrent users of the
 * same timer, then mod_timer() is the only safe way to modify the timeout,
 * since add_timer() cannot modify an already running timer.
 *
 * The function returns whether it has modified a pending timer or not.
 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
 * active timer returns 1.)
 */
int mod_timer(struct timer_list *timer, unsigned long expires)
{
844 845
	expires = apply_slack(timer, expires);

L
Linus Torvalds 已提交
846 847 848 849 850
	/*
	 * This is a common optimization triggered by the
	 * networking code - if the timer is re-modified
	 * to be the same thing then just return:
	 */
851
	if (timer_pending(timer) && timer->expires == expires)
L
Linus Torvalds 已提交
852 853
		return 1;

854
	return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
L
Linus Torvalds 已提交
855 856 857
}
EXPORT_SYMBOL(mod_timer);

858 859 860 861 862 863 864
/**
 * mod_timer_pinned - modify a timer's timeout
 * @timer: the timer to be modified
 * @expires: new timeout in jiffies
 *
 * mod_timer_pinned() is a way to update the expire field of an
 * active timer (if the timer is inactive it will be activated)
865 866 867 868 869 870 871
 * and to ensure that the timer is scheduled on the current CPU.
 *
 * Note that this does not prevent the timer from being migrated
 * when the current CPU goes offline.  If this is a problem for
 * you, use CPU-hotplug notifiers to handle it correctly, for
 * example, cancelling the timer when the corresponding CPU goes
 * offline.
872 873 874 875 876 877 878 879 880 881 882 883 884 885
 *
 * mod_timer_pinned(timer, expires) is equivalent to:
 *
 *     del_timer(timer); timer->expires = expires; add_timer(timer);
 */
int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
{
	if (timer->expires == expires && timer_pending(timer))
		return 1;

	return __mod_timer(timer, expires, false, TIMER_PINNED);
}
EXPORT_SYMBOL(mod_timer_pinned);

I
Ingo Molnar 已提交
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
/**
 * add_timer - start a timer
 * @timer: the timer to be added
 *
 * The kernel will do a ->function(->data) callback from the
 * timer interrupt at the ->expires point in the future. The
 * current time is 'jiffies'.
 *
 * The timer's ->expires, ->function (and if the handler uses it, ->data)
 * fields must be set prior calling this function.
 *
 * Timers with an ->expires field in the past will be executed in the next
 * timer tick.
 */
void add_timer(struct timer_list *timer)
{
	BUG_ON(timer_pending(timer));
	mod_timer(timer, timer->expires);
}
EXPORT_SYMBOL(add_timer);

/**
 * add_timer_on - start a timer on a particular CPU
 * @timer: the timer to be added
 * @cpu: the CPU to start it on
 *
 * This is not very scalable on SMP. Double adds are not possible.
 */
void add_timer_on(struct timer_list *timer, int cpu)
{
916
	struct tvec_base *base = per_cpu_ptr(&tvec_bases, cpu);
I
Ingo Molnar 已提交
917 918 919 920 921
	unsigned long flags;

	timer_stats_timer_set_start_info(timer);
	BUG_ON(timer_pending(timer) || !timer->function);
	spin_lock_irqsave(&base->lock, flags);
922
	timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
923
	debug_activate(timer, timer->expires);
I
Ingo Molnar 已提交
924 925 926
	internal_add_timer(base, timer);
	spin_unlock_irqrestore(&base->lock, flags);
}
A
Andi Kleen 已提交
927
EXPORT_SYMBOL_GPL(add_timer_on);
I
Ingo Molnar 已提交
928

929
/**
L
Linus Torvalds 已提交
930 931 932 933 934 935 936 937 938 939 940 941
 * del_timer - deactive a timer.
 * @timer: the timer to be deactivated
 *
 * del_timer() deactivates a timer - this works on both active and inactive
 * timers.
 *
 * The function returns whether it has deactivated a pending timer or not.
 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
 * active timer returns 1.)
 */
int del_timer(struct timer_list *timer)
{
942
	struct tvec_base *base;
L
Linus Torvalds 已提交
943
	unsigned long flags;
944
	int ret = 0;
L
Linus Torvalds 已提交
945

946 947
	debug_assert_init(timer);

948
	timer_stats_timer_clear_start_info(timer);
949 950
	if (timer_pending(timer)) {
		base = lock_timer_base(timer, &flags);
951
		ret = detach_if_pending(timer, base, true);
L
Linus Torvalds 已提交
952 953 954
		spin_unlock_irqrestore(&base->lock, flags);
	}

955
	return ret;
L
Linus Torvalds 已提交
956 957 958
}
EXPORT_SYMBOL(del_timer);

959 960 961 962
/**
 * try_to_del_timer_sync - Try to deactivate a timer
 * @timer: timer do del
 *
963 964 965 966 967
 * This function tries to deactivate a timer. Upon successful (ret >= 0)
 * exit the timer is not queued and the handler is not running on any CPU.
 */
int try_to_del_timer_sync(struct timer_list *timer)
{
968
	struct tvec_base *base;
969 970 971
	unsigned long flags;
	int ret = -1;

972 973
	debug_assert_init(timer);

974 975
	base = lock_timer_base(timer, &flags);

976 977 978
	if (base->running_timer != timer) {
		timer_stats_timer_clear_start_info(timer);
		ret = detach_if_pending(timer, base, true);
979 980 981 982 983
	}
	spin_unlock_irqrestore(&base->lock, flags);

	return ret;
}
984 985
EXPORT_SYMBOL(try_to_del_timer_sync);

986
#ifdef CONFIG_SMP
987
/**
L
Linus Torvalds 已提交
988 989 990 991 992 993 994
 * del_timer_sync - deactivate a timer and wait for the handler to finish.
 * @timer: the timer to be deactivated
 *
 * This function only differs from del_timer() on SMP: besides deactivating
 * the timer it also makes sure the handler has finished executing on other
 * CPUs.
 *
995
 * Synchronization rules: Callers must prevent restarting of the timer,
L
Linus Torvalds 已提交
996
 * otherwise this function is meaningless. It must not be called from
T
Tejun Heo 已提交
997 998 999 1000
 * interrupt contexts unless the timer is an irqsafe one. The caller must
 * not hold locks which would prevent completion of the timer's
 * handler. The timer's handler must not call add_timer_on(). Upon exit the
 * timer is not queued and the handler is not running on any CPU.
L
Linus Torvalds 已提交
1001
 *
T
Tejun Heo 已提交
1002 1003 1004
 * Note: For !irqsafe timers, you must not hold locks that are held in
 *   interrupt context while calling this function. Even if the lock has
 *   nothing to do with the timer in question.  Here's why:
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
 *
 *    CPU0                             CPU1
 *    ----                             ----
 *                                   <SOFTIRQ>
 *                                   call_timer_fn();
 *                                     base->running_timer = mytimer;
 *  spin_lock_irq(somelock);
 *                                     <IRQ>
 *                                        spin_lock(somelock);
 *  del_timer_sync(mytimer);
 *   while (base->running_timer == mytimer);
 *
 * Now del_timer_sync() will never return and never release somelock.
 * The interrupt on the other CPU is waiting to grab somelock but
 * it has interrupted the softirq that CPU0 is waiting to finish.
 *
L
Linus Torvalds 已提交
1021 1022 1023 1024
 * The function returns whether it has deactivated a pending timer or not.
 */
int del_timer_sync(struct timer_list *timer)
{
1025
#ifdef CONFIG_LOCKDEP
1026 1027
	unsigned long flags;

1028 1029 1030 1031
	/*
	 * If lockdep gives a backtrace here, please reference
	 * the synchronization rules above.
	 */
1032
	local_irq_save(flags);
1033 1034
	lock_map_acquire(&timer->lockdep_map);
	lock_map_release(&timer->lockdep_map);
1035
	local_irq_restore(flags);
1036
#endif
1037 1038 1039 1040
	/*
	 * don't use it in hardirq context, because it
	 * could lead to deadlock.
	 */
1041
	WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
1042 1043 1044 1045
	for (;;) {
		int ret = try_to_del_timer_sync(timer);
		if (ret >= 0)
			return ret;
1046
		cpu_relax();
1047
	}
L
Linus Torvalds 已提交
1048
}
1049
EXPORT_SYMBOL(del_timer_sync);
L
Linus Torvalds 已提交
1050 1051
#endif

1052
static int cascade(struct tvec_base *base, struct tvec *tv, int index)
L
Linus Torvalds 已提交
1053 1054
{
	/* cascade all the timers from tv up one level */
1055 1056 1057
	struct timer_list *timer;
	struct hlist_node *tmp;
	struct hlist_head tv_list;
1058

1059
	hlist_move_list(tv->vec + index, &tv_list);
L
Linus Torvalds 已提交
1060 1061

	/*
1062 1063
	 * We are removing _all_ timers from the list, so we
	 * don't have to detach them individually.
L
Linus Torvalds 已提交
1064
	 */
1065
	hlist_for_each_entry_safe(timer, tmp, &tv_list, entry) {
1066 1067
		/* No accounting, while moving them */
		__internal_add_timer(base, timer);
L
Linus Torvalds 已提交
1068 1069 1070 1071 1072
	}

	return index;
}

1073 1074 1075
static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
			  unsigned long data)
{
1076
	int count = preempt_count();
1077 1078 1079 1080 1081 1082 1083 1084 1085

#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the timer from inside the
	 * function that is called from it, this we need to take into
	 * account for lockdep too. To avoid bogus "held lock freed"
	 * warnings as well as problems when looking into
	 * timer->lockdep_map, make a copy and use that here.
	 */
1086 1087 1088
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
#endif
	/*
	 * Couple the lock chain with the lock chain at
	 * del_timer_sync() by acquiring the lock_map around the fn()
	 * call here and in del_timer_sync().
	 */
	lock_map_acquire(&lockdep_map);

	trace_timer_expire_entry(timer);
	fn(data);
	trace_timer_expire_exit(timer);

	lock_map_release(&lockdep_map);

1103
	if (count != preempt_count()) {
1104
		WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1105
			  fn, count, preempt_count());
1106 1107 1108 1109 1110 1111
		/*
		 * Restore the preempt count. That gives us a decent
		 * chance to survive and extract information. If the
		 * callback kept a lock held, bad luck, but not worse
		 * than the BUG() we had.
		 */
1112
		preempt_count_set(count);
1113 1114 1115
	}
}

1116 1117 1118
#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)

/**
L
Linus Torvalds 已提交
1119 1120 1121 1122 1123 1124
 * __run_timers - run all expired timers (if any) on this CPU.
 * @base: the timer vector to be processed.
 *
 * This function cascades all vectors and executes all expired timer
 * vectors.
 */
1125
static inline void __run_timers(struct tvec_base *base)
L
Linus Torvalds 已提交
1126 1127 1128
{
	struct timer_list *timer;

1129
	spin_lock_irq(&base->lock);
1130

L
Linus Torvalds 已提交
1131
	while (time_after_eq(jiffies, base->timer_jiffies)) {
1132 1133
		struct hlist_head work_list;
		struct hlist_head *head = &work_list;
1134 1135 1136 1137 1138 1139 1140 1141
		int index;

		if (!base->all_timers) {
			base->timer_jiffies = jiffies;
			break;
		}

		index = base->timer_jiffies & TVR_MASK;
1142

L
Linus Torvalds 已提交
1143 1144 1145 1146 1147 1148 1149 1150
		/*
		 * Cascade timers:
		 */
		if (!index &&
			(!cascade(base, &base->tv2, INDEX(0))) &&
				(!cascade(base, &base->tv3, INDEX(1))) &&
					!cascade(base, &base->tv4, INDEX(2)))
			cascade(base, &base->tv5, INDEX(3));
1151
		++base->timer_jiffies;
1152 1153
		hlist_move_list(base->tv1.vec + index, head);
		while (!hlist_empty(head)) {
L
Linus Torvalds 已提交
1154 1155
			void (*fn)(unsigned long);
			unsigned long data;
T
Tejun Heo 已提交
1156
			bool irqsafe;
L
Linus Torvalds 已提交
1157

1158
			timer = hlist_entry(head->first, struct timer_list, entry);
1159 1160
			fn = timer->function;
			data = timer->data;
1161
			irqsafe = timer->flags & TIMER_IRQSAFE;
L
Linus Torvalds 已提交
1162

1163 1164
			timer_stats_account_timer(timer);

1165
			base->running_timer = timer;
1166
			detach_expired_timer(timer, base);
1167

T
Tejun Heo 已提交
1168 1169 1170 1171 1172 1173 1174 1175 1176
			if (irqsafe) {
				spin_unlock(&base->lock);
				call_timer_fn(timer, fn, data);
				spin_lock(&base->lock);
			} else {
				spin_unlock_irq(&base->lock);
				call_timer_fn(timer, fn, data);
				spin_lock_irq(&base->lock);
			}
L
Linus Torvalds 已提交
1177 1178
		}
	}
1179
	base->running_timer = NULL;
1180
	spin_unlock_irq(&base->lock);
L
Linus Torvalds 已提交
1181 1182
}

1183
#ifdef CONFIG_NO_HZ_COMMON
L
Linus Torvalds 已提交
1184 1185
/*
 * Find out when the next timer event is due to happen. This
R
Randy Dunlap 已提交
1186 1187
 * is used on S/390 to stop all activity when a CPU is idle.
 * This function needs to be called with interrupts disabled.
L
Linus Torvalds 已提交
1188
 */
1189
static unsigned long __next_timer_interrupt(struct tvec_base *base)
L
Linus Torvalds 已提交
1190
{
1191
	unsigned long timer_jiffies = base->timer_jiffies;
1192
	unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1193
	int index, slot, array, found = 0;
L
Linus Torvalds 已提交
1194
	struct timer_list *nte;
1195
	struct tvec *varray[4];
L
Linus Torvalds 已提交
1196 1197

	/* Look for timer events in tv1. */
1198
	index = slot = timer_jiffies & TVR_MASK;
L
Linus Torvalds 已提交
1199
	do {
1200
		hlist_for_each_entry(nte, base->tv1.vec + slot, entry) {
1201
			if (nte->flags & TIMER_DEFERRABLE)
1202
				continue;
1203

1204
			found = 1;
L
Linus Torvalds 已提交
1205
			expires = nte->expires;
1206 1207 1208 1209
			/* Look at the cascade bucket(s)? */
			if (!index || slot < index)
				goto cascade;
			return expires;
L
Linus Torvalds 已提交
1210
		}
1211 1212 1213 1214 1215 1216 1217 1218
		slot = (slot + 1) & TVR_MASK;
	} while (slot != index);

cascade:
	/* Calculate the next cascade event */
	if (index)
		timer_jiffies += TVR_SIZE - index;
	timer_jiffies >>= TVR_BITS;
L
Linus Torvalds 已提交
1219 1220 1221 1222 1223 1224

	/* Check tv2-tv5. */
	varray[0] = &base->tv2;
	varray[1] = &base->tv3;
	varray[2] = &base->tv4;
	varray[3] = &base->tv5;
1225 1226

	for (array = 0; array < 4; array++) {
1227
		struct tvec *varp = varray[array];
1228 1229

		index = slot = timer_jiffies & TVN_MASK;
L
Linus Torvalds 已提交
1230
		do {
1231
			hlist_for_each_entry(nte, varp->vec + slot, entry) {
1232
				if (nte->flags & TIMER_DEFERRABLE)
1233 1234
					continue;

1235
				found = 1;
L
Linus Torvalds 已提交
1236 1237
				if (time_before(nte->expires, expires))
					expires = nte->expires;
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
			}
			/*
			 * Do we still search for the first timer or are
			 * we looking up the cascade buckets ?
			 */
			if (found) {
				/* Look at the cascade bucket(s)? */
				if (!index || slot < index)
					break;
				return expires;
			}
			slot = (slot + 1) & TVN_MASK;
		} while (slot != index);

		if (index)
			timer_jiffies += TVN_SIZE - index;
		timer_jiffies >>= TVN_BITS;
L
Linus Torvalds 已提交
1255
	}
1256 1257
	return expires;
}
1258

1259 1260 1261 1262
/*
 * Check, if the next hrtimer event is before the next timer wheel
 * event:
 */
1263
static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1264
{
1265
	u64 nextevt = hrtimer_get_next_event();
1266

1267
	/*
1268 1269
	 * If high resolution timers are enabled
	 * hrtimer_get_next_event() returns KTIME_MAX.
1270
	 */
1271 1272
	if (expires <= nextevt)
		return expires;
1273 1274

	/*
1275 1276
	 * If the next timer is already expired, return the tick base
	 * time so the tick is fired immediately.
1277
	 */
1278 1279
	if (nextevt <= basem)
		return basem;
1280

1281
	/*
1282 1283 1284 1285 1286 1287
	 * Round up to the next jiffie. High resolution timers are
	 * off, so the hrtimers are expired in the tick and we need to
	 * make sure that this tick really expires the timer to avoid
	 * a ping pong of the nohz stop code.
	 *
	 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1288
	 */
1289
	return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
L
Linus Torvalds 已提交
1290
}
1291 1292

/**
1293 1294 1295 1296 1297 1298
 * get_next_timer_interrupt - return the time (clock mono) of the next timer
 * @basej:	base time jiffies
 * @basem:	base time clock monotonic
 *
 * Returns the tick aligned clock monotonic time of the next pending
 * timer or KTIME_MAX if no timer is pending.
1299
 */
1300
u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1301
{
1302
	struct tvec_base *base = this_cpu_ptr(&tvec_bases);
1303 1304
	u64 expires = KTIME_MAX;
	unsigned long nextevt;
1305

1306 1307 1308 1309 1310
	/*
	 * Pretend that there is no timer pending if the cpu is offline.
	 * Possible pending timers will be migrated later to an active cpu.
	 */
	if (cpu_is_offline(smp_processor_id()))
1311 1312
		return expires;

1313
	spin_lock(&base->lock);
1314 1315 1316
	if (base->active_timers) {
		if (time_before_eq(base->next_timer, base->timer_jiffies))
			base->next_timer = __next_timer_interrupt(base);
1317 1318 1319 1320 1321
		nextevt = base->next_timer;
		if (time_before_eq(nextevt, basej))
			expires = basem;
		else
			expires = basem + (nextevt - basej) * TICK_NSEC;
1322
	}
1323 1324
	spin_unlock(&base->lock);

1325
	return cmp_next_hrtimer_event(basem, expires);
1326
}
L
Linus Torvalds 已提交
1327 1328 1329
#endif

/*
D
Daniel Walker 已提交
1330
 * Called from the timer interrupt handler to charge one tick to the current
L
Linus Torvalds 已提交
1331 1332 1333 1334 1335 1336 1337
 * process.  user_tick is 1 if the tick is user time, 0 for system.
 */
void update_process_times(int user_tick)
{
	struct task_struct *p = current;

	/* Note: this timer irq context must be accounted for as well. */
1338
	account_process_tick(p, user_tick);
L
Linus Torvalds 已提交
1339
	run_local_timers();
1340
	rcu_check_callbacks(user_tick);
1341 1342
#ifdef CONFIG_IRQ_WORK
	if (in_irq())
1343
		irq_work_tick();
1344
#endif
L
Linus Torvalds 已提交
1345
	scheduler_tick();
1346
	run_posix_cpu_timers(p);
L
Linus Torvalds 已提交
1347 1348 1349 1350 1351 1352 1353
}

/*
 * This function runs timers and the timer-tq in bottom half context.
 */
static void run_timer_softirq(struct softirq_action *h)
{
1354
	struct tvec_base *base = this_cpu_ptr(&tvec_bases);
L
Linus Torvalds 已提交
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364

	if (time_after_eq(jiffies, base->timer_jiffies))
		__run_timers(base);
}

/*
 * Called by the local, per-CPU timer interrupt on SMP.
 */
void run_local_timers(void)
{
1365
	hrtimer_run_queues();
L
Linus Torvalds 已提交
1366 1367 1368 1369 1370 1371 1372 1373 1374
	raise_softirq(TIMER_SOFTIRQ);
}

#ifdef __ARCH_WANT_SYS_ALARM

/*
 * For backwards compatibility?  This can be done in libc so Alpha
 * and all newer ports shouldn't need it.
 */
1375
SYSCALL_DEFINE1(alarm, unsigned int, seconds)
L
Linus Torvalds 已提交
1376
{
1377
	return alarm_setitimer(seconds);
L
Linus Torvalds 已提交
1378 1379 1380 1381 1382 1383
}

#endif

static void process_timeout(unsigned long __data)
{
1384
	wake_up_process((struct task_struct *)__data);
L
Linus Torvalds 已提交
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
}

/**
 * schedule_timeout - sleep until timeout
 * @timeout: timeout value in jiffies
 *
 * Make the current task sleep until @timeout jiffies have
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
 * pass before the routine returns. The routine will return 0
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task. In this case the remaining time
 * in jiffies will be returned, or 0 if the timer expired in time
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
 * the CPU away without a bound on the timeout. In this case the return
 * value will be %MAX_SCHEDULE_TIMEOUT.
 *
 * In all cases the return value is guaranteed to be non-negative.
 */
1413
signed long __sched schedule_timeout(signed long timeout)
L
Linus Torvalds 已提交
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
{
	struct timer_list timer;
	unsigned long expire;

	switch (timeout)
	{
	case MAX_SCHEDULE_TIMEOUT:
		/*
		 * These two special cases are useful to be comfortable
		 * in the caller. Nothing more. We could take
		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
		 * but I' d like to return a valid offset (>=0) to allow
		 * the caller to do everything it want with the retval.
		 */
		schedule();
		goto out;
	default:
		/*
		 * Another bit of PARANOID. Note that the retval will be
		 * 0 since no piece of kernel is supposed to do a check
		 * for a negative retval of schedule_timeout() (since it
		 * should never happens anyway). You just have the printk()
		 * that will tell you if something is gone wrong and where.
		 */
1438
		if (timeout < 0) {
L
Linus Torvalds 已提交
1439
			printk(KERN_ERR "schedule_timeout: wrong timeout "
1440 1441
				"value %lx\n", timeout);
			dump_stack();
L
Linus Torvalds 已提交
1442 1443 1444 1445 1446 1447 1448
			current->state = TASK_RUNNING;
			goto out;
		}
	}

	expire = timeout + jiffies;

1449
	setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1450
	__mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
L
Linus Torvalds 已提交
1451 1452 1453
	schedule();
	del_singleshot_timer_sync(&timer);

1454 1455 1456
	/* Remove the timer from the object tracker */
	destroy_timer_on_stack(&timer);

L
Linus Torvalds 已提交
1457 1458 1459 1460 1461 1462 1463
	timeout = expire - jiffies;

 out:
	return timeout < 0 ? 0 : timeout;
}
EXPORT_SYMBOL(schedule_timeout);

1464 1465 1466 1467
/*
 * We can use __set_current_state() here because schedule_timeout() calls
 * schedule() unconditionally.
 */
1468 1469
signed long __sched schedule_timeout_interruptible(signed long timeout)
{
A
Andrew Morton 已提交
1470 1471
	__set_current_state(TASK_INTERRUPTIBLE);
	return schedule_timeout(timeout);
1472 1473 1474
}
EXPORT_SYMBOL(schedule_timeout_interruptible);

M
Matthew Wilcox 已提交
1475 1476 1477 1478 1479 1480 1481
signed long __sched schedule_timeout_killable(signed long timeout)
{
	__set_current_state(TASK_KILLABLE);
	return schedule_timeout(timeout);
}
EXPORT_SYMBOL(schedule_timeout_killable);

1482 1483
signed long __sched schedule_timeout_uninterruptible(signed long timeout)
{
A
Andrew Morton 已提交
1484 1485
	__set_current_state(TASK_UNINTERRUPTIBLE);
	return schedule_timeout(timeout);
1486 1487 1488
}
EXPORT_SYMBOL(schedule_timeout_uninterruptible);

L
Linus Torvalds 已提交
1489
#ifdef CONFIG_HOTPLUG_CPU
1490
static void migrate_timer_list(struct tvec_base *new_base, struct hlist_head *head)
L
Linus Torvalds 已提交
1491 1492
{
	struct timer_list *timer;
1493
	int cpu = new_base->cpu;
L
Linus Torvalds 已提交
1494

1495 1496
	while (!hlist_empty(head)) {
		timer = hlist_entry(head->first, struct timer_list, entry);
1497
		/* We ignore the accounting on the dying cpu */
1498
		detach_timer(timer, false);
1499
		timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
L
Linus Torvalds 已提交
1500 1501 1502 1503
		internal_add_timer(new_base, timer);
	}
}

1504
static void migrate_timers(int cpu)
L
Linus Torvalds 已提交
1505
{
1506 1507
	struct tvec_base *old_base;
	struct tvec_base *new_base;
L
Linus Torvalds 已提交
1508 1509 1510
	int i;

	BUG_ON(cpu_online(cpu));
1511 1512
	old_base = per_cpu_ptr(&tvec_bases, cpu);
	new_base = this_cpu_ptr(&tvec_bases);
1513 1514 1515 1516 1517
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
	spin_lock_irq(&new_base->lock);
1518
	spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1519 1520

	BUG_ON(old_base->running_timer);
L
Linus Torvalds 已提交
1521 1522

	for (i = 0; i < TVR_SIZE; i++)
1523 1524 1525 1526 1527 1528 1529 1530
		migrate_timer_list(new_base, old_base->tv1.vec + i);
	for (i = 0; i < TVN_SIZE; i++) {
		migrate_timer_list(new_base, old_base->tv2.vec + i);
		migrate_timer_list(new_base, old_base->tv3.vec + i);
		migrate_timer_list(new_base, old_base->tv4.vec + i);
		migrate_timer_list(new_base, old_base->tv5.vec + i);
	}

1531 1532 1533
	old_base->active_timers = 0;
	old_base->all_timers = 0;

1534
	spin_unlock(&old_base->lock);
1535
	spin_unlock_irq(&new_base->lock);
L
Linus Torvalds 已提交
1536 1537
}

1538
static int timer_cpu_notify(struct notifier_block *self,
L
Linus Torvalds 已提交
1539 1540
				unsigned long action, void *hcpu)
{
1541
	switch (action) {
L
Linus Torvalds 已提交
1542
	case CPU_DEAD:
1543
	case CPU_DEAD_FROZEN:
1544
		migrate_timers((long)hcpu);
L
Linus Torvalds 已提交
1545 1546 1547 1548
		break;
	default:
		break;
	}
1549

L
Linus Torvalds 已提交
1550 1551 1552
	return NOTIFY_OK;
}

1553 1554 1555 1556 1557 1558 1559
static inline void timer_register_cpu_notifier(void)
{
	cpu_notifier(timer_cpu_notify, 0);
}
#else
static inline void timer_register_cpu_notifier(void) { }
#endif /* CONFIG_HOTPLUG_CPU */
L
Linus Torvalds 已提交
1560

1561
static void __init init_timer_cpu(int cpu)
1562
{
1563
	struct tvec_base *base = per_cpu_ptr(&tvec_bases, cpu);
1564

1565 1566 1567 1568 1569 1570 1571 1572
	base->cpu = cpu;
	spin_lock_init(&base->lock);

	base->timer_jiffies = jiffies;
	base->next_timer = base->timer_jiffies;
}

static void __init init_timer_cpus(void)
L
Linus Torvalds 已提交
1573
{
1574 1575
	int cpu;

1576 1577
	for_each_possible_cpu(cpu)
		init_timer_cpu(cpu);
1578
}
1579

1580 1581 1582
void __init init_timers(void)
{
	init_timer_cpus();
1583
	init_timer_stats();
1584
	timer_register_cpu_notifier();
1585
	open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
L
Linus Torvalds 已提交
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
}

/**
 * msleep - sleep safely even with waitqueue interruptions
 * @msecs: Time in milliseconds to sleep for
 */
void msleep(unsigned int msecs)
{
	unsigned long timeout = msecs_to_jiffies(msecs) + 1;

1596 1597
	while (timeout)
		timeout = schedule_timeout_uninterruptible(timeout);
L
Linus Torvalds 已提交
1598 1599 1600 1601 1602
}

EXPORT_SYMBOL(msleep);

/**
1603
 * msleep_interruptible - sleep waiting for signals
L
Linus Torvalds 已提交
1604 1605 1606 1607 1608 1609
 * @msecs: Time in milliseconds to sleep for
 */
unsigned long msleep_interruptible(unsigned int msecs)
{
	unsigned long timeout = msecs_to_jiffies(msecs) + 1;

1610 1611
	while (timeout && !signal_pending(current))
		timeout = schedule_timeout_interruptible(timeout);
L
Linus Torvalds 已提交
1612 1613 1614 1615
	return jiffies_to_msecs(timeout);
}

EXPORT_SYMBOL(msleep_interruptible);
1616

1617
static void __sched do_usleep_range(unsigned long min, unsigned long max)
1618 1619 1620 1621 1622 1623
{
	ktime_t kmin;
	unsigned long delta;

	kmin = ktime_set(0, min * NSEC_PER_USEC);
	delta = (max - min) * NSEC_PER_USEC;
1624
	schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
1625 1626 1627 1628 1629 1630 1631
}

/**
 * usleep_range - Drop in replacement for udelay where wakeup is flexible
 * @min: Minimum time in usecs to sleep
 * @max: Maximum time in usecs to sleep
 */
1632
void __sched usleep_range(unsigned long min, unsigned long max)
1633 1634 1635 1636 1637
{
	__set_current_state(TASK_UNINTERRUPTIBLE);
	do_usleep_range(min, max);
}
EXPORT_SYMBOL(usleep_range);