uprobes.c 39.6 KB
Newer Older
1
/*
2
 * User-space Probes (UProbes)
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
I
Ingo Molnar 已提交
18
 * Copyright (C) IBM Corporation, 2008-2012
19 20 21
 * Authors:
 *	Srikar Dronamraju
 *	Jim Keniston
I
Ingo Molnar 已提交
22
 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 24 25 26 27 28 29 30 31 32
 */

#include <linux/kernel.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>	/* read_mapping_page */
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/rmap.h>		/* anon_vma_prepare */
#include <linux/mmu_notifier.h>	/* set_pte_at_notify */
#include <linux/swap.h>		/* try_to_free_swap */
33 34
#include <linux/ptrace.h>	/* user_enable_single_step */
#include <linux/kdebug.h>	/* notifier mechanism */
35

36 37
#include <linux/uprobes.h>

38 39 40
#define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
#define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE

41
static struct rb_root uprobes_tree = RB_ROOT;
42

43 44 45
static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */

#define UPROBES_HASH_SZ	13
46

47 48
/* serialize (un)register */
static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
49 50

#define uprobes_hash(v)		(&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
51 52 53

/* serialize uprobe->pending_list */
static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
54
#define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
55 56

/*
57
 * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
58 59 60 61 62 63 64 65 66 67 68
 * events active at this time.  Probably a fine grained per inode count is
 * better?
 */
static atomic_t uprobe_events = ATOMIC_INIT(0);

/*
 * Maintain a temporary per vma info that can be used to search if a vma
 * has already been handled. This structure is introduced since extending
 * vm_area_struct wasnt recommended.
 */
struct vma_info {
69 70 71
	struct list_head	probe_list;
	struct mm_struct	*mm;
	loff_t			vaddr;
72 73
};

74 75 76 77 78 79 80 81 82 83 84 85
struct uprobe {
	struct rb_node		rb_node;	/* node in the rb tree */
	atomic_t		ref;
	struct rw_semaphore	consumer_rwsem;
	struct list_head	pending_list;
	struct uprobe_consumer	*consumers;
	struct inode		*inode;		/* Also hold a ref to inode */
	loff_t			offset;
	int			flags;
	struct arch_uprobe	arch;
};

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * valid_vma: Verify if the specified vma is an executable vma
 * Relax restrictions while unregistering: vm_flags might have
 * changed after breakpoint was inserted.
 *	- is_register: indicates if we are in register context.
 *	- Return 1 if the specified virtual address is in an
 *	  executable vma.
 */
static bool valid_vma(struct vm_area_struct *vma, bool is_register)
{
	if (!vma->vm_file)
		return false;

	if (!is_register)
		return true;

102
	if ((vma->vm_flags & (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)) == (VM_READ|VM_EXEC))
103 104 105 106 107 108 109 110 111 112 113
		return true;

	return false;
}

static loff_t vma_address(struct vm_area_struct *vma, loff_t offset)
{
	loff_t vaddr;

	vaddr = vma->vm_start + offset;
	vaddr -= vma->vm_pgoff << PAGE_SHIFT;
114

115 116 117 118 119 120 121 122 123 124 125 126 127
	return vaddr;
}

/**
 * __replace_page - replace page in vma by new page.
 * based on replace_page in mm/ksm.c
 *
 * @vma:      vma that holds the pte pointing to page
 * @page:     the cowed page we are replacing by kpage
 * @kpage:    the modified page we replace page by
 *
 * Returns 0 on success, -EFAULT on failure.
 */
128
static int __replace_page(struct vm_area_struct *vma, struct page *page, struct page *kpage)
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
{
	struct mm_struct *mm = vma->vm_mm;
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *ptep;
	spinlock_t *ptl;
	unsigned long addr;
	int err = -EFAULT;

	addr = page_address_in_vma(page, vma);
	if (addr == -EFAULT)
		goto out;

	pgd = pgd_offset(mm, addr);
	if (!pgd_present(*pgd))
		goto out;

	pud = pud_offset(pgd, addr);
	if (!pud_present(*pud))
		goto out;

	pmd = pmd_offset(pud, addr);
	if (!pmd_present(*pmd))
		goto out;

	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
	if (!ptep)
		goto out;

	get_page(kpage);
	page_add_new_anon_rmap(kpage, vma, addr);

162 163 164 165 166
	if (!PageAnon(page)) {
		dec_mm_counter(mm, MM_FILEPAGES);
		inc_mm_counter(mm, MM_ANONPAGES);
	}

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
	flush_cache_page(vma, addr, pte_pfn(*ptep));
	ptep_clear_flush(vma, addr, ptep);
	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));

	page_remove_rmap(page);
	if (!page_mapped(page))
		try_to_free_swap(page);
	put_page(page);
	pte_unmap_unlock(ptep, ptl);
	err = 0;

out:
	return err;
}

/**
183
 * is_swbp_insn - check if instruction is breakpoint instruction.
184
 * @insn: instruction to be checked.
185
 * Default implementation of is_swbp_insn
186 187
 * Returns true if @insn is a breakpoint instruction.
 */
188
bool __weak is_swbp_insn(uprobe_opcode_t *insn)
189
{
190
	return *insn == UPROBE_SWBP_INSN;
191 192 193 194 195 196 197 198 199 200 201 202 203 204
}

/*
 * NOTE:
 * Expect the breakpoint instruction to be the smallest size instruction for
 * the architecture. If an arch has variable length instruction and the
 * breakpoint instruction is not of the smallest length instruction
 * supported by that architecture then we need to modify read_opcode /
 * write_opcode accordingly. This would never be a problem for archs that
 * have fixed length instructions.
 */

/*
 * write_opcode - write the opcode at a given virtual address.
205
 * @auprobe: arch breakpointing information.
206 207 208 209 210 211 212 213 214 215
 * @mm: the probed process address space.
 * @vaddr: the virtual address to store the opcode.
 * @opcode: opcode to be written at @vaddr.
 *
 * Called with mm->mmap_sem held (for read and with a reference to
 * mm).
 *
 * For mm @mm, write the opcode at @vaddr.
 * Return 0 (success) or a negative errno.
 */
216
static int write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
217 218 219 220 221 222
			unsigned long vaddr, uprobe_opcode_t opcode)
{
	struct page *old_page, *new_page;
	struct address_space *mapping;
	void *vaddr_old, *vaddr_new;
	struct vm_area_struct *vma;
223
	struct uprobe *uprobe;
224 225 226 227 228 229 230
	loff_t addr;
	int ret;

	/* Read the page with vaddr into memory */
	ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &old_page, &vma);
	if (ret <= 0)
		return ret;
231

232 233 234 235 236 237 238 239
	ret = -EINVAL;

	/*
	 * We are interested in text pages only. Our pages of interest
	 * should be mapped for read and execute only. We desist from
	 * adding probes in write mapped pages since the breakpoints
	 * might end up in the file copy.
	 */
240
	if (!valid_vma(vma, is_swbp_insn(&opcode)))
241 242
		goto put_out;

243
	uprobe = container_of(auprobe, struct uprobe, arch);
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
	mapping = uprobe->inode->i_mapping;
	if (mapping != vma->vm_file->f_mapping)
		goto put_out;

	addr = vma_address(vma, uprobe->offset);
	if (vaddr != (unsigned long)addr)
		goto put_out;

	ret = -ENOMEM;
	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
	if (!new_page)
		goto put_out;

	__SetPageUptodate(new_page);

	/*
	 * lock page will serialize against do_wp_page()'s
	 * PageAnon() handling
	 */
	lock_page(old_page);
	/* copy the page now that we've got it stable */
	vaddr_old = kmap_atomic(old_page);
	vaddr_new = kmap_atomic(new_page);

	memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
269

270 271
	/* poke the new insn in, ASSUMES we don't cross page boundary */
	vaddr &= ~PAGE_MASK;
272 273
	BUG_ON(vaddr + UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
	memcpy(vaddr_new + vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290

	kunmap_atomic(vaddr_new);
	kunmap_atomic(vaddr_old);

	ret = anon_vma_prepare(vma);
	if (ret)
		goto unlock_out;

	lock_page(new_page);
	ret = __replace_page(vma, old_page, new_page);
	unlock_page(new_page);

unlock_out:
	unlock_page(old_page);
	page_cache_release(new_page);

put_out:
291 292
	put_page(old_page);

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
	return ret;
}

/**
 * read_opcode - read the opcode at a given virtual address.
 * @mm: the probed process address space.
 * @vaddr: the virtual address to read the opcode.
 * @opcode: location to store the read opcode.
 *
 * Called with mm->mmap_sem held (for read and with a reference to
 * mm.
 *
 * For mm @mm, read the opcode at @vaddr and store it in @opcode.
 * Return 0 (success) or a negative errno.
 */
308
static int read_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t *opcode)
309 310 311 312 313
{
	struct page *page;
	void *vaddr_new;
	int ret;

314
	ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
315 316 317 318 319 320
	if (ret <= 0)
		return ret;

	lock_page(page);
	vaddr_new = kmap_atomic(page);
	vaddr &= ~PAGE_MASK;
321
	memcpy(opcode, vaddr_new + vaddr, UPROBE_SWBP_INSN_SIZE);
322 323
	kunmap_atomic(vaddr_new);
	unlock_page(page);
324 325 326

	put_page(page);

327 328 329
	return 0;
}

330
static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
331 332
{
	uprobe_opcode_t opcode;
333
	int result;
334

335 336 337 338 339 340 341 342 343 344
	if (current->mm == mm) {
		pagefault_disable();
		result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
								sizeof(opcode));
		pagefault_enable();

		if (likely(result == 0))
			goto out;
	}

345
	result = read_opcode(mm, vaddr, &opcode);
346 347
	if (result)
		return result;
348
out:
349
	if (is_swbp_insn(&opcode))
350 351 352 353 354 355
		return 1;

	return 0;
}

/**
356
 * set_swbp - store breakpoint at a given address.
357
 * @auprobe: arch specific probepoint information.
358 359 360 361 362 363
 * @mm: the probed process address space.
 * @vaddr: the virtual address to insert the opcode.
 *
 * For mm @mm, store the breakpoint instruction at @vaddr.
 * Return 0 (success) or a negative errno.
 */
364
int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
365
{
366
	int result;
367

368
	result = is_swbp_at_addr(mm, vaddr);
369 370 371 372 373 374
	if (result == 1)
		return -EEXIST;

	if (result)
		return result;

375
	return write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
376 377 378 379 380
}

/**
 * set_orig_insn - Restore the original instruction.
 * @mm: the probed process address space.
381
 * @auprobe: arch specific probepoint information.
382 383 384 385 386 387
 * @vaddr: the virtual address to insert the opcode.
 * @verify: if true, verify existance of breakpoint instruction.
 *
 * For mm @mm, restore the original opcode (opcode) at @vaddr.
 * Return 0 (success) or a negative errno.
 */
388
int __weak
389
set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr, bool verify)
390 391
{
	if (verify) {
392
		int result;
393

394
		result = is_swbp_at_addr(mm, vaddr);
395 396 397 398 399 400
		if (!result)
			return -EINVAL;

		if (result != 1)
			return result;
	}
401
	return write_opcode(auprobe, mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
402 403 404 405 406 407
}

static int match_uprobe(struct uprobe *l, struct uprobe *r)
{
	if (l->inode < r->inode)
		return -1;
408

409 410 411
	if (l->inode > r->inode)
		return 1;

412 413 414 415 416
	if (l->offset < r->offset)
		return -1;

	if (l->offset > r->offset)
		return 1;
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434

	return 0;
}

static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
{
	struct uprobe u = { .inode = inode, .offset = offset };
	struct rb_node *n = uprobes_tree.rb_node;
	struct uprobe *uprobe;
	int match;

	while (n) {
		uprobe = rb_entry(n, struct uprobe, rb_node);
		match = match_uprobe(&u, uprobe);
		if (!match) {
			atomic_inc(&uprobe->ref);
			return uprobe;
		}
435

436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
		if (match < 0)
			n = n->rb_left;
		else
			n = n->rb_right;
	}
	return NULL;
}

/*
 * Find a uprobe corresponding to a given inode:offset
 * Acquires uprobes_treelock
 */
static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
{
	struct uprobe *uprobe;
	unsigned long flags;

	spin_lock_irqsave(&uprobes_treelock, flags);
	uprobe = __find_uprobe(inode, offset);
	spin_unlock_irqrestore(&uprobes_treelock, flags);
456

457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
	return uprobe;
}

static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
{
	struct rb_node **p = &uprobes_tree.rb_node;
	struct rb_node *parent = NULL;
	struct uprobe *u;
	int match;

	while (*p) {
		parent = *p;
		u = rb_entry(parent, struct uprobe, rb_node);
		match = match_uprobe(uprobe, u);
		if (!match) {
			atomic_inc(&u->ref);
			return u;
		}

		if (match < 0)
			p = &parent->rb_left;
		else
			p = &parent->rb_right;

	}
482

483 484 485 486 487
	u = NULL;
	rb_link_node(&uprobe->rb_node, parent, p);
	rb_insert_color(&uprobe->rb_node, &uprobes_tree);
	/* get access + creation ref */
	atomic_set(&uprobe->ref, 2);
488

489 490 491 492
	return u;
}

/*
493
 * Acquire uprobes_treelock.
494 495 496 497 498 499 500 501 502 503 504 505 506 507
 * Matching uprobe already exists in rbtree;
 *	increment (access refcount) and return the matching uprobe.
 *
 * No matching uprobe; insert the uprobe in rb_tree;
 *	get a double refcount (access + creation) and return NULL.
 */
static struct uprobe *insert_uprobe(struct uprobe *uprobe)
{
	unsigned long flags;
	struct uprobe *u;

	spin_lock_irqsave(&uprobes_treelock, flags);
	u = __insert_uprobe(uprobe);
	spin_unlock_irqrestore(&uprobes_treelock, flags);
508

509 510 511
	/* For now assume that the instruction need not be single-stepped */
	uprobe->flags |= UPROBE_SKIP_SSTEP;

512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
	return u;
}

static void put_uprobe(struct uprobe *uprobe)
{
	if (atomic_dec_and_test(&uprobe->ref))
		kfree(uprobe);
}

static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
{
	struct uprobe *uprobe, *cur_uprobe;

	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
	if (!uprobe)
		return NULL;

	uprobe->inode = igrab(inode);
	uprobe->offset = offset;
	init_rwsem(&uprobe->consumer_rwsem);
	INIT_LIST_HEAD(&uprobe->pending_list);

	/* add to uprobes_tree, sorted on inode:offset */
	cur_uprobe = insert_uprobe(uprobe);

	/* a uprobe exists for this inode:offset combination */
	if (cur_uprobe) {
		kfree(uprobe);
		uprobe = cur_uprobe;
		iput(inode);
542
	} else {
543
		atomic_inc(&uprobe_events);
544 545
	}

546 547 548
	return uprobe;
}

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
{
	struct uprobe_consumer *uc;

	if (!(uprobe->flags & UPROBE_RUN_HANDLER))
		return;

	down_read(&uprobe->consumer_rwsem);
	for (uc = uprobe->consumers; uc; uc = uc->next) {
		if (!uc->filter || uc->filter(uc, current))
			uc->handler(uc, regs);
	}
	up_read(&uprobe->consumer_rwsem);
}

564
/* Returns the previous consumer */
565
static struct uprobe_consumer *
566
consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
567 568
{
	down_write(&uprobe->consumer_rwsem);
569 570
	uc->next = uprobe->consumers;
	uprobe->consumers = uc;
571
	up_write(&uprobe->consumer_rwsem);
572

573
	return uc->next;
574 575 576
}

/*
577 578
 * For uprobe @uprobe, delete the consumer @uc.
 * Return true if the @uc is deleted successfully
579 580
 * or return false.
 */
581
static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
582 583 584 585 586 587
{
	struct uprobe_consumer **con;
	bool ret = false;

	down_write(&uprobe->consumer_rwsem);
	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
588 589
		if (*con == uc) {
			*con = uc->next;
590 591 592 593 594
			ret = true;
			break;
		}
	}
	up_write(&uprobe->consumer_rwsem);
595

596 597 598
	return ret;
}

599 600
static int
__copy_insn(struct address_space *mapping, struct vm_area_struct *vma, char *insn,
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
			unsigned long nbytes, unsigned long offset)
{
	struct file *filp = vma->vm_file;
	struct page *page;
	void *vaddr;
	unsigned long off1;
	unsigned long idx;

	if (!filp)
		return -EINVAL;

	idx = (unsigned long)(offset >> PAGE_CACHE_SHIFT);
	off1 = offset &= ~PAGE_MASK;

	/*
	 * Ensure that the page that has the original instruction is
	 * populated and in page-cache.
	 */
	page = read_mapping_page(mapping, idx, filp);
	if (IS_ERR(page))
		return PTR_ERR(page);

	vaddr = kmap_atomic(page);
	memcpy(insn, vaddr + off1, nbytes);
	kunmap_atomic(vaddr);
	page_cache_release(page);
627

628 629 630
	return 0;
}

631 632
static int
copy_insn(struct uprobe *uprobe, struct vm_area_struct *vma, unsigned long addr)
633 634 635
{
	struct address_space *mapping;
	unsigned long nbytes;
636
	int bytes;
637 638 639 640 641 642 643 644 645 646 647 648 649

	addr &= ~PAGE_MASK;
	nbytes = PAGE_SIZE - addr;
	mapping = uprobe->inode->i_mapping;

	/* Instruction at end of binary; copy only available bytes */
	if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
		bytes = uprobe->inode->i_size - uprobe->offset;
	else
		bytes = MAX_UINSN_BYTES;

	/* Instruction at the page-boundary; copy bytes in second page */
	if (nbytes < bytes) {
650
		if (__copy_insn(mapping, vma, uprobe->arch.insn + nbytes,
651 652 653 654 655
				bytes - nbytes, uprobe->offset + nbytes))
			return -ENOMEM;

		bytes = nbytes;
	}
656
	return __copy_insn(mapping, vma, uprobe->arch.insn, bytes, uprobe->offset);
657 658
}

659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
/*
 * How mm->uprobes_state.count gets updated
 * uprobe_mmap() increments the count if
 * 	- it successfully adds a breakpoint.
 * 	- it cannot add a breakpoint, but sees that there is a underlying
 * 	  breakpoint (via a is_swbp_at_addr()).
 *
 * uprobe_munmap() decrements the count if
 * 	- it sees a underlying breakpoint, (via is_swbp_at_addr)
 * 	  (Subsequent uprobe_unregister wouldnt find the breakpoint
 * 	  unless a uprobe_mmap kicks in, since the old vma would be
 * 	  dropped just after uprobe_munmap.)
 *
 * uprobe_register increments the count if:
 * 	- it successfully adds a breakpoint.
 *
 * uprobe_unregister decrements the count if:
 * 	- it sees a underlying breakpoint and removes successfully.
 * 	  (via is_swbp_at_addr)
 * 	  (Subsequent uprobe_munmap wouldnt find the breakpoint
 * 	  since there is no underlying breakpoint after the
 * 	  breakpoint removal.)
 */
682 683 684
static int
install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
			struct vm_area_struct *vma, loff_t vaddr)
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
{
	unsigned long addr;
	int ret;

	/*
	 * If probe is being deleted, unregister thread could be done with
	 * the vma-rmap-walk through. Adding a probe now can be fatal since
	 * nobody will be able to cleanup. Also we could be from fork or
	 * mremap path, where the probe might have already been inserted.
	 * Hence behave as if probe already existed.
	 */
	if (!uprobe->consumers)
		return -EEXIST;

	addr = (unsigned long)vaddr;
700

701
	if (!(uprobe->flags & UPROBE_COPY_INSN)) {
702 703 704 705
		ret = copy_insn(uprobe, vma, addr);
		if (ret)
			return ret;

706
		if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
707 708
			return -EEXIST;

709
		ret = arch_uprobe_analyze_insn(&uprobe->arch, mm);
710 711 712
		if (ret)
			return ret;

713
		uprobe->flags |= UPROBE_COPY_INSN;
714
	}
715 716 717 718 719 720 721 722 723 724

	/*
	 * Ideally, should be updating the probe count after the breakpoint
	 * has been successfully inserted. However a thread could hit the
	 * breakpoint we just inserted even before the probe count is
	 * incremented. If this is the first breakpoint placed, breakpoint
	 * notifier might ignore uprobes and pass the trap to the thread.
	 * Hence increment before and decrement on failure.
	 */
	atomic_inc(&mm->uprobes_state.count);
725
	ret = set_swbp(&uprobe->arch, mm, addr);
726 727
	if (ret)
		atomic_dec(&mm->uprobes_state.count);
728 729 730 731

	return ret;
}

732 733
static void
remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, loff_t vaddr)
734
{
735 736
	if (!set_orig_insn(&uprobe->arch, mm, (unsigned long)vaddr, true))
		atomic_dec(&mm->uprobes_state.count);
737 738
}

739
/*
740 741 742
 * There could be threads that have already hit the breakpoint. They
 * will recheck the current insn and restart if find_uprobe() fails.
 * See find_active_uprobe().
743
 */
744 745 746 747 748 749 750 751 752 753 754 755
static void delete_uprobe(struct uprobe *uprobe)
{
	unsigned long flags;

	spin_lock_irqsave(&uprobes_treelock, flags);
	rb_erase(&uprobe->rb_node, &uprobes_tree);
	spin_unlock_irqrestore(&uprobes_treelock, flags);
	iput(uprobe->inode);
	put_uprobe(uprobe);
	atomic_dec(&uprobe_events);
}

756 757 758
static struct vma_info *
__find_next_vma_info(struct address_space *mapping, struct list_head *head,
			struct vma_info *vi, loff_t offset, bool is_register)
759 760 761 762
{
	struct prio_tree_iter iter;
	struct vm_area_struct *vma;
	struct vma_info *tmpvi;
763
	unsigned long pgoff;
764
	int existing_vma;
765 766 767
	loff_t vaddr;

	pgoff = offset >> PAGE_SHIFT;
768 769 770 771 772 773 774

	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
		if (!valid_vma(vma, is_register))
			continue;

		existing_vma = 0;
		vaddr = vma_address(vma, offset);
775

776 777 778 779 780 781 782 783 784 785 786
		list_for_each_entry(tmpvi, head, probe_list) {
			if (tmpvi->mm == vma->vm_mm && tmpvi->vaddr == vaddr) {
				existing_vma = 1;
				break;
			}
		}

		/*
		 * Another vma needs a probe to be installed. However skip
		 * installing the probe if the vma is about to be unlinked.
		 */
787
		if (!existing_vma && atomic_inc_not_zero(&vma->vm_mm->mm_users)) {
788 789 790
			vi->mm = vma->vm_mm;
			vi->vaddr = vaddr;
			list_add(&vi->probe_list, head);
791

792 793 794
			return vi;
		}
	}
795

796 797 798 799 800 801 802
	return NULL;
}

/*
 * Iterate in the rmap prio tree  and find a vma where a probe has not
 * yet been inserted.
 */
803
static struct vma_info *
804 805
find_next_vma_info(struct address_space *mapping, struct list_head *head,
		loff_t offset, bool is_register)
806 807
{
	struct vma_info *vi, *retvi;
808

809 810 811 812 813
	vi = kzalloc(sizeof(struct vma_info), GFP_KERNEL);
	if (!vi)
		return ERR_PTR(-ENOMEM);

	mutex_lock(&mapping->i_mmap_mutex);
814
	retvi = __find_next_vma_info(mapping, head, vi, offset, is_register);
815 816 817 818
	mutex_unlock(&mapping->i_mmap_mutex);

	if (!retvi)
		kfree(vi);
819

820 821 822 823 824 825 826 827 828 829 830
	return retvi;
}

static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
{
	struct list_head try_list;
	struct vm_area_struct *vma;
	struct address_space *mapping;
	struct vma_info *vi, *tmpvi;
	struct mm_struct *mm;
	loff_t vaddr;
831
	int ret;
832 833 834

	mapping = uprobe->inode->i_mapping;
	INIT_LIST_HEAD(&try_list);
835 836 837 838

	ret = 0;

	for (;;) {
839
		vi = find_next_vma_info(mapping, &try_list, uprobe->offset, is_register);
840 841 842
		if (!vi)
			break;

843 844 845 846
		if (IS_ERR(vi)) {
			ret = PTR_ERR(vi);
			break;
		}
847

848
		mm = vi->mm;
849
		down_write(&mm->mmap_sem);
850 851 852 853
		vma = find_vma(mm, (unsigned long)vi->vaddr);
		if (!vma || !valid_vma(vma, is_register)) {
			list_del(&vi->probe_list);
			kfree(vi);
854
			up_write(&mm->mmap_sem);
855 856 857 858 859 860 861 862
			mmput(mm);
			continue;
		}
		vaddr = vma_address(vma, uprobe->offset);
		if (vma->vm_file->f_mapping->host != uprobe->inode ||
						vaddr != vi->vaddr) {
			list_del(&vi->probe_list);
			kfree(vi);
863
			up_write(&mm->mmap_sem);
864 865 866 867 868
			mmput(mm);
			continue;
		}

		if (is_register)
869
			ret = install_breakpoint(uprobe, mm, vma, vi->vaddr);
870
		else
871
			remove_breakpoint(uprobe, mm, vi->vaddr);
872

873
		up_write(&mm->mmap_sem);
874 875 876 877 878 879 880 881
		mmput(mm);
		if (is_register) {
			if (ret && ret == -EEXIST)
				ret = 0;
			if (ret)
				break;
		}
	}
882

883 884 885 886
	list_for_each_entry_safe(vi, tmpvi, &try_list, probe_list) {
		list_del(&vi->probe_list);
		kfree(vi);
	}
887

888 889 890
	return ret;
}

891
static int __uprobe_register(struct uprobe *uprobe)
892 893 894 895
{
	return register_for_each_vma(uprobe, true);
}

896
static void __uprobe_unregister(struct uprobe *uprobe)
897 898 899 900 901 902 903 904
{
	if (!register_for_each_vma(uprobe, false))
		delete_uprobe(uprobe);

	/* TODO : cant unregister? schedule a worker thread */
}

/*
905
 * uprobe_register - register a probe
906 907
 * @inode: the file in which the probe has to be placed.
 * @offset: offset from the start of the file.
908
 * @uc: information on howto handle the probe..
909
 *
910
 * Apart from the access refcount, uprobe_register() takes a creation
911 912
 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
 * inserted into the rbtree (i.e first consumer for a @inode:@offset
913
 * tuple).  Creation refcount stops uprobe_unregister from freeing the
914
 * @uprobe even before the register operation is complete. Creation
915
 * refcount is released when the last @uc for the @uprobe
916 917 918 919 920
 * unregisters.
 *
 * Return errno if it cannot successully install probes
 * else return 0 (success)
 */
921
int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
922 923
{
	struct uprobe *uprobe;
924
	int ret;
925

926
	if (!inode || !uc || uc->next)
927
		return -EINVAL;
928 929

	if (offset > i_size_read(inode))
930
		return -EINVAL;
931 932 933 934

	ret = 0;
	mutex_lock(uprobes_hash(inode));
	uprobe = alloc_uprobe(inode, offset);
935

936
	if (uprobe && !consumer_add(uprobe, uc)) {
937
		ret = __uprobe_register(uprobe);
938 939
		if (ret) {
			uprobe->consumers = NULL;
940 941
			__uprobe_unregister(uprobe);
		} else {
942
			uprobe->flags |= UPROBE_RUN_HANDLER;
943
		}
944 945 946 947 948 949 950 951 952
	}

	mutex_unlock(uprobes_hash(inode));
	put_uprobe(uprobe);

	return ret;
}

/*
953
 * uprobe_unregister - unregister a already registered probe.
954 955
 * @inode: the file in which the probe has to be removed.
 * @offset: offset from the start of the file.
956
 * @uc: identify which probe if multiple probes are colocated.
957
 */
958
void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
959
{
960
	struct uprobe *uprobe;
961

962
	if (!inode || !uc)
963 964 965 966 967 968 969 970
		return;

	uprobe = find_uprobe(inode, offset);
	if (!uprobe)
		return;

	mutex_lock(uprobes_hash(inode));

971
	if (consumer_del(uprobe, uc)) {
972 973
		if (!uprobe->consumers) {
			__uprobe_unregister(uprobe);
974
			uprobe->flags &= ~UPROBE_RUN_HANDLER;
975
		}
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
	}

	mutex_unlock(uprobes_hash(inode));
	if (uprobe)
		put_uprobe(uprobe);
}

/*
 * Of all the nodes that correspond to the given inode, return the node
 * with the least offset.
 */
static struct rb_node *find_least_offset_node(struct inode *inode)
{
	struct uprobe u = { .inode = inode, .offset = 0};
	struct rb_node *n = uprobes_tree.rb_node;
	struct rb_node *close_node = NULL;
	struct uprobe *uprobe;
	int match;

	while (n) {
		uprobe = rb_entry(n, struct uprobe, rb_node);
		match = match_uprobe(&u, uprobe);
998

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
		if (uprobe->inode == inode)
			close_node = n;

		if (!match)
			return close_node;

		if (match < 0)
			n = n->rb_left;
		else
			n = n->rb_right;
	}
1010

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
	return close_node;
}

/*
 * For a given inode, build a list of probes that need to be inserted.
 */
static void build_probe_list(struct inode *inode, struct list_head *head)
{
	struct uprobe *uprobe;
	unsigned long flags;
1021
	struct rb_node *n;
1022 1023

	spin_lock_irqsave(&uprobes_treelock, flags);
1024

1025
	n = find_least_offset_node(inode);
1026

1027 1028 1029 1030 1031 1032 1033 1034
	for (; n; n = rb_next(n)) {
		uprobe = rb_entry(n, struct uprobe, rb_node);
		if (uprobe->inode != inode)
			break;

		list_add(&uprobe->pending_list, head);
		atomic_inc(&uprobe->ref);
	}
1035

1036 1037 1038 1039 1040 1041 1042 1043 1044
	spin_unlock_irqrestore(&uprobes_treelock, flags);
}

/*
 * Called from mmap_region.
 * called with mm->mmap_sem acquired.
 *
 * Return -ve no if we fail to insert probes and we cannot
 * bail-out.
1045 1046
 * Return 0 otherwise. i.e:
 *
1047 1048 1049 1050
 *	- successful insertion of probes
 *	- (or) no possible probes to be inserted.
 *	- (or) insertion of probes failed but we can bail-out.
 */
1051
int uprobe_mmap(struct vm_area_struct *vma)
1052 1053 1054 1055
{
	struct list_head tmp_list;
	struct uprobe *uprobe, *u;
	struct inode *inode;
1056
	int ret, count;
1057 1058

	if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
1059
		return 0;
1060 1061 1062

	inode = vma->vm_file->f_mapping->host;
	if (!inode)
1063
		return 0;
1064 1065 1066 1067

	INIT_LIST_HEAD(&tmp_list);
	mutex_lock(uprobes_mmap_hash(inode));
	build_probe_list(inode, &tmp_list);
1068 1069

	ret = 0;
1070
	count = 0;
1071

1072 1073 1074 1075 1076 1077
	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
		loff_t vaddr;

		list_del(&uprobe->pending_list);
		if (!ret) {
			vaddr = vma_address(vma, uprobe->offset);
1078 1079 1080 1081

			if (vaddr < vma->vm_start || vaddr >= vma->vm_end) {
				put_uprobe(uprobe);
				continue;
1082
			}
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102

			ret = install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);

			/* Ignore double add: */
			if (ret == -EEXIST) {
				ret = 0;

				if (!is_swbp_at_addr(vma->vm_mm, vaddr))
					continue;

				/*
				 * Unable to insert a breakpoint, but
				 * breakpoint lies underneath. Increment the
				 * probe count.
				 */
				atomic_inc(&vma->vm_mm->uprobes_state.count);
			}

			if (!ret)
				count++;
1103 1104 1105 1106 1107 1108
		}
		put_uprobe(uprobe);
	}

	mutex_unlock(uprobes_mmap_hash(inode));

1109 1110 1111
	if (ret)
		atomic_sub(count, &vma->vm_mm->uprobes_state.count);

1112 1113 1114
	return ret;
}

1115 1116 1117
/*
 * Called in context of a munmap of a vma.
 */
1118
void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
{
	struct list_head tmp_list;
	struct uprobe *uprobe, *u;
	struct inode *inode;

	if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
		return;

	if (!atomic_read(&vma->vm_mm->uprobes_state.count))
		return;

	inode = vma->vm_file->f_mapping->host;
	if (!inode)
		return;

	INIT_LIST_HEAD(&tmp_list);
	mutex_lock(uprobes_mmap_hash(inode));
	build_probe_list(inode, &tmp_list);

	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
		loff_t vaddr;

		list_del(&uprobe->pending_list);
		vaddr = vma_address(vma, uprobe->offset);

1144
		if (vaddr >= start && vaddr < end) {
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
			/*
			 * An unregister could have removed the probe before
			 * unmap. So check before we decrement the count.
			 */
			if (is_swbp_at_addr(vma->vm_mm, vaddr) == 1)
				atomic_dec(&vma->vm_mm->uprobes_state.count);
		}
		put_uprobe(uprobe);
	}
	mutex_unlock(uprobes_mmap_hash(inode));
}

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
/* Slot allocation for XOL */
static int xol_add_vma(struct xol_area *area)
{
	struct mm_struct *mm;
	int ret;

	area->page = alloc_page(GFP_HIGHUSER);
	if (!area->page)
		return -ENOMEM;

	ret = -EALREADY;
	mm = current->mm;

	down_write(&mm->mmap_sem);
	if (mm->uprobes_state.xol_area)
		goto fail;

	ret = -ENOMEM;

	/* Try to map as high as possible, this is only a hint. */
	area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
	if (area->vaddr & ~PAGE_MASK) {
		ret = area->vaddr;
		goto fail;
	}

	ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
	if (ret)
		goto fail;

	smp_wmb();	/* pairs with get_xol_area() */
	mm->uprobes_state.xol_area = area;
	ret = 0;

fail:
	up_write(&mm->mmap_sem);
	if (ret)
		__free_page(area->page);

	return ret;
}

static struct xol_area *get_xol_area(struct mm_struct *mm)
{
	struct xol_area *area;

	area = mm->uprobes_state.xol_area;
	smp_read_barrier_depends();	/* pairs with wmb in xol_add_vma() */

	return area;
}

/*
 * xol_alloc_area - Allocate process's xol_area.
 * This area will be used for storing instructions for execution out of
 * line.
 *
 * Returns the allocated area or NULL.
 */
static struct xol_area *xol_alloc_area(void)
{
	struct xol_area *area;

	area = kzalloc(sizeof(*area), GFP_KERNEL);
	if (unlikely(!area))
		return NULL;

	area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);

	if (!area->bitmap)
		goto fail;

	init_waitqueue_head(&area->wq);
	if (!xol_add_vma(area))
		return area;

fail:
	kfree(area->bitmap);
	kfree(area);

	return get_xol_area(current->mm);
}

/*
 * uprobe_clear_state - Free the area allocated for slots.
 */
void uprobe_clear_state(struct mm_struct *mm)
{
	struct xol_area *area = mm->uprobes_state.xol_area;

	if (!area)
		return;

	put_page(area->page);
	kfree(area->bitmap);
	kfree(area);
}

/*
 * uprobe_reset_state - Free the area allocated for slots.
 */
void uprobe_reset_state(struct mm_struct *mm)
{
	mm->uprobes_state.xol_area = NULL;
1262
	atomic_set(&mm->uprobes_state.count, 0);
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
}

/*
 *  - search for a free slot.
 */
static unsigned long xol_take_insn_slot(struct xol_area *area)
{
	unsigned long slot_addr;
	int slot_nr;

	do {
		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
		if (slot_nr < UINSNS_PER_PAGE) {
			if (!test_and_set_bit(slot_nr, area->bitmap))
				break;

			slot_nr = UINSNS_PER_PAGE;
			continue;
		}
		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
	} while (slot_nr >= UINSNS_PER_PAGE);

	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
	atomic_inc(&area->slot_count);

	return slot_addr;
}

/*
 * xol_get_insn_slot - If was not allocated a slot, then
 * allocate a slot.
 * Returns the allocated slot address or 0.
 */
static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
{
	struct xol_area *area;
	unsigned long offset;
	void *vaddr;

	area = get_xol_area(current->mm);
	if (!area) {
		area = xol_alloc_area();
		if (!area)
			return 0;
	}
	current->utask->xol_vaddr = xol_take_insn_slot(area);

	/*
	 * Initialize the slot if xol_vaddr points to valid
	 * instruction slot.
	 */
	if (unlikely(!current->utask->xol_vaddr))
		return 0;

	current->utask->vaddr = slot_addr;
	offset = current->utask->xol_vaddr & ~PAGE_MASK;
	vaddr = kmap_atomic(area->page);
	memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
	kunmap_atomic(vaddr);

	return current->utask->xol_vaddr;
}

/*
 * xol_free_insn_slot - If slot was earlier allocated by
 * @xol_get_insn_slot(), make the slot available for
 * subsequent requests.
 */
static void xol_free_insn_slot(struct task_struct *tsk)
{
	struct xol_area *area;
	unsigned long vma_end;
	unsigned long slot_addr;

	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
		return;

	slot_addr = tsk->utask->xol_vaddr;

	if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
		return;

	area = tsk->mm->uprobes_state.xol_area;
	vma_end = area->vaddr + PAGE_SIZE;
	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
		unsigned long offset;
		int slot_nr;

		offset = slot_addr - area->vaddr;
		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
		if (slot_nr >= UINSNS_PER_PAGE)
			return;

		clear_bit(slot_nr, area->bitmap);
		atomic_dec(&area->slot_count);
		if (waitqueue_active(&area->wq))
			wake_up(&area->wq);

		tsk->utask->xol_vaddr = 0;
	}
}

1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
/**
 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
 * @regs: Reflects the saved state of the task after it has hit a breakpoint
 * instruction.
 * Return the address of the breakpoint instruction.
 */
unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
{
	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
}

/*
 * Called with no locks held.
 * Called in context of a exiting or a exec-ing thread.
 */
void uprobe_free_utask(struct task_struct *t)
{
	struct uprobe_task *utask = t->utask;

	if (!utask)
		return;

	if (utask->active_uprobe)
		put_uprobe(utask->active_uprobe);

1390
	xol_free_insn_slot(t);
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
	kfree(utask);
	t->utask = NULL;
}

/*
 * Called in context of a new clone/fork from copy_process.
 */
void uprobe_copy_process(struct task_struct *t)
{
	t->utask = NULL;
}

/*
 * Allocate a uprobe_task object for the task.
 * Called when the thread hits a breakpoint for the first time.
 *
 * Returns:
 * - pointer to new uprobe_task on success
 * - NULL otherwise
 */
static struct uprobe_task *add_utask(void)
{
	struct uprobe_task *utask;

	utask = kzalloc(sizeof *utask, GFP_KERNEL);
	if (unlikely(!utask))
		return NULL;

	utask->active_uprobe = NULL;
	current->utask = utask;
	return utask;
}

/* Prepare to single-step probed instruction out of line. */
static int
pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
{
1428 1429 1430
	if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
		return 0;

1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
	return -EFAULT;
}

/*
 * If we are singlestepping, then ensure this thread is not connected to
 * non-fatal signals until completion of singlestep.  When xol insn itself
 * triggers the signal,  restart the original insn even if the task is
 * already SIGKILL'ed (since coredump should report the correct ip).  This
 * is even more important if the task has a handler for SIGSEGV/etc, The
 * _same_ instruction should be repeated again after return from the signal
 * handler, and SSTEP can never finish in this case.
 */
bool uprobe_deny_signal(void)
{
	struct task_struct *t = current;
	struct uprobe_task *utask = t->utask;

	if (likely(!utask || !utask->active_uprobe))
		return false;

	WARN_ON_ONCE(utask->state != UTASK_SSTEP);

	if (signal_pending(t)) {
		spin_lock_irq(&t->sighand->siglock);
		clear_tsk_thread_flag(t, TIF_SIGPENDING);
		spin_unlock_irq(&t->sighand->siglock);

		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
			utask->state = UTASK_SSTEP_TRAPPED;
			set_tsk_thread_flag(t, TIF_UPROBE);
			set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
		}
	}

	return true;
}

/*
 * Avoid singlestepping the original instruction if the original instruction
 * is a NOP or can be emulated.
 */
static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
{
	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
		return true;

	uprobe->flags &= ~UPROBE_SKIP_SSTEP;
	return false;
}

1481
static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1482
{
1483 1484
	struct mm_struct *mm = current->mm;
	struct uprobe *uprobe = NULL;
1485 1486 1487 1488
	struct vm_area_struct *vma;

	down_read(&mm->mmap_sem);
	vma = find_vma(mm, bp_vaddr);
1489 1490 1491 1492
	if (vma && vma->vm_start <= bp_vaddr) {
		if (valid_vma(vma, false)) {
			struct inode *inode;
			loff_t offset;
1493

1494 1495 1496 1497 1498
			inode = vma->vm_file->f_mapping->host;
			offset = bp_vaddr - vma->vm_start;
			offset += (vma->vm_pgoff << PAGE_SHIFT);
			uprobe = find_uprobe(inode, offset);
		}
1499 1500 1501 1502 1503

		if (!uprobe)
			*is_swbp = is_swbp_at_addr(mm, bp_vaddr);
	} else {
		*is_swbp = -EFAULT;
1504 1505 1506
	}
	up_read(&mm->mmap_sem);

1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
	return uprobe;
}

/*
 * Run handler and ask thread to singlestep.
 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
 */
static void handle_swbp(struct pt_regs *regs)
{
	struct uprobe_task *utask;
	struct uprobe *uprobe;
	unsigned long bp_vaddr;
1519
	int uninitialized_var(is_swbp);
1520 1521

	bp_vaddr = uprobe_get_swbp_addr(regs);
1522
	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1523

1524
	if (!uprobe) {
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
		if (is_swbp > 0) {
			/* No matching uprobe; signal SIGTRAP. */
			send_sig(SIGTRAP, current, 0);
		} else {
			/*
			 * Either we raced with uprobe_unregister() or we can't
			 * access this memory. The latter is only possible if
			 * another thread plays with our ->mm. In both cases
			 * we can simply restart. If this vma was unmapped we
			 * can pretend this insn was not executed yet and get
			 * the (correct) SIGSEGV after restart.
			 */
			instruction_pointer_set(regs, bp_vaddr);
		}
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
		return;
	}

	utask = current->utask;
	if (!utask) {
		utask = add_utask();
		/* Cannot allocate; re-execute the instruction. */
		if (!utask)
			goto cleanup_ret;
	}
	utask->active_uprobe = uprobe;
	handler_chain(uprobe, regs);
	if (uprobe->flags & UPROBE_SKIP_SSTEP && can_skip_sstep(uprobe, regs))
		goto cleanup_ret;

	utask->state = UTASK_SSTEP;
	if (!pre_ssout(uprobe, regs, bp_vaddr)) {
		user_enable_single_step(current);
		return;
	}

cleanup_ret:
	if (utask) {
		utask->active_uprobe = NULL;
		utask->state = UTASK_RUNNING;
	}
	if (uprobe) {
		if (!(uprobe->flags & UPROBE_SKIP_SSTEP))

			/*
			 * cannot singlestep; cannot skip instruction;
			 * re-execute the instruction.
			 */
			instruction_pointer_set(regs, bp_vaddr);

		put_uprobe(uprobe);
	}
}

/*
 * Perform required fix-ups and disable singlestep.
 * Allow pending signals to take effect.
 */
static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
{
	struct uprobe *uprobe;

	uprobe = utask->active_uprobe;
	if (utask->state == UTASK_SSTEP_ACK)
		arch_uprobe_post_xol(&uprobe->arch, regs);
	else if (utask->state == UTASK_SSTEP_TRAPPED)
		arch_uprobe_abort_xol(&uprobe->arch, regs);
	else
		WARN_ON_ONCE(1);

	put_uprobe(uprobe);
	utask->active_uprobe = NULL;
	utask->state = UTASK_RUNNING;
	user_disable_single_step(current);
1598
	xol_free_insn_slot(current);
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635

	spin_lock_irq(&current->sighand->siglock);
	recalc_sigpending(); /* see uprobe_deny_signal() */
	spin_unlock_irq(&current->sighand->siglock);
}

/*
 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag.  (and on
 * subsequent probe hits on the thread sets the state to UTASK_BP_HIT) and
 * allows the thread to return from interrupt.
 *
 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag and
 * also sets the state to UTASK_SSTEP_ACK and allows the thread to return from
 * interrupt.
 *
 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
 * uprobe_notify_resume().
 */
void uprobe_notify_resume(struct pt_regs *regs)
{
	struct uprobe_task *utask;

	utask = current->utask;
	if (!utask || utask->state == UTASK_BP_HIT)
		handle_swbp(regs);
	else
		handle_singlestep(utask, regs);
}

/*
 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
 */
int uprobe_pre_sstep_notifier(struct pt_regs *regs)
{
	struct uprobe_task *utask;

1636 1637
	if (!current->mm || !atomic_read(&current->mm->uprobes_state.count))
		/* task is currently not uprobed */
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
		return 0;

	utask = current->utask;
	if (utask)
		utask->state = UTASK_BP_HIT;

	set_thread_flag(TIF_UPROBE);

	return 1;
}

/*
 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
 */
int uprobe_post_sstep_notifier(struct pt_regs *regs)
{
	struct uprobe_task *utask = current->utask;

	if (!current->mm || !utask || !utask->active_uprobe)
		/* task is currently not uprobed */
		return 0;

	utask->state = UTASK_SSTEP_ACK;
	set_thread_flag(TIF_UPROBE);
	return 1;
}

static struct notifier_block uprobe_exception_nb = {
	.notifier_call		= arch_uprobe_exception_notify,
	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
};

1671 1672 1673 1674 1675 1676 1677 1678
static int __init init_uprobes(void)
{
	int i;

	for (i = 0; i < UPROBES_HASH_SZ; i++) {
		mutex_init(&uprobes_mutex[i]);
		mutex_init(&uprobes_mmap_mutex[i]);
	}
1679 1680

	return register_die_notifier(&uprobe_exception_nb);
1681
}
1682
module_init(init_uprobes);
1683 1684 1685 1686 1687

static void __exit exit_uprobes(void)
{
}
module_exit(exit_uprobes);