perf_event_intel.c 64.8 KB
Newer Older
1
/*
2 3 4 5
 * Per core/cpu state
 *
 * Used to coordinate shared registers between HT threads or
 * among events on a single PMU.
6
 */
7

8 9
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

10 11 12 13
#include <linux/stddef.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/slab.h>
14
#include <linux/export.h>
15

16
#include <asm/cpufeature.h>
17 18 19 20
#include <asm/hardirq.h>
#include <asm/apic.h>

#include "perf_event.h"
21

22
/*
23
 * Intel PerfMon, used on Core and later.
24
 */
25
static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
26
{
27 28 29 30 31 32 33 34
	[PERF_COUNT_HW_CPU_CYCLES]		= 0x003c,
	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0x4f2e,
	[PERF_COUNT_HW_CACHE_MISSES]		= 0x412e,
	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c4,
	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c5,
	[PERF_COUNT_HW_BUS_CYCLES]		= 0x013c,
	[PERF_COUNT_HW_REF_CPU_CYCLES]		= 0x0300, /* pseudo-encoding */
35 36
};

37
static struct event_constraint intel_core_event_constraints[] __read_mostly =
38 39 40 41 42 43 44 45 46 47
{
	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
	INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
	EVENT_CONSTRAINT_END
};

48
static struct event_constraint intel_core2_event_constraints[] __read_mostly =
49
{
50 51
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
52
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
53 54 55 56 57 58 59 60
	INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
	INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
	INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
61
	INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
62 63 64 65
	INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
	EVENT_CONSTRAINT_END
};

66
static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
67
{
68 69
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
70
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
71 72 73 74 75 76 77 78 79 80 81
	INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
	INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
	INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
	INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
	INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
	INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
	EVENT_CONSTRAINT_END
};

82
static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
83
{
84
	INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
85
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
86 87 88
	EVENT_EXTRA_END
};

89
static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
90
{
91 92
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
93
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
94 95 96
	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
	INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
97
	INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
98 99 100
	EVENT_CONSTRAINT_END
};

101
static struct event_constraint intel_snb_event_constraints[] __read_mostly =
102 103 104
{
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
105
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
106 107 108 109
	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
110 111 112
	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
113 114
	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
115 116 117
	EVENT_CONSTRAINT_END
};

118 119 120 121 122 123 124 125 126 127 128 129 130 131
static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
{
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
	INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
	INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
	INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
132 133 134 135 136 137 138 139 140
	/*
	 * Errata BV98 -- MEM_*_RETIRED events can leak between counters of SMT
	 * siblings; disable these events because they can corrupt unrelated
	 * counters.
	 */
	INTEL_EVENT_CONSTRAINT(0xd0, 0x0), /* MEM_UOPS_RETIRED.* */
	INTEL_EVENT_CONSTRAINT(0xd1, 0x0), /* MEM_LOAD_UOPS_RETIRED.* */
	INTEL_EVENT_CONSTRAINT(0xd2, 0x0), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
	INTEL_EVENT_CONSTRAINT(0xd3, 0x0), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
141 142 143
	EVENT_CONSTRAINT_END
};

144
static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
145
{
146 147
	INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
	INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
148
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
149 150 151
	EVENT_EXTRA_END
};

152 153 154 155 156
static struct event_constraint intel_v1_event_constraints[] __read_mostly =
{
	EVENT_CONSTRAINT_END
};

157
static struct event_constraint intel_gen_event_constraints[] __read_mostly =
158
{
159 160
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
161
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
162 163 164
	EVENT_CONSTRAINT_END
};

165
static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
166 167
	INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
	INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
168
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
169 170 171 172 173 174
	EVENT_EXTRA_END
};

static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
	INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
	INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
175
	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
176 177 178
	EVENT_EXTRA_END
};

179 180
EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3");
EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3");
181
EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2");
182 183 184 185 186 187 188 189

struct attribute *nhm_events_attrs[] = {
	EVENT_PTR(mem_ld_nhm),
	NULL,
};

struct attribute *snb_events_attrs[] = {
	EVENT_PTR(mem_ld_snb),
190
	EVENT_PTR(mem_st_snb),
191 192 193
	NULL,
};

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
static struct event_constraint intel_hsw_event_constraints[] = {
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.* */
	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
	/* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
	INTEL_EVENT_CONSTRAINT(0x08a3, 0x4),
	/* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
	INTEL_EVENT_CONSTRAINT(0x0ca3, 0x4),
	/* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
	INTEL_EVENT_CONSTRAINT(0x04a3, 0xf),
	EVENT_CONSTRAINT_END
};

210 211 212 213 214
static u64 intel_pmu_event_map(int hw_event)
{
	return intel_perfmon_event_map[hw_event];
}

215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
#define SNB_DMND_DATA_RD	(1ULL << 0)
#define SNB_DMND_RFO		(1ULL << 1)
#define SNB_DMND_IFETCH		(1ULL << 2)
#define SNB_DMND_WB		(1ULL << 3)
#define SNB_PF_DATA_RD		(1ULL << 4)
#define SNB_PF_RFO		(1ULL << 5)
#define SNB_PF_IFETCH		(1ULL << 6)
#define SNB_LLC_DATA_RD		(1ULL << 7)
#define SNB_LLC_RFO		(1ULL << 8)
#define SNB_LLC_IFETCH		(1ULL << 9)
#define SNB_BUS_LOCKS		(1ULL << 10)
#define SNB_STRM_ST		(1ULL << 11)
#define SNB_OTHER		(1ULL << 15)
#define SNB_RESP_ANY		(1ULL << 16)
#define SNB_NO_SUPP		(1ULL << 17)
#define SNB_LLC_HITM		(1ULL << 18)
#define SNB_LLC_HITE		(1ULL << 19)
#define SNB_LLC_HITS		(1ULL << 20)
#define SNB_LLC_HITF		(1ULL << 21)
#define SNB_LOCAL		(1ULL << 22)
#define SNB_REMOTE		(0xffULL << 23)
#define SNB_SNP_NONE		(1ULL << 31)
#define SNB_SNP_NOT_NEEDED	(1ULL << 32)
#define SNB_SNP_MISS		(1ULL << 33)
#define SNB_NO_FWD		(1ULL << 34)
#define SNB_SNP_FWD		(1ULL << 35)
#define SNB_HITM		(1ULL << 36)
#define SNB_NON_DRAM		(1ULL << 37)

#define SNB_DMND_READ		(SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
#define SNB_DMND_WRITE		(SNB_DMND_RFO|SNB_LLC_RFO)
#define SNB_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)

#define SNB_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
				 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
				 SNB_HITM)

#define SNB_DRAM_ANY		(SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
#define SNB_DRAM_REMOTE		(SNB_REMOTE|SNB_SNP_ANY)

#define SNB_L3_ACCESS		SNB_RESP_ANY
#define SNB_L3_MISS		(SNB_DRAM_ANY|SNB_NON_DRAM)

static __initconst const u64 snb_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
	},
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
	},
 },
};

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
static __initconst const u64 snb_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
		[ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
328
		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
329
		[ C(RESULT_ACCESS) ] = 0x01b7,
330 331
		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
332 333
	},
	[ C(OP_WRITE) ] = {
334
		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
335
		[ C(RESULT_ACCESS) ] = 0x01b7,
336 337
		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
338 339
	},
	[ C(OP_PREFETCH) ] = {
340
		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
341
		[ C(RESULT_ACCESS) ] = 0x01b7,
342 343
		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
		[ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
388 389
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
390 391
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
392 393
	},
	[ C(OP_WRITE) ] = {
394 395
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
396 397
	},
	[ C(OP_PREFETCH) ] = {
398 399
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
400 401 402
	},
 },

403 404
};

405
static __initconst const u64 westmere_hw_cache_event_ids
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
440
		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
441
		[ C(RESULT_ACCESS) ] = 0x01b7,
442 443
		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
444
	},
445 446 447 448
	/*
	 * Use RFO, not WRITEBACK, because a write miss would typically occur
	 * on RFO.
	 */
449
	[ C(OP_WRITE) ] = {
450 451 452
		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
453
		[ C(RESULT_MISS)   ] = 0x01b7,
454 455
	},
	[ C(OP_PREFETCH) ] = {
456
		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
457
		[ C(RESULT_ACCESS) ] = 0x01b7,
458 459
		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
504 505 506 507 508 509 510 511 512 513 514 515 516 517
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
 },
518 519
};

520
/*
521 522
 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
 * See IA32 SDM Vol 3B 30.6.1.3
523 524
 */

525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
#define NHM_DMND_DATA_RD	(1 << 0)
#define NHM_DMND_RFO		(1 << 1)
#define NHM_DMND_IFETCH		(1 << 2)
#define NHM_DMND_WB		(1 << 3)
#define NHM_PF_DATA_RD		(1 << 4)
#define NHM_PF_DATA_RFO		(1 << 5)
#define NHM_PF_IFETCH		(1 << 6)
#define NHM_OFFCORE_OTHER	(1 << 7)
#define NHM_UNCORE_HIT		(1 << 8)
#define NHM_OTHER_CORE_HIT_SNP	(1 << 9)
#define NHM_OTHER_CORE_HITM	(1 << 10)
        			/* reserved */
#define NHM_REMOTE_CACHE_FWD	(1 << 12)
#define NHM_REMOTE_DRAM		(1 << 13)
#define NHM_LOCAL_DRAM		(1 << 14)
#define NHM_NON_DRAM		(1 << 15)

542 543
#define NHM_LOCAL		(NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
#define NHM_REMOTE		(NHM_REMOTE_DRAM)
544 545 546 547 548 549

#define NHM_DMND_READ		(NHM_DMND_DATA_RD)
#define NHM_DMND_WRITE		(NHM_DMND_RFO|NHM_DMND_WB)
#define NHM_DMND_PREFETCH	(NHM_PF_DATA_RD|NHM_PF_DATA_RFO)

#define NHM_L3_HIT	(NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
550
#define NHM_L3_MISS	(NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
551
#define NHM_L3_ACCESS	(NHM_L3_HIT|NHM_L3_MISS)
552 553 554 555 556 557 558 559

static __initconst const u64 nehalem_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
560 561
		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
562 563
	},
	[ C(OP_WRITE) ] = {
564 565
		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
566 567
	},
	[ C(OP_PREFETCH) ] = {
568 569
		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
570
	},
571 572 573
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
574 575
		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
576 577
	},
	[ C(OP_WRITE) ] = {
578 579
		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
580 581
	},
	[ C(OP_PREFETCH) ] = {
582 583
		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
584 585
	},
 },
586 587
};

588
static __initconst const u64 nehalem_hw_cache_event_ids
589 590 591 592 593 594
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
595 596
		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
597 598
	},
	[ C(OP_WRITE) ] = {
599 600
		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
623 624 625 626
		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
627
	},
628 629 630 631
	/*
	 * Use RFO, not WRITEBACK, because a write miss would typically occur
	 * on RFO.
	 */
632
	[ C(OP_WRITE) ] = {
633 634 635 636
		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
637 638
	},
	[ C(OP_PREFETCH) ] = {
639 640 641 642
		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
		[ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
687 688 689 690 691 692 693 694 695 696 697 698 699 700
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
 },
701 702
};

703
static __initconst const u64 core2_hw_cache_event_ids
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
		[ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
		[ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
		[ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
		[ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
};

794
static __initconst const u64 atom_hw_cache_event_ids
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
		[ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
};

885 886 887 888 889 890 891
static inline bool intel_pmu_needs_lbr_smpl(struct perf_event *event)
{
	/* user explicitly requested branch sampling */
	if (has_branch_stack(event))
		return true;

	/* implicit branch sampling to correct PEBS skid */
892 893
	if (x86_pmu.intel_cap.pebs_trap && event->attr.precise_ip > 1 &&
	    x86_pmu.intel_cap.pebs_format < 2)
894 895 896 897 898
		return true;

	return false;
}

899 900 901 902 903 904
static void intel_pmu_disable_all(void)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);

	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);

905
	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
906
		intel_pmu_disable_bts();
907 908

	intel_pmu_pebs_disable_all();
909
	intel_pmu_lbr_disable_all();
910 911
}

912
static void intel_pmu_enable_all(int added)
913 914 915
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);

916 917
	intel_pmu_pebs_enable_all();
	intel_pmu_lbr_enable_all();
918 919
	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
			x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
920

921
	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
922
		struct perf_event *event =
923
			cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
924 925 926 927 928 929 930 931

		if (WARN_ON_ONCE(!event))
			return;

		intel_pmu_enable_bts(event->hw.config);
	}
}

932 933 934 935
/*
 * Workaround for:
 *   Intel Errata AAK100 (model 26)
 *   Intel Errata AAP53  (model 30)
936
 *   Intel Errata BD53   (model 44)
937
 *
938 939 940 941 942 943 944
 * The official story:
 *   These chips need to be 'reset' when adding counters by programming the
 *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
 *   in sequence on the same PMC or on different PMCs.
 *
 * In practise it appears some of these events do in fact count, and
 * we need to programm all 4 events.
945
 */
946
static void intel_pmu_nhm_workaround(void)
947
{
948 949 950 951 952 953 954 955 956
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	static const unsigned long nhm_magic[4] = {
		0x4300B5,
		0x4300D2,
		0x4300B1,
		0x4300B1
	};
	struct perf_event *event;
	int i;
957

958 959 960 961 962 963 964 965 966
	/*
	 * The Errata requires below steps:
	 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
	 * 2) Configure 4 PERFEVTSELx with the magic events and clear
	 *    the corresponding PMCx;
	 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
	 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
	 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
	 */
967

968 969 970 971 972 973 974 975 976 977
	/*
	 * The real steps we choose are a little different from above.
	 * A) To reduce MSR operations, we don't run step 1) as they
	 *    are already cleared before this function is called;
	 * B) Call x86_perf_event_update to save PMCx before configuring
	 *    PERFEVTSELx with magic number;
	 * C) With step 5), we do clear only when the PERFEVTSELx is
	 *    not used currently.
	 * D) Call x86_perf_event_set_period to restore PMCx;
	 */
978

979 980 981 982 983 984
	/* We always operate 4 pairs of PERF Counters */
	for (i = 0; i < 4; i++) {
		event = cpuc->events[i];
		if (event)
			x86_perf_event_update(event);
	}
985

986 987 988 989 990 991 992
	for (i = 0; i < 4; i++) {
		wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
		wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
	}

	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
993

994 995 996 997 998
	for (i = 0; i < 4; i++) {
		event = cpuc->events[i];

		if (event) {
			x86_perf_event_set_period(event);
999
			__x86_pmu_enable_event(&event->hw,
1000 1001 1002
					ARCH_PERFMON_EVENTSEL_ENABLE);
		} else
			wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1003
	}
1004 1005 1006 1007 1008 1009
}

static void intel_pmu_nhm_enable_all(int added)
{
	if (added)
		intel_pmu_nhm_workaround();
1010 1011 1012
	intel_pmu_enable_all(added);
}

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
static inline u64 intel_pmu_get_status(void)
{
	u64 status;

	rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);

	return status;
}

static inline void intel_pmu_ack_status(u64 ack)
{
	wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
}

1027
static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
1028
{
1029
	int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1030 1031 1032 1033 1034 1035
	u64 ctrl_val, mask;

	mask = 0xfULL << (idx * 4);

	rdmsrl(hwc->config_base, ctrl_val);
	ctrl_val &= ~mask;
1036
	wrmsrl(hwc->config_base, ctrl_val);
1037 1038
}

1039
static void intel_pmu_disable_event(struct perf_event *event)
1040
{
1041
	struct hw_perf_event *hwc = &event->hw;
1042
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1043

1044
	if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1045 1046 1047 1048 1049
		intel_pmu_disable_bts();
		intel_pmu_drain_bts_buffer();
		return;
	}

1050 1051 1052
	cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
	cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);

1053 1054 1055 1056 1057 1058 1059
	/*
	 * must disable before any actual event
	 * because any event may be combined with LBR
	 */
	if (intel_pmu_needs_lbr_smpl(event))
		intel_pmu_lbr_disable(event);

1060
	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1061
		intel_pmu_disable_fixed(hwc);
1062 1063 1064
		return;
	}

1065
	x86_pmu_disable_event(event);
1066

P
Peter Zijlstra 已提交
1067
	if (unlikely(event->attr.precise_ip))
1068
		intel_pmu_pebs_disable(event);
1069 1070
}

1071
static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
1072
{
1073
	int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
	u64 ctrl_val, bits, mask;

	/*
	 * Enable IRQ generation (0x8),
	 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
	 * if requested:
	 */
	bits = 0x8ULL;
	if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
		bits |= 0x2;
	if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
		bits |= 0x1;

	/*
	 * ANY bit is supported in v3 and up
	 */
	if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
		bits |= 0x4;

	bits <<= (idx * 4);
	mask = 0xfULL << (idx * 4);

	rdmsrl(hwc->config_base, ctrl_val);
	ctrl_val &= ~mask;
	ctrl_val |= bits;
1099
	wrmsrl(hwc->config_base, ctrl_val);
1100 1101
}

1102
static void intel_pmu_enable_event(struct perf_event *event)
1103
{
1104
	struct hw_perf_event *hwc = &event->hw;
1105
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1106

1107
	if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
T
Tejun Heo 已提交
1108
		if (!__this_cpu_read(cpu_hw_events.enabled))
1109 1110 1111 1112 1113
			return;

		intel_pmu_enable_bts(hwc->config);
		return;
	}
1114 1115 1116 1117 1118 1119
	/*
	 * must enabled before any actual event
	 * because any event may be combined with LBR
	 */
	if (intel_pmu_needs_lbr_smpl(event))
		intel_pmu_lbr_enable(event);
1120

1121 1122 1123 1124 1125
	if (event->attr.exclude_host)
		cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
	if (event->attr.exclude_guest)
		cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);

1126
	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1127
		intel_pmu_enable_fixed(hwc);
1128 1129 1130
		return;
	}

P
Peter Zijlstra 已提交
1131
	if (unlikely(event->attr.precise_ip))
1132
		intel_pmu_pebs_enable(event);
1133

1134
	__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1135 1136 1137 1138 1139 1140
}

/*
 * Save and restart an expired event. Called by NMI contexts,
 * so it has to be careful about preempting normal event ops:
 */
1141
int intel_pmu_save_and_restart(struct perf_event *event)
1142
{
1143 1144
	x86_perf_event_update(event);
	return x86_perf_event_set_period(event);
1145 1146 1147 1148
}

static void intel_pmu_reset(void)
{
T
Tejun Heo 已提交
1149
	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1150 1151 1152
	unsigned long flags;
	int idx;

1153
	if (!x86_pmu.num_counters)
1154 1155 1156 1157
		return;

	local_irq_save(flags);

1158
	pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
1159

1160
	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1161 1162
		wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
		wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
1163
	}
1164
	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
1165
		wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1166

1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
	if (ds)
		ds->bts_index = ds->bts_buffer_base;

	local_irq_restore(flags);
}

/*
 * This handler is triggered by the local APIC, so the APIC IRQ handling
 * rules apply:
 */
static int intel_pmu_handle_irq(struct pt_regs *regs)
{
	struct perf_sample_data data;
	struct cpu_hw_events *cpuc;
	int bit, loops;
1182
	u64 status;
1183
	int handled;
1184 1185 1186

	cpuc = &__get_cpu_var(cpu_hw_events);

1187
	/*
1188 1189
	 * No known reason to not always do late ACK,
	 * but just in case do it opt-in.
1190
	 */
1191 1192
	if (!x86_pmu.late_ack)
		apic_write(APIC_LVTPC, APIC_DM_NMI);
1193
	intel_pmu_disable_all();
1194
	handled = intel_pmu_drain_bts_buffer();
1195 1196
	status = intel_pmu_get_status();
	if (!status) {
1197
		intel_pmu_enable_all(0);
1198
		return handled;
1199 1200 1201 1202
	}

	loops = 0;
again:
1203
	intel_pmu_ack_status(status);
1204
	if (++loops > 100) {
1205 1206 1207 1208 1209 1210
		static bool warned = false;
		if (!warned) {
			WARN(1, "perfevents: irq loop stuck!\n");
			perf_event_print_debug();
			warned = true;
		}
1211
		intel_pmu_reset();
1212
		goto done;
1213 1214 1215
	}

	inc_irq_stat(apic_perf_irqs);
1216

1217 1218
	intel_pmu_lbr_read();

1219 1220 1221
	/*
	 * PEBS overflow sets bit 62 in the global status register
	 */
1222 1223
	if (__test_and_clear_bit(62, (unsigned long *)&status)) {
		handled++;
1224
		x86_pmu.drain_pebs(regs);
1225
	}
1226

1227
	for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
1228 1229
		struct perf_event *event = cpuc->events[bit];

1230 1231
		handled++;

1232 1233 1234 1235 1236 1237
		if (!test_bit(bit, cpuc->active_mask))
			continue;

		if (!intel_pmu_save_and_restart(event))
			continue;

1238
		perf_sample_data_init(&data, 0, event->hw.last_period);
1239

1240 1241 1242
		if (has_branch_stack(event))
			data.br_stack = &cpuc->lbr_stack;

1243
		if (perf_event_overflow(event, &data, regs))
P
Peter Zijlstra 已提交
1244
			x86_pmu_stop(event, 0);
1245 1246 1247 1248 1249 1250 1251 1252 1253
	}

	/*
	 * Repeat if there is more work to be done:
	 */
	status = intel_pmu_get_status();
	if (status)
		goto again;

1254
done:
1255
	intel_pmu_enable_all(0);
1256 1257 1258 1259 1260 1261 1262
	/*
	 * Only unmask the NMI after the overflow counters
	 * have been reset. This avoids spurious NMIs on
	 * Haswell CPUs.
	 */
	if (x86_pmu.late_ack)
		apic_write(APIC_LVTPC, APIC_DM_NMI);
1263
	return handled;
1264 1265 1266
}

static struct event_constraint *
1267
intel_bts_constraints(struct perf_event *event)
1268
{
1269 1270
	struct hw_perf_event *hwc = &event->hw;
	unsigned int hw_event, bts_event;
1271

P
Peter Zijlstra 已提交
1272 1273 1274
	if (event->attr.freq)
		return NULL;

1275 1276
	hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
	bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
1277

1278
	if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
1279
		return &bts_constraint;
1280

1281 1282 1283
	return NULL;
}

1284
static int intel_alt_er(int idx)
1285 1286
{
	if (!(x86_pmu.er_flags & ERF_HAS_RSP_1))
1287
		return idx;
1288

1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
	if (idx == EXTRA_REG_RSP_0)
		return EXTRA_REG_RSP_1;

	if (idx == EXTRA_REG_RSP_1)
		return EXTRA_REG_RSP_0;

	return idx;
}

static void intel_fixup_er(struct perf_event *event, int idx)
{
	event->hw.extra_reg.idx = idx;

	if (idx == EXTRA_REG_RSP_0) {
1303 1304 1305
		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
		event->hw.config |= 0x01b7;
		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
1306 1307 1308 1309
	} else if (idx == EXTRA_REG_RSP_1) {
		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
		event->hw.config |= 0x01bb;
		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
1310 1311 1312
	}
}

1313 1314 1315 1316 1317 1318 1319
/*
 * manage allocation of shared extra msr for certain events
 *
 * sharing can be:
 * per-cpu: to be shared between the various events on a single PMU
 * per-core: per-cpu + shared by HT threads
 */
1320
static struct event_constraint *
1321
__intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
1322 1323
				   struct perf_event *event,
				   struct hw_perf_event_extra *reg)
1324
{
1325
	struct event_constraint *c = &emptyconstraint;
1326
	struct er_account *era;
1327
	unsigned long flags;
1328
	int idx = reg->idx;
1329

1330 1331 1332 1333 1334 1335
	/*
	 * reg->alloc can be set due to existing state, so for fake cpuc we
	 * need to ignore this, otherwise we might fail to allocate proper fake
	 * state for this extra reg constraint. Also see the comment below.
	 */
	if (reg->alloc && !cpuc->is_fake)
1336
		return NULL; /* call x86_get_event_constraint() */
1337

1338
again:
1339
	era = &cpuc->shared_regs->regs[idx];
1340 1341 1342 1343 1344
	/*
	 * we use spin_lock_irqsave() to avoid lockdep issues when
	 * passing a fake cpuc
	 */
	raw_spin_lock_irqsave(&era->lock, flags);
1345 1346 1347

	if (!atomic_read(&era->ref) || era->config == reg->config) {

1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
		/*
		 * If its a fake cpuc -- as per validate_{group,event}() we
		 * shouldn't touch event state and we can avoid doing so
		 * since both will only call get_event_constraints() once
		 * on each event, this avoids the need for reg->alloc.
		 *
		 * Not doing the ER fixup will only result in era->reg being
		 * wrong, but since we won't actually try and program hardware
		 * this isn't a problem either.
		 */
		if (!cpuc->is_fake) {
			if (idx != reg->idx)
				intel_fixup_er(event, idx);

			/*
			 * x86_schedule_events() can call get_event_constraints()
			 * multiple times on events in the case of incremental
			 * scheduling(). reg->alloc ensures we only do the ER
			 * allocation once.
			 */
			reg->alloc = 1;
		}

1371 1372 1373 1374 1375 1376 1377
		/* lock in msr value */
		era->config = reg->config;
		era->reg = reg->reg;

		/* one more user */
		atomic_inc(&era->ref);

1378
		/*
1379 1380
		 * need to call x86_get_event_constraint()
		 * to check if associated event has constraints
1381
		 */
1382
		c = NULL;
1383 1384 1385 1386 1387 1388
	} else {
		idx = intel_alt_er(idx);
		if (idx != reg->idx) {
			raw_spin_unlock_irqrestore(&era->lock, flags);
			goto again;
		}
1389
	}
1390
	raw_spin_unlock_irqrestore(&era->lock, flags);
1391

1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
	return c;
}

static void
__intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
				   struct hw_perf_event_extra *reg)
{
	struct er_account *era;

	/*
1402 1403 1404 1405 1406 1407
	 * Only put constraint if extra reg was actually allocated. Also takes
	 * care of event which do not use an extra shared reg.
	 *
	 * Also, if this is a fake cpuc we shouldn't touch any event state
	 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
	 * either since it'll be thrown out.
1408
	 */
1409
	if (!reg->alloc || cpuc->is_fake)
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
		return;

	era = &cpuc->shared_regs->regs[reg->idx];

	/* one fewer user */
	atomic_dec(&era->ref);

	/* allocate again next time */
	reg->alloc = 0;
}

static struct event_constraint *
intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
			      struct perf_event *event)
{
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
	struct event_constraint *c = NULL, *d;
	struct hw_perf_event_extra *xreg, *breg;

	xreg = &event->hw.extra_reg;
	if (xreg->idx != EXTRA_REG_NONE) {
		c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
		if (c == &emptyconstraint)
			return c;
	}
	breg = &event->hw.branch_reg;
	if (breg->idx != EXTRA_REG_NONE) {
		d = __intel_shared_reg_get_constraints(cpuc, event, breg);
		if (d == &emptyconstraint) {
			__intel_shared_reg_put_constraints(cpuc, xreg);
			c = d;
		}
	}
1442
	return c;
1443 1444
}

1445 1446 1447 1448 1449 1450 1451
struct event_constraint *
x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
{
	struct event_constraint *c;

	if (x86_pmu.event_constraints) {
		for_each_event_constraint(c, x86_pmu.event_constraints) {
1452 1453
			if ((event->hw.config & c->cmask) == c->code) {
				event->hw.flags |= c->flags;
1454
				return c;
1455
			}
1456 1457 1458 1459 1460 1461
		}
	}

	return &unconstrained;
}

1462 1463 1464 1465 1466
static struct event_constraint *
intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
{
	struct event_constraint *c;

1467 1468 1469 1470 1471
	c = intel_bts_constraints(event);
	if (c)
		return c;

	c = intel_pebs_constraints(event);
1472 1473 1474
	if (c)
		return c;

1475
	c = intel_shared_regs_constraints(cpuc, event);
1476 1477 1478
	if (c)
		return c;

1479 1480 1481
	return x86_get_event_constraints(cpuc, event);
}

1482 1483
static void
intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
1484 1485
					struct perf_event *event)
{
1486
	struct hw_perf_event_extra *reg;
1487

1488 1489 1490
	reg = &event->hw.extra_reg;
	if (reg->idx != EXTRA_REG_NONE)
		__intel_shared_reg_put_constraints(cpuc, reg);
1491 1492 1493 1494

	reg = &event->hw.branch_reg;
	if (reg->idx != EXTRA_REG_NONE)
		__intel_shared_reg_put_constraints(cpuc, reg);
1495
}
1496

1497 1498 1499 1500
static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
					struct perf_event *event)
{
	intel_put_shared_regs_event_constraints(cpuc, event);
1501 1502
}

1503
static void intel_pebs_aliases_core2(struct perf_event *event)
1504
{
1505
	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
		/*
		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
		 * (0x003c) so that we can use it with PEBS.
		 *
		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
		 * PEBS capable. However we can use INST_RETIRED.ANY_P
		 * (0x00c0), which is a PEBS capable event, to get the same
		 * count.
		 *
		 * INST_RETIRED.ANY_P counts the number of cycles that retires
		 * CNTMASK instructions. By setting CNTMASK to a value (16)
		 * larger than the maximum number of instructions that can be
		 * retired per cycle (4) and then inverting the condition, we
		 * count all cycles that retire 16 or less instructions, which
		 * is every cycle.
		 *
		 * Thereby we gain a PEBS capable cycle counter.
		 */
1524 1525
		u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);

1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
		event->hw.config = alt_config;
	}
}

static void intel_pebs_aliases_snb(struct perf_event *event)
{
	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
		/*
		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
		 * (0x003c) so that we can use it with PEBS.
		 *
		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
		 * PEBS capable. However we can use UOPS_RETIRED.ALL
		 * (0x01c2), which is a PEBS capable event, to get the same
		 * count.
		 *
		 * UOPS_RETIRED.ALL counts the number of cycles that retires
		 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
		 * larger than the maximum number of micro-ops that can be
		 * retired per cycle (4) and then inverting the condition, we
		 * count all cycles that retire 16 or less micro-ops, which
		 * is every cycle.
		 *
		 * Thereby we gain a PEBS capable cycle counter.
		 */
		u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
1553 1554 1555 1556

		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
		event->hw.config = alt_config;
	}
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
}

static int intel_pmu_hw_config(struct perf_event *event)
{
	int ret = x86_pmu_hw_config(event);

	if (ret)
		return ret;

	if (event->attr.precise_ip && x86_pmu.pebs_aliases)
		x86_pmu.pebs_aliases(event);
1568

1569 1570 1571 1572 1573 1574
	if (intel_pmu_needs_lbr_smpl(event)) {
		ret = intel_pmu_setup_lbr_filter(event);
		if (ret)
			return ret;
	}

1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
	if (event->attr.type != PERF_TYPE_RAW)
		return 0;

	if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
		return 0;

	if (x86_pmu.version < 3)
		return -EINVAL;

	if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
		return -EACCES;

	event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;

	return 0;
}

1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
{
	if (x86_pmu.guest_get_msrs)
		return x86_pmu.guest_get_msrs(nr);
	*nr = 0;
	return NULL;
}
EXPORT_SYMBOL_GPL(perf_guest_get_msrs);

static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;

	arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
	arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
	arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
1609 1610 1611 1612 1613 1614 1615 1616
	/*
	 * If PMU counter has PEBS enabled it is not enough to disable counter
	 * on a guest entry since PEBS memory write can overshoot guest entry
	 * and corrupt guest memory. Disabling PEBS solves the problem.
	 */
	arr[1].msr = MSR_IA32_PEBS_ENABLE;
	arr[1].host = cpuc->pebs_enabled;
	arr[1].guest = 0;
1617

1618
	*nr = 2;
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
	return arr;
}

static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
	int idx;

	for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
		struct perf_event *event = cpuc->events[idx];

		arr[idx].msr = x86_pmu_config_addr(idx);
		arr[idx].host = arr[idx].guest = 0;

		if (!test_bit(idx, cpuc->active_mask))
			continue;

		arr[idx].host = arr[idx].guest =
			event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;

		if (event->attr.exclude_host)
			arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
		else if (event->attr.exclude_guest)
			arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
	}

	*nr = x86_pmu.num_counters;
	return arr;
}

static void core_pmu_enable_event(struct perf_event *event)
{
	if (!event->attr.exclude_host)
		x86_pmu_enable_event(event);
}

static void core_pmu_enable_all(int added)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	int idx;

	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;

		if (!test_bit(idx, cpuc->active_mask) ||
				cpuc->events[idx]->attr.exclude_host)
			continue;

		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
	}
}

1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
static int hsw_hw_config(struct perf_event *event)
{
	int ret = intel_pmu_hw_config(event);

	if (ret)
		return ret;
	if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
		return 0;
	event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);

	/*
	 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
	 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
	 * this combination.
	 */
	if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
	     ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
	      event->attr.precise_ip > 0))
		return -EOPNOTSUPP;

	return 0;
}

static struct event_constraint counter2_constraint =
			EVENT_CONSTRAINT(0, 0x4, 0);

static struct event_constraint *
hsw_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
{
	struct event_constraint *c = intel_get_event_constraints(cpuc, event);

	/* Handle special quirk on in_tx_checkpointed only in counter 2 */
	if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
		if (c->idxmsk64 & (1U << 2))
			return &counter2_constraint;
		return &emptyconstraint;
	}

	return c;
}

1713 1714 1715 1716 1717 1718 1719
PMU_FORMAT_ATTR(event,	"config:0-7"	);
PMU_FORMAT_ATTR(umask,	"config:8-15"	);
PMU_FORMAT_ATTR(edge,	"config:18"	);
PMU_FORMAT_ATTR(pc,	"config:19"	);
PMU_FORMAT_ATTR(any,	"config:21"	); /* v3 + */
PMU_FORMAT_ATTR(inv,	"config:23"	);
PMU_FORMAT_ATTR(cmask,	"config:24-31"	);
1720 1721
PMU_FORMAT_ATTR(in_tx,  "config:32");
PMU_FORMAT_ATTR(in_tx_cp, "config:33");
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732

static struct attribute *intel_arch_formats_attr[] = {
	&format_attr_event.attr,
	&format_attr_umask.attr,
	&format_attr_edge.attr,
	&format_attr_pc.attr,
	&format_attr_inv.attr,
	&format_attr_cmask.attr,
	NULL,
};

1733 1734 1735 1736 1737 1738 1739
ssize_t intel_event_sysfs_show(char *page, u64 config)
{
	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);

	return x86_event_sysfs_show(page, config, event);
}

1740
static __initconst const struct x86_pmu core_pmu = {
1741 1742 1743
	.name			= "core",
	.handle_irq		= x86_pmu_handle_irq,
	.disable_all		= x86_pmu_disable_all,
1744 1745
	.enable_all		= core_pmu_enable_all,
	.enable			= core_pmu_enable_event,
1746
	.disable		= x86_pmu_disable_event,
1747
	.hw_config		= x86_pmu_hw_config,
1748
	.schedule_events	= x86_schedule_events,
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
	.event_map		= intel_pmu_event_map,
	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
	.apic			= 1,
	/*
	 * Intel PMCs cannot be accessed sanely above 32 bit width,
	 * so we install an artificial 1<<31 period regardless of
	 * the generic event period:
	 */
	.max_period		= (1ULL << 31) - 1,
	.get_event_constraints	= intel_get_event_constraints,
1761
	.put_event_constraints	= intel_put_event_constraints,
1762
	.event_constraints	= intel_core_event_constraints,
1763
	.guest_get_msrs		= core_guest_get_msrs,
1764
	.format_attrs		= intel_arch_formats_attr,
1765
	.events_sysfs_show	= intel_event_sysfs_show,
1766 1767
};

1768
struct intel_shared_regs *allocate_shared_regs(int cpu)
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
{
	struct intel_shared_regs *regs;
	int i;

	regs = kzalloc_node(sizeof(struct intel_shared_regs),
			    GFP_KERNEL, cpu_to_node(cpu));
	if (regs) {
		/*
		 * initialize the locks to keep lockdep happy
		 */
		for (i = 0; i < EXTRA_REG_MAX; i++)
			raw_spin_lock_init(&regs->regs[i].lock);

		regs->core_id = -1;
	}
	return regs;
}

1787 1788 1789 1790
static int intel_pmu_cpu_prepare(int cpu)
{
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);

1791
	if (!(x86_pmu.extra_regs || x86_pmu.lbr_sel_map))
1792 1793
		return NOTIFY_OK;

1794 1795
	cpuc->shared_regs = allocate_shared_regs(cpu);
	if (!cpuc->shared_regs)
1796 1797 1798 1799 1800
		return NOTIFY_BAD;

	return NOTIFY_OK;
}

1801 1802
static void intel_pmu_cpu_starting(int cpu)
{
1803 1804 1805 1806
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
	int core_id = topology_core_id(cpu);
	int i;

1807 1808 1809 1810 1811 1812
	init_debug_store_on_cpu(cpu);
	/*
	 * Deal with CPUs that don't clear their LBRs on power-up.
	 */
	intel_pmu_lbr_reset();

1813 1814 1815
	cpuc->lbr_sel = NULL;

	if (!cpuc->shared_regs)
1816 1817
		return;

1818 1819 1820
	if (!(x86_pmu.er_flags & ERF_NO_HT_SHARING)) {
		for_each_cpu(i, topology_thread_cpumask(cpu)) {
			struct intel_shared_regs *pc;
1821

1822 1823 1824 1825 1826 1827
			pc = per_cpu(cpu_hw_events, i).shared_regs;
			if (pc && pc->core_id == core_id) {
				cpuc->kfree_on_online = cpuc->shared_regs;
				cpuc->shared_regs = pc;
				break;
			}
1828
		}
1829 1830
		cpuc->shared_regs->core_id = core_id;
		cpuc->shared_regs->refcnt++;
1831 1832
	}

1833 1834
	if (x86_pmu.lbr_sel_map)
		cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
1835 1836 1837 1838
}

static void intel_pmu_cpu_dying(int cpu)
{
1839
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1840
	struct intel_shared_regs *pc;
1841

1842
	pc = cpuc->shared_regs;
1843 1844 1845
	if (pc) {
		if (pc->core_id == -1 || --pc->refcnt == 0)
			kfree(pc);
1846
		cpuc->shared_regs = NULL;
1847 1848
	}

1849 1850 1851
	fini_debug_store_on_cpu(cpu);
}

1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
static void intel_pmu_flush_branch_stack(void)
{
	/*
	 * Intel LBR does not tag entries with the
	 * PID of the current task, then we need to
	 * flush it on ctxsw
	 * For now, we simply reset it
	 */
	if (x86_pmu.lbr_nr)
		intel_pmu_lbr_reset();
}

1864 1865
PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");

1866 1867
PMU_FORMAT_ATTR(ldlat, "config1:0-15");

1868 1869 1870 1871 1872 1873 1874 1875
static struct attribute *intel_arch3_formats_attr[] = {
	&format_attr_event.attr,
	&format_attr_umask.attr,
	&format_attr_edge.attr,
	&format_attr_pc.attr,
	&format_attr_any.attr,
	&format_attr_inv.attr,
	&format_attr_cmask.attr,
1876 1877
	&format_attr_in_tx.attr,
	&format_attr_in_tx_cp.attr,
1878 1879

	&format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
1880
	&format_attr_ldlat.attr, /* PEBS load latency */
1881 1882 1883
	NULL,
};

1884
static __initconst const struct x86_pmu intel_pmu = {
1885 1886 1887 1888 1889 1890
	.name			= "Intel",
	.handle_irq		= intel_pmu_handle_irq,
	.disable_all		= intel_pmu_disable_all,
	.enable_all		= intel_pmu_enable_all,
	.enable			= intel_pmu_enable_event,
	.disable		= intel_pmu_disable_event,
1891
	.hw_config		= intel_pmu_hw_config,
1892
	.schedule_events	= x86_schedule_events,
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
	.event_map		= intel_pmu_event_map,
	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
	.apic			= 1,
	/*
	 * Intel PMCs cannot be accessed sanely above 32 bit width,
	 * so we install an artificial 1<<31 period regardless of
	 * the generic event period:
	 */
	.max_period		= (1ULL << 31) - 1,
1904
	.get_event_constraints	= intel_get_event_constraints,
1905
	.put_event_constraints	= intel_put_event_constraints,
1906
	.pebs_aliases		= intel_pebs_aliases_core2,
1907

1908
	.format_attrs		= intel_arch3_formats_attr,
1909
	.events_sysfs_show	= intel_event_sysfs_show,
1910

1911
	.cpu_prepare		= intel_pmu_cpu_prepare,
1912 1913
	.cpu_starting		= intel_pmu_cpu_starting,
	.cpu_dying		= intel_pmu_cpu_dying,
1914
	.guest_get_msrs		= intel_guest_get_msrs,
1915
	.flush_branch_stack	= intel_pmu_flush_branch_stack,
1916 1917
};

1918
static __init void intel_clovertown_quirk(void)
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
{
	/*
	 * PEBS is unreliable due to:
	 *
	 *   AJ67  - PEBS may experience CPL leaks
	 *   AJ68  - PEBS PMI may be delayed by one event
	 *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
	 *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
	 *
	 * AJ67 could be worked around by restricting the OS/USR flags.
	 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
	 *
	 * AJ106 could possibly be worked around by not allowing LBR
	 *       usage from PEBS, including the fixup.
	 * AJ68  could possibly be worked around by always programming
1934
	 *	 a pebs_event_reset[0] value and coping with the lost events.
1935 1936 1937 1938
	 *
	 * But taken together it might just make sense to not enable PEBS on
	 * these chips.
	 */
1939
	pr_warn("PEBS disabled due to CPU errata\n");
1940 1941 1942 1943
	x86_pmu.pebs = 0;
	x86_pmu.pebs_constraints = NULL;
}

1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
static int intel_snb_pebs_broken(int cpu)
{
	u32 rev = UINT_MAX; /* default to broken for unknown models */

	switch (cpu_data(cpu).x86_model) {
	case 42: /* SNB */
		rev = 0x28;
		break;

	case 45: /* SNB-EP */
		switch (cpu_data(cpu).x86_mask) {
		case 6: rev = 0x618; break;
		case 7: rev = 0x70c; break;
		}
	}

	return (cpu_data(cpu).microcode < rev);
}

static void intel_snb_check_microcode(void)
{
	int pebs_broken = 0;
	int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if ((pebs_broken = intel_snb_pebs_broken(cpu)))
			break;
	}
	put_online_cpus();

	if (pebs_broken == x86_pmu.pebs_broken)
		return;

	/*
	 * Serialized by the microcode lock..
	 */
	if (x86_pmu.pebs_broken) {
		pr_info("PEBS enabled due to microcode update\n");
		x86_pmu.pebs_broken = 0;
	} else {
		pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
		x86_pmu.pebs_broken = 1;
	}
}

1990
static __init void intel_sandybridge_quirk(void)
1991
{
1992 1993
	x86_pmu.check_microcode = intel_snb_check_microcode;
	intel_snb_check_microcode();
1994 1995
}

1996 1997 1998 1999 2000 2001 2002 2003
static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
	{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
	{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
	{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
	{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
	{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
	{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
	{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
2004 2005
};

2006 2007 2008 2009 2010 2011 2012
static __init void intel_arch_events_quirk(void)
{
	int bit;

	/* disable event that reported as not presend by cpuid */
	for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
		intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
2013 2014
		pr_warn("CPUID marked event: \'%s\' unavailable\n",
			intel_arch_events_map[bit].name);
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
	}
}

static __init void intel_nehalem_quirk(void)
{
	union cpuid10_ebx ebx;

	ebx.full = x86_pmu.events_maskl;
	if (ebx.split.no_branch_misses_retired) {
		/*
		 * Erratum AAJ80 detected, we work it around by using
		 * the BR_MISP_EXEC.ANY event. This will over-count
		 * branch-misses, but it's still much better than the
		 * architectural event which is often completely bogus:
		 */
		intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
		ebx.split.no_branch_misses_retired = 0;
		x86_pmu.events_maskl = ebx.full;
2033
		pr_info("CPU erratum AAJ80 worked around\n");
2034 2035 2036
	}
}

2037 2038 2039 2040 2041 2042 2043 2044 2045
EVENT_ATTR_STR(mem-loads,      mem_ld_hsw,     "event=0xcd,umask=0x1,ldlat=3");
EVENT_ATTR_STR(mem-stores,     mem_st_hsw,     "event=0xd0,umask=0x82")

static struct attribute *hsw_events_attrs[] = {
	EVENT_PTR(mem_ld_hsw),
	EVENT_PTR(mem_st_hsw),
	NULL
};

2046
__init int intel_pmu_init(void)
2047 2048 2049
{
	union cpuid10_edx edx;
	union cpuid10_eax eax;
2050
	union cpuid10_ebx ebx;
2051
	struct event_constraint *c;
2052 2053 2054 2055
	unsigned int unused;
	int version;

	if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
2056 2057 2058
		switch (boot_cpu_data.x86) {
		case 0x6:
			return p6_pmu_init();
2059 2060
		case 0xb:
			return knc_pmu_init();
2061 2062 2063
		case 0xf:
			return p4_pmu_init();
		}
2064 2065 2066 2067 2068 2069 2070
		return -ENODEV;
	}

	/*
	 * Check whether the Architectural PerfMon supports
	 * Branch Misses Retired hw_event or not.
	 */
2071 2072
	cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
	if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
2073 2074 2075 2076 2077 2078 2079 2080 2081
		return -ENODEV;

	version = eax.split.version_id;
	if (version < 2)
		x86_pmu = core_pmu;
	else
		x86_pmu = intel_pmu;

	x86_pmu.version			= version;
2082 2083 2084
	x86_pmu.num_counters		= eax.split.num_counters;
	x86_pmu.cntval_bits		= eax.split.bit_width;
	x86_pmu.cntval_mask		= (1ULL << eax.split.bit_width) - 1;
2085

2086 2087 2088
	x86_pmu.events_maskl		= ebx.full;
	x86_pmu.events_mask_len		= eax.split.mask_length;

2089 2090
	x86_pmu.max_pebs_events		= min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);

2091 2092 2093 2094 2095
	/*
	 * Quirk: v2 perfmon does not report fixed-purpose events, so
	 * assume at least 3 events:
	 */
	if (version > 1)
2096
		x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
2097

2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
	/*
	 * v2 and above have a perf capabilities MSR
	 */
	if (version > 1) {
		u64 capabilities;

		rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
		x86_pmu.intel_cap.capabilities = capabilities;
	}

2108 2109
	intel_ds_init();

2110 2111
	x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */

2112 2113 2114 2115 2116 2117 2118 2119 2120
	/*
	 * Install the hw-cache-events table:
	 */
	switch (boot_cpu_data.x86_model) {
	case 14: /* 65 nm core solo/duo, "Yonah" */
		pr_cont("Core events, ");
		break;

	case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
2121
		x86_add_quirk(intel_clovertown_quirk);
2122 2123 2124 2125 2126 2127
	case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
	case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
	case 29: /* six-core 45 nm xeon "Dunnington" */
		memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));

2128 2129
		intel_pmu_lbr_init_core();

2130
		x86_pmu.event_constraints = intel_core2_event_constraints;
2131
		x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
2132 2133 2134 2135 2136
		pr_cont("Core2 events, ");
		break;

	case 26: /* 45 nm nehalem, "Bloomfield" */
	case 30: /* 45 nm nehalem, "Lynnfield" */
2137
	case 46: /* 45 nm nehalem-ex, "Beckton" */
2138 2139
		memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
2140 2141
		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));
2142

2143 2144
		intel_pmu_lbr_init_nhm();

2145
		x86_pmu.event_constraints = intel_nehalem_event_constraints;
2146
		x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
2147
		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
2148
		x86_pmu.extra_regs = intel_nehalem_extra_regs;
2149

2150 2151
		x86_pmu.cpu_events = nhm_events_attrs;

2152
		/* UOPS_ISSUED.STALLED_CYCLES */
2153 2154
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2155
		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
2156 2157
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
2158

2159
		x86_add_quirk(intel_nehalem_quirk);
2160

2161
		pr_cont("Nehalem events, ");
2162
		break;
2163

2164
	case 28: /* Atom */
2165 2166 2167 2168
	case 38: /* Lincroft */
	case 39: /* Penwell */
	case 53: /* Cloverview */
	case 54: /* Cedarview */
2169 2170 2171
		memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));

2172 2173
		intel_pmu_lbr_init_atom();

2174
		x86_pmu.event_constraints = intel_gen_event_constraints;
2175
		x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
2176 2177 2178 2179 2180
		pr_cont("Atom events, ");
		break;

	case 37: /* 32 nm nehalem, "Clarkdale" */
	case 44: /* 32 nm nehalem, "Gulftown" */
2181
	case 47: /* 32 nm Xeon E7 */
2182 2183
		memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
2184 2185
		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));
2186

2187 2188
		intel_pmu_lbr_init_nhm();

2189
		x86_pmu.event_constraints = intel_westmere_event_constraints;
2190
		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
2191
		x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
2192
		x86_pmu.extra_regs = intel_westmere_extra_regs;
2193
		x86_pmu.er_flags |= ERF_HAS_RSP_1;
2194

2195 2196
		x86_pmu.cpu_events = nhm_events_attrs;

2197
		/* UOPS_ISSUED.STALLED_CYCLES */
2198 2199
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2200
		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
2201 2202
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
2203

2204 2205
		pr_cont("Westmere events, ");
		break;
2206

2207
	case 42: /* SandyBridge */
2208
	case 45: /* SandyBridge, "Romely-EP" */
2209
		x86_add_quirk(intel_sandybridge_quirk);
2210 2211
		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
2212 2213
		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));
2214

2215
		intel_pmu_lbr_init_snb();
2216 2217

		x86_pmu.event_constraints = intel_snb_event_constraints;
2218
		x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
2219
		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
2220 2221 2222 2223
		if (boot_cpu_data.x86_model == 45)
			x86_pmu.extra_regs = intel_snbep_extra_regs;
		else
			x86_pmu.extra_regs = intel_snb_extra_regs;
2224
		/* all extra regs are per-cpu when HT is on */
2225 2226
		x86_pmu.er_flags |= ERF_HAS_RSP_1;
		x86_pmu.er_flags |= ERF_NO_HT_SHARING;
2227

2228 2229
		x86_pmu.cpu_events = snb_events_attrs;

2230
		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
2231 2232
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2233
		/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
2234 2235
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
			X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
2236

2237 2238
		pr_cont("SandyBridge events, ");
		break;
2239
	case 58: /* IvyBridge */
2240
	case 62: /* IvyBridge EP */
2241 2242 2243 2244 2245 2246 2247
		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));

		intel_pmu_lbr_init_snb();

2248
		x86_pmu.event_constraints = intel_ivb_event_constraints;
2249 2250
		x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
2251 2252 2253 2254
		if (boot_cpu_data.x86_model == 62)
			x86_pmu.extra_regs = intel_snbep_extra_regs;
		else
			x86_pmu.extra_regs = intel_snb_extra_regs;
2255 2256 2257 2258
		/* all extra regs are per-cpu when HT is on */
		x86_pmu.er_flags |= ERF_HAS_RSP_1;
		x86_pmu.er_flags |= ERF_NO_HT_SHARING;

2259 2260
		x86_pmu.cpu_events = snb_events_attrs;

2261 2262 2263 2264 2265 2266 2267
		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);

		pr_cont("IvyBridge events, ");
		break;

2268

2269 2270 2271 2272
	case 60: /* Haswell Client */
	case 70:
	case 71:
	case 63:
2273
		x86_pmu.late_ack = true;
2274 2275 2276 2277 2278 2279
		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids, sizeof(hw_cache_event_ids));
		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));

		intel_pmu_lbr_init_snb();

		x86_pmu.event_constraints = intel_hsw_event_constraints;
2280
		x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
2281
		x86_pmu.extra_regs = intel_snb_extra_regs;
2282
		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
2283 2284 2285 2286 2287 2288
		/* all extra regs are per-cpu when HT is on */
		x86_pmu.er_flags |= ERF_HAS_RSP_1;
		x86_pmu.er_flags |= ERF_NO_HT_SHARING;

		x86_pmu.hw_config = hsw_hw_config;
		x86_pmu.get_event_constraints = hsw_get_event_constraints;
2289
		x86_pmu.cpu_events = hsw_events_attrs;
2290 2291 2292
		pr_cont("Haswell events, ");
		break;

2293
	default:
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
		switch (x86_pmu.version) {
		case 1:
			x86_pmu.event_constraints = intel_v1_event_constraints;
			pr_cont("generic architected perfmon v1, ");
			break;
		default:
			/*
			 * default constraints for v2 and up
			 */
			x86_pmu.event_constraints = intel_gen_event_constraints;
			pr_cont("generic architected perfmon, ");
			break;
		}
2307
	}
2308

2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
	if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
		WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
		     x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
		x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
	}
	x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;

	if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
		WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
		     x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
		x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
	}

	x86_pmu.intel_ctrl |=
		((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;

	if (x86_pmu.event_constraints) {
		/*
		 * event on fixed counter2 (REF_CYCLES) only works on this
		 * counter, so do not extend mask to generic counters
		 */
		for_each_event_constraint(c, x86_pmu.event_constraints) {
2331
			if (c->cmask != FIXED_EVENT_FLAGS
2332 2333 2334 2335 2336 2337 2338 2339 2340
			    || c->idxmsk64 == INTEL_PMC_MSK_FIXED_REF_CYCLES) {
				continue;
			}

			c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
			c->weight += x86_pmu.num_counters;
		}
	}

2341 2342 2343 2344 2345 2346 2347
	/* Support full width counters using alternative MSR range */
	if (x86_pmu.intel_cap.full_width_write) {
		x86_pmu.max_period = x86_pmu.cntval_mask;
		x86_pmu.perfctr = MSR_IA32_PMC0;
		pr_cont("full-width counters, ");
	}

2348 2349
	return 0;
}