sched.c 20.4 KB
Newer Older
1 2 3 4 5
/* sched.c - SPU scheduler.
 *
 * Copyright (C) IBM 2005
 * Author: Mark Nutter <mnutter@us.ibm.com>
 *
6
 * 2006-03-31	NUMA domains added.
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

23 24
#undef DEBUG

25 26 27 28 29 30 31 32 33 34
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/completion.h>
#include <linux/vmalloc.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
35 36
#include <linux/numa.h>
#include <linux/mutex.h>
37
#include <linux/notifier.h>
38
#include <linux/kthread.h>
39 40 41
#include <linux/pid_namespace.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
42 43 44 45 46

#include <asm/io.h>
#include <asm/mmu_context.h>
#include <asm/spu.h>
#include <asm/spu_csa.h>
47
#include <asm/spu_priv1.h>
48 49 50
#include "spufs.h"

struct spu_prio_array {
51
	DECLARE_BITMAP(bitmap, MAX_PRIO);
52 53
	struct list_head runq[MAX_PRIO];
	spinlock_t runq_lock;
54 55
	struct list_head active_list[MAX_NUMNODES];
	struct mutex active_mutex[MAX_NUMNODES];
56 57
	int nr_active[MAX_NUMNODES];
	int nr_waiting;
58 59
};

60
static unsigned long spu_avenrun[3];
61
static struct spu_prio_array *spu_prio;
62 63
static struct task_struct *spusched_task;
static struct timer_list spusched_timer;
64

65 66 67 68 69 70 71 72 73 74 75 76 77 78
/*
 * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
 */
#define NORMAL_PRIO		120

/*
 * Frequency of the spu scheduler tick.  By default we do one SPU scheduler
 * tick for every 10 CPU scheduler ticks.
 */
#define SPUSCHED_TICK		(10)

/*
 * These are the 'tuning knobs' of the scheduler:
 *
79 80
 * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is
 * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs.
81
 */
82 83
#define MIN_SPU_TIMESLICE	max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
#define DEF_SPU_TIMESLICE	(100 * HZ / (1000 * SPUSCHED_TICK))
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104

#define MAX_USER_PRIO		(MAX_PRIO - MAX_RT_PRIO)
#define SCALE_PRIO(x, prio) \
	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE)

/*
 * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
 * [800ms ... 100ms ... 5ms]
 *
 * The higher a thread's priority, the bigger timeslices
 * it gets during one round of execution. But even the lowest
 * priority thread gets MIN_TIMESLICE worth of execution time.
 */
void spu_set_timeslice(struct spu_context *ctx)
{
	if (ctx->prio < NORMAL_PRIO)
		ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
	else
		ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio);
}

105 106 107 108 109
/*
 * Update scheduling information from the owning thread.
 */
void __spu_update_sched_info(struct spu_context *ctx)
{
110 111 112 113 114 115 116
	/*
	 * 32-Bit assignment are atomic on powerpc, and we don't care about
	 * memory ordering here because retriving the controlling thread is
	 * per defintion racy.
	 */
	ctx->tid = current->pid;

117 118 119 120 121 122 123 124 125 126 127
	/*
	 * We do our own priority calculations, so we normally want
	 * ->static_prio to start with. Unfortunately thies field
	 * contains junk for threads with a realtime scheduling
	 * policy so we have to look at ->prio in this case.
	 */
	if (rt_prio(current->prio))
		ctx->prio = current->prio;
	else
		ctx->prio = current->static_prio;
	ctx->policy = current->policy;
128 129 130 131 132 133 134 135 136 137

	/*
	 * A lot of places that don't hold active_mutex poke into
	 * cpus_allowed, including grab_runnable_context which
	 * already holds the runq_lock.  So abuse runq_lock
	 * to protect this field aswell.
	 */
	spin_lock(&spu_prio->runq_lock);
	ctx->cpus_allowed = current->cpus_allowed;
	spin_unlock(&spu_prio->runq_lock);
138 139 140 141 142 143 144 145 146 147 148
}

void spu_update_sched_info(struct spu_context *ctx)
{
	int node = ctx->spu->node;

	mutex_lock(&spu_prio->active_mutex[node]);
	__spu_update_sched_info(ctx);
	mutex_unlock(&spu_prio->active_mutex[node]);
}

149
static int __node_allowed(struct spu_context *ctx, int node)
150
{
151 152
	if (nr_cpus_node(node)) {
		cpumask_t mask = node_to_cpumask(node);
153

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
		if (cpus_intersects(mask, ctx->cpus_allowed))
			return 1;
	}

	return 0;
}

static int node_allowed(struct spu_context *ctx, int node)
{
	int rval;

	spin_lock(&spu_prio->runq_lock);
	rval = __node_allowed(ctx, node);
	spin_unlock(&spu_prio->runq_lock);

	return rval;
170 171
}

172 173 174 175 176 177
/**
 * spu_add_to_active_list - add spu to active list
 * @spu:	spu to add to the active list
 */
static void spu_add_to_active_list(struct spu *spu)
{
178 179 180 181 182 183
	int node = spu->node;

	mutex_lock(&spu_prio->active_mutex[node]);
	spu_prio->nr_active[node]++;
	list_add_tail(&spu->list, &spu_prio->active_list[node]);
	mutex_unlock(&spu_prio->active_mutex[node]);
184 185
}

186 187 188
static void __spu_remove_from_active_list(struct spu *spu)
{
	list_del_init(&spu->list);
189
	spu_prio->nr_active[spu->node]--;
190 191
}

192 193 194 195
/**
 * spu_remove_from_active_list - remove spu from active list
 * @spu:       spu to remove from the active list
 */
196
static void spu_remove_from_active_list(struct spu *spu)
197 198 199 200
{
	int node = spu->node;

	mutex_lock(&spu_prio->active_mutex[node]);
201
	__spu_remove_from_active_list(spu);
202 203 204
	mutex_unlock(&spu_prio->active_mutex[node]);
}

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
static BLOCKING_NOTIFIER_HEAD(spu_switch_notifier);

static void spu_switch_notify(struct spu *spu, struct spu_context *ctx)
{
	blocking_notifier_call_chain(&spu_switch_notifier,
			    ctx ? ctx->object_id : 0, spu);
}

int spu_switch_event_register(struct notifier_block * n)
{
	return blocking_notifier_chain_register(&spu_switch_notifier, n);
}

int spu_switch_event_unregister(struct notifier_block * n)
{
	return blocking_notifier_chain_unregister(&spu_switch_notifier, n);
}

223 224 225 226 227 228
/**
 * spu_bind_context - bind spu context to physical spu
 * @spu:	physical spu to bind to
 * @ctx:	context to bind
 */
static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
229
{
230 231
	pr_debug("%s: pid=%d SPU=%d NODE=%d\n", __FUNCTION__, current->pid,
		 spu->number, spu->node);
232 233 234 235

	ctx->stats.slb_flt_base = spu->stats.slb_flt;
	ctx->stats.class2_intr_base = spu->stats.class2_intr;

236 237 238 239 240
	spu->ctx = ctx;
	spu->flags = 0;
	ctx->spu = spu;
	ctx->ops = &spu_hw_ops;
	spu->pid = current->pid;
241
	spu_associate_mm(spu, ctx->owner);
242 243
	spu->ibox_callback = spufs_ibox_callback;
	spu->wbox_callback = spufs_wbox_callback;
244
	spu->stop_callback = spufs_stop_callback;
245
	spu->mfc_callback = spufs_mfc_callback;
246
	spu->dma_callback = spufs_dma_callback;
247
	mb();
248
	spu_unmap_mappings(ctx);
249
	spu_restore(&ctx->csa, spu);
250
	spu->timestamp = jiffies;
251
	spu_cpu_affinity_set(spu, raw_smp_processor_id());
252
	spu_switch_notify(spu, ctx);
253
	ctx->state = SPU_STATE_RUNNABLE;
254
	spu_switch_state(spu, SPU_UTIL_SYSTEM);
255 256
}

257 258 259 260 261
/**
 * spu_unbind_context - unbind spu context from physical spu
 * @spu:	physical spu to unbind from
 * @ctx:	context to unbind
 */
262
static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
263
{
264 265
	pr_debug("%s: unbind pid=%d SPU=%d NODE=%d\n", __FUNCTION__,
		 spu->pid, spu->number, spu->node);
266

267 268
	spu_switch_state(spu, SPU_UTIL_IDLE);

269
	spu_switch_notify(spu, NULL);
270
	spu_unmap_mappings(ctx);
271
	spu_save(&ctx->csa, spu);
272
	spu->timestamp = jiffies;
273 274 275
	ctx->state = SPU_STATE_SAVED;
	spu->ibox_callback = NULL;
	spu->wbox_callback = NULL;
276
	spu->stop_callback = NULL;
277
	spu->mfc_callback = NULL;
278
	spu->dma_callback = NULL;
279
	spu_associate_mm(spu, NULL);
280 281 282
	spu->pid = 0;
	ctx->ops = &spu_backing_ops;
	ctx->spu = NULL;
283
	spu->flags = 0;
284
	spu->ctx = NULL;
285 286 287 288 289

	ctx->stats.slb_flt +=
		(spu->stats.slb_flt - ctx->stats.slb_flt_base);
	ctx->stats.class2_intr +=
		(spu->stats.class2_intr - ctx->stats.class2_intr_base);
290 291
}

292 293 294 295
/**
 * spu_add_to_rq - add a context to the runqueue
 * @ctx:       context to add
 */
296
static void __spu_add_to_rq(struct spu_context *ctx)
297
{
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
	/*
	 * Unfortunately this code path can be called from multiple threads
	 * on behalf of a single context due to the way the problem state
	 * mmap support works.
	 *
	 * Fortunately we need to wake up all these threads at the same time
	 * and can simply skip the runqueue addition for every but the first
	 * thread getting into this codepath.
	 *
	 * It's still quite hacky, and long-term we should proxy all other
	 * threads through the owner thread so that spu_run is in control
	 * of all the scheduling activity for a given context.
	 */
	if (list_empty(&ctx->rq)) {
		list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]);
		set_bit(ctx->prio, spu_prio->bitmap);
		if (!spu_prio->nr_waiting++)
			__mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
	}
317
}
318

319
static void __spu_del_from_rq(struct spu_context *ctx)
320
{
321 322
	int prio = ctx->prio;

323
	if (!list_empty(&ctx->rq)) {
324 325
		if (!--spu_prio->nr_waiting)
			del_timer(&spusched_timer);
326
		list_del_init(&ctx->rq);
327 328 329

		if (list_empty(&spu_prio->runq[prio]))
			clear_bit(prio, spu_prio->bitmap);
330
	}
331
}
332

333
static void spu_prio_wait(struct spu_context *ctx)
334
{
335
	DEFINE_WAIT(wait);
336

337
	spin_lock(&spu_prio->runq_lock);
338
	prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
339
	if (!signal_pending(current)) {
340 341
		__spu_add_to_rq(ctx);
		spin_unlock(&spu_prio->runq_lock);
342
		mutex_unlock(&ctx->state_mutex);
343
		schedule();
344
		mutex_lock(&ctx->state_mutex);
345 346
		spin_lock(&spu_prio->runq_lock);
		__spu_del_from_rq(ctx);
347
	}
348
	spin_unlock(&spu_prio->runq_lock);
349 350
	__set_current_state(TASK_RUNNING);
	remove_wait_queue(&ctx->stop_wq, &wait);
351 352
}

353
static struct spu *spu_get_idle(struct spu_context *ctx)
354 355 356 357 358 359 360
{
	struct spu *spu = NULL;
	int node = cpu_to_node(raw_smp_processor_id());
	int n;

	for (n = 0; n < MAX_NUMNODES; n++, node++) {
		node = (node < MAX_NUMNODES) ? node : 0;
361
		if (!node_allowed(ctx, node))
362 363 364 365 366 367 368
			continue;
		spu = spu_alloc_node(node);
		if (spu)
			break;
	}
	return spu;
}
369

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
/**
 * find_victim - find a lower priority context to preempt
 * @ctx:	canidate context for running
 *
 * Returns the freed physical spu to run the new context on.
 */
static struct spu *find_victim(struct spu_context *ctx)
{
	struct spu_context *victim = NULL;
	struct spu *spu;
	int node, n;

	/*
	 * Look for a possible preemption candidate on the local node first.
	 * If there is no candidate look at the other nodes.  This isn't
	 * exactly fair, but so far the whole spu schedule tries to keep
	 * a strong node affinity.  We might want to fine-tune this in
	 * the future.
	 */
 restart:
	node = cpu_to_node(raw_smp_processor_id());
	for (n = 0; n < MAX_NUMNODES; n++, node++) {
		node = (node < MAX_NUMNODES) ? node : 0;
393
		if (!node_allowed(ctx, node))
394 395 396 397 398 399
			continue;

		mutex_lock(&spu_prio->active_mutex[node]);
		list_for_each_entry(spu, &spu_prio->active_list[node], list) {
			struct spu_context *tmp = spu->ctx;

400 401
			if (tmp->prio > ctx->prio &&
			    (!victim || tmp->prio > victim->prio))
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
				victim = spu->ctx;
		}
		mutex_unlock(&spu_prio->active_mutex[node]);

		if (victim) {
			/*
			 * This nests ctx->state_mutex, but we always lock
			 * higher priority contexts before lower priority
			 * ones, so this is safe until we introduce
			 * priority inheritance schemes.
			 */
			if (!mutex_trylock(&victim->state_mutex)) {
				victim = NULL;
				goto restart;
			}

			spu = victim->spu;
			if (!spu) {
				/*
				 * This race can happen because we've dropped
				 * the active list mutex.  No a problem, just
				 * restart the search.
				 */
				mutex_unlock(&victim->state_mutex);
				victim = NULL;
				goto restart;
			}
429
			spu_remove_from_active_list(spu);
430
			spu_unbind_context(spu, victim);
431
			victim->stats.invol_ctx_switch++;
432
			spu->stats.invol_ctx_switch++;
433
			mutex_unlock(&victim->state_mutex);
434 435 436 437 438 439
			/*
			 * We need to break out of the wait loop in spu_run
			 * manually to ensure this context gets put on the
			 * runqueue again ASAP.
			 */
			wake_up(&victim->stop_wq);
440 441 442 443 444 445 446
			return spu;
		}
	}

	return NULL;
}

447 448 449 450 451
/**
 * spu_activate - find a free spu for a context and execute it
 * @ctx:	spu context to schedule
 * @flags:	flags (currently ignored)
 *
452
 * Tries to find a free spu to run @ctx.  If no free spu is available
453 454 455
 * add the context to the runqueue so it gets woken up once an spu
 * is available.
 */
456
int spu_activate(struct spu_context *ctx, unsigned long flags)
457
{
458
	spuctx_switch_state(ctx, SPUCTX_UTIL_SYSTEM);
459

460 461 462
	do {
		struct spu *spu;

463 464 465 466 467 468 469 470 471
		/*
		 * If there are multiple threads waiting for a single context
		 * only one actually binds the context while the others will
		 * only be able to acquire the state_mutex once the context
		 * already is in runnable state.
		 */
		if (ctx->spu)
			return 0;

472
		spu = spu_get_idle(ctx);
473 474 475 476
		/*
		 * If this is a realtime thread we try to get it running by
		 * preempting a lower priority thread.
		 */
477
		if (!spu && rt_prio(ctx->prio))
478
			spu = find_victim(ctx);
479
		if (spu) {
480
			spu_bind_context(spu, ctx);
481
			spu_add_to_active_list(spu);
482
			return 0;
483
		}
484

485
		spu_prio_wait(ctx);
486 487 488
	} while (!signal_pending(current));

	return -ERESTARTSYS;
489 490
}

491 492 493 494 495 496
/**
 * grab_runnable_context - try to find a runnable context
 *
 * Remove the highest priority context on the runqueue and return it
 * to the caller.  Returns %NULL if no runnable context was found.
 */
497
static struct spu_context *grab_runnable_context(int prio, int node)
498
{
499
	struct spu_context *ctx;
500 501 502 503
	int best;

	spin_lock(&spu_prio->runq_lock);
	best = sched_find_first_bit(spu_prio->bitmap);
504
	while (best < prio) {
505 506
		struct list_head *rq = &spu_prio->runq[best];

507 508 509 510 511 512 513 514
		list_for_each_entry(ctx, rq, rq) {
			/* XXX(hch): check for affinity here aswell */
			if (__node_allowed(ctx, node)) {
				__spu_del_from_rq(ctx);
				goto found;
			}
		}
		best++;
515
	}
516 517
	ctx = NULL;
 found:
518 519 520 521 522 523 524 525 526 527
	spin_unlock(&spu_prio->runq_lock);
	return ctx;
}

static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
{
	struct spu *spu = ctx->spu;
	struct spu_context *new = NULL;

	if (spu) {
528
		new = grab_runnable_context(max_prio, spu->node);
529
		if (new || force) {
530
			spu_remove_from_active_list(spu);
531
			spu_unbind_context(spu, ctx);
532
			ctx->stats.vol_ctx_switch++;
533
			spu->stats.vol_ctx_switch++;
534 535 536 537 538 539 540 541 542 543
			spu_free(spu);
			if (new)
				wake_up(&new->stop_wq);
		}

	}

	return new != NULL;
}

544 545 546 547 548 549 550
/**
 * spu_deactivate - unbind a context from it's physical spu
 * @ctx:	spu context to unbind
 *
 * Unbind @ctx from the physical spu it is running on and schedule
 * the highest priority context to run on the freed physical spu.
 */
551 552
void spu_deactivate(struct spu_context *ctx)
{
553 554 555 556 557 558 559 560 561
	/*
	 * We must never reach this for a nosched context,
	 * but handle the case gracefull instead of panicing.
	 */
	if (ctx->flags & SPU_CREATE_NOSCHED) {
		WARN_ON(1);
		return;
	}

562
	__spu_deactivate(ctx, 1, MAX_PRIO);
563
	spuctx_switch_state(ctx, SPUCTX_UTIL_USER);
564 565
}

566 567 568 569 570 571 572 573
/**
 * spu_yield -  yield a physical spu if others are waiting
 * @ctx:	spu context to yield
 *
 * Check if there is a higher priority context waiting and if yes
 * unbind @ctx from the physical spu and schedule the highest
 * priority context to run on the freed physical spu instead.
 */
574 575
void spu_yield(struct spu_context *ctx)
{
576 577
	if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
		mutex_lock(&ctx->state_mutex);
578 579
		if (__spu_deactivate(ctx, 0, MAX_PRIO))
			spuctx_switch_state(ctx, SPUCTX_UTIL_USER);
580
		else {
581
			spuctx_switch_state(ctx, SPUCTX_UTIL_LOADED);
582 583
			spu_switch_state(ctx->spu, SPU_UTIL_USER);
		}
584 585
		mutex_unlock(&ctx->state_mutex);
	}
586
}
587

588
static void spusched_tick(struct spu_context *ctx)
589
{
590 591 592 593 594 595
	if (ctx->flags & SPU_CREATE_NOSCHED)
		return;
	if (ctx->policy == SCHED_FIFO)
		return;

	if (--ctx->time_slice)
596
		return;
597 598

	/*
599 600 601
	 * Unfortunately active_mutex ranks outside of state_mutex, so
	 * we have to trylock here.  If we fail give the context another
	 * tick and try again.
602
	 */
603
	if (mutex_trylock(&ctx->state_mutex)) {
604
		struct spu *spu = ctx->spu;
605 606 607
		struct spu_context *new;

		new = grab_runnable_context(ctx->prio + 1, spu->node);
608
		if (new) {
609

610 611
			__spu_remove_from_active_list(spu);
			spu_unbind_context(spu, ctx);
612
			ctx->stats.invol_ctx_switch++;
613
			spu->stats.invol_ctx_switch++;
614 615 616 617 618 619 620 621 622
			spu_free(spu);
			wake_up(&new->stop_wq);
			/*
			 * We need to break out of the wait loop in
			 * spu_run manually to ensure this context
			 * gets put on the runqueue again ASAP.
			 */
			wake_up(&ctx->stop_wq);
		}
623
		spu_set_timeslice(ctx);
624
		mutex_unlock(&ctx->state_mutex);
625
	} else {
626
		ctx->time_slice++;
627 628 629
	}
}

630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
/**
 * count_active_contexts - count nr of active tasks
 *
 * Return the number of tasks currently running or waiting to run.
 *
 * Note that we don't take runq_lock / active_mutex here.  Reading
 * a single 32bit value is atomic on powerpc, and we don't care
 * about memory ordering issues here.
 */
static unsigned long count_active_contexts(void)
{
	int nr_active = 0, node;

	for (node = 0; node < MAX_NUMNODES; node++)
		nr_active += spu_prio->nr_active[node];
	nr_active += spu_prio->nr_waiting;

	return nr_active;
}

/**
 * spu_calc_load - given tick count, update the avenrun load estimates.
 * @tick:	tick count
 *
 * No locking against reading these values from userspace, as for
 * the CPU loadavg code.
 */
static void spu_calc_load(unsigned long ticks)
{
	unsigned long active_tasks; /* fixed-point */
	static int count = LOAD_FREQ;

	count -= ticks;

	if (unlikely(count < 0)) {
		active_tasks = count_active_contexts() * FIXED_1;
		do {
			CALC_LOAD(spu_avenrun[0], EXP_1, active_tasks);
			CALC_LOAD(spu_avenrun[1], EXP_5, active_tasks);
			CALC_LOAD(spu_avenrun[2], EXP_15, active_tasks);
			count += LOAD_FREQ;
		} while (count < 0);
	}
}

675 676 677 678
static void spusched_wake(unsigned long data)
{
	mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
	wake_up_process(spusched_task);
679
	spu_calc_load(SPUSCHED_TICK);
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
}

static int spusched_thread(void *unused)
{
	struct spu *spu, *next;
	int node;

	while (!kthread_should_stop()) {
		set_current_state(TASK_INTERRUPTIBLE);
		schedule();
		for (node = 0; node < MAX_NUMNODES; node++) {
			mutex_lock(&spu_prio->active_mutex[node]);
			list_for_each_entry_safe(spu, next,
						 &spu_prio->active_list[node],
						 list)
				spusched_tick(spu->ctx);
			mutex_unlock(&spu_prio->active_mutex[node]);
		}
	}

	return 0;
}

703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
#define LOAD_INT(x) ((x) >> FSHIFT)
#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)

static int show_spu_loadavg(struct seq_file *s, void *private)
{
	int a, b, c;

	a = spu_avenrun[0] + (FIXED_1/200);
	b = spu_avenrun[1] + (FIXED_1/200);
	c = spu_avenrun[2] + (FIXED_1/200);

	/*
	 * Note that last_pid doesn't really make much sense for the
	 * SPU loadavg (it even seems very odd on the CPU side..),
	 * but we include it here to have a 100% compatible interface.
	 */
	seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n",
		LOAD_INT(a), LOAD_FRAC(a),
		LOAD_INT(b), LOAD_FRAC(b),
		LOAD_INT(c), LOAD_FRAC(c),
		count_active_contexts(),
		atomic_read(&nr_spu_contexts),
		current->nsproxy->pid_ns->last_pid);
	return 0;
}

static int spu_loadavg_open(struct inode *inode, struct file *file)
{
	return single_open(file, show_spu_loadavg, NULL);
}

static const struct file_operations spu_loadavg_fops = {
	.open		= spu_loadavg_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

741 742
int __init spu_sched_init(void)
{
743 744
	struct proc_dir_entry *entry;
	int err = -ENOMEM, i;
745

746
	spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
747
	if (!spu_prio)
748
		goto out;
749

750
	for (i = 0; i < MAX_PRIO; i++) {
751
		INIT_LIST_HEAD(&spu_prio->runq[i]);
752
		__clear_bit(i, spu_prio->bitmap);
753
	}
754 755 756 757
	__set_bit(MAX_PRIO, spu_prio->bitmap);
	for (i = 0; i < MAX_NUMNODES; i++) {
		mutex_init(&spu_prio->active_mutex[i]);
		INIT_LIST_HEAD(&spu_prio->active_list[i]);
758
	}
759
	spin_lock_init(&spu_prio->runq_lock);
760

761 762
	setup_timer(&spusched_timer, spusched_wake, 0);

763 764
	spusched_task = kthread_run(spusched_thread, NULL, "spusched");
	if (IS_ERR(spusched_task)) {
765 766
		err = PTR_ERR(spusched_task);
		goto out_free_spu_prio;
767
	}
768

769 770 771 772 773
	entry = create_proc_entry("spu_loadavg", 0, NULL);
	if (!entry)
		goto out_stop_kthread;
	entry->proc_fops = &spu_loadavg_fops;

774 775
	pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
			SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE);
776
	return 0;
777

778 779 780 781 782 783
 out_stop_kthread:
	kthread_stop(spusched_task);
 out_free_spu_prio:
	kfree(spu_prio);
 out:
	return err;
784 785 786 787
}

void __exit spu_sched_exit(void)
{
788 789 790
	struct spu *spu, *tmp;
	int node;

791 792
	remove_proc_entry("spu_loadavg", NULL);

793
	del_timer_sync(&spusched_timer);
794 795
	kthread_stop(spusched_task);

796 797 798 799 800 801 802 803
	for (node = 0; node < MAX_NUMNODES; node++) {
		mutex_lock(&spu_prio->active_mutex[node]);
		list_for_each_entry_safe(spu, tmp, &spu_prio->active_list[node],
					 list) {
			list_del_init(&spu->list);
			spu_free(spu);
		}
		mutex_unlock(&spu_prio->active_mutex[node]);
804
	}
805
	kfree(spu_prio);
806
}