dma-mapping.c 50.6 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  linux/arch/arm/mm/dma-mapping.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13
 *
 *  Copyright (C) 2000-2004 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 *  DMA uncached mapping support.
 */
#include <linux/module.h>
#include <linux/mm.h>
14
#include <linux/gfp.h>
L
Linus Torvalds 已提交
15 16 17 18 19
#include <linux/errno.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
20
#include <linux/dma-contiguous.h>
21
#include <linux/highmem.h>
22
#include <linux/memblock.h>
23
#include <linux/slab.h>
24
#include <linux/iommu.h>
25
#include <linux/io.h>
26
#include <linux/vmalloc.h>
27
#include <linux/sizes.h>
L
Linus Torvalds 已提交
28

29
#include <asm/memory.h>
30
#include <asm/highmem.h>
L
Linus Torvalds 已提交
31 32
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
33
#include <asm/mach/arch.h>
34
#include <asm/dma-iommu.h>
35 36 37
#include <asm/mach/map.h>
#include <asm/system_info.h>
#include <asm/dma-contiguous.h>
38

39 40
#include "mm.h"

41 42 43 44 45 46 47 48 49 50 51 52
/*
 * The DMA API is built upon the notion of "buffer ownership".  A buffer
 * is either exclusively owned by the CPU (and therefore may be accessed
 * by it) or exclusively owned by the DMA device.  These helper functions
 * represent the transitions between these two ownership states.
 *
 * Note, however, that on later ARMs, this notion does not work due to
 * speculative prefetches.  We model our approach on the assumption that
 * the CPU does do speculative prefetches, which means we clean caches
 * before transfers and delay cache invalidation until transfer completion.
 *
 */
53
static void __dma_page_cpu_to_dev(struct page *, unsigned long,
54
		size_t, enum dma_data_direction);
55
static void __dma_page_dev_to_cpu(struct page *, unsigned long,
56 57
		size_t, enum dma_data_direction);

58 59 60 61 62 63 64 65 66 67 68 69 70 71
/**
 * arm_dma_map_page - map a portion of a page for streaming DMA
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @page: page that buffer resides in
 * @offset: offset into page for start of buffer
 * @size: size of buffer to map
 * @dir: DMA transfer direction
 *
 * Ensure that any data held in the cache is appropriately discarded
 * or written back.
 *
 * The device owns this memory once this call has completed.  The CPU
 * can regain ownership by calling dma_unmap_page().
 */
72
static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
73 74 75
	     unsigned long offset, size_t size, enum dma_data_direction dir,
	     struct dma_attrs *attrs)
{
R
Rob Herring 已提交
76
	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
77 78
		__dma_page_cpu_to_dev(page, offset, size, dir);
	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
79 80
}

R
Rob Herring 已提交
81 82 83 84 85 86 87
static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
	     unsigned long offset, size_t size, enum dma_data_direction dir,
	     struct dma_attrs *attrs)
{
	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
}

88 89 90 91 92 93 94 95 96 97 98 99 100 101
/**
 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @handle: DMA address of buffer
 * @size: size of buffer (same as passed to dma_map_page)
 * @dir: DMA transfer direction (same as passed to dma_map_page)
 *
 * Unmap a page streaming mode DMA translation.  The handle and size
 * must match what was provided in the previous dma_map_page() call.
 * All other usages are undefined.
 *
 * After this call, reads by the CPU to the buffer are guaranteed to see
 * whatever the device wrote there.
 */
102
static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
103 104 105
		size_t size, enum dma_data_direction dir,
		struct dma_attrs *attrs)
{
R
Rob Herring 已提交
106
	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
107 108
		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
				      handle & ~PAGE_MASK, size, dir);
109 110
}

111
static void arm_dma_sync_single_for_cpu(struct device *dev,
112 113 114 115
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
	unsigned int offset = handle & (PAGE_SIZE - 1);
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
R
Rob Herring 已提交
116
	__dma_page_dev_to_cpu(page, offset, size, dir);
117 118
}

119
static void arm_dma_sync_single_for_device(struct device *dev,
120 121 122 123
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
	unsigned int offset = handle & (PAGE_SIZE - 1);
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
R
Rob Herring 已提交
124
	__dma_page_cpu_to_dev(page, offset, size, dir);
125 126 127
}

struct dma_map_ops arm_dma_ops = {
128 129 130
	.alloc			= arm_dma_alloc,
	.free			= arm_dma_free,
	.mmap			= arm_dma_mmap,
131
	.get_sgtable		= arm_dma_get_sgtable,
132 133 134 135 136 137 138 139 140 141 142 143
	.map_page		= arm_dma_map_page,
	.unmap_page		= arm_dma_unmap_page,
	.map_sg			= arm_dma_map_sg,
	.unmap_sg		= arm_dma_unmap_sg,
	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
	.sync_single_for_device	= arm_dma_sync_single_for_device,
	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
	.set_dma_mask		= arm_dma_set_mask,
};
EXPORT_SYMBOL(arm_dma_ops);

R
Rob Herring 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
				  dma_addr_t handle, struct dma_attrs *attrs);

struct dma_map_ops arm_coherent_dma_ops = {
	.alloc			= arm_coherent_dma_alloc,
	.free			= arm_coherent_dma_free,
	.mmap			= arm_dma_mmap,
	.get_sgtable		= arm_dma_get_sgtable,
	.map_page		= arm_coherent_dma_map_page,
	.map_sg			= arm_dma_map_sg,
	.set_dma_mask		= arm_dma_set_mask,
};
EXPORT_SYMBOL(arm_coherent_dma_ops);

160 161
static u64 get_coherent_dma_mask(struct device *dev)
{
162
	u64 mask = (u64)arm_dma_limit;
163 164 165 166 167 168 169 170 171 172 173 174 175

	if (dev) {
		mask = dev->coherent_dma_mask;

		/*
		 * Sanity check the DMA mask - it must be non-zero, and
		 * must be able to be satisfied by a DMA allocation.
		 */
		if (mask == 0) {
			dev_warn(dev, "coherent DMA mask is unset\n");
			return 0;
		}

176
		if ((~mask) & (u64)arm_dma_limit) {
177 178
			dev_warn(dev, "coherent DMA mask %#llx is smaller "
				 "than system GFP_DMA mask %#llx\n",
179
				 mask, (u64)arm_dma_limit);
180 181 182
			return 0;
		}
	}
L
Linus Torvalds 已提交
183

184 185 186
	return mask;
}

187 188 189 190 191 192
static void __dma_clear_buffer(struct page *page, size_t size)
{
	/*
	 * Ensure that the allocated pages are zeroed, and that any data
	 * lurking in the kernel direct-mapped region is invalidated.
	 */
193 194 195 196 197 198 199 200 201 202 203 204 205 206
	if (PageHighMem(page)) {
		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
		phys_addr_t end = base + size;
		while (size > 0) {
			void *ptr = kmap_atomic(page);
			memset(ptr, 0, PAGE_SIZE);
			dmac_flush_range(ptr, ptr + PAGE_SIZE);
			kunmap_atomic(ptr);
			page++;
			size -= PAGE_SIZE;
		}
		outer_flush_range(base, end);
	} else {
		void *ptr = page_address(page);
207 208 209 210
		memset(ptr, 0, size);
		dmac_flush_range(ptr, ptr + size);
		outer_flush_range(__pa(ptr), __pa(ptr) + size);
	}
211 212
}

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
/*
 * Allocate a DMA buffer for 'dev' of size 'size' using the
 * specified gfp mask.  Note that 'size' must be page aligned.
 */
static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
{
	unsigned long order = get_order(size);
	struct page *page, *p, *e;

	page = alloc_pages(gfp, order);
	if (!page)
		return NULL;

	/*
	 * Now split the huge page and free the excess pages
	 */
	split_page(page, order);
	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
		__free_page(p);

233
	__dma_clear_buffer(page, size);
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250

	return page;
}

/*
 * Free a DMA buffer.  'size' must be page aligned.
 */
static void __dma_free_buffer(struct page *page, size_t size)
{
	struct page *e = page + (size >> PAGE_SHIFT);

	while (page < e) {
		__free_page(page);
		page++;
	}
}

251
#ifdef CONFIG_MMU
252
#ifdef CONFIG_HUGETLB_PAGE
253
#warning ARM Coherent DMA allocator does not (yet) support huge TLB
254
#endif
255

256
static void *__alloc_from_contiguous(struct device *dev, size_t size,
257 258
				     pgprot_t prot, struct page **ret_page,
				     const void *caller);
259

260 261 262
static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
				 pgprot_t prot, struct page **ret_page,
				 const void *caller);
263

264 265 266
static void *
__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
	const void *caller)
267
{
268 269
	struct vm_struct *area;
	unsigned long addr;
270

271 272 273 274 275 276 277 278 279 280
	/*
	 * DMA allocation can be mapped to user space, so lets
	 * set VM_USERMAP flags too.
	 */
	area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
				  caller);
	if (!area)
		return NULL;
	addr = (unsigned long)area->addr;
	area->phys_addr = __pfn_to_phys(page_to_pfn(page));
281

282 283 284 285 286
	if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
		vunmap((void *)addr);
		return NULL;
	}
	return (void *)addr;
287
}
L
Linus Torvalds 已提交
288

289
static void __dma_free_remap(void *cpu_addr, size_t size)
290
{
291 292 293 294 295
	unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
	struct vm_struct *area = find_vm_area(cpu_addr);
	if (!area || (area->flags & flags) != flags) {
		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
		return;
296
	}
297 298
	unmap_kernel_range((unsigned long)cpu_addr, size);
	vunmap(cpu_addr);
299 300
}

301 302
#define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K

303 304 305 306 307 308
struct dma_pool {
	size_t size;
	spinlock_t lock;
	unsigned long *bitmap;
	unsigned long nr_pages;
	void *vaddr;
309
	struct page **pages;
310 311
};

312
static struct dma_pool atomic_pool = {
313
	.size = DEFAULT_DMA_COHERENT_POOL_SIZE,
314
};
315 316 317

static int __init early_coherent_pool(char *p)
{
318
	atomic_pool.size = memparse(p, &p);
319 320 321 322
	return 0;
}
early_param("coherent_pool", early_coherent_pool);

323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
void __init init_dma_coherent_pool_size(unsigned long size)
{
	/*
	 * Catch any attempt to set the pool size too late.
	 */
	BUG_ON(atomic_pool.vaddr);

	/*
	 * Set architecture specific coherent pool size only if
	 * it has not been changed by kernel command line parameter.
	 */
	if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
		atomic_pool.size = size;
}

338 339 340
/*
 * Initialise the coherent pool for atomic allocations.
 */
341
static int __init atomic_pool_init(void)
342
{
343
	struct dma_pool *pool = &atomic_pool;
344
	pgprot_t prot = pgprot_dmacoherent(pgprot_kernel);
345
	gfp_t gfp = GFP_KERNEL | GFP_DMA;
346 347
	unsigned long nr_pages = pool->size >> PAGE_SHIFT;
	unsigned long *bitmap;
348
	struct page *page;
349
	struct page **pages;
350
	void *ptr;
351
	int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
352

353 354 355
	bitmap = kzalloc(bitmap_size, GFP_KERNEL);
	if (!bitmap)
		goto no_bitmap;
356

357 358 359 360
	pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
	if (!pages)
		goto no_pages;

361
	if (IS_ENABLED(CONFIG_CMA))
362 363
		ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page,
					      atomic_pool_init);
364
	else
365 366
		ptr = __alloc_remap_buffer(NULL, pool->size, gfp, prot, &page,
					   atomic_pool_init);
367
	if (ptr) {
368 369 370 371 372
		int i;

		for (i = 0; i < nr_pages; i++)
			pages[i] = page + i;

373 374
		spin_lock_init(&pool->lock);
		pool->vaddr = ptr;
375
		pool->pages = pages;
376 377 378 379
		pool->bitmap = bitmap;
		pool->nr_pages = nr_pages;
		pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
		       (unsigned)pool->size / 1024);
380 381
		return 0;
	}
382 383

	kfree(pages);
384
no_pages:
385 386 387 388
	kfree(bitmap);
no_bitmap:
	pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
	       (unsigned)pool->size / 1024);
389 390 391 392 393
	return -ENOMEM;
}
/*
 * CMA is activated by core_initcall, so we must be called after it.
 */
394
postcore_initcall(atomic_pool_init);
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423

struct dma_contig_early_reserve {
	phys_addr_t base;
	unsigned long size;
};

static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;

static int dma_mmu_remap_num __initdata;

void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
{
	dma_mmu_remap[dma_mmu_remap_num].base = base;
	dma_mmu_remap[dma_mmu_remap_num].size = size;
	dma_mmu_remap_num++;
}

void __init dma_contiguous_remap(void)
{
	int i;
	for (i = 0; i < dma_mmu_remap_num; i++) {
		phys_addr_t start = dma_mmu_remap[i].base;
		phys_addr_t end = start + dma_mmu_remap[i].size;
		struct map_desc map;
		unsigned long addr;

		if (end > arm_lowmem_limit)
			end = arm_lowmem_limit;
		if (start >= end)
424
			continue;
425 426 427 428 429 430 431 432 433 434

		map.pfn = __phys_to_pfn(start);
		map.virtual = __phys_to_virt(start);
		map.length = end - start;
		map.type = MT_MEMORY_DMA_READY;

		/*
		 * Clear previous low-memory mapping
		 */
		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
435
		     addr += PMD_SIZE)
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
			pmd_clear(pmd_off_k(addr));

		iotable_init(&map, 1);
	}
}

static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
			    void *data)
{
	struct page *page = virt_to_page(addr);
	pgprot_t prot = *(pgprot_t *)data;

	set_pte_ext(pte, mk_pte(page, prot), 0);
	return 0;
}

static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
{
	unsigned long start = (unsigned long) page_address(page);
	unsigned end = start + size;

	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
	dsb();
	flush_tlb_kernel_range(start, end);
}

static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
				 pgprot_t prot, struct page **ret_page,
				 const void *caller)
{
	struct page *page;
	void *ptr;
	page = __dma_alloc_buffer(dev, size, gfp);
	if (!page)
		return NULL;

	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
	if (!ptr) {
		__dma_free_buffer(page, size);
		return NULL;
	}

	*ret_page = page;
	return ptr;
}

482
static void *__alloc_from_pool(size_t size, struct page **ret_page)
483
{
484 485 486 487 488
	struct dma_pool *pool = &atomic_pool;
	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	unsigned int pageno;
	unsigned long flags;
	void *ptr = NULL;
489
	unsigned long align_mask;
490

491 492
	if (!pool->vaddr) {
		WARN(1, "coherent pool not initialised!\n");
493 494 495 496 497 498 499 500
		return NULL;
	}

	/*
	 * Align the region allocation - allocations from pool are rather
	 * small, so align them to their order in pages, minimum is a page
	 * size. This helps reduce fragmentation of the DMA space.
	 */
501
	align_mask = (1 << get_order(size)) - 1;
502 503 504

	spin_lock_irqsave(&pool->lock, flags);
	pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
505
					    0, count, align_mask);
506 507 508
	if (pageno < pool->nr_pages) {
		bitmap_set(pool->bitmap, pageno, count);
		ptr = pool->vaddr + PAGE_SIZE * pageno;
509
		*ret_page = pool->pages[pageno];
510 511 512 513
	} else {
		pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
			    "Please increase it with coherent_pool= kernel parameter!\n",
			    (unsigned)pool->size / 1024);
514
	}
515 516 517
	spin_unlock_irqrestore(&pool->lock, flags);

	return ptr;
518 519
}

520 521 522 523 524 525 526
static bool __in_atomic_pool(void *start, size_t size)
{
	struct dma_pool *pool = &atomic_pool;
	void *end = start + size;
	void *pool_start = pool->vaddr;
	void *pool_end = pool->vaddr + pool->size;

527
	if (start < pool_start || start >= pool_end)
528 529 530 531 532 533 534 535 536 537 538
		return false;

	if (end <= pool_end)
		return true;

	WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
	     start, end - 1, pool_start, pool_end - 1);

	return false;
}

539
static int __free_from_pool(void *start, size_t size)
540
{
541 542 543
	struct dma_pool *pool = &atomic_pool;
	unsigned long pageno, count;
	unsigned long flags;
544

545
	if (!__in_atomic_pool(start, size))
546 547
		return 0;

548 549 550 551 552 553 554
	pageno = (start - pool->vaddr) >> PAGE_SHIFT;
	count = size >> PAGE_SHIFT;

	spin_lock_irqsave(&pool->lock, flags);
	bitmap_clear(pool->bitmap, pageno, count);
	spin_unlock_irqrestore(&pool->lock, flags);

555 556 557 558
	return 1;
}

static void *__alloc_from_contiguous(struct device *dev, size_t size,
559 560
				     pgprot_t prot, struct page **ret_page,
				     const void *caller)
561 562 563 564
{
	unsigned long order = get_order(size);
	size_t count = size >> PAGE_SHIFT;
	struct page *page;
565
	void *ptr;
566 567 568 569 570 571 572

	page = dma_alloc_from_contiguous(dev, count, order);
	if (!page)
		return NULL;

	__dma_clear_buffer(page, size);

573 574 575 576 577 578 579 580 581 582
	if (PageHighMem(page)) {
		ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
		if (!ptr) {
			dma_release_from_contiguous(dev, page, count);
			return NULL;
		}
	} else {
		__dma_remap(page, size, prot);
		ptr = page_address(page);
	}
583
	*ret_page = page;
584
	return ptr;
585 586 587
}

static void __free_from_contiguous(struct device *dev, struct page *page,
588
				   void *cpu_addr, size_t size)
589
{
590 591 592 593
	if (PageHighMem(page))
		__dma_free_remap(cpu_addr, size);
	else
		__dma_remap(page, size, pgprot_kernel);
594 595 596
	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
}

597 598 599 600 601 602 603 604
static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
{
	prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
			    pgprot_writecombine(prot) :
			    pgprot_dmacoherent(prot);
	return prot;
}

605 606
#define nommu() 0

607
#else	/* !CONFIG_MMU */
608

609 610
#define nommu() 1

611
#define __get_dma_pgprot(attrs, prot)	__pgprot(0)
612
#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c)	NULL
613
#define __alloc_from_pool(size, ret_page)			NULL
614
#define __alloc_from_contiguous(dev, size, prot, ret, c)	NULL
615
#define __free_from_pool(cpu_addr, size)			0
616
#define __free_from_contiguous(dev, page, cpu_addr, size)	do { } while (0)
617
#define __dma_free_remap(cpu_addr, size)			do { } while (0)
618 619 620

#endif	/* CONFIG_MMU */

621 622
static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
				   struct page **ret_page)
623
{
624 625 626 627 628 629 630 631 632 633 634 635
	struct page *page;
	page = __dma_alloc_buffer(dev, size, gfp);
	if (!page)
		return NULL;

	*ret_page = page;
	return page_address(page);
}



static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
R
Rob Herring 已提交
636
			 gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller)
637 638
{
	u64 mask = get_coherent_dma_mask(dev);
639
	struct page *page = NULL;
640
	void *addr;
641

642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
#ifdef CONFIG_DMA_API_DEBUG
	u64 limit = (mask + 1) & ~mask;
	if (limit && size >= limit) {
		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
			size, mask);
		return NULL;
	}
#endif

	if (!mask)
		return NULL;

	if (mask < 0xffffffffULL)
		gfp |= GFP_DMA;

657 658 659 660 661 662 663 664 665
	/*
	 * Following is a work-around (a.k.a. hack) to prevent pages
	 * with __GFP_COMP being passed to split_page() which cannot
	 * handle them.  The real problem is that this flag probably
	 * should be 0 on ARM as it is not supported on this
	 * platform; see CONFIG_HUGETLBFS.
	 */
	gfp &= ~(__GFP_COMP);

666
	*handle = DMA_ERROR_CODE;
667
	size = PAGE_ALIGN(size);
668

R
Rob Herring 已提交
669
	if (is_coherent || nommu())
670
		addr = __alloc_simple_buffer(dev, size, gfp, &page);
671
	else if (!(gfp & __GFP_WAIT))
672
		addr = __alloc_from_pool(size, &page);
673
	else if (!IS_ENABLED(CONFIG_CMA))
674
		addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
675
	else
676
		addr = __alloc_from_contiguous(dev, size, prot, &page, caller);
677

678
	if (addr)
679
		*handle = pfn_to_dma(dev, page_to_pfn(page));
680

681 682
	return addr;
}
L
Linus Torvalds 已提交
683 684 685 686 687

/*
 * Allocate DMA-coherent memory space and return both the kernel remapped
 * virtual and bus address for that space.
 */
688 689
void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
		    gfp_t gfp, struct dma_attrs *attrs)
L
Linus Torvalds 已提交
690
{
691
	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
692 693 694 695 696
	void *memory;

	if (dma_alloc_from_coherent(dev, size, handle, &memory))
		return memory;

R
Rob Herring 已提交
697 698 699 700 701 702 703 704 705 706 707 708 709 710
	return __dma_alloc(dev, size, handle, gfp, prot, false,
			   __builtin_return_address(0));
}

static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
{
	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
	void *memory;

	if (dma_alloc_from_coherent(dev, size, handle, &memory))
		return memory;

	return __dma_alloc(dev, size, handle, gfp, prot, true,
711
			   __builtin_return_address(0));
L
Linus Torvalds 已提交
712 713 714
}

/*
715
 * Create userspace mapping for the DMA-coherent memory.
L
Linus Torvalds 已提交
716
 */
717 718 719
int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
		 struct dma_attrs *attrs)
L
Linus Torvalds 已提交
720
{
721 722
	int ret = -ENXIO;
#ifdef CONFIG_MMU
723 724
	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
725
	unsigned long pfn = dma_to_pfn(dev, dma_addr);
726 727
	unsigned long off = vma->vm_pgoff;

728 729
	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);

730 731 732
	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
		return ret;

733 734 735 736 737 738
	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
		ret = remap_pfn_range(vma, vma->vm_start,
				      pfn + off,
				      vma->vm_end - vma->vm_start,
				      vma->vm_page_prot);
	}
739
#endif	/* CONFIG_MMU */
L
Linus Torvalds 已提交
740 741 742 743 744

	return ret;
}

/*
745
 * Free a buffer as defined by the above mapping.
L
Linus Torvalds 已提交
746
 */
R
Rob Herring 已提交
747 748 749
static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
			   dma_addr_t handle, struct dma_attrs *attrs,
			   bool is_coherent)
L
Linus Torvalds 已提交
750
{
751
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
752

753 754 755
	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
		return;

756 757
	size = PAGE_ALIGN(size);

R
Rob Herring 已提交
758
	if (is_coherent || nommu()) {
759
		__dma_free_buffer(page, size);
760 761
	} else if (__free_from_pool(cpu_addr, size)) {
		return;
762
	} else if (!IS_ENABLED(CONFIG_CMA)) {
763
		__dma_free_remap(cpu_addr, size);
764 765 766 767 768 769
		__dma_free_buffer(page, size);
	} else {
		/*
		 * Non-atomic allocations cannot be freed with IRQs disabled
		 */
		WARN_ON(irqs_disabled());
770
		__free_from_contiguous(dev, page, cpu_addr, size);
771
	}
L
Linus Torvalds 已提交
772
}
773

R
Rob Herring 已提交
774 775 776 777 778 779 780 781 782 783 784 785
void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
		  dma_addr_t handle, struct dma_attrs *attrs)
{
	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
}

static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
				  dma_addr_t handle, struct dma_attrs *attrs)
{
	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
}

786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
		 void *cpu_addr, dma_addr_t handle, size_t size,
		 struct dma_attrs *attrs)
{
	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
	int ret;

	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
	if (unlikely(ret))
		return ret;

	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
	return 0;
}

801
static void dma_cache_maint_page(struct page *page, unsigned long offset,
802 803
	size_t size, enum dma_data_direction dir,
	void (*op)(const void *, size_t, int))
804
{
805 806 807 808 809 810
	unsigned long pfn;
	size_t left = size;

	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
	offset %= PAGE_SIZE;

811 812 813 814 815 816 817 818
	/*
	 * A single sg entry may refer to multiple physically contiguous
	 * pages.  But we still need to process highmem pages individually.
	 * If highmem is not configured then the bulk of this loop gets
	 * optimized out.
	 */
	do {
		size_t len = left;
819 820
		void *vaddr;

821 822
		page = pfn_to_page(pfn);

823
		if (PageHighMem(page)) {
824
			if (len + offset > PAGE_SIZE)
825
				len = PAGE_SIZE - offset;
826 827

			if (cache_is_vipt_nonaliasing()) {
828
				vaddr = kmap_atomic(page);
829
				op(vaddr + offset, len, dir);
830
				kunmap_atomic(vaddr);
831 832 833 834 835 836
			} else {
				vaddr = kmap_high_get(page);
				if (vaddr) {
					op(vaddr + offset, len, dir);
					kunmap_high(page);
				}
837
			}
838 839
		} else {
			vaddr = page_address(page) + offset;
840
			op(vaddr, len, dir);
841 842
		}
		offset = 0;
843
		pfn++;
844 845 846
		left -= len;
	} while (left);
}
847

848 849 850 851 852 853 854
/*
 * Make an area consistent for devices.
 * Note: Drivers should NOT use this function directly, as it will break
 * platforms with CONFIG_DMABOUNCE.
 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
 */
static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
855 856
	size_t size, enum dma_data_direction dir)
{
857 858
	unsigned long paddr;

859
	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
860 861

	paddr = page_to_phys(page) + off;
862 863 864 865 866 867
	if (dir == DMA_FROM_DEVICE) {
		outer_inv_range(paddr, paddr + size);
	} else {
		outer_clean_range(paddr, paddr + size);
	}
	/* FIXME: non-speculating: flush on bidirectional mappings? */
868 869
}

870
static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
871 872
	size_t size, enum dma_data_direction dir)
{
873 874 875 876 877 878 879
	unsigned long paddr = page_to_phys(page) + off;

	/* FIXME: non-speculating: not required */
	/* don't bother invalidating if DMA to device */
	if (dir != DMA_TO_DEVICE)
		outer_inv_range(paddr, paddr + size);

880
	dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
881 882

	/*
883
	 * Mark the D-cache clean for these pages to avoid extra flushing.
884
	 */
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
		unsigned long pfn;
		size_t left = size;

		pfn = page_to_pfn(page) + off / PAGE_SIZE;
		off %= PAGE_SIZE;
		if (off) {
			pfn++;
			left -= PAGE_SIZE - off;
		}
		while (left >= PAGE_SIZE) {
			page = pfn_to_page(pfn++);
			set_bit(PG_dcache_clean, &page->flags);
			left -= PAGE_SIZE;
		}
	}
901
}
902

903
/**
904
 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
905 906 907 908 909 910 911 912 913 914 915 916 917 918
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map
 * @dir: DMA transfer direction
 *
 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 * This is the scatter-gather version of the dma_map_single interface.
 * Here the scatter gather list elements are each tagged with the
 * appropriate dma address and length.  They are obtained via
 * sg_dma_{address,length}.
 *
 * Device ownership issues as mentioned for dma_map_single are the same
 * here.
 */
919 920
int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
		enum dma_data_direction dir, struct dma_attrs *attrs)
921
{
922
	struct dma_map_ops *ops = get_dma_ops(dev);
923
	struct scatterlist *s;
924
	int i, j;
925 926

	for_each_sg(sg, s, nents, i) {
927 928 929
#ifdef CONFIG_NEED_SG_DMA_LENGTH
		s->dma_length = s->length;
#endif
930 931
		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
						s->length, dir, attrs);
932 933
		if (dma_mapping_error(dev, s->dma_address))
			goto bad_mapping;
934 935
	}
	return nents;
936 937 938

 bad_mapping:
	for_each_sg(sg, s, i, j)
939
		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
940
	return 0;
941 942 943
}

/**
944
 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
945 946
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
947
 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
948 949 950 951 952
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 *
 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 * rules concerning calls here are the same as for dma_unmap_single().
 */
953 954
void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
		enum dma_data_direction dir, struct dma_attrs *attrs)
955
{
956
	struct dma_map_ops *ops = get_dma_ops(dev);
957 958 959
	struct scatterlist *s;

	int i;
960

961
	for_each_sg(sg, s, nents, i)
962
		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
963 964 965
}

/**
966
 * arm_dma_sync_sg_for_cpu
967 968 969 970 971
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
972
void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
973 974
			int nents, enum dma_data_direction dir)
{
975
	struct dma_map_ops *ops = get_dma_ops(dev);
976 977 978
	struct scatterlist *s;
	int i;

979 980 981
	for_each_sg(sg, s, nents, i)
		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
					 dir);
982 983 984
}

/**
985
 * arm_dma_sync_sg_for_device
986 987 988 989 990
 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
991
void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
992 993
			int nents, enum dma_data_direction dir)
{
994
	struct dma_map_ops *ops = get_dma_ops(dev);
995 996 997
	struct scatterlist *s;
	int i;

998 999 1000
	for_each_sg(sg, s, nents, i)
		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
					    dir);
1001
}
1002

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
/*
 * Return whether the given device DMA address mask can be supported
 * properly.  For example, if your device can only drive the low 24-bits
 * during bus mastering, then you would pass 0x00ffffff as the mask
 * to this function.
 */
int dma_supported(struct device *dev, u64 mask)
{
	if (mask < (u64)arm_dma_limit)
		return 0;
	return 1;
}
EXPORT_SYMBOL(dma_supported);

1017
int arm_dma_set_mask(struct device *dev, u64 dma_mask)
1018 1019 1020 1021 1022 1023 1024 1025 1026
{
	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
		return -EIO;

	*dev->dma_mask = dma_mask;

	return 0;
}

1027 1028 1029 1030 1031 1032 1033 1034
#define PREALLOC_DMA_DEBUG_ENTRIES	4096

static int __init dma_debug_do_init(void)
{
	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
	return 0;
}
fs_initcall(dma_debug_do_init);
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047

#ifdef CONFIG_ARM_DMA_USE_IOMMU

/* IOMMU */

static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
				      size_t size)
{
	unsigned int order = get_order(size);
	unsigned int align = 0;
	unsigned int count, start;
	unsigned long flags;

1048 1049 1050
	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
	count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +
		 (1 << mapping->order) - 1) >> mapping->order;

	if (order > mapping->order)
		align = (1 << (order - mapping->order)) - 1;

	spin_lock_irqsave(&mapping->lock, flags);
	start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,
					   count, align);
	if (start > mapping->bits) {
		spin_unlock_irqrestore(&mapping->lock, flags);
		return DMA_ERROR_CODE;
	}

	bitmap_set(mapping->bitmap, start, count);
	spin_unlock_irqrestore(&mapping->lock, flags);

	return mapping->base + (start << (mapping->order + PAGE_SHIFT));
}

static inline void __free_iova(struct dma_iommu_mapping *mapping,
			       dma_addr_t addr, size_t size)
{
	unsigned int start = (addr - mapping->base) >>
			     (mapping->order + PAGE_SHIFT);
	unsigned int count = ((size >> PAGE_SHIFT) +
			      (1 << mapping->order) - 1) >> mapping->order;
	unsigned long flags;

	spin_lock_irqsave(&mapping->lock, flags);
	bitmap_clear(mapping->bitmap, start, count);
	spin_unlock_irqrestore(&mapping->lock, flags);
}

1085 1086
static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
					  gfp_t gfp, struct dma_attrs *attrs)
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
{
	struct page **pages;
	int count = size >> PAGE_SHIFT;
	int array_size = count * sizeof(struct page *);
	int i = 0;

	if (array_size <= PAGE_SIZE)
		pages = kzalloc(array_size, gfp);
	else
		pages = vzalloc(array_size);
	if (!pages)
		return NULL;

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
	{
		unsigned long order = get_order(size);
		struct page *page;

		page = dma_alloc_from_contiguous(dev, count, order);
		if (!page)
			goto error;

		__dma_clear_buffer(page, size);

		for (i = 0; i < count; i++)
			pages[i] = page + i;

		return pages;
	}

1117 1118 1119 1120 1121
	/*
	 * IOMMU can map any pages, so himem can also be used here
	 */
	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;

1122
	while (count) {
1123
		int j, order = __fls(count);
1124

1125
		pages[i] = alloc_pages(gfp, order);
1126
		while (!pages[i] && order)
1127
			pages[i] = alloc_pages(gfp, --order);
1128 1129 1130
		if (!pages[i])
			goto error;

1131
		if (order) {
1132
			split_page(pages[i], order);
1133 1134 1135 1136
			j = 1 << order;
			while (--j)
				pages[i + j] = pages[i] + j;
		}
1137 1138 1139 1140 1141 1142 1143 1144

		__dma_clear_buffer(pages[i], PAGE_SIZE << order);
		i += 1 << order;
		count -= 1 << order;
	}

	return pages;
error:
1145
	while (i--)
1146 1147
		if (pages[i])
			__free_pages(pages[i], 0);
1148
	if (array_size <= PAGE_SIZE)
1149 1150 1151 1152 1153 1154
		kfree(pages);
	else
		vfree(pages);
	return NULL;
}

1155 1156
static int __iommu_free_buffer(struct device *dev, struct page **pages,
			       size_t size, struct dma_attrs *attrs)
1157 1158 1159 1160
{
	int count = size >> PAGE_SHIFT;
	int array_size = count * sizeof(struct page *);
	int i;
1161 1162 1163 1164 1165 1166 1167 1168 1169

	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
		dma_release_from_contiguous(dev, pages[0], count);
	} else {
		for (i = 0; i < count; i++)
			if (pages[i])
				__free_pages(pages[i], 0);
	}

1170
	if (array_size <= PAGE_SIZE)
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
		kfree(pages);
	else
		vfree(pages);
	return 0;
}

/*
 * Create a CPU mapping for a specified pages
 */
static void *
1181 1182
__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
		    const void *caller)
1183
{
1184 1185 1186
	unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
	struct vm_struct *area;
	unsigned long p;
1187

1188 1189 1190
	area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
				  caller);
	if (!area)
1191 1192
		return NULL;

1193 1194 1195
	area->pages = pages;
	area->nr_pages = nr_pages;
	p = (unsigned long)area->addr;
1196

1197 1198 1199 1200 1201
	for (i = 0; i < nr_pages; i++) {
		phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
		if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
			goto err;
		p += PAGE_SIZE;
1202
	}
1203 1204 1205 1206
	return area->addr;
err:
	unmap_kernel_range((unsigned long)area->addr, size);
	vunmap(area->addr);
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
	return NULL;
}

/*
 * Create a mapping in device IO address space for specified pages
 */
static dma_addr_t
__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	dma_addr_t dma_addr, iova;
	int i, ret = DMA_ERROR_CODE;

	dma_addr = __alloc_iova(mapping, size);
	if (dma_addr == DMA_ERROR_CODE)
		return dma_addr;

	iova = dma_addr;
	for (i = 0; i < count; ) {
		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
		phys_addr_t phys = page_to_phys(pages[i]);
		unsigned int len, j;

		for (j = i + 1; j < count; j++, next_pfn++)
			if (page_to_pfn(pages[j]) != next_pfn)
				break;

		len = (j - i) << PAGE_SHIFT;
		ret = iommu_map(mapping->domain, iova, phys, len, 0);
		if (ret < 0)
			goto fail;
		iova += len;
		i = j;
	}
	return dma_addr;
fail:
	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
	__free_iova(mapping, dma_addr, size);
	return DMA_ERROR_CODE;
}

static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;

	/*
	 * add optional in-page offset from iova to size and align
	 * result to page size
	 */
	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
	iova &= PAGE_MASK;

	iommu_unmap(mapping->domain, iova, size);
	__free_iova(mapping, iova, size);
	return 0;
}

1265 1266 1267 1268 1269 1270 1271 1272 1273
static struct page **__atomic_get_pages(void *addr)
{
	struct dma_pool *pool = &atomic_pool;
	struct page **pages = pool->pages;
	int offs = (addr - pool->vaddr) >> PAGE_SHIFT;

	return pages + offs;
}

1274
static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1275 1276 1277
{
	struct vm_struct *area;

1278 1279 1280
	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
		return __atomic_get_pages(cpu_addr);

1281 1282 1283
	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
		return cpu_addr;

1284 1285 1286 1287 1288 1289
	area = find_vm_area(cpu_addr);
	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
		return area->pages;
	return NULL;
}

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
static void *__iommu_alloc_atomic(struct device *dev, size_t size,
				  dma_addr_t *handle)
{
	struct page *page;
	void *addr;

	addr = __alloc_from_pool(size, &page);
	if (!addr)
		return NULL;

	*handle = __iommu_create_mapping(dev, &page, size);
	if (*handle == DMA_ERROR_CODE)
		goto err_mapping;

	return addr;

err_mapping:
	__free_from_pool(addr, size);
	return NULL;
}

1311
static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1312 1313 1314
				dma_addr_t handle, size_t size)
{
	__iommu_remove_mapping(dev, handle, size);
1315
	__free_from_pool(cpu_addr, size);
1316 1317
}

1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
	    dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
{
	pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
	struct page **pages;
	void *addr = NULL;

	*handle = DMA_ERROR_CODE;
	size = PAGE_ALIGN(size);

1328 1329 1330
	if (gfp & GFP_ATOMIC)
		return __iommu_alloc_atomic(dev, size, handle);

1331
	pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1332 1333 1334 1335 1336 1337 1338
	if (!pages)
		return NULL;

	*handle = __iommu_create_mapping(dev, pages, size);
	if (*handle == DMA_ERROR_CODE)
		goto err_buffer;

1339 1340 1341
	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
		return pages;

1342 1343
	addr = __iommu_alloc_remap(pages, size, gfp, prot,
				   __builtin_return_address(0));
1344 1345 1346 1347 1348 1349 1350 1351
	if (!addr)
		goto err_mapping;

	return addr;

err_mapping:
	__iommu_remove_mapping(dev, *handle, size);
err_buffer:
1352
	__iommu_free_buffer(dev, pages, size, attrs);
1353 1354 1355 1356 1357 1358 1359
	return NULL;
}

static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
		    struct dma_attrs *attrs)
{
1360 1361
	unsigned long uaddr = vma->vm_start;
	unsigned long usize = vma->vm_end - vma->vm_start;
1362
	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1363 1364 1365

	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);

1366 1367
	if (!pages)
		return -ENXIO;
1368

1369 1370 1371 1372 1373 1374 1375 1376 1377
	do {
		int ret = vm_insert_page(vma, uaddr, *pages++);
		if (ret) {
			pr_err("Remapping memory failed: %d\n", ret);
			return ret;
		}
		uaddr += PAGE_SIZE;
		usize -= PAGE_SIZE;
	} while (usize > 0);
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388

	return 0;
}

/*
 * free a page as defined by the above mapping.
 * Must not be called with IRQs disabled.
 */
void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
			  dma_addr_t handle, struct dma_attrs *attrs)
{
1389
	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1390 1391
	size = PAGE_ALIGN(size);

1392 1393 1394
	if (!pages) {
		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
		return;
1395
	}
1396

1397
	if (__in_atomic_pool(cpu_addr, size)) {
1398
		__iommu_free_atomic(dev, cpu_addr, handle, size);
1399 1400 1401
		return;
	}

1402 1403 1404 1405
	if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
		unmap_kernel_range((unsigned long)cpu_addr, size);
		vunmap(cpu_addr);
	}
1406 1407

	__iommu_remove_mapping(dev, handle, size);
1408
	__iommu_free_buffer(dev, pages, size, attrs);
1409 1410
}

1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
				 void *cpu_addr, dma_addr_t dma_addr,
				 size_t size, struct dma_attrs *attrs)
{
	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
	struct page **pages = __iommu_get_pages(cpu_addr, attrs);

	if (!pages)
		return -ENXIO;

	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
					 GFP_KERNEL);
1423 1424 1425 1426 1427 1428 1429
}

/*
 * Map a part of the scatter-gather list into contiguous io address space
 */
static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
			  size_t size, dma_addr_t *handle,
R
Rob Herring 已提交
1430 1431
			  enum dma_data_direction dir, struct dma_attrs *attrs,
			  bool is_coherent)
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
	dma_addr_t iova, iova_base;
	int ret = 0;
	unsigned int count;
	struct scatterlist *s;

	size = PAGE_ALIGN(size);
	*handle = DMA_ERROR_CODE;

	iova_base = iova = __alloc_iova(mapping, size);
	if (iova == DMA_ERROR_CODE)
		return -ENOMEM;

	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
		phys_addr_t phys = page_to_phys(sg_page(s));
		unsigned int len = PAGE_ALIGN(s->offset + s->length);

R
Rob Herring 已提交
1450 1451
		if (!is_coherent &&
			!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);

		ret = iommu_map(mapping->domain, iova, phys, len, 0);
		if (ret < 0)
			goto fail;
		count += len >> PAGE_SHIFT;
		iova += len;
	}
	*handle = iova_base;

	return 0;
fail:
	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
	__free_iova(mapping, iova_base, size);
	return ret;
}

R
Rob Herring 已提交
1469 1470 1471
static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
		     enum dma_data_direction dir, struct dma_attrs *attrs,
		     bool is_coherent)
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
{
	struct scatterlist *s = sg, *dma = sg, *start = sg;
	int i, count = 0;
	unsigned int offset = s->offset;
	unsigned int size = s->offset + s->length;
	unsigned int max = dma_get_max_seg_size(dev);

	for (i = 1; i < nents; i++) {
		s = sg_next(s);

		s->dma_address = DMA_ERROR_CODE;
		s->dma_length = 0;

		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
R
Rob Herring 已提交
1487
			    dir, attrs, is_coherent) < 0)
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
				goto bad_mapping;

			dma->dma_address += offset;
			dma->dma_length = size - offset;

			size = offset = s->offset;
			start = s;
			dma = sg_next(dma);
			count += 1;
		}
		size += s->length;
	}
R
Rob Herring 已提交
1500 1501
	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
		is_coherent) < 0)
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
		goto bad_mapping;

	dma->dma_address += offset;
	dma->dma_length = size - offset;

	return count+1;

bad_mapping:
	for_each_sg(sg, s, count, i)
		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
	return 0;
}

/**
R
Rob Herring 已提交
1516
 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1517 1518
 * @dev: valid struct device pointer
 * @sg: list of buffers
R
Rob Herring 已提交
1519 1520
 * @nents: number of buffers to map
 * @dir: DMA transfer direction
1521
 *
R
Rob Herring 已提交
1522 1523 1524 1525
 * Map a set of i/o coherent buffers described by scatterlist in streaming
 * mode for DMA. The scatter gather list elements are merged together (if
 * possible) and tagged with the appropriate dma address and length. They are
 * obtained via sg_dma_{address,length}.
1526
 */
R
Rob Herring 已提交
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
{
	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
}

/**
 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to map
 * @dir: DMA transfer direction
 *
 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 * The scatter gather list elements are merged together (if possible) and
 * tagged with the appropriate dma address and length. They are obtained via
 * sg_dma_{address,length}.
 */
int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
{
	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
}

static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
		int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
		bool is_coherent)
1554 1555 1556 1557 1558 1559 1560 1561
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i) {
		if (sg_dma_len(s))
			__iommu_remove_mapping(dev, sg_dma_address(s),
					       sg_dma_len(s));
R
Rob Herring 已提交
1562
		if (!is_coherent &&
1563
		    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1564 1565 1566 1567 1568
			__dma_page_dev_to_cpu(sg_page(s), s->offset,
					      s->length, dir);
	}
}

R
Rob Herring 已提交
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
/**
 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 *
 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 * rules concerning calls here are the same as for dma_unmap_single().
 */
void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
{
	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
}

/**
 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 *
 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 * rules concerning calls here are the same as for dma_unmap_single().
 */
void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
			enum dma_data_direction dir, struct dma_attrs *attrs)
{
	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
}

1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
/**
 * arm_iommu_sync_sg_for_cpu
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
			int nents, enum dma_data_direction dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i)
R
Rob Herring 已提交
1615
		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632

}

/**
 * arm_iommu_sync_sg_for_device
 * @dev: valid struct device pointer
 * @sg: list of buffers
 * @nents: number of buffers to map (returned from dma_map_sg)
 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 */
void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
			int nents, enum dma_data_direction dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sg, s, nents, i)
R
Rob Herring 已提交
1633
		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1634 1635 1636 1637
}


/**
R
Rob Herring 已提交
1638
 * arm_coherent_iommu_map_page
1639 1640 1641 1642 1643 1644
 * @dev: valid struct device pointer
 * @page: page that buffer resides in
 * @offset: offset into page for start of buffer
 * @size: size of buffer to map
 * @dir: DMA transfer direction
 *
R
Rob Herring 已提交
1645
 * Coherent IOMMU aware version of arm_dma_map_page()
1646
 */
R
Rob Herring 已提交
1647
static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
	     unsigned long offset, size_t size, enum dma_data_direction dir,
	     struct dma_attrs *attrs)
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
	dma_addr_t dma_addr;
	int ret, len = PAGE_ALIGN(size + offset);

	dma_addr = __alloc_iova(mapping, len);
	if (dma_addr == DMA_ERROR_CODE)
		return dma_addr;

	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, 0);
	if (ret < 0)
		goto fail;

	return dma_addr + offset;
fail:
	__free_iova(mapping, dma_addr, len);
	return DMA_ERROR_CODE;
}

R
Rob Herring 已提交
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
/**
 * arm_iommu_map_page
 * @dev: valid struct device pointer
 * @page: page that buffer resides in
 * @offset: offset into page for start of buffer
 * @size: size of buffer to map
 * @dir: DMA transfer direction
 *
 * IOMMU aware version of arm_dma_map_page()
 */
static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
	     unsigned long offset, size_t size, enum dma_data_direction dir,
	     struct dma_attrs *attrs)
{
	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
		__dma_page_cpu_to_dev(page, offset, size, dir);

	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
}

/**
 * arm_coherent_iommu_unmap_page
 * @dev: valid struct device pointer
 * @handle: DMA address of buffer
 * @size: size of buffer (same as passed to dma_map_page)
 * @dir: DMA transfer direction (same as passed to dma_map_page)
 *
 * Coherent IOMMU aware version of arm_dma_unmap_page()
 */
static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
		size_t size, enum dma_data_direction dir,
		struct dma_attrs *attrs)
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
	dma_addr_t iova = handle & PAGE_MASK;
	int offset = handle & ~PAGE_MASK;
	int len = PAGE_ALIGN(size + offset);

	if (!iova)
		return;

	iommu_unmap(mapping->domain, iova, len);
	__free_iova(mapping, iova, len);
}

1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
/**
 * arm_iommu_unmap_page
 * @dev: valid struct device pointer
 * @handle: DMA address of buffer
 * @size: size of buffer (same as passed to dma_map_page)
 * @dir: DMA transfer direction (same as passed to dma_map_page)
 *
 * IOMMU aware version of arm_dma_unmap_page()
 */
static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
		size_t size, enum dma_data_direction dir,
		struct dma_attrs *attrs)
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
	dma_addr_t iova = handle & PAGE_MASK;
	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
	int offset = handle & ~PAGE_MASK;
	int len = PAGE_ALIGN(size + offset);

	if (!iova)
		return;

R
Rob Herring 已提交
1736
	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
		__dma_page_dev_to_cpu(page, offset, size, dir);

	iommu_unmap(mapping->domain, iova, len);
	__free_iova(mapping, iova, len);
}

static void arm_iommu_sync_single_for_cpu(struct device *dev,
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
	dma_addr_t iova = handle & PAGE_MASK;
	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
	unsigned int offset = handle & ~PAGE_MASK;

	if (!iova)
		return;

R
Rob Herring 已提交
1754
	__dma_page_dev_to_cpu(page, offset, size, dir);
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
}

static void arm_iommu_sync_single_for_device(struct device *dev,
		dma_addr_t handle, size_t size, enum dma_data_direction dir)
{
	struct dma_iommu_mapping *mapping = dev->archdata.mapping;
	dma_addr_t iova = handle & PAGE_MASK;
	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
	unsigned int offset = handle & ~PAGE_MASK;

	if (!iova)
		return;

	__dma_page_cpu_to_dev(page, offset, size, dir);
}

struct dma_map_ops iommu_ops = {
	.alloc		= arm_iommu_alloc_attrs,
	.free		= arm_iommu_free_attrs,
	.mmap		= arm_iommu_mmap_attrs,
1775
	.get_sgtable	= arm_iommu_get_sgtable,
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785

	.map_page		= arm_iommu_map_page,
	.unmap_page		= arm_iommu_unmap_page,
	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
	.sync_single_for_device	= arm_iommu_sync_single_for_device,

	.map_sg			= arm_iommu_map_sg,
	.unmap_sg		= arm_iommu_unmap_sg,
	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
1786 1787

	.set_dma_mask		= arm_dma_set_mask,
1788 1789
};

R
Rob Herring 已提交
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
struct dma_map_ops iommu_coherent_ops = {
	.alloc		= arm_iommu_alloc_attrs,
	.free		= arm_iommu_free_attrs,
	.mmap		= arm_iommu_mmap_attrs,
	.get_sgtable	= arm_iommu_get_sgtable,

	.map_page	= arm_coherent_iommu_map_page,
	.unmap_page	= arm_coherent_iommu_unmap_page,

	.map_sg		= arm_coherent_iommu_map_sg,
	.unmap_sg	= arm_coherent_iommu_unmap_sg,
1801 1802

	.set_dma_mask	= arm_dma_set_mask,
R
Rob Herring 已提交
1803 1804
};

1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
/**
 * arm_iommu_create_mapping
 * @bus: pointer to the bus holding the client device (for IOMMU calls)
 * @base: start address of the valid IO address space
 * @size: size of the valid IO address space
 * @order: accuracy of the IO addresses allocations
 *
 * Creates a mapping structure which holds information about used/unused
 * IO address ranges, which is required to perform memory allocation and
 * mapping with IOMMU aware functions.
 *
 * The client device need to be attached to the mapping with
 * arm_iommu_attach_device function.
 */
struct dma_iommu_mapping *
arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size,
			 int order)
{
	unsigned int count = size >> (PAGE_SHIFT + order);
	unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long);
	struct dma_iommu_mapping *mapping;
	int err = -ENOMEM;

	if (!count)
		return ERR_PTR(-EINVAL);

	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
	if (!mapping)
		goto err;

	mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
	if (!mapping->bitmap)
		goto err2;

	mapping->base = base;
	mapping->bits = BITS_PER_BYTE * bitmap_size;
	mapping->order = order;
	spin_lock_init(&mapping->lock);

	mapping->domain = iommu_domain_alloc(bus);
	if (!mapping->domain)
		goto err3;

	kref_init(&mapping->kref);
	return mapping;
err3:
	kfree(mapping->bitmap);
err2:
	kfree(mapping);
err:
	return ERR_PTR(err);
}
1857
EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873

static void release_iommu_mapping(struct kref *kref)
{
	struct dma_iommu_mapping *mapping =
		container_of(kref, struct dma_iommu_mapping, kref);

	iommu_domain_free(mapping->domain);
	kfree(mapping->bitmap);
	kfree(mapping);
}

void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
{
	if (mapping)
		kref_put(&mapping->kref, release_iommu_mapping);
}
1874
EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899

/**
 * arm_iommu_attach_device
 * @dev: valid struct device pointer
 * @mapping: io address space mapping structure (returned from
 *	arm_iommu_create_mapping)
 *
 * Attaches specified io address space mapping to the provided device,
 * this replaces the dma operations (dma_map_ops pointer) with the
 * IOMMU aware version. More than one client might be attached to
 * the same io address space mapping.
 */
int arm_iommu_attach_device(struct device *dev,
			    struct dma_iommu_mapping *mapping)
{
	int err;

	err = iommu_attach_device(mapping->domain, dev);
	if (err)
		return err;

	kref_get(&mapping->kref);
	dev->archdata.mapping = mapping;
	set_dma_ops(dev, &iommu_ops);

1900
	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
1901 1902
	return 0;
}
1903
EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
1904

1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
/**
 * arm_iommu_detach_device
 * @dev: valid struct device pointer
 *
 * Detaches the provided device from a previously attached map.
 * This voids the dma operations (dma_map_ops pointer)
 */
void arm_iommu_detach_device(struct device *dev)
{
	struct dma_iommu_mapping *mapping;

	mapping = to_dma_iommu_mapping(dev);
	if (!mapping) {
		dev_warn(dev, "Not attached\n");
		return;
	}

	iommu_detach_device(mapping->domain, dev);
	kref_put(&mapping->kref, release_iommu_mapping);
	mapping = NULL;
	set_dma_ops(dev, NULL);

	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
}
1929
EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
1930

1931
#endif