process.c 15.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

4 5 6 7
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
8
#include <linux/prctl.h>
9 10
#include <linux/slab.h>
#include <linux/sched.h>
11
#include <linux/sched/idle.h>
12
#include <linux/sched/debug.h>
13
#include <linux/sched/task.h>
14
#include <linux/sched/task_stack.h>
15 16
#include <linux/init.h>
#include <linux/export.h>
17
#include <linux/pm.h>
18
#include <linux/tick.h>
A
Amerigo Wang 已提交
19
#include <linux/random.h>
A
Avi Kivity 已提交
20
#include <linux/user-return-notifier.h>
21 22
#include <linux/dmi.h>
#include <linux/utsname.h>
23 24 25
#include <linux/stackprotector.h>
#include <linux/tick.h>
#include <linux/cpuidle.h>
26
#include <trace/events/power.h>
27
#include <linux/hw_breakpoint.h>
28
#include <asm/cpu.h>
29
#include <asm/apic.h>
30
#include <asm/syscalls.h>
31
#include <linux/uaccess.h>
32
#include <asm/mwait.h>
33
#include <asm/fpu/internal.h>
34
#include <asm/debugreg.h>
35
#include <asm/nmi.h>
A
Andy Lutomirski 已提交
36
#include <asm/tlbflush.h>
37
#include <asm/mce.h>
38
#include <asm/vm86.h>
39
#include <asm/switch_to.h>
40
#include <asm/desc.h>
41
#include <asm/prctl.h>
42

T
Thomas Gleixner 已提交
43 44 45 46 47 48 49
/*
 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
 * no more per-task TSS's. The TSS size is kept cacheline-aligned
 * so they are allowed to end up in the .data..cacheline_aligned
 * section. Since TSS's are completely CPU-local, we want them
 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
 */
50
__visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
51
	.x86_tss = {
52 53 54 55 56 57 58
		/*
		 * .sp0 is only used when entering ring 0 from a lower
		 * privilege level.  Since the init task never runs anything
		 * but ring 0 code, there is no need for a valid value here.
		 * Poison it.
		 */
		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
59 60 61 62 63 64 65 66 67 68

#ifdef CONFIG_X86_64
		/*
		 * .sp1 is cpu_current_top_of_stack.  The init task never
		 * runs user code, but cpu_current_top_of_stack should still
		 * be well defined before the first context switch.
		 */
		.sp1 = TOP_OF_INIT_STACK,
#endif

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
#ifdef CONFIG_X86_32
		.ss0 = __KERNEL_DS,
		.ss1 = __KERNEL_CS,
		.io_bitmap_base	= INVALID_IO_BITMAP_OFFSET,
#endif
	 },
#ifdef CONFIG_X86_32
	 /*
	  * Note that the .io_bitmap member must be extra-big. This is because
	  * the CPU will access an additional byte beyond the end of the IO
	  * permission bitmap. The extra byte must be all 1 bits, and must
	  * be within the limit.
	  */
	.io_bitmap		= { [0 ... IO_BITMAP_LONGS] = ~0 },
#endif
};
85
EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
T
Thomas Gleixner 已提交
86

87 88
DEFINE_PER_CPU(bool, __tss_limit_invalid);
EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
89

90 91 92 93
/*
 * this gets called so that we can store lazy state into memory and copy the
 * current task into the new thread.
 */
94 95
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
{
96
	memcpy(dst, src, arch_task_struct_size);
97 98 99
#ifdef CONFIG_VM86
	dst->thread.vm86 = NULL;
#endif
100

101
	return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
102
}
103

104 105 106
/*
 * Free current thread data structures etc..
 */
107
void exit_thread(struct task_struct *tsk)
108
{
109
	struct thread_struct *t = &tsk->thread;
110
	unsigned long *bp = t->io_bitmap_ptr;
111
	struct fpu *fpu = &t->fpu;
112

113
	if (bp) {
114
		struct tss_struct *tss = &per_cpu(cpu_tss_rw, get_cpu());
115 116 117 118 119 120 121 122 123

		t->io_bitmap_ptr = NULL;
		clear_thread_flag(TIF_IO_BITMAP);
		/*
		 * Careful, clear this in the TSS too:
		 */
		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
		t->io_bitmap_max = 0;
		put_cpu();
124
		kfree(bp);
125
	}
126

127 128
	free_vm86(t);

129
	fpu__drop(fpu);
130 131 132 133 134 135
}

void flush_thread(void)
{
	struct task_struct *tsk = current;

136
	flush_ptrace_hw_breakpoint(tsk);
137
	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
138

139
	fpu__clear(&tsk->thread.fpu);
140 141 142 143 144 145 146 147 148 149
}

void disable_TSC(void)
{
	preempt_disable();
	if (!test_and_set_thread_flag(TIF_NOTSC))
		/*
		 * Must flip the CPU state synchronously with
		 * TIF_NOTSC in the current running context.
		 */
150
		cr4_set_bits(X86_CR4_TSD);
151 152 153 154 155 156 157 158 159 160 161
	preempt_enable();
}

static void enable_TSC(void)
{
	preempt_disable();
	if (test_and_clear_thread_flag(TIF_NOTSC))
		/*
		 * Must flip the CPU state synchronously with
		 * TIF_NOTSC in the current running context.
		 */
162
		cr4_clear_bits(X86_CR4_TSD);
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
	preempt_enable();
}

int get_tsc_mode(unsigned long adr)
{
	unsigned int val;

	if (test_thread_flag(TIF_NOTSC))
		val = PR_TSC_SIGSEGV;
	else
		val = PR_TSC_ENABLE;

	return put_user(val, (unsigned int __user *)adr);
}

int set_tsc_mode(unsigned int val)
{
	if (val == PR_TSC_SIGSEGV)
		disable_TSC();
	else if (val == PR_TSC_ENABLE)
		enable_TSC();
	else
		return -EINVAL;

	return 0;
}

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
DEFINE_PER_CPU(u64, msr_misc_features_shadow);

static void set_cpuid_faulting(bool on)
{
	u64 msrval;

	msrval = this_cpu_read(msr_misc_features_shadow);
	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
	this_cpu_write(msr_misc_features_shadow, msrval);
	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
}

static void disable_cpuid(void)
{
	preempt_disable();
	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
		/*
		 * Must flip the CPU state synchronously with
		 * TIF_NOCPUID in the current running context.
		 */
		set_cpuid_faulting(true);
	}
	preempt_enable();
}

static void enable_cpuid(void)
{
	preempt_disable();
	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
		/*
		 * Must flip the CPU state synchronously with
		 * TIF_NOCPUID in the current running context.
		 */
		set_cpuid_faulting(false);
	}
	preempt_enable();
}

static int get_cpuid_mode(void)
{
	return !test_thread_flag(TIF_NOCPUID);
}

static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
{
	if (!static_cpu_has(X86_FEATURE_CPUID_FAULT))
		return -ENODEV;

	if (cpuid_enabled)
		enable_cpuid();
	else
		disable_cpuid();

	return 0;
}

/*
 * Called immediately after a successful exec.
 */
void arch_setup_new_exec(void)
{
	/* If cpuid was previously disabled for this task, re-enable it. */
	if (test_thread_flag(TIF_NOCPUID))
		enable_cpuid();
}

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
static inline void switch_to_bitmap(struct tss_struct *tss,
				    struct thread_struct *prev,
				    struct thread_struct *next,
				    unsigned long tifp, unsigned long tifn)
{
	if (tifn & _TIF_IO_BITMAP) {
		/*
		 * Copy the relevant range of the IO bitmap.
		 * Normally this is 128 bytes or less:
		 */
		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
		       max(prev->io_bitmap_max, next->io_bitmap_max));
		/*
		 * Make sure that the TSS limit is correct for the CPU
		 * to notice the IO bitmap.
		 */
		refresh_tss_limit();
	} else if (tifp & _TIF_IO_BITMAP) {
		/*
		 * Clear any possible leftover bits:
		 */
		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
	}
}

282 283 284 285
void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
		      struct tss_struct *tss)
{
	struct thread_struct *prev, *next;
286
	unsigned long tifp, tifn;
287 288 289 290

	prev = &prev_p->thread;
	next = &next_p->thread;

291 292 293 294 295 296
	tifn = READ_ONCE(task_thread_info(next_p)->flags);
	tifp = READ_ONCE(task_thread_info(prev_p)->flags);
	switch_to_bitmap(tss, prev, next, tifp, tifn);

	propagate_user_return_notify(prev_p, next_p);

297 298 299
	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
	    arch_has_block_step()) {
		unsigned long debugctl, msk;
P
Peter Zijlstra 已提交
300

301
		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
P
Peter Zijlstra 已提交
302
		debugctl &= ~DEBUGCTLMSR_BTF;
303 304 305
		msk = tifn & _TIF_BLOCKSTEP;
		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
P
Peter Zijlstra 已提交
306
	}
307

308 309
	if ((tifp ^ tifn) & _TIF_NOTSC)
		cr4_toggle_bits(X86_CR4_TSD);
310 311 312

	if ((tifp ^ tifn) & _TIF_NOCPUID)
		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
313 314
}

315 316 317
/*
 * Idle related variables and functions
 */
318
unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
319 320
EXPORT_SYMBOL(boot_option_idle_override);

321
static void (*x86_idle)(void);
322

323 324 325 326 327 328 329
#ifndef CONFIG_SMP
static inline void play_dead(void)
{
	BUG();
}
#endif

T
Thomas Gleixner 已提交
330 331
void arch_cpu_idle_enter(void)
{
332
	tsc_verify_tsc_adjust(false);
T
Thomas Gleixner 已提交
333 334
	local_touch_nmi();
}
335

T
Thomas Gleixner 已提交
336 337 338 339
void arch_cpu_idle_dead(void)
{
	play_dead();
}
340

T
Thomas Gleixner 已提交
341 342 343 344 345
/*
 * Called from the generic idle code.
 */
void arch_cpu_idle(void)
{
346
	x86_idle();
347 348
}

349
/*
T
Thomas Gleixner 已提交
350
 * We use this if we don't have any better idle routine..
351
 */
352
void __cpuidle default_idle(void)
353
{
354
	trace_cpu_idle_rcuidle(1, smp_processor_id());
T
Thomas Gleixner 已提交
355
	safe_halt();
356
	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
357
}
358
#ifdef CONFIG_APM_MODULE
359 360 361
EXPORT_SYMBOL(default_idle);
#endif

362 363
#ifdef CONFIG_XEN
bool xen_set_default_idle(void)
364
{
365
	bool ret = !!x86_idle;
366

367
	x86_idle = default_idle;
368 369 370

	return ret;
}
371
#endif
372

373 374 375 376 377 378
void stop_this_cpu(void *dummy)
{
	local_irq_disable();
	/*
	 * Remove this CPU:
	 */
379
	set_cpu_online(smp_processor_id(), false);
380
	disable_local_APIC();
381
	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
382

383 384 385 386 387 388 389 390 391 392 393 394 395 396
	for (;;) {
		/*
		 * Use wbinvd followed by hlt to stop the processor. This
		 * provides support for kexec on a processor that supports
		 * SME. With kexec, going from SME inactive to SME active
		 * requires clearing cache entries so that addresses without
		 * the encryption bit set don't corrupt the same physical
		 * address that has the encryption bit set when caches are
		 * flushed. To achieve this a wbinvd is performed followed by
		 * a hlt. Even if the processor is not in the kexec/SME
		 * scenario this only adds a wbinvd to a halting processor.
		 */
		asm volatile("wbinvd; hlt" : : : "memory");
	}
397 398
}

399
/*
400 401
 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
 * states (local apic timer and TSC stop).
402
 */
403
static void amd_e400_idle(void)
404
{
405 406 407 408 409 410 411 412
	/*
	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
	 * gets set after static_cpu_has() places have been converted via
	 * alternatives.
	 */
	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
		default_idle();
		return;
413 414
	}

415
	tick_broadcast_enter();
416

417
	default_idle();
418

419 420 421 422 423 424 425
	/*
	 * The switch back from broadcast mode needs to be called with
	 * interrupts disabled.
	 */
	local_irq_disable();
	tick_broadcast_exit();
	local_irq_enable();
426 427
}

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
/*
 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
 * We can't rely on cpuidle installing MWAIT, because it will not load
 * on systems that support only C1 -- so the boot default must be MWAIT.
 *
 * Some AMD machines are the opposite, they depend on using HALT.
 *
 * So for default C1, which is used during boot until cpuidle loads,
 * use MWAIT-C1 on Intel HW that has it, else use HALT.
 */
static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
{
	if (c->x86_vendor != X86_VENDOR_INTEL)
		return 0;

443
	if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
444 445 446 447 448 449
		return 0;

	return 1;
}

/*
450 451 452
 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
 * with interrupts enabled and no flags, which is backwards compatible with the
 * original MWAIT implementation.
453
 */
454
static __cpuidle void mwait_idle(void)
455
{
456
	if (!current_set_polling_and_test()) {
457
		trace_cpu_idle_rcuidle(1, smp_processor_id());
458
		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
459
			mb(); /* quirk */
460
			clflush((void *)&current_thread_info()->flags);
461
			mb(); /* quirk */
462
		}
463 464 465 466 467 468

		__monitor((void *)&current_thread_info()->flags, 0, 0);
		if (!need_resched())
			__sti_mwait(0, 0);
		else
			local_irq_enable();
469
		trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
470
	} else {
471
		local_irq_enable();
472 473
	}
	__current_clr_polling();
474 475
}

476
void select_idle_routine(const struct cpuinfo_x86 *c)
477
{
478
#ifdef CONFIG_SMP
T
Thomas Gleixner 已提交
479
	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
480
		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
481
#endif
T
Thomas Gleixner 已提交
482
	if (x86_idle || boot_option_idle_override == IDLE_POLL)
T
Thomas Gleixner 已提交
483 484
		return;

485
	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
486
		pr_info("using AMD E400 aware idle routine\n");
487
		x86_idle = amd_e400_idle;
488 489 490
	} else if (prefer_mwait_c1_over_halt(c)) {
		pr_info("using mwait in idle threads\n");
		x86_idle = mwait_idle;
T
Thomas Gleixner 已提交
491
	} else
492
		x86_idle = default_idle;
493 494
}

495
void amd_e400_c1e_apic_setup(void)
496
{
497 498 499 500 501 502
	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
		local_irq_disable();
		tick_broadcast_force();
		local_irq_enable();
	}
503 504
}

505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
void __init arch_post_acpi_subsys_init(void)
{
	u32 lo, hi;

	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
		return;

	/*
	 * AMD E400 detection needs to happen after ACPI has been enabled. If
	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
	 * MSR_K8_INT_PENDING_MSG.
	 */
	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
		return;

	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);

	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
		mark_tsc_unstable("TSC halt in AMD C1E");
	pr_info("System has AMD C1E enabled\n");
}

528 529
static int __init idle_setup(char *str)
{
530 531 532
	if (!str)
		return -EINVAL;

533
	if (!strcmp(str, "poll")) {
534
		pr_info("using polling idle threads\n");
535
		boot_option_idle_override = IDLE_POLL;
T
Thomas Gleixner 已提交
536
		cpu_idle_poll_ctrl(true);
537
	} else if (!strcmp(str, "halt")) {
Z
Zhao Yakui 已提交
538 539 540 541 542 543 544
		/*
		 * When the boot option of idle=halt is added, halt is
		 * forced to be used for CPU idle. In such case CPU C2/C3
		 * won't be used again.
		 * To continue to load the CPU idle driver, don't touch
		 * the boot_option_idle_override.
		 */
545
		x86_idle = default_idle;
546
		boot_option_idle_override = IDLE_HALT;
547 548 549 550 551 552 553
	} else if (!strcmp(str, "nomwait")) {
		/*
		 * If the boot option of "idle=nomwait" is added,
		 * it means that mwait will be disabled for CPU C2/C3
		 * states. In such case it won't touch the variable
		 * of boot_option_idle_override.
		 */
554
		boot_option_idle_override = IDLE_NOMWAIT;
Z
Zhao Yakui 已提交
555
	} else
556 557 558 559 560 561
		return -1;

	return 0;
}
early_param("idle", idle_setup);

A
Amerigo Wang 已提交
562 563 564 565 566 567 568 569 570
unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_int() % 8192;
	return sp & ~0xf;
}

unsigned long arch_randomize_brk(struct mm_struct *mm)
{
571
	return randomize_page(mm->brk, 0x02000000);
A
Amerigo Wang 已提交
572 573
}

574 575 576 577 578 579 580 581
/*
 * Called from fs/proc with a reference on @p to find the function
 * which called into schedule(). This needs to be done carefully
 * because the task might wake up and we might look at a stack
 * changing under us.
 */
unsigned long get_wchan(struct task_struct *p)
{
582
	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
583 584 585 586 587
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

588 589 590
	if (!try_get_task_stack(p))
		return 0;

591 592
	start = (unsigned long)task_stack_page(p);
	if (!start)
593
		goto out;
594 595 596 597 598 599 600 601

	/*
	 * Layout of the stack page:
	 *
	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
	 * PADDING
	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
	 * stack
602
	 * ----------- bottom = start
603 604 605 606 607 608 609 610 611 612
	 *
	 * The tasks stack pointer points at the location where the
	 * framepointer is stored. The data on the stack is:
	 * ... IP FP ... IP FP
	 *
	 * We need to read FP and IP, so we need to adjust the upper
	 * bound by another unsigned long.
	 */
	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
	top -= 2 * sizeof(unsigned long);
613
	bottom = start;
614 615 616

	sp = READ_ONCE(p->thread.sp);
	if (sp < bottom || sp > top)
617
		goto out;
618

619
	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
620 621
	do {
		if (fp < bottom || fp > top)
622
			goto out;
623
		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
624 625 626 627
		if (!in_sched_functions(ip)) {
			ret = ip;
			goto out;
		}
628
		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
629
	} while (count++ < 16 && p->state != TASK_RUNNING);
630 631 632 633

out:
	put_task_stack(p);
	return ret;
634
}
635 636 637 638

long do_arch_prctl_common(struct task_struct *task, int option,
			  unsigned long cpuid_enabled)
{
639 640 641 642 643 644 645
	switch (option) {
	case ARCH_GET_CPUID:
		return get_cpuid_mode();
	case ARCH_SET_CPUID:
		return set_cpuid_mode(task, cpuid_enabled);
	}

646 647
	return -EINVAL;
}