sched.c 15.8 KB
Newer Older
1 2 3 4 5
/* sched.c - SPU scheduler.
 *
 * Copyright (C) IBM 2005
 * Author: Mark Nutter <mnutter@us.ibm.com>
 *
6
 * 2006-03-31	NUMA domains added.
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

23 24
#undef DEBUG

25 26 27 28 29 30 31 32 33 34
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/completion.h>
#include <linux/vmalloc.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
35 36
#include <linux/numa.h>
#include <linux/mutex.h>
37
#include <linux/notifier.h>
38
#include <linux/kthread.h>
39 40 41 42 43

#include <asm/io.h>
#include <asm/mmu_context.h>
#include <asm/spu.h>
#include <asm/spu_csa.h>
44
#include <asm/spu_priv1.h>
45 46 47
#include "spufs.h"

struct spu_prio_array {
48
	DECLARE_BITMAP(bitmap, MAX_PRIO);
49 50
	struct list_head runq[MAX_PRIO];
	spinlock_t runq_lock;
51 52
	struct list_head active_list[MAX_NUMNODES];
	struct mutex active_mutex[MAX_NUMNODES];
53 54
};

55
static struct spu_prio_array *spu_prio;
56 57
static struct task_struct *spusched_task;
static struct timer_list spusched_timer;
58

59 60 61 62 63 64 65 66 67 68 69 70 71 72
/*
 * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
 */
#define NORMAL_PRIO		120

/*
 * Frequency of the spu scheduler tick.  By default we do one SPU scheduler
 * tick for every 10 CPU scheduler ticks.
 */
#define SPUSCHED_TICK		(10)

/*
 * These are the 'tuning knobs' of the scheduler:
 *
73 74
 * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is
 * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs.
75
 */
76 77
#define MIN_SPU_TIMESLICE	max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
#define DEF_SPU_TIMESLICE	(100 * HZ / (1000 * SPUSCHED_TICK))
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98

#define MAX_USER_PRIO		(MAX_PRIO - MAX_RT_PRIO)
#define SCALE_PRIO(x, prio) \
	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE)

/*
 * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
 * [800ms ... 100ms ... 5ms]
 *
 * The higher a thread's priority, the bigger timeslices
 * it gets during one round of execution. But even the lowest
 * priority thread gets MIN_TIMESLICE worth of execution time.
 */
void spu_set_timeslice(struct spu_context *ctx)
{
	if (ctx->prio < NORMAL_PRIO)
		ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
	else
		ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio);
}

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
/*
 * Update scheduling information from the owning thread.
 */
void __spu_update_sched_info(struct spu_context *ctx)
{
	/*
	 * We do our own priority calculations, so we normally want
	 * ->static_prio to start with. Unfortunately thies field
	 * contains junk for threads with a realtime scheduling
	 * policy so we have to look at ->prio in this case.
	 */
	if (rt_prio(current->prio))
		ctx->prio = current->prio;
	else
		ctx->prio = current->static_prio;
	ctx->policy = current->policy;
115 116 117 118 119 120 121 122 123 124

	/*
	 * A lot of places that don't hold active_mutex poke into
	 * cpus_allowed, including grab_runnable_context which
	 * already holds the runq_lock.  So abuse runq_lock
	 * to protect this field aswell.
	 */
	spin_lock(&spu_prio->runq_lock);
	ctx->cpus_allowed = current->cpus_allowed;
	spin_unlock(&spu_prio->runq_lock);
125 126 127 128 129 130 131 132 133 134 135
}

void spu_update_sched_info(struct spu_context *ctx)
{
	int node = ctx->spu->node;

	mutex_lock(&spu_prio->active_mutex[node]);
	__spu_update_sched_info(ctx);
	mutex_unlock(&spu_prio->active_mutex[node]);
}

136
static int __node_allowed(struct spu_context *ctx, int node)
137
{
138 139
	if (nr_cpus_node(node)) {
		cpumask_t mask = node_to_cpumask(node);
140

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
		if (cpus_intersects(mask, ctx->cpus_allowed))
			return 1;
	}

	return 0;
}

static int node_allowed(struct spu_context *ctx, int node)
{
	int rval;

	spin_lock(&spu_prio->runq_lock);
	rval = __node_allowed(ctx, node);
	spin_unlock(&spu_prio->runq_lock);

	return rval;
157 158
}

159 160 161 162 163 164 165 166 167 168 169
/**
 * spu_add_to_active_list - add spu to active list
 * @spu:	spu to add to the active list
 */
static void spu_add_to_active_list(struct spu *spu)
{
	mutex_lock(&spu_prio->active_mutex[spu->node]);
	list_add_tail(&spu->list, &spu_prio->active_list[spu->node]);
	mutex_unlock(&spu_prio->active_mutex[spu->node]);
}

170 171 172 173 174
static void __spu_remove_from_active_list(struct spu *spu)
{
	list_del_init(&spu->list);
}

175 176 177 178
/**
 * spu_remove_from_active_list - remove spu from active list
 * @spu:       spu to remove from the active list
 */
179
static void spu_remove_from_active_list(struct spu *spu)
180 181 182 183
{
	int node = spu->node;

	mutex_lock(&spu_prio->active_mutex[node]);
184
	__spu_remove_from_active_list(spu);
185 186 187
	mutex_unlock(&spu_prio->active_mutex[node]);
}

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
static BLOCKING_NOTIFIER_HEAD(spu_switch_notifier);

static void spu_switch_notify(struct spu *spu, struct spu_context *ctx)
{
	blocking_notifier_call_chain(&spu_switch_notifier,
			    ctx ? ctx->object_id : 0, spu);
}

int spu_switch_event_register(struct notifier_block * n)
{
	return blocking_notifier_chain_register(&spu_switch_notifier, n);
}

int spu_switch_event_unregister(struct notifier_block * n)
{
	return blocking_notifier_chain_unregister(&spu_switch_notifier, n);
}

206 207 208 209 210 211
/**
 * spu_bind_context - bind spu context to physical spu
 * @spu:	physical spu to bind to
 * @ctx:	context to bind
 */
static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
212
{
213 214
	pr_debug("%s: pid=%d SPU=%d NODE=%d\n", __FUNCTION__, current->pid,
		 spu->number, spu->node);
215 216 217 218 219
	spu->ctx = ctx;
	spu->flags = 0;
	ctx->spu = spu;
	ctx->ops = &spu_hw_ops;
	spu->pid = current->pid;
220
	spu_associate_mm(spu, ctx->owner);
221 222
	spu->ibox_callback = spufs_ibox_callback;
	spu->wbox_callback = spufs_wbox_callback;
223
	spu->stop_callback = spufs_stop_callback;
224
	spu->mfc_callback = spufs_mfc_callback;
225
	spu->dma_callback = spufs_dma_callback;
226
	mb();
227
	spu_unmap_mappings(ctx);
228
	spu_restore(&ctx->csa, spu);
229
	spu->timestamp = jiffies;
230
	spu_cpu_affinity_set(spu, raw_smp_processor_id());
231
	spu_switch_notify(spu, ctx);
232
	ctx->state = SPU_STATE_RUNNABLE;
233 234
}

235 236 237 238 239
/**
 * spu_unbind_context - unbind spu context from physical spu
 * @spu:	physical spu to unbind from
 * @ctx:	context to unbind
 */
240
static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
241
{
242 243
	pr_debug("%s: unbind pid=%d SPU=%d NODE=%d\n", __FUNCTION__,
		 spu->pid, spu->number, spu->node);
244

245
	spu_switch_notify(spu, NULL);
246
	spu_unmap_mappings(ctx);
247
	spu_save(&ctx->csa, spu);
248
	spu->timestamp = jiffies;
249 250 251
	ctx->state = SPU_STATE_SAVED;
	spu->ibox_callback = NULL;
	spu->wbox_callback = NULL;
252
	spu->stop_callback = NULL;
253
	spu->mfc_callback = NULL;
254
	spu->dma_callback = NULL;
255
	spu_associate_mm(spu, NULL);
256 257 258
	spu->pid = 0;
	ctx->ops = &spu_backing_ops;
	ctx->spu = NULL;
259
	spu->flags = 0;
260 261 262
	spu->ctx = NULL;
}

263 264 265 266
/**
 * spu_add_to_rq - add a context to the runqueue
 * @ctx:       context to add
 */
267
static void __spu_add_to_rq(struct spu_context *ctx)
268
{
269 270 271 272
	int prio = ctx->prio;

	list_add_tail(&ctx->rq, &spu_prio->runq[prio]);
	set_bit(prio, spu_prio->bitmap);
273
}
274

275
static void __spu_del_from_rq(struct spu_context *ctx)
276
{
277 278
	int prio = ctx->prio;

279 280 281
	if (!list_empty(&ctx->rq))
		list_del_init(&ctx->rq);
	if (list_empty(&spu_prio->runq[prio]))
282
		clear_bit(prio, spu_prio->bitmap);
283
}
284

285
static void spu_prio_wait(struct spu_context *ctx)
286
{
287
	DEFINE_WAIT(wait);
288

289
	spin_lock(&spu_prio->runq_lock);
290
	prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
291
	if (!signal_pending(current)) {
292 293
		__spu_add_to_rq(ctx);
		spin_unlock(&spu_prio->runq_lock);
294
		mutex_unlock(&ctx->state_mutex);
295
		schedule();
296
		mutex_lock(&ctx->state_mutex);
297 298
		spin_lock(&spu_prio->runq_lock);
		__spu_del_from_rq(ctx);
299
	}
300
	spin_unlock(&spu_prio->runq_lock);
301 302
	__set_current_state(TASK_RUNNING);
	remove_wait_queue(&ctx->stop_wq, &wait);
303 304
}

305
static struct spu *spu_get_idle(struct spu_context *ctx)
306 307 308 309 310 311 312
{
	struct spu *spu = NULL;
	int node = cpu_to_node(raw_smp_processor_id());
	int n;

	for (n = 0; n < MAX_NUMNODES; n++, node++) {
		node = (node < MAX_NUMNODES) ? node : 0;
313
		if (!node_allowed(ctx, node))
314 315 316 317 318 319 320
			continue;
		spu = spu_alloc_node(node);
		if (spu)
			break;
	}
	return spu;
}
321

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
/**
 * find_victim - find a lower priority context to preempt
 * @ctx:	canidate context for running
 *
 * Returns the freed physical spu to run the new context on.
 */
static struct spu *find_victim(struct spu_context *ctx)
{
	struct spu_context *victim = NULL;
	struct spu *spu;
	int node, n;

	/*
	 * Look for a possible preemption candidate on the local node first.
	 * If there is no candidate look at the other nodes.  This isn't
	 * exactly fair, but so far the whole spu schedule tries to keep
	 * a strong node affinity.  We might want to fine-tune this in
	 * the future.
	 */
 restart:
	node = cpu_to_node(raw_smp_processor_id());
	for (n = 0; n < MAX_NUMNODES; n++, node++) {
		node = (node < MAX_NUMNODES) ? node : 0;
345
		if (!node_allowed(ctx, node))
346 347 348 349 350 351
			continue;

		mutex_lock(&spu_prio->active_mutex[node]);
		list_for_each_entry(spu, &spu_prio->active_list[node], list) {
			struct spu_context *tmp = spu->ctx;

352 353
			if (tmp->prio > ctx->prio &&
			    (!victim || tmp->prio > victim->prio))
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
				victim = spu->ctx;
		}
		mutex_unlock(&spu_prio->active_mutex[node]);

		if (victim) {
			/*
			 * This nests ctx->state_mutex, but we always lock
			 * higher priority contexts before lower priority
			 * ones, so this is safe until we introduce
			 * priority inheritance schemes.
			 */
			if (!mutex_trylock(&victim->state_mutex)) {
				victim = NULL;
				goto restart;
			}

			spu = victim->spu;
			if (!spu) {
				/*
				 * This race can happen because we've dropped
				 * the active list mutex.  No a problem, just
				 * restart the search.
				 */
				mutex_unlock(&victim->state_mutex);
				victim = NULL;
				goto restart;
			}
381
			spu_remove_from_active_list(spu);
382 383
			spu_unbind_context(spu, victim);
			mutex_unlock(&victim->state_mutex);
384 385 386 387 388 389
			/*
			 * We need to break out of the wait loop in spu_run
			 * manually to ensure this context gets put on the
			 * runqueue again ASAP.
			 */
			wake_up(&victim->stop_wq);
390 391 392 393 394 395 396
			return spu;
		}
	}

	return NULL;
}

397 398 399 400 401
/**
 * spu_activate - find a free spu for a context and execute it
 * @ctx:	spu context to schedule
 * @flags:	flags (currently ignored)
 *
402
 * Tries to find a free spu to run @ctx.  If no free spu is available
403 404 405
 * add the context to the runqueue so it gets woken up once an spu
 * is available.
 */
406
int spu_activate(struct spu_context *ctx, unsigned long flags)
407 408
{

409 410 411 412 413 414 415
	if (ctx->spu)
		return 0;

	do {
		struct spu *spu;

		spu = spu_get_idle(ctx);
416 417 418 419
		/*
		 * If this is a realtime thread we try to get it running by
		 * preempting a lower priority thread.
		 */
420
		if (!spu && rt_prio(ctx->prio))
421
			spu = find_victim(ctx);
422
		if (spu) {
423
			spu_bind_context(spu, ctx);
424
			spu_add_to_active_list(spu);
425
			return 0;
426
		}
427

428
		spu_prio_wait(ctx);
429 430 431
	} while (!signal_pending(current));

	return -ERESTARTSYS;
432 433
}

434 435 436 437 438 439
/**
 * grab_runnable_context - try to find a runnable context
 *
 * Remove the highest priority context on the runqueue and return it
 * to the caller.  Returns %NULL if no runnable context was found.
 */
440
static struct spu_context *grab_runnable_context(int prio, int node)
441
{
442
	struct spu_context *ctx;
443 444 445 446
	int best;

	spin_lock(&spu_prio->runq_lock);
	best = sched_find_first_bit(spu_prio->bitmap);
447
	while (best < prio) {
448 449
		struct list_head *rq = &spu_prio->runq[best];

450 451 452 453 454 455 456 457
		list_for_each_entry(ctx, rq, rq) {
			/* XXX(hch): check for affinity here aswell */
			if (__node_allowed(ctx, node)) {
				__spu_del_from_rq(ctx);
				goto found;
			}
		}
		best++;
458
	}
459 460
	ctx = NULL;
 found:
461 462 463 464 465 466 467 468 469 470
	spin_unlock(&spu_prio->runq_lock);
	return ctx;
}

static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
{
	struct spu *spu = ctx->spu;
	struct spu_context *new = NULL;

	if (spu) {
471
		new = grab_runnable_context(max_prio, spu->node);
472
		if (new || force) {
473
			spu_remove_from_active_list(spu);
474 475 476 477 478 479 480 481 482 483 484
			spu_unbind_context(spu, ctx);
			spu_free(spu);
			if (new)
				wake_up(&new->stop_wq);
		}

	}

	return new != NULL;
}

485 486 487 488 489 490 491
/**
 * spu_deactivate - unbind a context from it's physical spu
 * @ctx:	spu context to unbind
 *
 * Unbind @ctx from the physical spu it is running on and schedule
 * the highest priority context to run on the freed physical spu.
 */
492 493
void spu_deactivate(struct spu_context *ctx)
{
494 495 496 497 498 499 500 501 502
	/*
	 * We must never reach this for a nosched context,
	 * but handle the case gracefull instead of panicing.
	 */
	if (ctx->flags & SPU_CREATE_NOSCHED) {
		WARN_ON(1);
		return;
	}

503
	__spu_deactivate(ctx, 1, MAX_PRIO);
504 505
}

506 507 508 509 510 511 512 513
/**
 * spu_yield -  yield a physical spu if others are waiting
 * @ctx:	spu context to yield
 *
 * Check if there is a higher priority context waiting and if yes
 * unbind @ctx from the physical spu and schedule the highest
 * priority context to run on the freed physical spu instead.
 */
514 515
void spu_yield(struct spu_context *ctx)
{
516 517 518 519 520
	if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
		mutex_lock(&ctx->state_mutex);
		__spu_deactivate(ctx, 0, MAX_PRIO);
		mutex_unlock(&ctx->state_mutex);
	}
521
}
522

523
static void spusched_tick(struct spu_context *ctx)
524
{
525 526 527 528 529 530
	if (ctx->flags & SPU_CREATE_NOSCHED)
		return;
	if (ctx->policy == SCHED_FIFO)
		return;

	if (--ctx->time_slice)
531
		return;
532 533

	/*
534 535 536
	 * Unfortunately active_mutex ranks outside of state_mutex, so
	 * we have to trylock here.  If we fail give the context another
	 * tick and try again.
537
	 */
538
	if (mutex_trylock(&ctx->state_mutex)) {
539
		struct spu *spu = ctx->spu;
540 541 542
		struct spu_context *new;

		new = grab_runnable_context(ctx->prio + 1, spu->node);
543
		if (new) {
544

545 546 547 548 549 550 551 552 553 554 555
			__spu_remove_from_active_list(spu);
			spu_unbind_context(spu, ctx);
			spu_free(spu);
			wake_up(&new->stop_wq);
			/*
			 * We need to break out of the wait loop in
			 * spu_run manually to ensure this context
			 * gets put on the runqueue again ASAP.
			 */
			wake_up(&ctx->stop_wq);
		}
556
		spu_set_timeslice(ctx);
557
		mutex_unlock(&ctx->state_mutex);
558
	} else {
559
		ctx->time_slice++;
560 561 562
	}
}

563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
static void spusched_wake(unsigned long data)
{
	mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
	wake_up_process(spusched_task);
}

static int spusched_thread(void *unused)
{
	struct spu *spu, *next;
	int node;

	setup_timer(&spusched_timer, spusched_wake, 0);
	__mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);

	while (!kthread_should_stop()) {
		set_current_state(TASK_INTERRUPTIBLE);
		schedule();
		for (node = 0; node < MAX_NUMNODES; node++) {
			mutex_lock(&spu_prio->active_mutex[node]);
			list_for_each_entry_safe(spu, next,
						 &spu_prio->active_list[node],
						 list)
				spusched_tick(spu->ctx);
			mutex_unlock(&spu_prio->active_mutex[node]);
		}
	}

	del_timer_sync(&spusched_timer);
	return 0;
}

594 595 596 597
int __init spu_sched_init(void)
{
	int i;

598
	spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
599 600 601
	if (!spu_prio)
		return -ENOMEM;

602
	for (i = 0; i < MAX_PRIO; i++) {
603
		INIT_LIST_HEAD(&spu_prio->runq[i]);
604
		__clear_bit(i, spu_prio->bitmap);
605
	}
606 607 608 609
	__set_bit(MAX_PRIO, spu_prio->bitmap);
	for (i = 0; i < MAX_NUMNODES; i++) {
		mutex_init(&spu_prio->active_mutex[i]);
		INIT_LIST_HEAD(&spu_prio->active_list[i]);
610
	}
611
	spin_lock_init(&spu_prio->runq_lock);
612 613 614 615 616 617

	spusched_task = kthread_run(spusched_thread, NULL, "spusched");
	if (IS_ERR(spusched_task)) {
		kfree(spu_prio);
		return PTR_ERR(spusched_task);
	}
618 619 620

	pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
			SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE);
621
	return 0;
622

623 624 625 626
}

void __exit spu_sched_exit(void)
{
627 628 629
	struct spu *spu, *tmp;
	int node;

630 631
	kthread_stop(spusched_task);

632 633 634 635 636 637 638 639
	for (node = 0; node < MAX_NUMNODES; node++) {
		mutex_lock(&spu_prio->active_mutex[node]);
		list_for_each_entry_safe(spu, tmp, &spu_prio->active_list[node],
					 list) {
			list_del_init(&spu->list);
			spu_free(spu);
		}
		mutex_unlock(&spu_prio->active_mutex[node]);
640
	}
641
	kfree(spu_prio);
642
}