sched.c 24.5 KB
Newer Older
1 2 3 4 5
/* sched.c - SPU scheduler.
 *
 * Copyright (C) IBM 2005
 * Author: Mark Nutter <mnutter@us.ibm.com>
 *
6
 * 2006-03-31	NUMA domains added.
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

23 24
#undef DEBUG

25 26 27 28 29 30 31 32 33 34
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/completion.h>
#include <linux/vmalloc.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
35 36
#include <linux/numa.h>
#include <linux/mutex.h>
37
#include <linux/notifier.h>
38
#include <linux/kthread.h>
39 40 41
#include <linux/pid_namespace.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
42 43 44 45 46

#include <asm/io.h>
#include <asm/mmu_context.h>
#include <asm/spu.h>
#include <asm/spu_csa.h>
47
#include <asm/spu_priv1.h>
48 49 50
#include "spufs.h"

struct spu_prio_array {
51
	DECLARE_BITMAP(bitmap, MAX_PRIO);
52 53
	struct list_head runq[MAX_PRIO];
	spinlock_t runq_lock;
54
	int nr_waiting;
55 56
};

57
static unsigned long spu_avenrun[3];
58
static struct spu_prio_array *spu_prio;
59 60
static struct task_struct *spusched_task;
static struct timer_list spusched_timer;
61

62 63 64 65 66 67 68 69 70 71 72 73 74 75
/*
 * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
 */
#define NORMAL_PRIO		120

/*
 * Frequency of the spu scheduler tick.  By default we do one SPU scheduler
 * tick for every 10 CPU scheduler ticks.
 */
#define SPUSCHED_TICK		(10)

/*
 * These are the 'tuning knobs' of the scheduler:
 *
76 77
 * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is
 * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs.
78
 */
79 80
#define MIN_SPU_TIMESLICE	max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
#define DEF_SPU_TIMESLICE	(100 * HZ / (1000 * SPUSCHED_TICK))
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

#define MAX_USER_PRIO		(MAX_PRIO - MAX_RT_PRIO)
#define SCALE_PRIO(x, prio) \
	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE)

/*
 * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
 * [800ms ... 100ms ... 5ms]
 *
 * The higher a thread's priority, the bigger timeslices
 * it gets during one round of execution. But even the lowest
 * priority thread gets MIN_TIMESLICE worth of execution time.
 */
void spu_set_timeslice(struct spu_context *ctx)
{
	if (ctx->prio < NORMAL_PRIO)
		ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
	else
		ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio);
}

102 103 104 105 106
/*
 * Update scheduling information from the owning thread.
 */
void __spu_update_sched_info(struct spu_context *ctx)
{
107 108 109 110 111 112 113
	/*
	 * 32-Bit assignment are atomic on powerpc, and we don't care about
	 * memory ordering here because retriving the controlling thread is
	 * per defintion racy.
	 */
	ctx->tid = current->pid;

114 115 116 117 118 119 120 121 122 123 124
	/*
	 * We do our own priority calculations, so we normally want
	 * ->static_prio to start with. Unfortunately thies field
	 * contains junk for threads with a realtime scheduling
	 * policy so we have to look at ->prio in this case.
	 */
	if (rt_prio(current->prio))
		ctx->prio = current->prio;
	else
		ctx->prio = current->static_prio;
	ctx->policy = current->policy;
125 126

	/*
127
	 * A lot of places that don't hold list_mutex poke into
128 129 130 131 132 133 134
	 * cpus_allowed, including grab_runnable_context which
	 * already holds the runq_lock.  So abuse runq_lock
	 * to protect this field aswell.
	 */
	spin_lock(&spu_prio->runq_lock);
	ctx->cpus_allowed = current->cpus_allowed;
	spin_unlock(&spu_prio->runq_lock);
135 136 137 138 139 140
}

void spu_update_sched_info(struct spu_context *ctx)
{
	int node = ctx->spu->node;

141
	mutex_lock(&cbe_spu_info[node].list_mutex);
142
	__spu_update_sched_info(ctx);
143
	mutex_unlock(&cbe_spu_info[node].list_mutex);
144 145
}

146
static int __node_allowed(struct spu_context *ctx, int node)
147
{
148 149
	if (nr_cpus_node(node)) {
		cpumask_t mask = node_to_cpumask(node);
150

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
		if (cpus_intersects(mask, ctx->cpus_allowed))
			return 1;
	}

	return 0;
}

static int node_allowed(struct spu_context *ctx, int node)
{
	int rval;

	spin_lock(&spu_prio->runq_lock);
	rval = __node_allowed(ctx, node);
	spin_unlock(&spu_prio->runq_lock);

	return rval;
167 168
}

169 170
static BLOCKING_NOTIFIER_HEAD(spu_switch_notifier);

171
void spu_switch_notify(struct spu *spu, struct spu_context *ctx)
172 173 174 175 176
{
	blocking_notifier_call_chain(&spu_switch_notifier,
			    ctx ? ctx->object_id : 0, spu);
}

177 178 179 180 181 182 183 184 185 186 187 188
static void notify_spus_active(void)
{
	int node;

	/*
	 * Wake up the active spu_contexts.
	 *
	 * When the awakened processes see their "notify_active" flag is set,
	 * they will call spu_switch_notify();
	 */
	for_each_online_node(node) {
		struct spu *spu;
189 190 191 192 193 194 195 196 197 198

		mutex_lock(&cbe_spu_info[node].list_mutex);
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
			if (spu->alloc_state != SPU_FREE) {
				struct spu_context *ctx = spu->ctx;
				set_bit(SPU_SCHED_NOTIFY_ACTIVE,
					&ctx->sched_flags);
				mb();
				wake_up_all(&ctx->stop_wq);
			}
199
		}
200
		mutex_unlock(&cbe_spu_info[node].list_mutex);
201 202 203
	}
}

204 205
int spu_switch_event_register(struct notifier_block * n)
{
206 207 208 209 210
	int ret;
	ret = blocking_notifier_chain_register(&spu_switch_notifier, n);
	if (!ret)
		notify_spus_active();
	return ret;
211
}
212
EXPORT_SYMBOL_GPL(spu_switch_event_register);
213 214 215 216 217

int spu_switch_event_unregister(struct notifier_block * n)
{
	return blocking_notifier_chain_unregister(&spu_switch_notifier, n);
}
218
EXPORT_SYMBOL_GPL(spu_switch_event_unregister);
219

220 221 222 223 224 225
/**
 * spu_bind_context - bind spu context to physical spu
 * @spu:	physical spu to bind to
 * @ctx:	context to bind
 */
static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
226
{
227 228
	pr_debug("%s: pid=%d SPU=%d NODE=%d\n", __FUNCTION__, current->pid,
		 spu->number, spu->node);
229
	spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
230

231 232
	if (ctx->flags & SPU_CREATE_NOSCHED)
		atomic_inc(&cbe_spu_info[spu->node].reserved_spus);
233 234
	if (!list_empty(&ctx->aff_list))
		atomic_inc(&ctx->gang->aff_sched_count);
235

236 237 238
	ctx->stats.slb_flt_base = spu->stats.slb_flt;
	ctx->stats.class2_intr_base = spu->stats.class2_intr;

239 240 241 242 243
	spu->ctx = ctx;
	spu->flags = 0;
	ctx->spu = spu;
	ctx->ops = &spu_hw_ops;
	spu->pid = current->pid;
244
	spu->tgid = current->tgid;
245
	spu_associate_mm(spu, ctx->owner);
246 247
	spu->ibox_callback = spufs_ibox_callback;
	spu->wbox_callback = spufs_wbox_callback;
248
	spu->stop_callback = spufs_stop_callback;
249
	spu->mfc_callback = spufs_mfc_callback;
250
	spu->dma_callback = spufs_dma_callback;
251
	mb();
252
	spu_unmap_mappings(ctx);
253
	spu_restore(&ctx->csa, spu);
254
	spu->timestamp = jiffies;
255
	spu_cpu_affinity_set(spu, raw_smp_processor_id());
256
	spu_switch_notify(spu, ctx);
257
	ctx->state = SPU_STATE_RUNNABLE;
258 259

	spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
260 261
}

262
/*
263
 * Must be used with the list_mutex held.
264 265 266
 */
static inline int sched_spu(struct spu *spu)
{
267 268
	BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex));

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
	return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED));
}

static void aff_merge_remaining_ctxs(struct spu_gang *gang)
{
	struct spu_context *ctx;

	list_for_each_entry(ctx, &gang->aff_list_head, aff_list) {
		if (list_empty(&ctx->aff_list))
			list_add(&ctx->aff_list, &gang->aff_list_head);
	}
	gang->aff_flags |= AFF_MERGED;
}

static void aff_set_offsets(struct spu_gang *gang)
{
	struct spu_context *ctx;
	int offset;

	offset = -1;
	list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
								aff_list) {
		if (&ctx->aff_list == &gang->aff_list_head)
			break;
		ctx->aff_offset = offset--;
	}

	offset = 0;
	list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) {
		if (&ctx->aff_list == &gang->aff_list_head)
			break;
		ctx->aff_offset = offset++;
	}

	gang->aff_flags |= AFF_OFFSETS_SET;
}

static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff,
		 int group_size, int lowest_offset)
{
	struct spu *spu;
	int node, n;

	/*
	 * TODO: A better algorithm could be used to find a good spu to be
	 *       used as reference location for the ctxs chain.
	 */
	node = cpu_to_node(raw_smp_processor_id());
	for (n = 0; n < MAX_NUMNODES; n++, node++) {
		node = (node < MAX_NUMNODES) ? node : 0;
		if (!node_allowed(ctx, node))
			continue;
321
		mutex_lock(&cbe_spu_info[node].list_mutex);
322 323
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
			if ((!mem_aff || spu->has_mem_affinity) &&
324 325
							sched_spu(spu)) {
				mutex_unlock(&cbe_spu_info[node].list_mutex);
326
				return spu;
327
			}
328
		}
329
		mutex_unlock(&cbe_spu_info[node].list_mutex);
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
	}
	return NULL;
}

static void aff_set_ref_point_location(struct spu_gang *gang)
{
	int mem_aff, gs, lowest_offset;
	struct spu_context *ctx;
	struct spu *tmp;

	mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM;
	lowest_offset = 0;
	gs = 0;

	list_for_each_entry(tmp, &gang->aff_list_head, aff_list)
		gs++;

	list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
								aff_list) {
		if (&ctx->aff_list == &gang->aff_list_head)
			break;
		lowest_offset = ctx->aff_offset;
	}

	gang->aff_ref_spu = aff_ref_location(ctx, mem_aff, gs, lowest_offset);
}

357
static struct spu *ctx_location(struct spu *ref, int offset, int node)
358 359 360 361 362 363
{
	struct spu *spu;

	spu = NULL;
	if (offset >= 0) {
		list_for_each_entry(spu, ref->aff_list.prev, aff_list) {
364
			BUG_ON(spu->node != node);
365 366 367 368 369 370 371
			if (offset == 0)
				break;
			if (sched_spu(spu))
				offset--;
		}
	} else {
		list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) {
372
			BUG_ON(spu->node != node);
373 374 375 376 377 378
			if (offset == 0)
				break;
			if (sched_spu(spu))
				offset++;
		}
	}
379

380 381 382 383 384 385 386
	return spu;
}

/*
 * affinity_check is called each time a context is going to be scheduled.
 * It returns the spu ptr on which the context must run.
 */
387
static int has_affinity(struct spu_context *ctx)
388
{
389
	struct spu_gang *gang = ctx->gang;
390 391

	if (list_empty(&ctx->aff_list))
392 393
		return 0;

394 395 396 397 398 399 400 401 402
	mutex_lock(&gang->aff_mutex);
	if (!gang->aff_ref_spu) {
		if (!(gang->aff_flags & AFF_MERGED))
			aff_merge_remaining_ctxs(gang);
		if (!(gang->aff_flags & AFF_OFFSETS_SET))
			aff_set_offsets(gang);
		aff_set_ref_point_location(gang);
	}
	mutex_unlock(&gang->aff_mutex);
403 404

	return gang->aff_ref_spu != NULL;
405 406
}

407 408 409 410 411
/**
 * spu_unbind_context - unbind spu context from physical spu
 * @spu:	physical spu to unbind from
 * @ctx:	context to unbind
 */
412
static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
413
{
414 415
	pr_debug("%s: unbind pid=%d SPU=%d NODE=%d\n", __FUNCTION__,
		 spu->pid, spu->number, spu->node);
416
	spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
417

418 419
 	if (spu->ctx->flags & SPU_CREATE_NOSCHED)
		atomic_dec(&cbe_spu_info[spu->node].reserved_spus);
420 421 422
 	if (!list_empty(&ctx->aff_list))
 		if (atomic_dec_and_test(&ctx->gang->aff_sched_count))
 			ctx->gang->aff_ref_spu = NULL;
423
	spu_switch_notify(spu, NULL);
424
	spu_unmap_mappings(ctx);
425
	spu_save(&ctx->csa, spu);
426
	spu->timestamp = jiffies;
427 428 429
	ctx->state = SPU_STATE_SAVED;
	spu->ibox_callback = NULL;
	spu->wbox_callback = NULL;
430
	spu->stop_callback = NULL;
431
	spu->mfc_callback = NULL;
432
	spu->dma_callback = NULL;
433
	spu_associate_mm(spu, NULL);
434
	spu->pid = 0;
435
	spu->tgid = 0;
436
	ctx->ops = &spu_backing_ops;
437
	spu->flags = 0;
438
	spu->ctx = NULL;
439 440 441 442 443

	ctx->stats.slb_flt +=
		(spu->stats.slb_flt - ctx->stats.slb_flt_base);
	ctx->stats.class2_intr +=
		(spu->stats.class2_intr - ctx->stats.class2_intr_base);
444 445 446 447

	/* This maps the underlying spu state to idle */
	spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
	ctx->spu = NULL;
448 449
}

450 451 452 453
/**
 * spu_add_to_rq - add a context to the runqueue
 * @ctx:       context to add
 */
454
static void __spu_add_to_rq(struct spu_context *ctx)
455
{
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
	/*
	 * Unfortunately this code path can be called from multiple threads
	 * on behalf of a single context due to the way the problem state
	 * mmap support works.
	 *
	 * Fortunately we need to wake up all these threads at the same time
	 * and can simply skip the runqueue addition for every but the first
	 * thread getting into this codepath.
	 *
	 * It's still quite hacky, and long-term we should proxy all other
	 * threads through the owner thread so that spu_run is in control
	 * of all the scheduling activity for a given context.
	 */
	if (list_empty(&ctx->rq)) {
		list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]);
		set_bit(ctx->prio, spu_prio->bitmap);
		if (!spu_prio->nr_waiting++)
			__mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
	}
475
}
476

477
static void __spu_del_from_rq(struct spu_context *ctx)
478
{
479 480
	int prio = ctx->prio;

481
	if (!list_empty(&ctx->rq)) {
482 483
		if (!--spu_prio->nr_waiting)
			del_timer(&spusched_timer);
484
		list_del_init(&ctx->rq);
485 486 487

		if (list_empty(&spu_prio->runq[prio]))
			clear_bit(prio, spu_prio->bitmap);
488
	}
489
}
490

491
static void spu_prio_wait(struct spu_context *ctx)
492
{
493
	DEFINE_WAIT(wait);
494

495
	spin_lock(&spu_prio->runq_lock);
496
	prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
497
	if (!signal_pending(current)) {
498 499
		__spu_add_to_rq(ctx);
		spin_unlock(&spu_prio->runq_lock);
500
		mutex_unlock(&ctx->state_mutex);
501
		schedule();
502
		mutex_lock(&ctx->state_mutex);
503 504
		spin_lock(&spu_prio->runq_lock);
		__spu_del_from_rq(ctx);
505
	}
506
	spin_unlock(&spu_prio->runq_lock);
507 508
	__set_current_state(TASK_RUNNING);
	remove_wait_queue(&ctx->stop_wq, &wait);
509 510
}

511
static struct spu *spu_get_idle(struct spu_context *ctx)
512
{
513 514 515 516 517
	struct spu *spu;
	int node, n;

	if (has_affinity(ctx)) {
		node = ctx->gang->aff_ref_spu->node;
518

519 520 521 522 523 524 525
		mutex_lock(&cbe_spu_info[node].list_mutex);
		spu = ctx_location(ctx->gang->aff_ref_spu, ctx->aff_offset, node);
		if (spu && spu->alloc_state == SPU_FREE)
			goto found;
		mutex_unlock(&cbe_spu_info[node].list_mutex);
		return NULL;
	}
526

527
	node = cpu_to_node(raw_smp_processor_id());
528 529
	for (n = 0; n < MAX_NUMNODES; n++, node++) {
		node = (node < MAX_NUMNODES) ? node : 0;
530
		if (!node_allowed(ctx, node))
531
			continue;
532 533 534 535 536 537 538

		mutex_lock(&cbe_spu_info[node].list_mutex);
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
			if (spu->alloc_state == SPU_FREE)
				goto found;
		}
		mutex_unlock(&cbe_spu_info[node].list_mutex);
539
	}
540 541 542 543 544 545 546 547

	return NULL;

 found:
	spu->alloc_state = SPU_USED;
	mutex_unlock(&cbe_spu_info[node].list_mutex);
	pr_debug("Got SPU %d %d\n", spu->number, spu->node);
	spu_init_channels(spu);
548 549
	return spu;
}
550

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
/**
 * find_victim - find a lower priority context to preempt
 * @ctx:	canidate context for running
 *
 * Returns the freed physical spu to run the new context on.
 */
static struct spu *find_victim(struct spu_context *ctx)
{
	struct spu_context *victim = NULL;
	struct spu *spu;
	int node, n;

	/*
	 * Look for a possible preemption candidate on the local node first.
	 * If there is no candidate look at the other nodes.  This isn't
	 * exactly fair, but so far the whole spu schedule tries to keep
	 * a strong node affinity.  We might want to fine-tune this in
	 * the future.
	 */
 restart:
	node = cpu_to_node(raw_smp_processor_id());
	for (n = 0; n < MAX_NUMNODES; n++, node++) {
		node = (node < MAX_NUMNODES) ? node : 0;
574
		if (!node_allowed(ctx, node))
575 576
			continue;

577 578
		mutex_lock(&cbe_spu_info[node].list_mutex);
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
579 580
			struct spu_context *tmp = spu->ctx;

581 582
			if (tmp->prio > ctx->prio &&
			    (!victim || tmp->prio > victim->prio))
583 584
				victim = spu->ctx;
		}
585
		mutex_unlock(&cbe_spu_info[node].list_mutex);
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609

		if (victim) {
			/*
			 * This nests ctx->state_mutex, but we always lock
			 * higher priority contexts before lower priority
			 * ones, so this is safe until we introduce
			 * priority inheritance schemes.
			 */
			if (!mutex_trylock(&victim->state_mutex)) {
				victim = NULL;
				goto restart;
			}

			spu = victim->spu;
			if (!spu) {
				/*
				 * This race can happen because we've dropped
				 * the active list mutex.  No a problem, just
				 * restart the search.
				 */
				mutex_unlock(&victim->state_mutex);
				victim = NULL;
				goto restart;
			}
610 611 612 613 614

			mutex_lock(&cbe_spu_info[node].list_mutex);
			cbe_spu_info[node].nr_active--;
			mutex_unlock(&cbe_spu_info[node].list_mutex);

615
			spu_unbind_context(spu, victim);
616
			victim->stats.invol_ctx_switch++;
617
			spu->stats.invol_ctx_switch++;
618
			mutex_unlock(&victim->state_mutex);
619 620 621 622 623 624
			/*
			 * We need to break out of the wait loop in spu_run
			 * manually to ensure this context gets put on the
			 * runqueue again ASAP.
			 */
			wake_up(&victim->stop_wq);
625 626 627 628 629 630 631
			return spu;
		}
	}

	return NULL;
}

632 633 634 635 636
/**
 * spu_activate - find a free spu for a context and execute it
 * @ctx:	spu context to schedule
 * @flags:	flags (currently ignored)
 *
637
 * Tries to find a free spu to run @ctx.  If no free spu is available
638 639 640
 * add the context to the runqueue so it gets woken up once an spu
 * is available.
 */
641
int spu_activate(struct spu_context *ctx, unsigned long flags)
642
{
643 644 645
	do {
		struct spu *spu;

646 647 648 649 650 651 652 653 654
		/*
		 * If there are multiple threads waiting for a single context
		 * only one actually binds the context while the others will
		 * only be able to acquire the state_mutex once the context
		 * already is in runnable state.
		 */
		if (ctx->spu)
			return 0;

655
		spu = spu_get_idle(ctx);
656 657 658 659
		/*
		 * If this is a realtime thread we try to get it running by
		 * preempting a lower priority thread.
		 */
660
		if (!spu && rt_prio(ctx->prio))
661
			spu = find_victim(ctx);
662
		if (spu) {
663 664 665
			int node = spu->node;

			mutex_lock(&cbe_spu_info[node].list_mutex);
666
			spu_bind_context(spu, ctx);
667 668
			cbe_spu_info[node].nr_active++;
			mutex_unlock(&cbe_spu_info[node].list_mutex);
669
			return 0;
670
		}
671

672
		spu_prio_wait(ctx);
673 674 675
	} while (!signal_pending(current));

	return -ERESTARTSYS;
676 677
}

678 679 680 681 682 683
/**
 * grab_runnable_context - try to find a runnable context
 *
 * Remove the highest priority context on the runqueue and return it
 * to the caller.  Returns %NULL if no runnable context was found.
 */
684
static struct spu_context *grab_runnable_context(int prio, int node)
685
{
686
	struct spu_context *ctx;
687 688 689
	int best;

	spin_lock(&spu_prio->runq_lock);
690
	best = find_first_bit(spu_prio->bitmap, prio);
691
	while (best < prio) {
692 693
		struct list_head *rq = &spu_prio->runq[best];

694 695 696 697 698 699 700 701
		list_for_each_entry(ctx, rq, rq) {
			/* XXX(hch): check for affinity here aswell */
			if (__node_allowed(ctx, node)) {
				__spu_del_from_rq(ctx);
				goto found;
			}
		}
		best++;
702
	}
703 704
	ctx = NULL;
 found:
705 706 707 708 709 710 711 712 713 714
	spin_unlock(&spu_prio->runq_lock);
	return ctx;
}

static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
{
	struct spu *spu = ctx->spu;
	struct spu_context *new = NULL;

	if (spu) {
715
		new = grab_runnable_context(max_prio, spu->node);
716
		if (new || force) {
717 718 719
			int node = spu->node;

			mutex_lock(&cbe_spu_info[node].list_mutex);
720
			spu_unbind_context(spu, ctx);
721 722 723 724
			spu->alloc_state = SPU_FREE;
			cbe_spu_info[node].nr_active--;
			mutex_unlock(&cbe_spu_info[node].list_mutex);

725
			ctx->stats.vol_ctx_switch++;
726
			spu->stats.vol_ctx_switch++;
727

728 729 730 731 732 733 734 735 736
			if (new)
				wake_up(&new->stop_wq);
		}

	}

	return new != NULL;
}

737 738 739 740 741 742 743
/**
 * spu_deactivate - unbind a context from it's physical spu
 * @ctx:	spu context to unbind
 *
 * Unbind @ctx from the physical spu it is running on and schedule
 * the highest priority context to run on the freed physical spu.
 */
744 745
void spu_deactivate(struct spu_context *ctx)
{
746
	__spu_deactivate(ctx, 1, MAX_PRIO);
747 748
}

749
/**
750
 * spu_yield -	yield a physical spu if others are waiting
751 752 753 754 755 756
 * @ctx:	spu context to yield
 *
 * Check if there is a higher priority context waiting and if yes
 * unbind @ctx from the physical spu and schedule the highest
 * priority context to run on the freed physical spu instead.
 */
757 758
void spu_yield(struct spu_context *ctx)
{
759 760
	if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
		mutex_lock(&ctx->state_mutex);
761
		__spu_deactivate(ctx, 0, MAX_PRIO);
762 763
		mutex_unlock(&ctx->state_mutex);
	}
764
}
765

766
static noinline void spusched_tick(struct spu_context *ctx)
767
{
768 769 770 771 772 773
	if (ctx->flags & SPU_CREATE_NOSCHED)
		return;
	if (ctx->policy == SCHED_FIFO)
		return;

	if (--ctx->time_slice)
774
		return;
775 776

	/*
777
	 * Unfortunately list_mutex ranks outside of state_mutex, so
778 779
	 * we have to trylock here.  If we fail give the context another
	 * tick and try again.
780
	 */
781
	if (mutex_trylock(&ctx->state_mutex)) {
782
		struct spu *spu = ctx->spu;
783 784 785
		struct spu_context *new;

		new = grab_runnable_context(ctx->prio + 1, spu->node);
786 787
		if (new) {
			spu_unbind_context(spu, ctx);
788
			ctx->stats.invol_ctx_switch++;
789
			spu->stats.invol_ctx_switch++;
790 791
			spu->alloc_state = SPU_FREE;
			cbe_spu_info[spu->node].nr_active--;
792 793 794 795 796 797 798 799
			wake_up(&new->stop_wq);
			/*
			 * We need to break out of the wait loop in
			 * spu_run manually to ensure this context
			 * gets put on the runqueue again ASAP.
			 */
			wake_up(&ctx->stop_wq);
		}
800
		spu_set_timeslice(ctx);
801
		mutex_unlock(&ctx->state_mutex);
802
	} else {
803
		ctx->time_slice++;
804 805 806
	}
}

807 808 809 810 811
/**
 * count_active_contexts - count nr of active tasks
 *
 * Return the number of tasks currently running or waiting to run.
 *
812
 * Note that we don't take runq_lock / list_mutex here.  Reading
813 814 815 816 817 818 819 820
 * a single 32bit value is atomic on powerpc, and we don't care
 * about memory ordering issues here.
 */
static unsigned long count_active_contexts(void)
{
	int nr_active = 0, node;

	for (node = 0; node < MAX_NUMNODES; node++)
821
		nr_active += cbe_spu_info[node].nr_active;
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
	nr_active += spu_prio->nr_waiting;

	return nr_active;
}

/**
 * spu_calc_load - given tick count, update the avenrun load estimates.
 * @tick:	tick count
 *
 * No locking against reading these values from userspace, as for
 * the CPU loadavg code.
 */
static void spu_calc_load(unsigned long ticks)
{
	unsigned long active_tasks; /* fixed-point */
	static int count = LOAD_FREQ;

	count -= ticks;

	if (unlikely(count < 0)) {
		active_tasks = count_active_contexts() * FIXED_1;
		do {
			CALC_LOAD(spu_avenrun[0], EXP_1, active_tasks);
			CALC_LOAD(spu_avenrun[1], EXP_5, active_tasks);
			CALC_LOAD(spu_avenrun[2], EXP_15, active_tasks);
			count += LOAD_FREQ;
		} while (count < 0);
	}
}

852 853 854 855
static void spusched_wake(unsigned long data)
{
	mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
	wake_up_process(spusched_task);
856
	spu_calc_load(SPUSCHED_TICK);
857 858 859 860
}

static int spusched_thread(void *unused)
{
861
	struct spu *spu;
862 863 864 865 866 867
	int node;

	while (!kthread_should_stop()) {
		set_current_state(TASK_INTERRUPTIBLE);
		schedule();
		for (node = 0; node < MAX_NUMNODES; node++) {
868 869 870 871 872
			mutex_lock(&cbe_spu_info[node].list_mutex);
			list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list)
				if (spu->ctx)
					spusched_tick(spu->ctx);
			mutex_unlock(&cbe_spu_info[node].list_mutex);
873 874 875 876 877 878
		}
	}

	return 0;
}

879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
#define LOAD_INT(x) ((x) >> FSHIFT)
#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)

static int show_spu_loadavg(struct seq_file *s, void *private)
{
	int a, b, c;

	a = spu_avenrun[0] + (FIXED_1/200);
	b = spu_avenrun[1] + (FIXED_1/200);
	c = spu_avenrun[2] + (FIXED_1/200);

	/*
	 * Note that last_pid doesn't really make much sense for the
	 * SPU loadavg (it even seems very odd on the CPU side..),
	 * but we include it here to have a 100% compatible interface.
	 */
	seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n",
		LOAD_INT(a), LOAD_FRAC(a),
		LOAD_INT(b), LOAD_FRAC(b),
		LOAD_INT(c), LOAD_FRAC(c),
		count_active_contexts(),
		atomic_read(&nr_spu_contexts),
		current->nsproxy->pid_ns->last_pid);
	return 0;
}

static int spu_loadavg_open(struct inode *inode, struct file *file)
{
	return single_open(file, show_spu_loadavg, NULL);
}

static const struct file_operations spu_loadavg_fops = {
	.open		= spu_loadavg_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

917 918
int __init spu_sched_init(void)
{
919 920
	struct proc_dir_entry *entry;
	int err = -ENOMEM, i;
921

922
	spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
923
	if (!spu_prio)
924
		goto out;
925

926
	for (i = 0; i < MAX_PRIO; i++) {
927
		INIT_LIST_HEAD(&spu_prio->runq[i]);
928
		__clear_bit(i, spu_prio->bitmap);
929
	}
930
	spin_lock_init(&spu_prio->runq_lock);
931

932 933
	setup_timer(&spusched_timer, spusched_wake, 0);

934 935
	spusched_task = kthread_run(spusched_thread, NULL, "spusched");
	if (IS_ERR(spusched_task)) {
936 937
		err = PTR_ERR(spusched_task);
		goto out_free_spu_prio;
938
	}
939

940 941 942 943 944
	entry = create_proc_entry("spu_loadavg", 0, NULL);
	if (!entry)
		goto out_stop_kthread;
	entry->proc_fops = &spu_loadavg_fops;

945 946
	pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
			SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE);
947
	return 0;
948

949 950 951 952 953 954
 out_stop_kthread:
	kthread_stop(spusched_task);
 out_free_spu_prio:
	kfree(spu_prio);
 out:
	return err;
955 956
}

957
void spu_sched_exit(void)
958
{
959
	struct spu *spu;
960 961
	int node;

962 963
	remove_proc_entry("spu_loadavg", NULL);

964
	del_timer_sync(&spusched_timer);
965 966
	kthread_stop(spusched_task);

967
	for (node = 0; node < MAX_NUMNODES; node++) {
968 969 970 971 972
		mutex_lock(&cbe_spu_info[node].list_mutex);
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list)
			if (spu->alloc_state != SPU_FREE)
				spu->alloc_state = SPU_FREE;
		mutex_unlock(&cbe_spu_info[node].list_mutex);
973
	}
974
	kfree(spu_prio);
975
}