timer.c 46.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3
/*
 *  linux/kernel/timer.c
 *
4
 *  Kernel internal timers
L
Linus Torvalds 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
 *
 *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
 *              "A Kernel Model for Precision Timekeeping" by Dave Mills
 *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
 *              serialize accesses to xtime/lost_ticks).
 *                              Copyright (C) 1998  Andrea Arcangeli
 *  1999-03-10  Improved NTP compatibility by Ulrich Windl
 *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
 *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
 *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
 *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
 */

#include <linux/kernel_stat.h>
23
#include <linux/export.h>
L
Linus Torvalds 已提交
24 25 26 27 28
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/swap.h>
29
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
30 31 32 33 34 35 36
#include <linux/notifier.h>
#include <linux/thread_info.h>
#include <linux/time.h>
#include <linux/jiffies.h>
#include <linux/posix-timers.h>
#include <linux/cpu.h>
#include <linux/syscalls.h>
A
Adrian Bunk 已提交
37
#include <linux/delay.h>
38
#include <linux/tick.h>
39
#include <linux/kallsyms.h>
40
#include <linux/irq_work.h>
41
#include <linux/sched.h>
42
#include <linux/sched/sysctl.h>
43
#include <linux/slab.h>
44
#include <linux/compat.h>
L
Linus Torvalds 已提交
45 46 47 48 49 50 51

#include <asm/uaccess.h>
#include <asm/unistd.h>
#include <asm/div64.h>
#include <asm/timex.h>
#include <asm/io.h>

52 53
#include "tick-internal.h"

54 55 56
#define CREATE_TRACE_POINTS
#include <trace/events/timer.h>

A
Andi Kleen 已提交
57
__visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
T
Thomas Gleixner 已提交
58 59 60

EXPORT_SYMBOL(jiffies_64);

L
Linus Torvalds 已提交
61 62 63 64 65 66 67 68 69
/*
 * per-CPU timer vector definitions:
 */
#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
#define TVN_SIZE (1 << TVN_BITS)
#define TVR_SIZE (1 << TVR_BITS)
#define TVN_MASK (TVN_SIZE - 1)
#define TVR_MASK (TVR_SIZE - 1)
70
#define MAX_TVAL ((unsigned long)((1ULL << (TVR_BITS + 4*TVN_BITS)) - 1))
L
Linus Torvalds 已提交
71

72
struct tvec {
73
	struct hlist_head vec[TVN_SIZE];
74
};
L
Linus Torvalds 已提交
75

76
struct tvec_root {
77
	struct hlist_head vec[TVR_SIZE];
78
};
L
Linus Torvalds 已提交
79

80
struct tvec_base {
81 82
	spinlock_t lock;
	struct timer_list *running_timer;
L
Linus Torvalds 已提交
83
	unsigned long timer_jiffies;
84
	unsigned long next_timer;
85
	unsigned long active_timers;
86
	unsigned long all_timers;
87
	int cpu;
88
	bool migration_enabled;
89
	bool nohz_active;
90 91 92 93 94
	struct tvec_root tv1;
	struct tvec tv2;
	struct tvec tv3;
	struct tvec tv4;
	struct tvec tv5;
95
} ____cacheline_aligned;
L
Linus Torvalds 已提交
96

97

98
static DEFINE_PER_CPU(struct tvec_base, tvec_bases);
99

100 101 102
#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
unsigned int sysctl_timer_migration = 1;

103
void timers_update_migration(bool update_nohz)
104 105 106 107 108 109 110 111 112 113 114
{
	bool on = sysctl_timer_migration && tick_nohz_active;
	unsigned int cpu;

	/* Avoid the loop, if nothing to update */
	if (this_cpu_read(tvec_bases.migration_enabled) == on)
		return;

	for_each_possible_cpu(cpu) {
		per_cpu(tvec_bases.migration_enabled, cpu) = on;
		per_cpu(hrtimer_bases.migration_enabled, cpu) = on;
115 116 117 118
		if (!update_nohz)
			continue;
		per_cpu(tvec_bases.nohz_active, cpu) = true;
		per_cpu(hrtimer_bases.nohz_active, cpu) = true;
119 120 121 122 123 124 125 126 127 128 129 130 131
	}
}

int timer_migration_handler(struct ctl_table *table, int write,
			    void __user *buffer, size_t *lenp,
			    loff_t *ppos)
{
	static DEFINE_MUTEX(mutex);
	int ret;

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
	if (!ret && write)
132
		timers_update_migration(false);
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
	mutex_unlock(&mutex);
	return ret;
}

static inline struct tvec_base *get_target_base(struct tvec_base *base,
						int pinned)
{
	if (pinned || !base->migration_enabled)
		return this_cpu_ptr(&tvec_bases);
	return per_cpu_ptr(&tvec_bases, get_nohz_timer_target());
}
#else
static inline struct tvec_base *get_target_base(struct tvec_base *base,
						int pinned)
{
	return this_cpu_ptr(&tvec_bases);
}
#endif

152 153
static unsigned long round_jiffies_common(unsigned long j, int cpu,
		bool force_up)
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
{
	int rem;
	unsigned long original = j;

	/*
	 * We don't want all cpus firing their timers at once hitting the
	 * same lock or cachelines, so we skew each extra cpu with an extra
	 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
	 * already did this.
	 * The skew is done by adding 3*cpunr, then round, then subtract this
	 * extra offset again.
	 */
	j += cpu * 3;

	rem = j % HZ;

	/*
	 * If the target jiffie is just after a whole second (which can happen
	 * due to delays of the timer irq, long irq off times etc etc) then
	 * we should round down to the whole second, not up. Use 1/4th second
	 * as cutoff for this rounding as an extreme upper bound for this.
175
	 * But never round down if @force_up is set.
176
	 */
177
	if (rem < HZ/4 && !force_up) /* round down */
178 179 180 181 182 183 184
		j = j - rem;
	else /* round up */
		j = j - rem + HZ;

	/* now that we have rounded, subtract the extra skew again */
	j -= cpu * 3;

185 186 187 188 189
	/*
	 * Make sure j is still in the future. Otherwise return the
	 * unmodified value.
	 */
	return time_is_after_jiffies(j) ? j : original;
190
}
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215

/**
 * __round_jiffies - function to round jiffies to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
 * __round_jiffies() rounds an absolute time in the future (in jiffies)
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
 * The exact rounding is skewed for each processor to avoid all
 * processors firing at the exact same time, which could lead
 * to lock contention or spurious cache line bouncing.
 *
 * The return value is the rounded version of the @j parameter.
 */
unsigned long __round_jiffies(unsigned long j, int cpu)
{
	return round_jiffies_common(j, cpu, false);
}
216 217 218 219 220 221 222
EXPORT_SYMBOL_GPL(__round_jiffies);

/**
 * __round_jiffies_relative - function to round jiffies to a full second
 * @j: the time in (relative) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
223
 * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
224 225 226 227 228 229 230 231 232 233 234 235
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
 * The exact rounding is skewed for each processor to avoid all
 * processors firing at the exact same time, which could lead
 * to lock contention or spurious cache line bouncing.
 *
236
 * The return value is the rounded version of the @j parameter.
237 238 239
 */
unsigned long __round_jiffies_relative(unsigned long j, int cpu)
{
240 241 242 243
	unsigned long j0 = jiffies;

	/* Use j0 because jiffies might change while we run */
	return round_jiffies_common(j + j0, cpu, false) - j0;
244 245 246 247 248 249 250
}
EXPORT_SYMBOL_GPL(__round_jiffies_relative);

/**
 * round_jiffies - function to round jiffies to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 *
251
 * round_jiffies() rounds an absolute time in the future (in jiffies)
252 253 254 255 256 257 258 259
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
260
 * The return value is the rounded version of the @j parameter.
261 262 263
 */
unsigned long round_jiffies(unsigned long j)
{
264
	return round_jiffies_common(j, raw_smp_processor_id(), false);
265 266 267 268 269 270 271
}
EXPORT_SYMBOL_GPL(round_jiffies);

/**
 * round_jiffies_relative - function to round jiffies to a full second
 * @j: the time in (relative) jiffies that should be rounded
 *
272
 * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
273 274 275 276 277 278 279 280
 * up or down to (approximately) full seconds. This is useful for timers
 * for which the exact time they fire does not matter too much, as long as
 * they fire approximately every X seconds.
 *
 * By rounding these timers to whole seconds, all such timers will fire
 * at the same time, rather than at various times spread out. The goal
 * of this is to have the CPU wake up less, which saves power.
 *
281
 * The return value is the rounded version of the @j parameter.
282 283 284 285 286 287 288
 */
unsigned long round_jiffies_relative(unsigned long j)
{
	return __round_jiffies_relative(j, raw_smp_processor_id());
}
EXPORT_SYMBOL_GPL(round_jiffies_relative);

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
/**
 * __round_jiffies_up - function to round jiffies up to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
 * This is the same as __round_jiffies() except that it will never
 * round down.  This is useful for timeouts for which the exact time
 * of firing does not matter too much, as long as they don't fire too
 * early.
 */
unsigned long __round_jiffies_up(unsigned long j, int cpu)
{
	return round_jiffies_common(j, cpu, true);
}
EXPORT_SYMBOL_GPL(__round_jiffies_up);

/**
 * __round_jiffies_up_relative - function to round jiffies up to a full second
 * @j: the time in (relative) jiffies that should be rounded
 * @cpu: the processor number on which the timeout will happen
 *
 * This is the same as __round_jiffies_relative() except that it will never
 * round down.  This is useful for timeouts for which the exact time
 * of firing does not matter too much, as long as they don't fire too
 * early.
 */
unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
{
	unsigned long j0 = jiffies;

	/* Use j0 because jiffies might change while we run */
	return round_jiffies_common(j + j0, cpu, true) - j0;
}
EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);

/**
 * round_jiffies_up - function to round jiffies up to a full second
 * @j: the time in (absolute) jiffies that should be rounded
 *
 * This is the same as round_jiffies() except that it will never
 * round down.  This is useful for timeouts for which the exact time
 * of firing does not matter too much, as long as they don't fire too
 * early.
 */
unsigned long round_jiffies_up(unsigned long j)
{
	return round_jiffies_common(j, raw_smp_processor_id(), true);
}
EXPORT_SYMBOL_GPL(round_jiffies_up);

/**
 * round_jiffies_up_relative - function to round jiffies up to a full second
 * @j: the time in (relative) jiffies that should be rounded
 *
 * This is the same as round_jiffies_relative() except that it will never
 * round down.  This is useful for timeouts for which the exact time
 * of firing does not matter too much, as long as they don't fire too
 * early.
 */
unsigned long round_jiffies_up_relative(unsigned long j)
{
	return __round_jiffies_up_relative(j, raw_smp_processor_id());
}
EXPORT_SYMBOL_GPL(round_jiffies_up_relative);

354 355
/**
 * set_timer_slack - set the allowed slack for a timer
356
 * @timer: the timer to be modified
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
 * @slack_hz: the amount of time (in jiffies) allowed for rounding
 *
 * Set the amount of time, in jiffies, that a certain timer has
 * in terms of slack. By setting this value, the timer subsystem
 * will schedule the actual timer somewhere between
 * the time mod_timer() asks for, and that time plus the slack.
 *
 * By setting the slack to -1, a percentage of the delay is used
 * instead.
 */
void set_timer_slack(struct timer_list *timer, int slack_hz)
{
	timer->slack = slack_hz;
}
EXPORT_SYMBOL_GPL(set_timer_slack);

373 374
static void
__internal_add_timer(struct tvec_base *base, struct timer_list *timer)
L
Linus Torvalds 已提交
375 376 377
{
	unsigned long expires = timer->expires;
	unsigned long idx = expires - base->timer_jiffies;
378
	struct hlist_head *vec;
L
Linus Torvalds 已提交
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399

	if (idx < TVR_SIZE) {
		int i = expires & TVR_MASK;
		vec = base->tv1.vec + i;
	} else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
		int i = (expires >> TVR_BITS) & TVN_MASK;
		vec = base->tv2.vec + i;
	} else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
		int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
		vec = base->tv3.vec + i;
	} else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
		int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
		vec = base->tv4.vec + i;
	} else if ((signed long) idx < 0) {
		/*
		 * Can happen if you add a timer with expires == jiffies,
		 * or you set a timer to go off in the past
		 */
		vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
	} else {
		int i;
400 401 402
		/* If the timeout is larger than MAX_TVAL (on 64-bit
		 * architectures or with CONFIG_BASE_SMALL=1) then we
		 * use the maximum timeout.
L
Linus Torvalds 已提交
403
		 */
404 405
		if (idx > MAX_TVAL) {
			idx = MAX_TVAL;
L
Linus Torvalds 已提交
406 407 408 409 410
			expires = idx + base->timer_jiffies;
		}
		i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
		vec = base->tv5.vec + i;
	}
T
Thomas Gleixner 已提交
411

412
	hlist_add_head(&timer->entry, vec);
L
Linus Torvalds 已提交
413 414
}

415 416
static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
{
417 418 419 420
	/* Advance base->jiffies, if the base is empty */
	if (!base->all_timers++)
		base->timer_jiffies = jiffies;

421 422
	__internal_add_timer(base, timer);
	/*
423
	 * Update base->active_timers and base->next_timer
424
	 */
425
	if (!(timer->flags & TIMER_DEFERRABLE)) {
426 427
		if (!base->active_timers++ ||
		    time_before(timer->expires, base->next_timer))
428 429
			base->next_timer = timer->expires;
	}
430 431 432 433 434 435 436 437 438 439 440 441 442 443

	/*
	 * Check whether the other CPU is in dynticks mode and needs
	 * to be triggered to reevaluate the timer wheel.
	 * We are protected against the other CPU fiddling
	 * with the timer by holding the timer base lock. This also
	 * makes sure that a CPU on the way to stop its tick can not
	 * evaluate the timer wheel.
	 *
	 * Spare the IPI for deferrable timers on idle targets though.
	 * The next busy ticks will take care of it. Except full dynticks
	 * require special care against races with idle_cpu(), lets deal
	 * with that later.
	 */
444 445 446 447 448
	if (base->nohz_active) {
		if (!(timer->flags & TIMER_DEFERRABLE) ||
		    tick_nohz_full_cpu(base->cpu))
			wake_up_nohz_cpu(base->cpu);
	}
449 450
}

451 452 453 454 455 456 457 458 459 460
#ifdef CONFIG_TIMER_STATS
void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
{
	if (timer->start_site)
		return;

	timer->start_site = addr;
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
}
461 462 463

static void timer_stats_account_timer(struct timer_list *timer)
{
464 465
	if (likely(!timer->start_site))
		return;
466 467

	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
468 469
				 timer->function, timer->start_comm,
				 timer->flags);
470 471 472 473
}

#else
static void timer_stats_account_timer(struct timer_list *timer) {}
474 475
#endif

476 477 478 479
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr timer_debug_descr;

480 481 482 483 484
static void *timer_debug_hint(void *addr)
{
	return ((struct timer_list *) addr)->function;
}

485 486 487
/*
 * fixup_init is called when:
 * - an active object is initialized
488
 */
489 490 491 492 493 494 495 496 497 498 499 500 501 502
static int timer_fixup_init(void *addr, enum debug_obj_state state)
{
	struct timer_list *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		del_timer_sync(timer);
		debug_object_init(timer, &timer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

503 504 505 506 507 508
/* Stub timer callback for improperly used timers. */
static void stub_timer(unsigned long data)
{
	WARN_ON(1);
}

509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int timer_fixup_activate(void *addr, enum debug_obj_state state)
{
	struct timer_list *timer = addr;

	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		/*
		 * This is not really a fixup. The timer was
		 * statically initialized. We just make sure that it
		 * is tracked in the object tracker.
		 */
526 527
		if (timer->entry.pprev == NULL &&
		    timer->entry.next == TIMER_ENTRY_STATIC) {
528 529 530 531
			debug_object_init(timer, &timer_debug_descr);
			debug_object_activate(timer, &timer_debug_descr);
			return 0;
		} else {
532 533
			setup_timer(timer, stub_timer, 0);
			return 1;
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
		}
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int timer_fixup_free(void *addr, enum debug_obj_state state)
{
	struct timer_list *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		del_timer_sync(timer);
		debug_object_free(timer, &timer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

563 564 565 566 567 568 569 570 571 572
/*
 * fixup_assert_init is called when:
 * - an untracked/uninit-ed object is found
 */
static int timer_fixup_assert_init(void *addr, enum debug_obj_state state)
{
	struct timer_list *timer = addr;

	switch (state) {
	case ODEBUG_STATE_NOTAVAILABLE:
573
		if (timer->entry.next == TIMER_ENTRY_STATIC) {
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
			/*
			 * This is not really a fixup. The timer was
			 * statically initialized. We just make sure that it
			 * is tracked in the object tracker.
			 */
			debug_object_init(timer, &timer_debug_descr);
			return 0;
		} else {
			setup_timer(timer, stub_timer, 0);
			return 1;
		}
	default:
		return 0;
	}
}

590
static struct debug_obj_descr timer_debug_descr = {
591 592 593 594 595 596
	.name			= "timer_list",
	.debug_hint		= timer_debug_hint,
	.fixup_init		= timer_fixup_init,
	.fixup_activate		= timer_fixup_activate,
	.fixup_free		= timer_fixup_free,
	.fixup_assert_init	= timer_fixup_assert_init,
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
};

static inline void debug_timer_init(struct timer_list *timer)
{
	debug_object_init(timer, &timer_debug_descr);
}

static inline void debug_timer_activate(struct timer_list *timer)
{
	debug_object_activate(timer, &timer_debug_descr);
}

static inline void debug_timer_deactivate(struct timer_list *timer)
{
	debug_object_deactivate(timer, &timer_debug_descr);
}

static inline void debug_timer_free(struct timer_list *timer)
{
	debug_object_free(timer, &timer_debug_descr);
}

619 620 621 622 623
static inline void debug_timer_assert_init(struct timer_list *timer)
{
	debug_object_assert_init(timer, &timer_debug_descr);
}

T
Tejun Heo 已提交
624 625
static void do_init_timer(struct timer_list *timer, unsigned int flags,
			  const char *name, struct lock_class_key *key);
626

T
Tejun Heo 已提交
627 628
void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags,
			     const char *name, struct lock_class_key *key)
629 630
{
	debug_object_init_on_stack(timer, &timer_debug_descr);
T
Tejun Heo 已提交
631
	do_init_timer(timer, flags, name, key);
632
}
633
EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
634 635 636 637 638 639 640 641 642 643 644

void destroy_timer_on_stack(struct timer_list *timer)
{
	debug_object_free(timer, &timer_debug_descr);
}
EXPORT_SYMBOL_GPL(destroy_timer_on_stack);

#else
static inline void debug_timer_init(struct timer_list *timer) { }
static inline void debug_timer_activate(struct timer_list *timer) { }
static inline void debug_timer_deactivate(struct timer_list *timer) { }
645
static inline void debug_timer_assert_init(struct timer_list *timer) { }
646 647
#endif

648 649 650 651 652 653 654 655 656 657
static inline void debug_init(struct timer_list *timer)
{
	debug_timer_init(timer);
	trace_timer_init(timer);
}

static inline void
debug_activate(struct timer_list *timer, unsigned long expires)
{
	debug_timer_activate(timer);
658
	trace_timer_start(timer, expires, timer->flags);
659 660 661 662 663 664 665 666
}

static inline void debug_deactivate(struct timer_list *timer)
{
	debug_timer_deactivate(timer);
	trace_timer_cancel(timer);
}

667 668 669 670 671
static inline void debug_assert_init(struct timer_list *timer)
{
	debug_timer_assert_init(timer);
}

T
Tejun Heo 已提交
672 673
static void do_init_timer(struct timer_list *timer, unsigned int flags,
			  const char *name, struct lock_class_key *key)
674
{
675
	timer->entry.pprev = NULL;
676
	timer->flags = flags | raw_smp_processor_id();
677
	timer->slack = -1;
678 679 680 681 682
#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
683
	lockdep_init_map(&timer->lockdep_map, name, key, 0);
684
}
685 686

/**
R
Randy Dunlap 已提交
687
 * init_timer_key - initialize a timer
688
 * @timer: the timer to be initialized
T
Tejun Heo 已提交
689
 * @flags: timer flags
R
Randy Dunlap 已提交
690 691 692
 * @name: name of the timer
 * @key: lockdep class key of the fake lock used for tracking timer
 *       sync lock dependencies
693
 *
R
Randy Dunlap 已提交
694
 * init_timer_key() must be done to a timer prior calling *any* of the
695 696
 * other timer functions.
 */
T
Tejun Heo 已提交
697 698
void init_timer_key(struct timer_list *timer, unsigned int flags,
		    const char *name, struct lock_class_key *key)
699
{
700
	debug_init(timer);
T
Tejun Heo 已提交
701
	do_init_timer(timer, flags, name, key);
702
}
703
EXPORT_SYMBOL(init_timer_key);
704

705
static inline void detach_timer(struct timer_list *timer, bool clear_pending)
706
{
707
	struct hlist_node *entry = &timer->entry;
708

709
	debug_deactivate(timer);
710

711
	__hlist_del(entry);
712
	if (clear_pending)
713 714
		entry->pprev = NULL;
	entry->next = LIST_POISON2;
715 716
}

717 718 719 720
static inline void
detach_expired_timer(struct timer_list *timer, struct tvec_base *base)
{
	detach_timer(timer, true);
721
	if (!(timer->flags & TIMER_DEFERRABLE))
722
		base->active_timers--;
723
	base->all_timers--;
724 725
}

726 727 728 729 730 731 732
static int detach_if_pending(struct timer_list *timer, struct tvec_base *base,
			     bool clear_pending)
{
	if (!timer_pending(timer))
		return 0;

	detach_timer(timer, clear_pending);
733
	if (!(timer->flags & TIMER_DEFERRABLE)) {
734
		base->active_timers--;
735 736 737
		if (timer->expires == base->next_timer)
			base->next_timer = base->timer_jiffies;
	}
738 739 740
	/* If this was the last timer, advance base->jiffies */
	if (!--base->all_timers)
		base->timer_jiffies = jiffies;
741 742 743
	return 1;
}

744
/*
745
 * We are using hashed locking: holding per_cpu(tvec_bases).lock
746 747 748 749 750 751
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on ->tvX lists.
 *
752 753
 * When the timer's base is locked and removed from the list, the
 * TIMER_MIGRATING flag is set, FIXME
754
 */
755
static struct tvec_base *lock_timer_base(struct timer_list *timer,
756
					unsigned long *flags)
757
	__acquires(timer->base->lock)
758 759
{
	for (;;) {
760 761 762 763 764
		u32 tf = timer->flags;
		struct tvec_base *base;

		if (!(tf & TIMER_MIGRATING)) {
			base = per_cpu_ptr(&tvec_bases, tf & TIMER_CPUMASK);
765
			spin_lock_irqsave(&base->lock, *flags);
766
			if (timer->flags == tf)
767 768 769 770 771 772 773
				return base;
			spin_unlock_irqrestore(&base->lock, *flags);
		}
		cpu_relax();
	}
}

I
Ingo Molnar 已提交
774
static inline int
775
__mod_timer(struct timer_list *timer, unsigned long expires,
776
	    bool pending_only, int pinned)
L
Linus Torvalds 已提交
777
{
778
	struct tvec_base *base, *new_base;
L
Linus Torvalds 已提交
779
	unsigned long flags;
780
	int ret = 0;
L
Linus Torvalds 已提交
781

782
	timer_stats_timer_set_start_info(timer);
L
Linus Torvalds 已提交
783 784
	BUG_ON(!timer->function);

785 786
	base = lock_timer_base(timer, &flags);

787 788 789
	ret = detach_if_pending(timer, base, false);
	if (!ret && pending_only)
		goto out_unlock;
790

791
	debug_activate(timer, expires);
792

793
	new_base = get_target_base(base, pinned);
794

795
	if (base != new_base) {
L
Linus Torvalds 已提交
796
		/*
797 798 799 800 801
		 * We are trying to schedule the timer on the local CPU.
		 * However we can't change timer's base while it is running,
		 * otherwise del_timer_sync() can't detect that the timer's
		 * handler yet has not finished. This also guarantees that
		 * the timer is serialized wrt itself.
L
Linus Torvalds 已提交
802
		 */
803
		if (likely(base->running_timer != timer)) {
804
			/* See the comment in lock_timer_base() */
805 806
			timer->flags |= TIMER_MIGRATING;

807
			spin_unlock(&base->lock);
808 809
			base = new_base;
			spin_lock(&base->lock);
810 811
			timer->flags &= ~TIMER_BASEMASK;
			timer->flags |= base->cpu;
L
Linus Torvalds 已提交
812 813 814 815
		}
	}

	timer->expires = expires;
816
	internal_add_timer(base, timer);
I
Ingo Molnar 已提交
817 818

out_unlock:
819
	spin_unlock_irqrestore(&base->lock, flags);
L
Linus Torvalds 已提交
820 821 822 823

	return ret;
}

824
/**
I
Ingo Molnar 已提交
825 826 827
 * mod_timer_pending - modify a pending timer's timeout
 * @timer: the pending timer to be modified
 * @expires: new timeout in jiffies
L
Linus Torvalds 已提交
828
 *
I
Ingo Molnar 已提交
829 830 831 832
 * mod_timer_pending() is the same for pending timers as mod_timer(),
 * but will not re-activate and modify already deleted timers.
 *
 * It is useful for unserialized use of timers.
L
Linus Torvalds 已提交
833
 */
I
Ingo Molnar 已提交
834
int mod_timer_pending(struct timer_list *timer, unsigned long expires)
L
Linus Torvalds 已提交
835
{
836
	return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
L
Linus Torvalds 已提交
837
}
I
Ingo Molnar 已提交
838
EXPORT_SYMBOL(mod_timer_pending);
L
Linus Torvalds 已提交
839

840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
/*
 * Decide where to put the timer while taking the slack into account
 *
 * Algorithm:
 *   1) calculate the maximum (absolute) time
 *   2) calculate the highest bit where the expires and new max are different
 *   3) use this bit to make a mask
 *   4) use the bitmask to round down the maximum time, so that all last
 *      bits are zeros
 */
static inline
unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
{
	unsigned long expires_limit, mask;
	int bit;

856
	if (timer->slack >= 0) {
857
		expires_limit = expires + timer->slack;
858
	} else {
859 860 861 862
		long delta = expires - jiffies;

		if (delta < 256)
			return expires;
863

864
		expires_limit = expires + delta / 256;
865
	}
866 867 868 869 870 871
	mask = expires ^ expires_limit;
	if (mask == 0)
		return expires;

	bit = find_last_bit(&mask, BITS_PER_LONG);

872
	mask = (1UL << bit) - 1;
873 874 875 876 877 878

	expires_limit = expires_limit & ~(mask);

	return expires_limit;
}

879
/**
L
Linus Torvalds 已提交
880 881
 * mod_timer - modify a timer's timeout
 * @timer: the timer to be modified
882
 * @expires: new timeout in jiffies
L
Linus Torvalds 已提交
883
 *
884
 * mod_timer() is a more efficient way to update the expire field of an
L
Linus Torvalds 已提交
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
 * active timer (if the timer is inactive it will be activated)
 *
 * mod_timer(timer, expires) is equivalent to:
 *
 *     del_timer(timer); timer->expires = expires; add_timer(timer);
 *
 * Note that if there are multiple unserialized concurrent users of the
 * same timer, then mod_timer() is the only safe way to modify the timeout,
 * since add_timer() cannot modify an already running timer.
 *
 * The function returns whether it has modified a pending timer or not.
 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
 * active timer returns 1.)
 */
int mod_timer(struct timer_list *timer, unsigned long expires)
{
901 902
	expires = apply_slack(timer, expires);

L
Linus Torvalds 已提交
903 904 905 906 907
	/*
	 * This is a common optimization triggered by the
	 * networking code - if the timer is re-modified
	 * to be the same thing then just return:
	 */
908
	if (timer_pending(timer) && timer->expires == expires)
L
Linus Torvalds 已提交
909 910
		return 1;

911
	return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
L
Linus Torvalds 已提交
912 913 914
}
EXPORT_SYMBOL(mod_timer);

915 916 917 918 919 920 921
/**
 * mod_timer_pinned - modify a timer's timeout
 * @timer: the timer to be modified
 * @expires: new timeout in jiffies
 *
 * mod_timer_pinned() is a way to update the expire field of an
 * active timer (if the timer is inactive it will be activated)
922 923 924 925 926 927 928
 * and to ensure that the timer is scheduled on the current CPU.
 *
 * Note that this does not prevent the timer from being migrated
 * when the current CPU goes offline.  If this is a problem for
 * you, use CPU-hotplug notifiers to handle it correctly, for
 * example, cancelling the timer when the corresponding CPU goes
 * offline.
929 930 931 932 933 934 935 936 937 938 939 940 941 942
 *
 * mod_timer_pinned(timer, expires) is equivalent to:
 *
 *     del_timer(timer); timer->expires = expires; add_timer(timer);
 */
int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
{
	if (timer->expires == expires && timer_pending(timer))
		return 1;

	return __mod_timer(timer, expires, false, TIMER_PINNED);
}
EXPORT_SYMBOL(mod_timer_pinned);

I
Ingo Molnar 已提交
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
/**
 * add_timer - start a timer
 * @timer: the timer to be added
 *
 * The kernel will do a ->function(->data) callback from the
 * timer interrupt at the ->expires point in the future. The
 * current time is 'jiffies'.
 *
 * The timer's ->expires, ->function (and if the handler uses it, ->data)
 * fields must be set prior calling this function.
 *
 * Timers with an ->expires field in the past will be executed in the next
 * timer tick.
 */
void add_timer(struct timer_list *timer)
{
	BUG_ON(timer_pending(timer));
	mod_timer(timer, timer->expires);
}
EXPORT_SYMBOL(add_timer);

/**
 * add_timer_on - start a timer on a particular CPU
 * @timer: the timer to be added
 * @cpu: the CPU to start it on
 *
 * This is not very scalable on SMP. Double adds are not possible.
 */
void add_timer_on(struct timer_list *timer, int cpu)
{
973
	struct tvec_base *base = per_cpu_ptr(&tvec_bases, cpu);
I
Ingo Molnar 已提交
974 975 976 977 978
	unsigned long flags;

	timer_stats_timer_set_start_info(timer);
	BUG_ON(timer_pending(timer) || !timer->function);
	spin_lock_irqsave(&base->lock, flags);
979
	timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
980
	debug_activate(timer, timer->expires);
I
Ingo Molnar 已提交
981 982 983
	internal_add_timer(base, timer);
	spin_unlock_irqrestore(&base->lock, flags);
}
A
Andi Kleen 已提交
984
EXPORT_SYMBOL_GPL(add_timer_on);
I
Ingo Molnar 已提交
985

986
/**
L
Linus Torvalds 已提交
987 988 989 990 991 992 993 994 995 996 997 998
 * del_timer - deactive a timer.
 * @timer: the timer to be deactivated
 *
 * del_timer() deactivates a timer - this works on both active and inactive
 * timers.
 *
 * The function returns whether it has deactivated a pending timer or not.
 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
 * active timer returns 1.)
 */
int del_timer(struct timer_list *timer)
{
999
	struct tvec_base *base;
L
Linus Torvalds 已提交
1000
	unsigned long flags;
1001
	int ret = 0;
L
Linus Torvalds 已提交
1002

1003 1004
	debug_assert_init(timer);

1005
	timer_stats_timer_clear_start_info(timer);
1006 1007
	if (timer_pending(timer)) {
		base = lock_timer_base(timer, &flags);
1008
		ret = detach_if_pending(timer, base, true);
L
Linus Torvalds 已提交
1009 1010 1011
		spin_unlock_irqrestore(&base->lock, flags);
	}

1012
	return ret;
L
Linus Torvalds 已提交
1013 1014 1015
}
EXPORT_SYMBOL(del_timer);

1016 1017 1018 1019
/**
 * try_to_del_timer_sync - Try to deactivate a timer
 * @timer: timer do del
 *
1020 1021 1022 1023 1024
 * This function tries to deactivate a timer. Upon successful (ret >= 0)
 * exit the timer is not queued and the handler is not running on any CPU.
 */
int try_to_del_timer_sync(struct timer_list *timer)
{
1025
	struct tvec_base *base;
1026 1027 1028
	unsigned long flags;
	int ret = -1;

1029 1030
	debug_assert_init(timer);

1031 1032
	base = lock_timer_base(timer, &flags);

1033 1034 1035
	if (base->running_timer != timer) {
		timer_stats_timer_clear_start_info(timer);
		ret = detach_if_pending(timer, base, true);
1036 1037 1038 1039 1040
	}
	spin_unlock_irqrestore(&base->lock, flags);

	return ret;
}
1041 1042
EXPORT_SYMBOL(try_to_del_timer_sync);

1043
#ifdef CONFIG_SMP
1044
/**
L
Linus Torvalds 已提交
1045 1046 1047 1048 1049 1050 1051
 * del_timer_sync - deactivate a timer and wait for the handler to finish.
 * @timer: the timer to be deactivated
 *
 * This function only differs from del_timer() on SMP: besides deactivating
 * the timer it also makes sure the handler has finished executing on other
 * CPUs.
 *
1052
 * Synchronization rules: Callers must prevent restarting of the timer,
L
Linus Torvalds 已提交
1053
 * otherwise this function is meaningless. It must not be called from
T
Tejun Heo 已提交
1054 1055 1056 1057
 * interrupt contexts unless the timer is an irqsafe one. The caller must
 * not hold locks which would prevent completion of the timer's
 * handler. The timer's handler must not call add_timer_on(). Upon exit the
 * timer is not queued and the handler is not running on any CPU.
L
Linus Torvalds 已提交
1058
 *
T
Tejun Heo 已提交
1059 1060 1061
 * Note: For !irqsafe timers, you must not hold locks that are held in
 *   interrupt context while calling this function. Even if the lock has
 *   nothing to do with the timer in question.  Here's why:
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
 *
 *    CPU0                             CPU1
 *    ----                             ----
 *                                   <SOFTIRQ>
 *                                   call_timer_fn();
 *                                     base->running_timer = mytimer;
 *  spin_lock_irq(somelock);
 *                                     <IRQ>
 *                                        spin_lock(somelock);
 *  del_timer_sync(mytimer);
 *   while (base->running_timer == mytimer);
 *
 * Now del_timer_sync() will never return and never release somelock.
 * The interrupt on the other CPU is waiting to grab somelock but
 * it has interrupted the softirq that CPU0 is waiting to finish.
 *
L
Linus Torvalds 已提交
1078 1079 1080 1081
 * The function returns whether it has deactivated a pending timer or not.
 */
int del_timer_sync(struct timer_list *timer)
{
1082
#ifdef CONFIG_LOCKDEP
1083 1084
	unsigned long flags;

1085 1086 1087 1088
	/*
	 * If lockdep gives a backtrace here, please reference
	 * the synchronization rules above.
	 */
1089
	local_irq_save(flags);
1090 1091
	lock_map_acquire(&timer->lockdep_map);
	lock_map_release(&timer->lockdep_map);
1092
	local_irq_restore(flags);
1093
#endif
1094 1095 1096 1097
	/*
	 * don't use it in hardirq context, because it
	 * could lead to deadlock.
	 */
1098
	WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
1099 1100 1101 1102
	for (;;) {
		int ret = try_to_del_timer_sync(timer);
		if (ret >= 0)
			return ret;
1103
		cpu_relax();
1104
	}
L
Linus Torvalds 已提交
1105
}
1106
EXPORT_SYMBOL(del_timer_sync);
L
Linus Torvalds 已提交
1107 1108
#endif

1109
static int cascade(struct tvec_base *base, struct tvec *tv, int index)
L
Linus Torvalds 已提交
1110 1111
{
	/* cascade all the timers from tv up one level */
1112 1113 1114
	struct timer_list *timer;
	struct hlist_node *tmp;
	struct hlist_head tv_list;
1115

1116
	hlist_move_list(tv->vec + index, &tv_list);
L
Linus Torvalds 已提交
1117 1118

	/*
1119 1120
	 * We are removing _all_ timers from the list, so we
	 * don't have to detach them individually.
L
Linus Torvalds 已提交
1121
	 */
1122
	hlist_for_each_entry_safe(timer, tmp, &tv_list, entry) {
1123 1124
		/* No accounting, while moving them */
		__internal_add_timer(base, timer);
L
Linus Torvalds 已提交
1125 1126 1127 1128 1129
	}

	return index;
}

1130 1131 1132
static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
			  unsigned long data)
{
1133
	int count = preempt_count();
1134 1135 1136 1137 1138 1139 1140 1141 1142

#ifdef CONFIG_LOCKDEP
	/*
	 * It is permissible to free the timer from inside the
	 * function that is called from it, this we need to take into
	 * account for lockdep too. To avoid bogus "held lock freed"
	 * warnings as well as problems when looking into
	 * timer->lockdep_map, make a copy and use that here.
	 */
1143 1144 1145
	struct lockdep_map lockdep_map;

	lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
#endif
	/*
	 * Couple the lock chain with the lock chain at
	 * del_timer_sync() by acquiring the lock_map around the fn()
	 * call here and in del_timer_sync().
	 */
	lock_map_acquire(&lockdep_map);

	trace_timer_expire_entry(timer);
	fn(data);
	trace_timer_expire_exit(timer);

	lock_map_release(&lockdep_map);

1160
	if (count != preempt_count()) {
1161
		WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1162
			  fn, count, preempt_count());
1163 1164 1165 1166 1167 1168
		/*
		 * Restore the preempt count. That gives us a decent
		 * chance to survive and extract information. If the
		 * callback kept a lock held, bad luck, but not worse
		 * than the BUG() we had.
		 */
1169
		preempt_count_set(count);
1170 1171 1172
	}
}

1173 1174 1175
#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)

/**
L
Linus Torvalds 已提交
1176 1177 1178 1179 1180 1181
 * __run_timers - run all expired timers (if any) on this CPU.
 * @base: the timer vector to be processed.
 *
 * This function cascades all vectors and executes all expired timer
 * vectors.
 */
1182
static inline void __run_timers(struct tvec_base *base)
L
Linus Torvalds 已提交
1183 1184 1185
{
	struct timer_list *timer;

1186
	spin_lock_irq(&base->lock);
1187

L
Linus Torvalds 已提交
1188
	while (time_after_eq(jiffies, base->timer_jiffies)) {
1189 1190
		struct hlist_head work_list;
		struct hlist_head *head = &work_list;
1191 1192 1193 1194 1195 1196 1197 1198
		int index;

		if (!base->all_timers) {
			base->timer_jiffies = jiffies;
			break;
		}

		index = base->timer_jiffies & TVR_MASK;
1199

L
Linus Torvalds 已提交
1200 1201 1202 1203 1204 1205 1206 1207
		/*
		 * Cascade timers:
		 */
		if (!index &&
			(!cascade(base, &base->tv2, INDEX(0))) &&
				(!cascade(base, &base->tv3, INDEX(1))) &&
					!cascade(base, &base->tv4, INDEX(2)))
			cascade(base, &base->tv5, INDEX(3));
1208
		++base->timer_jiffies;
1209 1210
		hlist_move_list(base->tv1.vec + index, head);
		while (!hlist_empty(head)) {
L
Linus Torvalds 已提交
1211 1212
			void (*fn)(unsigned long);
			unsigned long data;
T
Tejun Heo 已提交
1213
			bool irqsafe;
L
Linus Torvalds 已提交
1214

1215
			timer = hlist_entry(head->first, struct timer_list, entry);
1216 1217
			fn = timer->function;
			data = timer->data;
1218
			irqsafe = timer->flags & TIMER_IRQSAFE;
L
Linus Torvalds 已提交
1219

1220 1221
			timer_stats_account_timer(timer);

1222
			base->running_timer = timer;
1223
			detach_expired_timer(timer, base);
1224

T
Tejun Heo 已提交
1225 1226 1227 1228 1229 1230 1231 1232 1233
			if (irqsafe) {
				spin_unlock(&base->lock);
				call_timer_fn(timer, fn, data);
				spin_lock(&base->lock);
			} else {
				spin_unlock_irq(&base->lock);
				call_timer_fn(timer, fn, data);
				spin_lock_irq(&base->lock);
			}
L
Linus Torvalds 已提交
1234 1235
		}
	}
1236
	base->running_timer = NULL;
1237
	spin_unlock_irq(&base->lock);
L
Linus Torvalds 已提交
1238 1239
}

1240
#ifdef CONFIG_NO_HZ_COMMON
L
Linus Torvalds 已提交
1241 1242
/*
 * Find out when the next timer event is due to happen. This
R
Randy Dunlap 已提交
1243 1244
 * is used on S/390 to stop all activity when a CPU is idle.
 * This function needs to be called with interrupts disabled.
L
Linus Torvalds 已提交
1245
 */
1246
static unsigned long __next_timer_interrupt(struct tvec_base *base)
L
Linus Torvalds 已提交
1247
{
1248
	unsigned long timer_jiffies = base->timer_jiffies;
1249
	unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1250
	int index, slot, array, found = 0;
L
Linus Torvalds 已提交
1251
	struct timer_list *nte;
1252
	struct tvec *varray[4];
L
Linus Torvalds 已提交
1253 1254

	/* Look for timer events in tv1. */
1255
	index = slot = timer_jiffies & TVR_MASK;
L
Linus Torvalds 已提交
1256
	do {
1257
		hlist_for_each_entry(nte, base->tv1.vec + slot, entry) {
1258
			if (nte->flags & TIMER_DEFERRABLE)
1259
				continue;
1260

1261
			found = 1;
L
Linus Torvalds 已提交
1262
			expires = nte->expires;
1263 1264 1265 1266
			/* Look at the cascade bucket(s)? */
			if (!index || slot < index)
				goto cascade;
			return expires;
L
Linus Torvalds 已提交
1267
		}
1268 1269 1270 1271 1272 1273 1274 1275
		slot = (slot + 1) & TVR_MASK;
	} while (slot != index);

cascade:
	/* Calculate the next cascade event */
	if (index)
		timer_jiffies += TVR_SIZE - index;
	timer_jiffies >>= TVR_BITS;
L
Linus Torvalds 已提交
1276 1277 1278 1279 1280 1281

	/* Check tv2-tv5. */
	varray[0] = &base->tv2;
	varray[1] = &base->tv3;
	varray[2] = &base->tv4;
	varray[3] = &base->tv5;
1282 1283

	for (array = 0; array < 4; array++) {
1284
		struct tvec *varp = varray[array];
1285 1286

		index = slot = timer_jiffies & TVN_MASK;
L
Linus Torvalds 已提交
1287
		do {
1288
			hlist_for_each_entry(nte, varp->vec + slot, entry) {
1289
				if (nte->flags & TIMER_DEFERRABLE)
1290 1291
					continue;

1292
				found = 1;
L
Linus Torvalds 已提交
1293 1294
				if (time_before(nte->expires, expires))
					expires = nte->expires;
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
			}
			/*
			 * Do we still search for the first timer or are
			 * we looking up the cascade buckets ?
			 */
			if (found) {
				/* Look at the cascade bucket(s)? */
				if (!index || slot < index)
					break;
				return expires;
			}
			slot = (slot + 1) & TVN_MASK;
		} while (slot != index);

		if (index)
			timer_jiffies += TVN_SIZE - index;
		timer_jiffies >>= TVN_BITS;
L
Linus Torvalds 已提交
1312
	}
1313 1314
	return expires;
}
1315

1316 1317 1318 1319
/*
 * Check, if the next hrtimer event is before the next timer wheel
 * event:
 */
1320
static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1321
{
1322
	u64 nextevt = hrtimer_get_next_event();
1323

1324
	/*
1325 1326
	 * If high resolution timers are enabled
	 * hrtimer_get_next_event() returns KTIME_MAX.
1327
	 */
1328 1329
	if (expires <= nextevt)
		return expires;
1330 1331

	/*
1332 1333
	 * If the next timer is already expired, return the tick base
	 * time so the tick is fired immediately.
1334
	 */
1335 1336
	if (nextevt <= basem)
		return basem;
1337

1338
	/*
1339 1340 1341 1342 1343 1344
	 * Round up to the next jiffie. High resolution timers are
	 * off, so the hrtimers are expired in the tick and we need to
	 * make sure that this tick really expires the timer to avoid
	 * a ping pong of the nohz stop code.
	 *
	 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1345
	 */
1346
	return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
L
Linus Torvalds 已提交
1347
}
1348 1349

/**
1350 1351 1352 1353 1354 1355
 * get_next_timer_interrupt - return the time (clock mono) of the next timer
 * @basej:	base time jiffies
 * @basem:	base time clock monotonic
 *
 * Returns the tick aligned clock monotonic time of the next pending
 * timer or KTIME_MAX if no timer is pending.
1356
 */
1357
u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1358
{
1359
	struct tvec_base *base = this_cpu_ptr(&tvec_bases);
1360 1361
	u64 expires = KTIME_MAX;
	unsigned long nextevt;
1362

1363 1364 1365 1366 1367
	/*
	 * Pretend that there is no timer pending if the cpu is offline.
	 * Possible pending timers will be migrated later to an active cpu.
	 */
	if (cpu_is_offline(smp_processor_id()))
1368 1369
		return expires;

1370
	spin_lock(&base->lock);
1371 1372 1373
	if (base->active_timers) {
		if (time_before_eq(base->next_timer, base->timer_jiffies))
			base->next_timer = __next_timer_interrupt(base);
1374 1375 1376 1377 1378
		nextevt = base->next_timer;
		if (time_before_eq(nextevt, basej))
			expires = basem;
		else
			expires = basem + (nextevt - basej) * TICK_NSEC;
1379
	}
1380 1381
	spin_unlock(&base->lock);

1382
	return cmp_next_hrtimer_event(basem, expires);
1383
}
L
Linus Torvalds 已提交
1384 1385 1386
#endif

/*
D
Daniel Walker 已提交
1387
 * Called from the timer interrupt handler to charge one tick to the current
L
Linus Torvalds 已提交
1388 1389 1390 1391 1392 1393 1394
 * process.  user_tick is 1 if the tick is user time, 0 for system.
 */
void update_process_times(int user_tick)
{
	struct task_struct *p = current;

	/* Note: this timer irq context must be accounted for as well. */
1395
	account_process_tick(p, user_tick);
L
Linus Torvalds 已提交
1396
	run_local_timers();
1397
	rcu_check_callbacks(user_tick);
1398 1399
#ifdef CONFIG_IRQ_WORK
	if (in_irq())
1400
		irq_work_tick();
1401
#endif
L
Linus Torvalds 已提交
1402
	scheduler_tick();
1403
	run_posix_cpu_timers(p);
L
Linus Torvalds 已提交
1404 1405 1406 1407 1408 1409 1410
}

/*
 * This function runs timers and the timer-tq in bottom half context.
 */
static void run_timer_softirq(struct softirq_action *h)
{
1411
	struct tvec_base *base = this_cpu_ptr(&tvec_bases);
L
Linus Torvalds 已提交
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421

	if (time_after_eq(jiffies, base->timer_jiffies))
		__run_timers(base);
}

/*
 * Called by the local, per-CPU timer interrupt on SMP.
 */
void run_local_timers(void)
{
1422
	hrtimer_run_queues();
L
Linus Torvalds 已提交
1423 1424 1425 1426 1427 1428 1429 1430 1431
	raise_softirq(TIMER_SOFTIRQ);
}

#ifdef __ARCH_WANT_SYS_ALARM

/*
 * For backwards compatibility?  This can be done in libc so Alpha
 * and all newer ports shouldn't need it.
 */
1432
SYSCALL_DEFINE1(alarm, unsigned int, seconds)
L
Linus Torvalds 已提交
1433
{
1434
	return alarm_setitimer(seconds);
L
Linus Torvalds 已提交
1435 1436 1437 1438 1439 1440
}

#endif

static void process_timeout(unsigned long __data)
{
1441
	wake_up_process((struct task_struct *)__data);
L
Linus Torvalds 已提交
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
}

/**
 * schedule_timeout - sleep until timeout
 * @timeout: timeout value in jiffies
 *
 * Make the current task sleep until @timeout jiffies have
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
 * pass before the routine returns. The routine will return 0
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task. In this case the remaining time
 * in jiffies will be returned, or 0 if the timer expired in time
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
 * the CPU away without a bound on the timeout. In this case the return
 * value will be %MAX_SCHEDULE_TIMEOUT.
 *
 * In all cases the return value is guaranteed to be non-negative.
 */
1470
signed long __sched schedule_timeout(signed long timeout)
L
Linus Torvalds 已提交
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
{
	struct timer_list timer;
	unsigned long expire;

	switch (timeout)
	{
	case MAX_SCHEDULE_TIMEOUT:
		/*
		 * These two special cases are useful to be comfortable
		 * in the caller. Nothing more. We could take
		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
		 * but I' d like to return a valid offset (>=0) to allow
		 * the caller to do everything it want with the retval.
		 */
		schedule();
		goto out;
	default:
		/*
		 * Another bit of PARANOID. Note that the retval will be
		 * 0 since no piece of kernel is supposed to do a check
		 * for a negative retval of schedule_timeout() (since it
		 * should never happens anyway). You just have the printk()
		 * that will tell you if something is gone wrong and where.
		 */
1495
		if (timeout < 0) {
L
Linus Torvalds 已提交
1496
			printk(KERN_ERR "schedule_timeout: wrong timeout "
1497 1498
				"value %lx\n", timeout);
			dump_stack();
L
Linus Torvalds 已提交
1499 1500 1501 1502 1503 1504 1505
			current->state = TASK_RUNNING;
			goto out;
		}
	}

	expire = timeout + jiffies;

1506
	setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1507
	__mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
L
Linus Torvalds 已提交
1508 1509 1510
	schedule();
	del_singleshot_timer_sync(&timer);

1511 1512 1513
	/* Remove the timer from the object tracker */
	destroy_timer_on_stack(&timer);

L
Linus Torvalds 已提交
1514 1515 1516 1517 1518 1519 1520
	timeout = expire - jiffies;

 out:
	return timeout < 0 ? 0 : timeout;
}
EXPORT_SYMBOL(schedule_timeout);

1521 1522 1523 1524
/*
 * We can use __set_current_state() here because schedule_timeout() calls
 * schedule() unconditionally.
 */
1525 1526
signed long __sched schedule_timeout_interruptible(signed long timeout)
{
A
Andrew Morton 已提交
1527 1528
	__set_current_state(TASK_INTERRUPTIBLE);
	return schedule_timeout(timeout);
1529 1530 1531
}
EXPORT_SYMBOL(schedule_timeout_interruptible);

M
Matthew Wilcox 已提交
1532 1533 1534 1535 1536 1537 1538
signed long __sched schedule_timeout_killable(signed long timeout)
{
	__set_current_state(TASK_KILLABLE);
	return schedule_timeout(timeout);
}
EXPORT_SYMBOL(schedule_timeout_killable);

1539 1540
signed long __sched schedule_timeout_uninterruptible(signed long timeout)
{
A
Andrew Morton 已提交
1541 1542
	__set_current_state(TASK_UNINTERRUPTIBLE);
	return schedule_timeout(timeout);
1543 1544 1545
}
EXPORT_SYMBOL(schedule_timeout_uninterruptible);

L
Linus Torvalds 已提交
1546
#ifdef CONFIG_HOTPLUG_CPU
1547
static void migrate_timer_list(struct tvec_base *new_base, struct hlist_head *head)
L
Linus Torvalds 已提交
1548 1549
{
	struct timer_list *timer;
1550
	int cpu = new_base->cpu;
L
Linus Torvalds 已提交
1551

1552 1553
	while (!hlist_empty(head)) {
		timer = hlist_entry(head->first, struct timer_list, entry);
1554
		/* We ignore the accounting on the dying cpu */
1555
		detach_timer(timer, false);
1556
		timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
L
Linus Torvalds 已提交
1557 1558 1559 1560
		internal_add_timer(new_base, timer);
	}
}

1561
static void migrate_timers(int cpu)
L
Linus Torvalds 已提交
1562
{
1563 1564
	struct tvec_base *old_base;
	struct tvec_base *new_base;
L
Linus Torvalds 已提交
1565 1566 1567
	int i;

	BUG_ON(cpu_online(cpu));
1568
	old_base = per_cpu_ptr(&tvec_bases, cpu);
T
Thomas Gleixner 已提交
1569
	new_base = get_cpu_ptr(&tvec_bases);
1570 1571 1572 1573 1574
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
	spin_lock_irq(&new_base->lock);
1575
	spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1576 1577

	BUG_ON(old_base->running_timer);
L
Linus Torvalds 已提交
1578 1579

	for (i = 0; i < TVR_SIZE; i++)
1580 1581 1582 1583 1584 1585 1586 1587
		migrate_timer_list(new_base, old_base->tv1.vec + i);
	for (i = 0; i < TVN_SIZE; i++) {
		migrate_timer_list(new_base, old_base->tv2.vec + i);
		migrate_timer_list(new_base, old_base->tv3.vec + i);
		migrate_timer_list(new_base, old_base->tv4.vec + i);
		migrate_timer_list(new_base, old_base->tv5.vec + i);
	}

1588 1589 1590
	old_base->active_timers = 0;
	old_base->all_timers = 0;

1591
	spin_unlock(&old_base->lock);
1592
	spin_unlock_irq(&new_base->lock);
T
Thomas Gleixner 已提交
1593
	put_cpu_ptr(&tvec_bases);
L
Linus Torvalds 已提交
1594 1595
}

1596
static int timer_cpu_notify(struct notifier_block *self,
L
Linus Torvalds 已提交
1597 1598
				unsigned long action, void *hcpu)
{
1599
	switch (action) {
L
Linus Torvalds 已提交
1600
	case CPU_DEAD:
1601
	case CPU_DEAD_FROZEN:
1602
		migrate_timers((long)hcpu);
L
Linus Torvalds 已提交
1603 1604 1605 1606
		break;
	default:
		break;
	}
1607

L
Linus Torvalds 已提交
1608 1609 1610
	return NOTIFY_OK;
}

1611 1612 1613 1614 1615 1616 1617
static inline void timer_register_cpu_notifier(void)
{
	cpu_notifier(timer_cpu_notify, 0);
}
#else
static inline void timer_register_cpu_notifier(void) { }
#endif /* CONFIG_HOTPLUG_CPU */
L
Linus Torvalds 已提交
1618

1619
static void __init init_timer_cpu(int cpu)
1620
{
1621
	struct tvec_base *base = per_cpu_ptr(&tvec_bases, cpu);
1622

1623 1624 1625 1626 1627 1628 1629 1630
	base->cpu = cpu;
	spin_lock_init(&base->lock);

	base->timer_jiffies = jiffies;
	base->next_timer = base->timer_jiffies;
}

static void __init init_timer_cpus(void)
L
Linus Torvalds 已提交
1631
{
1632 1633
	int cpu;

1634 1635
	for_each_possible_cpu(cpu)
		init_timer_cpu(cpu);
1636
}
1637

1638 1639 1640
void __init init_timers(void)
{
	init_timer_cpus();
1641
	init_timer_stats();
1642
	timer_register_cpu_notifier();
1643
	open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
L
Linus Torvalds 已提交
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
}

/**
 * msleep - sleep safely even with waitqueue interruptions
 * @msecs: Time in milliseconds to sleep for
 */
void msleep(unsigned int msecs)
{
	unsigned long timeout = msecs_to_jiffies(msecs) + 1;

1654 1655
	while (timeout)
		timeout = schedule_timeout_uninterruptible(timeout);
L
Linus Torvalds 已提交
1656 1657 1658 1659 1660
}

EXPORT_SYMBOL(msleep);

/**
1661
 * msleep_interruptible - sleep waiting for signals
L
Linus Torvalds 已提交
1662 1663 1664 1665 1666 1667
 * @msecs: Time in milliseconds to sleep for
 */
unsigned long msleep_interruptible(unsigned int msecs)
{
	unsigned long timeout = msecs_to_jiffies(msecs) + 1;

1668 1669
	while (timeout && !signal_pending(current))
		timeout = schedule_timeout_interruptible(timeout);
L
Linus Torvalds 已提交
1670 1671 1672 1673
	return jiffies_to_msecs(timeout);
}

EXPORT_SYMBOL(msleep_interruptible);
1674

1675
static void __sched do_usleep_range(unsigned long min, unsigned long max)
1676 1677 1678 1679 1680 1681
{
	ktime_t kmin;
	unsigned long delta;

	kmin = ktime_set(0, min * NSEC_PER_USEC);
	delta = (max - min) * NSEC_PER_USEC;
1682
	schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
1683 1684 1685 1686 1687 1688 1689
}

/**
 * usleep_range - Drop in replacement for udelay where wakeup is flexible
 * @min: Minimum time in usecs to sleep
 * @max: Maximum time in usecs to sleep
 */
1690
void __sched usleep_range(unsigned long min, unsigned long max)
1691 1692 1693 1694 1695
{
	__set_current_state(TASK_UNINTERRUPTIBLE);
	do_usleep_range(min, max);
}
EXPORT_SYMBOL(usleep_range);