blk-mq.c 47.7 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
	unsigned int i;

43 44
	for (i = 0; i < hctx->ctx_map.map_size; i++)
		if (hctx->ctx_map.map[i].word)
45 46 47 48 49
			return true;

	return false;
}

50 51 52 53 54 55 56 57 58
static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
					      struct blk_mq_ctx *ctx)
{
	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
}

#define CTX_TO_BIT(hctx, ctx)	\
	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))

59 60 61 62 63 64
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
65 66 67 68 69 70 71 72 73 74 75 76
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
77 78 79 80
}

static int blk_mq_queue_enter(struct request_queue *q)
{
81 82
	while (true) {
		int ret;
83

84 85
		if (percpu_ref_tryget_live(&q->mq_usage_counter))
			return 0;
86

87 88 89 90 91 92 93
		ret = wait_event_interruptible(q->mq_freeze_wq,
				!q->mq_freeze_depth || blk_queue_dying(q));
		if (blk_queue_dying(q))
			return -ENODEV;
		if (ret)
			return ret;
	}
94 95 96 97
}

static void blk_mq_queue_exit(struct request_queue *q)
{
98 99 100 101 102 103 104 105 106
	percpu_ref_put(&q->mq_usage_counter);
}

static void blk_mq_usage_counter_release(struct percpu_ref *ref)
{
	struct request_queue *q =
		container_of(ref, struct request_queue, mq_usage_counter);

	wake_up_all(&q->mq_freeze_wq);
107 108
}

109 110 111 112 113
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
void blk_mq_freeze_queue(struct request_queue *q)
114
{
115 116
	bool freeze;

117
	spin_lock_irq(q->queue_lock);
118
	freeze = !q->mq_freeze_depth++;
119 120
	spin_unlock_irq(q->queue_lock);

121 122 123 124
	if (freeze) {
		percpu_ref_kill(&q->mq_usage_counter);
		blk_mq_run_queues(q, false);
	}
125
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
126 127
}

128 129
static void blk_mq_unfreeze_queue(struct request_queue *q)
{
130
	bool wake;
131 132

	spin_lock_irq(q->queue_lock);
133 134
	wake = !--q->mq_freeze_depth;
	WARN_ON_ONCE(q->mq_freeze_depth < 0);
135
	spin_unlock_irq(q->queue_lock);
136 137
	if (wake) {
		percpu_ref_reinit(&q->mq_usage_counter);
138
		wake_up_all(&q->mq_freeze_wq);
139
	}
140 141 142 143 144 145 146 147
}

bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

148 149
static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			       struct request *rq, unsigned int rw_flags)
150
{
151 152 153
	if (blk_queue_io_stat(q))
		rw_flags |= REQ_IO_STAT;

154 155 156
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
157
	rq->mq_ctx = ctx;
158
	rq->cmd_flags |= rw_flags;
159 160 161 162 163 164
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
165
	rq->start_time = jiffies;
166 167
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
168
	set_start_time_ns(rq);
169 170 171 172 173 174 175 176 177 178
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;

179 180
	rq->cmd = rq->__cmd;

181 182 183 184 185 186
	rq->extra_len = 0;
	rq->sense_len = 0;
	rq->resid_len = 0;
	rq->sense = NULL;

	INIT_LIST_HEAD(&rq->timeout_list);
187 188
	rq->timeout = 0;

189 190 191 192
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

193 194 195
	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
}

196
static struct request *
197
__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
198 199 200 201
{
	struct request *rq;
	unsigned int tag;

202
	tag = blk_mq_get_tag(data);
203
	if (tag != BLK_MQ_TAG_FAIL) {
204
		rq = data->hctx->tags->rqs[tag];
205

206
		if (blk_mq_tag_busy(data->hctx)) {
207
			rq->cmd_flags = REQ_MQ_INFLIGHT;
208
			atomic_inc(&data->hctx->nr_active);
209 210 211
		}

		rq->tag = tag;
212
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
213 214 215 216 217 218
		return rq;
	}

	return NULL;
}

219 220
struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
		bool reserved)
221
{
222 223
	struct blk_mq_ctx *ctx;
	struct blk_mq_hw_ctx *hctx;
224
	struct request *rq;
225
	struct blk_mq_alloc_data alloc_data;
226 227 228 229

	if (blk_mq_queue_enter(q))
		return NULL;

230 231
	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);
232 233
	blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
			reserved, ctx, hctx);
234

235
	rq = __blk_mq_alloc_request(&alloc_data, rw);
236 237 238 239 240 241
	if (!rq && (gfp & __GFP_WAIT)) {
		__blk_mq_run_hw_queue(hctx);
		blk_mq_put_ctx(ctx);

		ctx = blk_mq_get_ctx(q);
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
242 243 244 245
		blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
				hctx);
		rq =  __blk_mq_alloc_request(&alloc_data, rw);
		ctx = alloc_data.ctx;
246 247
	}
	blk_mq_put_ctx(ctx);
248 249
	return rq;
}
250
EXPORT_SYMBOL(blk_mq_alloc_request);
251 252 253 254 255 256 257

static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
				  struct blk_mq_ctx *ctx, struct request *rq)
{
	const int tag = rq->tag;
	struct request_queue *q = rq->q;

258 259
	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
		atomic_dec(&hctx->nr_active);
260
	rq->cmd_flags = 0;
261

262
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
263
	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
	blk_mq_queue_exit(q);
}

void blk_mq_free_request(struct request *rq)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q = rq->q;

	ctx->rq_completed[rq_is_sync(rq)]++;

	hctx = q->mq_ops->map_queue(q, ctx->cpu);
	__blk_mq_free_request(hctx, ctx, rq);
}

279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
/*
 * Clone all relevant state from a request that has been put on hold in
 * the flush state machine into the preallocated flush request that hangs
 * off the request queue.
 *
 * For a driver the flush request should be invisible, that's why we are
 * impersonating the original request here.
 */
void blk_mq_clone_flush_request(struct request *flush_rq,
		struct request *orig_rq)
{
	struct blk_mq_hw_ctx *hctx =
		orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);

	flush_rq->mq_ctx = orig_rq->mq_ctx;
	flush_rq->tag = orig_rq->tag;
	memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
		hctx->cmd_size);
}

299
inline void __blk_mq_end_io(struct request *rq, int error)
300
{
M
Ming Lei 已提交
301 302
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
303
	if (rq->end_io) {
304
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
305 306 307
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
308
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
309
	}
310
}
311 312 313 314 315 316 317 318 319
EXPORT_SYMBOL(__blk_mq_end_io);

void blk_mq_end_io(struct request *rq, int error)
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
	__blk_mq_end_io(rq, error);
}
EXPORT_SYMBOL(blk_mq_end_io);
320

321
static void __blk_mq_complete_request_remote(void *data)
322
{
323
	struct request *rq = data;
324

325
	rq->q->softirq_done_fn(rq);
326 327
}

328
static void blk_mq_ipi_complete_request(struct request *rq)
329 330
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
331
	bool shared = false;
332 333
	int cpu;

C
Christoph Hellwig 已提交
334
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
335 336 337
		rq->q->softirq_done_fn(rq);
		return;
	}
338 339

	cpu = get_cpu();
C
Christoph Hellwig 已提交
340 341 342 343
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
344
		rq->csd.func = __blk_mq_complete_request_remote;
345 346
		rq->csd.info = rq;
		rq->csd.flags = 0;
347
		smp_call_function_single_async(ctx->cpu, &rq->csd);
348
	} else {
349
		rq->q->softirq_done_fn(rq);
350
	}
351 352
	put_cpu();
}
353

354 355 356 357 358 359 360 361 362 363
void __blk_mq_complete_request(struct request *rq)
{
	struct request_queue *q = rq->q;

	if (!q->softirq_done_fn)
		blk_mq_end_io(rq, rq->errors);
	else
		blk_mq_ipi_complete_request(rq);
}

364 365 366 367 368 369 370 371 372 373
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
void blk_mq_complete_request(struct request *rq)
{
374 375 376
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
377
		return;
378 379
	if (!blk_mark_rq_complete(rq))
		__blk_mq_complete_request(rq);
380 381
}
EXPORT_SYMBOL(blk_mq_complete_request);
382

383
static void blk_mq_start_request(struct request *rq, bool last)
384 385 386 387 388
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

C
Christoph Hellwig 已提交
389
	rq->resid_len = blk_rq_bytes(rq);
C
Christoph Hellwig 已提交
390 391
	if (unlikely(blk_bidi_rq(rq)))
		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
C
Christoph Hellwig 已提交
392

393
	blk_add_timer(rq);
394

395 396 397 398 399 400
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

401 402 403 404 405 406
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
407 408 409 410
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}

	/*
	 * Flag the last request in the series so that drivers know when IO
	 * should be kicked off, if they don't do it on a per-request basis.
	 *
	 * Note: the flag isn't the only condition drivers should do kick off.
	 * If drive is busy, the last request might not have the bit set.
	 */
	if (last)
		rq->cmd_flags |= REQ_END;
430 431
}

432
static void __blk_mq_requeue_request(struct request *rq)
433 434 435 436 437
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
438 439 440 441 442

	rq->cmd_flags &= ~REQ_END;

	if (q->dma_drain_size && blk_rq_bytes(rq))
		rq->nr_phys_segments--;
443 444
}

445 446 447 448 449 450
void blk_mq_requeue_request(struct request *rq)
{
	__blk_mq_requeue_request(rq);
	blk_clear_rq_complete(rq);

	BUG_ON(blk_queued_rq(rq));
451
	blk_mq_add_to_requeue_list(rq, true);
452 453 454
}
EXPORT_SYMBOL(blk_mq_requeue_request);

455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
		container_of(work, struct request_queue, requeue_work);
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
			continue;

		rq->cmd_flags &= ~REQ_SOFTBARRIER;
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, true, false, false);
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, false, false, false);
	}

482 483 484 485 486
	/*
	 * Use the start variant of queue running here, so that running
	 * the requeue work will kick stopped queues.
	 */
	blk_mq_start_hw_queues(q);
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
}

void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
		rq->cmd_flags |= REQ_SOFTBARRIER;
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
	kblockd_schedule_work(&q->requeue_work);
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

517
static inline bool is_flush_request(struct request *rq, unsigned int tag)
518
{
519 520 521 522 523 524 525
	return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
			rq->q->flush_rq->tag == tag);
}

struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
	struct request *rq = tags->rqs[tag];
526

527 528
	if (!is_flush_request(rq, tag))
		return rq;
529

530
	return rq->q->flush_rq;
531 532 533
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
struct blk_mq_timeout_data {
	struct blk_mq_hw_ctx *hctx;
	unsigned long *next;
	unsigned int *next_set;
};

static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
{
	struct blk_mq_timeout_data *data = __data;
	struct blk_mq_hw_ctx *hctx = data->hctx;
	unsigned int tag;

	 /* It may not be in flight yet (this is where
	 * the REQ_ATOMIC_STARTED flag comes in). The requests are
	 * statically allocated, so we know it's always safe to access the
	 * memory associated with a bit offset into ->rqs[].
	 */
	tag = 0;
	do {
		struct request *rq;

555 556
		tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag);
		if (tag >= hctx->tags->nr_tags)
557 558
			break;

559
		rq = blk_mq_tag_to_rq(hctx->tags, tag++);
560 561
		if (rq->q != hctx->queue)
			continue;
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
		if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
			continue;

		blk_rq_check_expired(rq, data->next, data->next_set);
	} while (1);
}

static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
					unsigned long *next,
					unsigned int *next_set)
{
	struct blk_mq_timeout_data data = {
		.hctx		= hctx,
		.next		= next,
		.next_set	= next_set,
	};

	/*
	 * Ask the tagging code to iterate busy requests, so we can
	 * check them for timeout.
	 */
	blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
}

586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq)
{
	struct request_queue *q = rq->q;

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		return BLK_EH_NOT_HANDLED;

	if (!q->mq_ops->timeout)
		return BLK_EH_RESET_TIMER;

	return q->mq_ops->timeout(rq);
}

608 609 610 611 612 613 614
static void blk_mq_rq_timer(unsigned long data)
{
	struct request_queue *q = (struct request_queue *) data;
	struct blk_mq_hw_ctx *hctx;
	unsigned long next = 0;
	int i, next_set = 0;

615 616 617 618 619 620 621 622
	queue_for_each_hw_ctx(q, hctx, i) {
		/*
		 * If not software queues are currently mapped to this
		 * hardware queue, there's nothing to check
		 */
		if (!hctx->nr_ctx || !hctx->tags)
			continue;

623
		blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
624
	}
625

626 627 628 629 630 631 632
	if (next_set) {
		next = blk_rq_timeout(round_jiffies_up(next));
		mod_timer(&q->timeout, next);
	} else {
		queue_for_each_hw_ctx(q, hctx, i)
			blk_mq_tag_idle(hctx);
	}
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
{
	struct blk_mq_ctx *ctx;
	int i;

	for (i = 0; i < hctx->ctx_map.map_size; i++) {
		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
		unsigned int off, bit;

		if (!bm->word)
			continue;

		bit = 0;
		off = i * hctx->ctx_map.bits_per_word;
		do {
			bit = find_next_bit(&bm->word, bm->depth, bit);
			if (bit >= bm->depth)
				break;

			ctx = hctx->ctxs[bit + off];
			clear_bit(bit, &bm->word);
			spin_lock(&ctx->lock);
			list_splice_tail_init(&ctx->rq_list, list);
			spin_unlock(&ctx->lock);

			bit++;
		} while (1);
	}
}

708 709 710 711 712 713 714 715 716 717 718
/*
 * Run this hardware queue, pulling any software queues mapped to it in.
 * Note that this function currently has various problems around ordering
 * of IO. In particular, we'd like FIFO behaviour on handling existing
 * items on the hctx->dispatch list. Ignore that for now.
 */
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
	LIST_HEAD(rq_list);
719
	int queued;
720

721
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
722

723
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
724 725 726 727 728 729 730
		return;

	hctx->run++;

	/*
	 * Touch any software queue that has pending entries.
	 */
731
	flush_busy_ctxs(hctx, &rq_list);
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746

	/*
	 * If we have previous entries on our dispatch list, grab them
	 * and stuff them at the front for more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

	/*
	 * Now process all the entries, sending them to the driver.
	 */
747
	queued = 0;
748 749 750 751 752 753
	while (!list_empty(&rq_list)) {
		int ret;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);

754
		blk_mq_start_request(rq, list_empty(&rq_list));
755 756 757 758 759 760 761 762

		ret = q->mq_ops->queue_rq(hctx, rq);
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
			continue;
		case BLK_MQ_RQ_QUEUE_BUSY:
			list_add(&rq->queuelist, &rq_list);
763
			__blk_mq_requeue_request(rq);
764 765 766 767
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
768
			rq->errors = -EIO;
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
			blk_mq_end_io(rq, rq->errors);
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
	}

	if (!queued)
		hctx->dispatched[0]++;
	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
		hctx->dispatched[ilog2(queued) + 1]++;

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
	if (!list_empty(&rq_list)) {
		spin_lock(&hctx->lock);
		list_splice(&rq_list, &hctx->dispatch);
		spin_unlock(&hctx->lock);
	}
}

793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
	int cpu = hctx->next_cpu;

	if (--hctx->next_cpu_batch <= 0) {
		int next_cpu;

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

	return cpu;
}

817 818
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
819
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
820 821
		return;

822
	if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
823
		__blk_mq_run_hw_queue(hctx);
824
	else if (hctx->queue->nr_hw_queues == 1)
825
		kblockd_schedule_delayed_work(&hctx->run_work, 0);
826 827 828
	else {
		unsigned int cpu;

829
		cpu = blk_mq_hctx_next_cpu(hctx);
830
		kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
831
	}
832 833 834 835 836 837 838 839 840 841
}

void blk_mq_run_queues(struct request_queue *q, bool async)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if ((!blk_mq_hctx_has_pending(hctx) &&
		    list_empty_careful(&hctx->dispatch)) ||
842
		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
843 844
			continue;

845
		preempt_disable();
846
		blk_mq_run_hw_queue(hctx, async);
847
		preempt_enable();
848 849 850 851 852 853
	}
}
EXPORT_SYMBOL(blk_mq_run_queues);

void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
854 855
	cancel_delayed_work(&hctx->run_work);
	cancel_delayed_work(&hctx->delay_work);
856 857 858 859
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

860 861 862 863 864 865 866 867 868 869
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

870 871 872
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
873 874

	preempt_disable();
875
	blk_mq_run_hw_queue(hctx, false);
876
	preempt_enable();
877 878 879
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

880 881 882 883 884 885 886 887 888 889 890
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);


891
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
892 893 894 895 896 897 898 899 900
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
			continue;

		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
901
		preempt_disable();
902
		blk_mq_run_hw_queue(hctx, async);
903
		preempt_enable();
904 905 906 907
	}
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

908
static void blk_mq_run_work_fn(struct work_struct *work)
909 910 911
{
	struct blk_mq_hw_ctx *hctx;

912
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
913

914 915 916
	__blk_mq_run_hw_queue(hctx);
}

917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	unsigned long tmo = msecs_to_jiffies(msecs);

	if (hctx->queue->nr_hw_queues == 1)
		kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
	else {
		unsigned int cpu;

936
		cpu = blk_mq_hctx_next_cpu(hctx);
937 938 939 940 941
		kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
	}
}
EXPORT_SYMBOL(blk_mq_delay_queue);

942
static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
943
				    struct request *rq, bool at_head)
944 945 946
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

947 948
	trace_block_rq_insert(hctx->queue, rq);

949 950 951 952
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
953

954 955 956
	blk_mq_hctx_mark_pending(hctx, ctx);
}

957 958
void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
		bool async)
959
{
960
	struct request_queue *q = rq->q;
961
	struct blk_mq_hw_ctx *hctx;
962 963 964 965 966
	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;

	current_ctx = blk_mq_get_ctx(q);
	if (!cpu_online(ctx->cpu))
		rq->mq_ctx = ctx = current_ctx;
967 968 969

	hctx = q->mq_ops->map_queue(q, ctx->cpu);

970 971 972
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, at_head);
	spin_unlock(&ctx->lock);
973 974 975

	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
976 977

	blk_mq_put_ctx(current_ctx);
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
}

static void blk_mq_insert_requests(struct request_queue *q,
				     struct blk_mq_ctx *ctx,
				     struct list_head *list,
				     int depth,
				     bool from_schedule)

{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *current_ctx;

	trace_block_unplug(q, depth, !from_schedule);

	current_ctx = blk_mq_get_ctx(q);

	if (!cpu_online(ctx->cpu))
		ctx = current_ctx;
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->mq_ctx = ctx;
1009
		__blk_mq_insert_request(hctx, rq, false);
1010 1011 1012 1013
	}
	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, from_schedule);
1014
	blk_mq_put_ctx(current_ctx);
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
				blk_mq_insert_requests(this_q, this_ctx,
							&ctx_list, depth,
							from_schedule);
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
				       from_schedule);
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1077

1078
	if (blk_do_io_stat(rq))
1079
		blk_account_io_start(rq, 1);
1080 1081
}

1082 1083 1084 1085 1086 1087
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1088 1089 1090
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1091
{
1092
	if (!hctx_allow_merges(hctx)) {
1093 1094 1095 1096 1097 1098 1099
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1100 1101
		struct request_queue *q = hctx->queue;

1102 1103 1104 1105 1106
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1107

1108 1109 1110
		spin_unlock(&ctx->lock);
		__blk_mq_free_request(hctx, ctx, rq);
		return true;
1111
	}
1112
}
1113

1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
struct blk_map_ctx {
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
};

static struct request *blk_mq_map_request(struct request_queue *q,
					  struct bio *bio,
					  struct blk_map_ctx *data)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	int rw = bio_data_dir(bio);
1127
	struct blk_mq_alloc_data alloc_data;
1128

1129
	if (unlikely(blk_mq_queue_enter(q))) {
1130
		bio_endio(bio, -EIO);
1131
		return NULL;
1132 1133 1134 1135 1136
	}

	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

1137
	if (rw_is_sync(bio->bi_rw))
S
Shaohua Li 已提交
1138
		rw |= REQ_SYNC;
1139

1140
	trace_block_getrq(q, bio, rw);
1141 1142 1143
	blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
			hctx);
	rq = __blk_mq_alloc_request(&alloc_data, rw);
1144
	if (unlikely(!rq)) {
1145
		__blk_mq_run_hw_queue(hctx);
1146 1147
		blk_mq_put_ctx(ctx);
		trace_block_sleeprq(q, bio, rw);
1148 1149

		ctx = blk_mq_get_ctx(q);
1150
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1151 1152 1153 1154 1155
		blk_mq_set_alloc_data(&alloc_data, q,
				__GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
		rq = __blk_mq_alloc_request(&alloc_data, rw);
		ctx = alloc_data.ctx;
		hctx = alloc_data.hctx;
1156 1157 1158
	}

	hctx->queued++;
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
	data->hctx = hctx;
	data->ctx = ctx;
	return rq;
}

/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
	struct blk_map_ctx data;
	struct request *rq;

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
		bio_endio(bio, -EIO);
		return;
	}

	rq = blk_mq_map_request(q, bio, &data);
	if (unlikely(!rq))
		return;

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	if (is_sync) {
		int ret;

		blk_mq_bio_to_request(rq, bio);
		blk_mq_start_request(rq, true);

		/*
		 * For OK queue, we are done. For error, kill it. Any other
		 * error (busy), just add it to our list as we previously
		 * would have done
		 */
		ret = q->mq_ops->queue_rq(data.hctx, rq);
		if (ret == BLK_MQ_RQ_QUEUE_OK)
			goto done;
		else {
			__blk_mq_requeue_request(rq);

			if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
				rq->errors = -EIO;
				blk_mq_end_io(rq, rq->errors);
				goto done;
			}
		}
	}

	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
done:
	blk_mq_put_ctx(data.ctx);
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
	unsigned int use_plug, request_count = 0;
	struct blk_map_ctx data;
	struct request *rq;

	/*
	 * If we have multiple hardware queues, just go directly to
	 * one of those for sync IO.
	 */
	use_plug = !is_flush_fua && !is_sync;

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
		bio_endio(bio, -EIO);
		return;
	}

	if (use_plug && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count))
		return;

	rq = blk_mq_map_request(q, bio, &data);
1262 1263
	if (unlikely(!rq))
		return;
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
	if (use_plug) {
		struct blk_plug *plug = current->plug;

		if (plug) {
			blk_mq_bio_to_request(rq, bio);
S
Shaohua Li 已提交
1281
			if (list_empty(&plug->mq_list))
1282 1283 1284 1285 1286 1287
				trace_block_plug(q);
			else if (request_count >= BLK_MAX_REQUEST_COUNT) {
				blk_flush_plug_list(plug, false);
				trace_block_plug(q);
			}
			list_add_tail(&rq->queuelist, &plug->mq_list);
1288
			blk_mq_put_ctx(data.ctx);
1289 1290 1291 1292
			return;
		}
	}

1293 1294 1295 1296 1297 1298 1299 1300 1301
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1302 1303
	}

1304
	blk_mq_put_ctx(data.ctx);
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
}

/*
 * Default mapping to a software queue, since we use one per CPU.
 */
struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
{
	return q->queue_hw_ctx[q->mq_map[cpu]];
}
EXPORT_SYMBOL(blk_mq_map_queue);

1316 1317
static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
		struct blk_mq_tags *tags, unsigned int hctx_idx)
1318
{
1319
	struct page *page;
1320

1321
	if (tags->rqs && set->ops->exit_request) {
1322
		int i;
1323

1324 1325
		for (i = 0; i < tags->nr_tags; i++) {
			if (!tags->rqs[i])
1326
				continue;
1327 1328
			set->ops->exit_request(set->driver_data, tags->rqs[i],
						hctx_idx, i);
1329
			tags->rqs[i] = NULL;
1330
		}
1331 1332
	}

1333 1334
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1335
		list_del_init(&page->lru);
1336 1337 1338
		__free_pages(page, page->private);
	}

1339
	kfree(tags->rqs);
1340

1341
	blk_mq_free_tags(tags);
1342 1343 1344 1345
}

static size_t order_to_size(unsigned int order)
{
1346
	return (size_t)PAGE_SIZE << order;
1347 1348
}

1349 1350
static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
		unsigned int hctx_idx)
1351
{
1352
	struct blk_mq_tags *tags;
1353 1354 1355
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

1356 1357 1358 1359
	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
				set->numa_node);
	if (!tags)
		return NULL;
1360

1361 1362
	INIT_LIST_HEAD(&tags->page_list);

1363 1364 1365
	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
				 set->numa_node);
1366 1367 1368 1369
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1370 1371 1372 1373 1374

	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1375
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1376
				cache_line_size());
1377
	left = rq_size * set->queue_depth;
1378

1379
	for (i = 0; i < set->queue_depth; ) {
1380 1381 1382 1383 1384 1385 1386 1387 1388
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

		while (left < order_to_size(this_order - 1) && this_order)
			this_order--;

		do {
1389 1390 1391
			page = alloc_pages_node(set->numa_node,
				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
				this_order);
1392 1393 1394 1395 1396 1397 1398 1399 1400
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1401
			goto fail;
1402 1403

		page->private = this_order;
1404
		list_add_tail(&page->lru, &tags->page_list);
1405 1406 1407

		p = page_address(page);
		entries_per_page = order_to_size(this_order) / rq_size;
1408
		to_do = min(entries_per_page, set->queue_depth - i);
1409 1410
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
1411
			tags->rqs[i] = p;
1412 1413
			tags->rqs[i]->atomic_flags = 0;
			tags->rqs[i]->cmd_flags = 0;
1414 1415 1416
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
						tags->rqs[i], hctx_idx, i,
1417 1418
						set->numa_node)) {
					tags->rqs[i] = NULL;
1419
					goto fail;
1420
				}
1421 1422
			}

1423 1424 1425 1426 1427
			p += rq_size;
			i++;
		}
	}

1428
	return tags;
1429

1430 1431 1432
fail:
	blk_mq_free_rq_map(set, tags, hctx_idx);
	return NULL;
1433 1434
}

1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
{
	kfree(bitmap->map);
}

static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
{
	unsigned int bpw = 8, total, num_maps, i;

	bitmap->bits_per_word = bpw;

	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
					GFP_KERNEL, node);
	if (!bitmap->map)
		return -ENOMEM;

	bitmap->map_size = num_maps;

	total = nr_cpu_ids;
	for (i = 0; i < num_maps; i++) {
		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
		total -= bitmap->map[i].depth;
	}

	return 0;
}

1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
{
	struct request_queue *q = hctx->queue;
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

	/*
	 * Move ctx entries to new CPU, if this one is going away.
	 */
	ctx = __blk_mq_get_ctx(q, cpu);

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
		return NOTIFY_OK;

	ctx = blk_mq_get_ctx(q);
	spin_lock(&ctx->lock);

	while (!list_empty(&tmp)) {
		struct request *rq;

		rq = list_first_entry(&tmp, struct request, queuelist);
		rq->mq_ctx = ctx;
		list_move_tail(&rq->queuelist, &ctx->rq_list);
	}

	hctx = q->mq_ops->map_queue(q, ctx->cpu);
	blk_mq_hctx_mark_pending(hctx, ctx);

	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, true);
	blk_mq_put_ctx(ctx);
	return NOTIFY_OK;
}

static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
{
	struct request_queue *q = hctx->queue;
	struct blk_mq_tag_set *set = q->tag_set;

	if (set->tags[hctx->queue_num])
		return NOTIFY_OK;

	set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
	if (!set->tags[hctx->queue_num])
		return NOTIFY_STOP;

	hctx->tags = set->tags[hctx->queue_num];
	return NOTIFY_OK;
}

static int blk_mq_hctx_notify(void *data, unsigned long action,
			      unsigned int cpu)
{
	struct blk_mq_hw_ctx *hctx = data;

	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
		return blk_mq_hctx_cpu_offline(hctx, cpu);
	else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
		return blk_mq_hctx_cpu_online(hctx, cpu);

	return NOTIFY_OK;
}

M
Ming Lei 已提交
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;

1544 1545
		blk_mq_tag_idle(hctx);

M
Ming Lei 已提交
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
		if (set->ops->exit_hctx)
			set->ops->exit_hctx(hctx, i);

		blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
		kfree(hctx->ctxs);
		blk_mq_free_bitmap(&hctx->ctx_map);
	}

}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		free_cpumask_var(hctx->cpumask);
1564
		kfree(hctx);
M
Ming Lei 已提交
1565 1566 1567
	}
}

1568
static int blk_mq_init_hw_queues(struct request_queue *q,
1569
		struct blk_mq_tag_set *set)
1570 1571
{
	struct blk_mq_hw_ctx *hctx;
M
Ming Lei 已提交
1572
	unsigned int i;
1573 1574 1575 1576 1577 1578 1579 1580 1581

	/*
	 * Initialize hardware queues
	 */
	queue_for_each_hw_ctx(q, hctx, i) {
		int node;

		node = hctx->numa_node;
		if (node == NUMA_NO_NODE)
1582
			node = hctx->numa_node = set->numa_node;
1583

1584 1585
		INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
		INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1586 1587 1588 1589
		spin_lock_init(&hctx->lock);
		INIT_LIST_HEAD(&hctx->dispatch);
		hctx->queue = q;
		hctx->queue_num = i;
1590 1591
		hctx->flags = set->flags;
		hctx->cmd_size = set->cmd_size;
1592 1593 1594 1595 1596

		blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
						blk_mq_hctx_notify, hctx);
		blk_mq_register_cpu_notifier(&hctx->cpu_notifier);

1597
		hctx->tags = set->tags[i];
1598 1599

		/*
1600
		 * Allocate space for all possible cpus to avoid allocation at
1601 1602 1603 1604 1605 1606 1607
		 * runtime
		 */
		hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
						GFP_KERNEL, node);
		if (!hctx->ctxs)
			break;

1608
		if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1609 1610 1611 1612
			break;

		hctx->nr_ctx = 0;

1613 1614
		if (set->ops->init_hctx &&
		    set->ops->init_hctx(hctx, set->driver_data, i))
1615 1616 1617 1618 1619 1620 1621 1622 1623
			break;
	}

	if (i == q->nr_hw_queues)
		return 0;

	/*
	 * Init failed
	 */
M
Ming Lei 已提交
1624
	blk_mq_exit_hw_queues(q, set, i);
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647

	return 1;
}

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

1648 1649 1650 1651
		hctx = q->mq_ops->map_queue(q, i);
		cpumask_set_cpu(i, hctx->cpumask);
		hctx->nr_ctx++;

1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
			hctx->numa_node = cpu_to_node(i);
	}
}

static void blk_mq_map_swqueue(struct request_queue *q)
{
	unsigned int i;
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;

	queue_for_each_hw_ctx(q, hctx, i) {
1668
		cpumask_clear(hctx->cpumask);
1669 1670 1671 1672 1673 1674 1675 1676
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
	queue_for_each_ctx(q, ctx, i) {
		/* If the cpu isn't online, the cpu is mapped to first hctx */
1677 1678 1679
		if (!cpu_online(i))
			continue;

1680
		hctx = q->mq_ops->map_queue(q, i);
1681
		cpumask_set_cpu(i, hctx->cpumask);
1682 1683 1684
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
1685 1686

	queue_for_each_hw_ctx(q, hctx, i) {
1687
		/*
1688 1689
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
		 */
		if (!hctx->nr_ctx) {
			struct blk_mq_tag_set *set = q->tag_set;

			if (set->tags[i]) {
				blk_mq_free_rq_map(set, set->tags[i], i);
				set->tags[i] = NULL;
				hctx->tags = NULL;
			}
			continue;
		}

		/*
		 * Initialize batch roundrobin counts
		 */
1705 1706 1707
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
1708 1709
}

1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q;
	bool shared;
	int i;

	if (set->tag_list.next == set->tag_list.prev)
		shared = false;
	else
		shared = true;

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);

		queue_for_each_hw_ctx(q, hctx, i) {
			if (shared)
				hctx->flags |= BLK_MQ_F_TAG_SHARED;
			else
				hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
		}
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
	blk_mq_update_tag_set_depth(set);
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
	list_add_tail(&q->tag_set_list, &set->tag_list);
	blk_mq_update_tag_set_depth(set);
	mutex_unlock(&set->tag_list_lock);
}

1756
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1757 1758
{
	struct blk_mq_hw_ctx **hctxs;
1759
	struct blk_mq_ctx __percpu *ctx;
1760
	struct request_queue *q;
1761
	unsigned int *map;
1762 1763 1764 1765 1766 1767
	int i;

	ctx = alloc_percpu(struct blk_mq_ctx);
	if (!ctx)
		return ERR_PTR(-ENOMEM);

1768 1769
	hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
			set->numa_node);
1770 1771 1772 1773

	if (!hctxs)
		goto err_percpu;

1774 1775 1776 1777
	map = blk_mq_make_queue_map(set);
	if (!map)
		goto err_map;

1778
	for (i = 0; i < set->nr_hw_queues; i++) {
1779 1780
		int node = blk_mq_hw_queue_to_node(map, i);

1781 1782
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
1783 1784 1785
		if (!hctxs[i])
			goto err_hctxs;

1786 1787 1788
		if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
			goto err_hctxs;

1789
		atomic_set(&hctxs[i]->nr_active, 0);
1790
		hctxs[i]->numa_node = node;
1791 1792 1793
		hctxs[i]->queue_num = i;
	}

1794
	q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1795 1796 1797
	if (!q)
		goto err_hctxs;

1798
	if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release))
1799 1800
		goto err_map;

1801 1802 1803 1804
	setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
	blk_queue_rq_timeout(q, 30000);

	q->nr_queues = nr_cpu_ids;
1805
	q->nr_hw_queues = set->nr_hw_queues;
1806
	q->mq_map = map;
1807 1808 1809 1810

	q->queue_ctx = ctx;
	q->queue_hw_ctx = hctxs;

1811
	q->mq_ops = set->ops;
1812
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1813

1814 1815 1816
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

1817 1818
	q->sg_reserved_size = INT_MAX;

1819 1820 1821 1822
	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

1823 1824 1825 1826 1827
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

1828
	blk_queue_rq_timed_out(q, blk_mq_rq_timed_out);
1829 1830
	if (set->timeout)
		blk_queue_rq_timeout(q, set->timeout);
1831

1832 1833 1834 1835 1836
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

1837 1838
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
1839

1840
	blk_mq_init_flush(q);
1841
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1842

1843 1844 1845
	q->flush_rq = kzalloc(round_up(sizeof(struct request) +
				set->cmd_size, cache_line_size()),
				GFP_KERNEL);
1846
	if (!q->flush_rq)
1847 1848
		goto err_hw;

1849
	if (blk_mq_init_hw_queues(q, set))
1850 1851
		goto err_flush_rq;

1852 1853 1854 1855
	mutex_lock(&all_q_mutex);
	list_add_tail(&q->all_q_node, &all_q_list);
	mutex_unlock(&all_q_mutex);

1856 1857
	blk_mq_add_queue_tag_set(set, q);

1858 1859
	blk_mq_map_swqueue(q);

1860
	return q;
1861 1862 1863

err_flush_rq:
	kfree(q->flush_rq);
1864 1865 1866
err_hw:
	blk_cleanup_queue(q);
err_hctxs:
1867
	kfree(map);
1868
	for (i = 0; i < set->nr_hw_queues; i++) {
1869 1870
		if (!hctxs[i])
			break;
1871
		free_cpumask_var(hctxs[i]->cpumask);
1872
		kfree(hctxs[i]);
1873
	}
1874
err_map:
1875 1876 1877 1878 1879 1880 1881 1882 1883
	kfree(hctxs);
err_percpu:
	free_percpu(ctx);
	return ERR_PTR(-ENOMEM);
}
EXPORT_SYMBOL(blk_mq_init_queue);

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
1884
	struct blk_mq_tag_set	*set = q->tag_set;
1885

1886 1887
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
1888 1889
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
1890

1891
	percpu_ref_exit(&q->mq_usage_counter);
1892

1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
	free_percpu(q->queue_ctx);
	kfree(q->queue_hw_ctx);
	kfree(q->mq_map);

	q->queue_ctx = NULL;
	q->queue_hw_ctx = NULL;
	q->mq_map = NULL;

	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);
}

/* Basically redo blk_mq_init_queue with queue frozen */
1907
static void blk_mq_queue_reinit(struct request_queue *q)
1908 1909 1910
{
	blk_mq_freeze_queue(q);

1911 1912
	blk_mq_sysfs_unregister(q);

1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);

	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

	blk_mq_map_swqueue(q);

1923 1924
	blk_mq_sysfs_register(q);

1925 1926 1927
	blk_mq_unfreeze_queue(q);
}

1928 1929
static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
				      unsigned long action, void *hcpu)
1930 1931 1932 1933
{
	struct request_queue *q;

	/*
1934 1935 1936 1937
	 * Before new mappings are established, hotadded cpu might already
	 * start handling requests. This doesn't break anything as we map
	 * offline CPUs to first hardware queue. We will re-init the queue
	 * below to get optimal settings.
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
	 */
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
	    action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
		return NOTIFY_OK;

	mutex_lock(&all_q_mutex);
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_queue_reinit(q);
	mutex_unlock(&all_q_mutex);
	return NOTIFY_OK;
}

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

	for (i = 0; i < set->nr_hw_queues; i++) {
		set->tags[i] = blk_mq_init_rq_map(set, i);
		if (!set->tags[i])
			goto out_unwind;
	}

	return 0;

out_unwind:
	while (--i >= 0)
		blk_mq_free_rq_map(set, set->tags[i], i);

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2004 2005 2006 2007 2008 2009
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2010 2011 2012 2013
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
	if (!set->nr_hw_queues)
		return -EINVAL;
2014
	if (!set->queue_depth)
2015 2016 2017 2018
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

2019
	if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
2020 2021
		return -EINVAL;

2022 2023 2024 2025 2026
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2027

M
Ming Lei 已提交
2028 2029
	set->tags = kmalloc_node(set->nr_hw_queues *
				 sizeof(struct blk_mq_tags *),
2030 2031
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2032
		return -ENOMEM;
2033

2034 2035
	if (blk_mq_alloc_rq_maps(set))
		goto enomem;
2036

2037 2038 2039
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2040
	return 0;
2041
enomem:
2042 2043
	kfree(set->tags);
	set->tags = NULL;
2044 2045 2046 2047 2048 2049 2050 2051
	return -ENOMEM;
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2052 2053 2054 2055 2056
	for (i = 0; i < set->nr_hw_queues; i++) {
		if (set->tags[i])
			blk_mq_free_rq_map(set, set->tags[i], i);
	}

M
Ming Lei 已提交
2057
	kfree(set->tags);
2058
	set->tags = NULL;
2059 2060 2061
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

	if (!set || nr > set->queue_depth)
		return -EINVAL;

	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
		ret = blk_mq_tag_update_depth(hctx->tags, nr);
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

	return ret;
}

2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2094 2095 2096 2097
static int __init blk_mq_init(void)
{
	blk_mq_cpu_init();

2098
	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2099 2100 2101 2102

	return 0;
}
subsys_initcall(blk_mq_init);