perf_event_intel.c 56.9 KB
Newer Older
1
/*
2 3 4 5
 * Per core/cpu state
 *
 * Used to coordinate shared registers between HT threads or
 * among events on a single PMU.
6
 */
7

8 9
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

10 11 12 13
#include <linux/stddef.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/slab.h>
14
#include <linux/export.h>
15 16 17 18 19

#include <asm/hardirq.h>
#include <asm/apic.h>

#include "perf_event.h"
20

21
/*
22
 * Intel PerfMon, used on Core and later.
23
 */
24
static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
25
{
26 27 28 29 30 31 32 33
	[PERF_COUNT_HW_CPU_CYCLES]		= 0x003c,
	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0x4f2e,
	[PERF_COUNT_HW_CACHE_MISSES]		= 0x412e,
	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c4,
	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c5,
	[PERF_COUNT_HW_BUS_CYCLES]		= 0x013c,
	[PERF_COUNT_HW_REF_CPU_CYCLES]		= 0x0300, /* pseudo-encoding */
34 35
};

36
static struct event_constraint intel_core_event_constraints[] __read_mostly =
37 38 39 40 41 42 43 44 45 46
{
	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
	INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
	EVENT_CONSTRAINT_END
};

47
static struct event_constraint intel_core2_event_constraints[] __read_mostly =
48
{
49 50
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
51
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
52 53 54 55 56 57 58 59
	INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
	INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
	INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
60
	INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
61 62 63 64
	INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
	EVENT_CONSTRAINT_END
};

65
static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
66
{
67 68
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
69
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
70 71 72 73 74 75 76 77 78 79 80
	INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
	INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
	INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
	INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
	INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
	INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
	EVENT_CONSTRAINT_END
};

81
static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
82
{
83
	INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
84 85 86
	EVENT_EXTRA_END
};

87
static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
88
{
89 90
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
91
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
92 93 94
	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
	INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
95
	INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
96 97 98
	EVENT_CONSTRAINT_END
};

99
static struct event_constraint intel_snb_event_constraints[] __read_mostly =
100 101 102
{
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
103
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
104 105 106 107 108 109
	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
	EVENT_CONSTRAINT_END
};

110
static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
111
{
112 113
	INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
	INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
114 115 116
	EVENT_EXTRA_END
};

117 118 119 120 121
static struct event_constraint intel_v1_event_constraints[] __read_mostly =
{
	EVENT_CONSTRAINT_END
};

122
static struct event_constraint intel_gen_event_constraints[] __read_mostly =
123
{
124 125
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
126
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
127 128 129
	EVENT_CONSTRAINT_END
};

130 131 132 133 134 135
static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
	INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
	INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
	EVENT_EXTRA_END
};

136 137 138 139 140
static u64 intel_pmu_event_map(int hw_event)
{
	return intel_perfmon_event_map[hw_event];
}

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
#define SNB_DMND_DATA_RD	(1ULL << 0)
#define SNB_DMND_RFO		(1ULL << 1)
#define SNB_DMND_IFETCH		(1ULL << 2)
#define SNB_DMND_WB		(1ULL << 3)
#define SNB_PF_DATA_RD		(1ULL << 4)
#define SNB_PF_RFO		(1ULL << 5)
#define SNB_PF_IFETCH		(1ULL << 6)
#define SNB_LLC_DATA_RD		(1ULL << 7)
#define SNB_LLC_RFO		(1ULL << 8)
#define SNB_LLC_IFETCH		(1ULL << 9)
#define SNB_BUS_LOCKS		(1ULL << 10)
#define SNB_STRM_ST		(1ULL << 11)
#define SNB_OTHER		(1ULL << 15)
#define SNB_RESP_ANY		(1ULL << 16)
#define SNB_NO_SUPP		(1ULL << 17)
#define SNB_LLC_HITM		(1ULL << 18)
#define SNB_LLC_HITE		(1ULL << 19)
#define SNB_LLC_HITS		(1ULL << 20)
#define SNB_LLC_HITF		(1ULL << 21)
#define SNB_LOCAL		(1ULL << 22)
#define SNB_REMOTE		(0xffULL << 23)
#define SNB_SNP_NONE		(1ULL << 31)
#define SNB_SNP_NOT_NEEDED	(1ULL << 32)
#define SNB_SNP_MISS		(1ULL << 33)
#define SNB_NO_FWD		(1ULL << 34)
#define SNB_SNP_FWD		(1ULL << 35)
#define SNB_HITM		(1ULL << 36)
#define SNB_NON_DRAM		(1ULL << 37)

#define SNB_DMND_READ		(SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
#define SNB_DMND_WRITE		(SNB_DMND_RFO|SNB_LLC_RFO)
#define SNB_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)

#define SNB_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
				 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
				 SNB_HITM)

#define SNB_DRAM_ANY		(SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
#define SNB_DRAM_REMOTE		(SNB_REMOTE|SNB_SNP_ANY)

#define SNB_L3_ACCESS		SNB_RESP_ANY
#define SNB_L3_MISS		(SNB_DRAM_ANY|SNB_NON_DRAM)

static __initconst const u64 snb_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
	},
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
	},
 },
};

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
static __initconst const u64 snb_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
		[ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
254
		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
255
		[ C(RESULT_ACCESS) ] = 0x01b7,
256 257
		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
258 259
	},
	[ C(OP_WRITE) ] = {
260
		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
261
		[ C(RESULT_ACCESS) ] = 0x01b7,
262 263
		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
264 265
	},
	[ C(OP_PREFETCH) ] = {
266
		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
267
		[ C(RESULT_ACCESS) ] = 0x01b7,
268 269
		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
		[ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
314 315
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
316 317
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
318 319
	},
	[ C(OP_WRITE) ] = {
320 321
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
322 323
	},
	[ C(OP_PREFETCH) ] = {
324 325
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
326 327 328
	},
 },

329 330
};

331
static __initconst const u64 westmere_hw_cache_event_ids
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
366
		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
367
		[ C(RESULT_ACCESS) ] = 0x01b7,
368 369
		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
370
	},
371 372 373 374
	/*
	 * Use RFO, not WRITEBACK, because a write miss would typically occur
	 * on RFO.
	 */
375
	[ C(OP_WRITE) ] = {
376 377 378
		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
379
		[ C(RESULT_MISS)   ] = 0x01b7,
380 381
	},
	[ C(OP_PREFETCH) ] = {
382
		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
383
		[ C(RESULT_ACCESS) ] = 0x01b7,
384 385
		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
430 431 432 433 434 435 436 437 438 439 440 441 442 443
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
 },
444 445
};

446
/*
447 448
 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
 * See IA32 SDM Vol 3B 30.6.1.3
449 450
 */

451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
#define NHM_DMND_DATA_RD	(1 << 0)
#define NHM_DMND_RFO		(1 << 1)
#define NHM_DMND_IFETCH		(1 << 2)
#define NHM_DMND_WB		(1 << 3)
#define NHM_PF_DATA_RD		(1 << 4)
#define NHM_PF_DATA_RFO		(1 << 5)
#define NHM_PF_IFETCH		(1 << 6)
#define NHM_OFFCORE_OTHER	(1 << 7)
#define NHM_UNCORE_HIT		(1 << 8)
#define NHM_OTHER_CORE_HIT_SNP	(1 << 9)
#define NHM_OTHER_CORE_HITM	(1 << 10)
        			/* reserved */
#define NHM_REMOTE_CACHE_FWD	(1 << 12)
#define NHM_REMOTE_DRAM		(1 << 13)
#define NHM_LOCAL_DRAM		(1 << 14)
#define NHM_NON_DRAM		(1 << 15)

468 469
#define NHM_LOCAL		(NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
#define NHM_REMOTE		(NHM_REMOTE_DRAM)
470 471 472 473 474 475

#define NHM_DMND_READ		(NHM_DMND_DATA_RD)
#define NHM_DMND_WRITE		(NHM_DMND_RFO|NHM_DMND_WB)
#define NHM_DMND_PREFETCH	(NHM_PF_DATA_RD|NHM_PF_DATA_RFO)

#define NHM_L3_HIT	(NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
476
#define NHM_L3_MISS	(NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
477
#define NHM_L3_ACCESS	(NHM_L3_HIT|NHM_L3_MISS)
478 479 480 481 482 483 484 485

static __initconst const u64 nehalem_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
486 487
		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
488 489
	},
	[ C(OP_WRITE) ] = {
490 491
		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
492 493
	},
	[ C(OP_PREFETCH) ] = {
494 495
		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
496
	},
497 498 499
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
500 501
		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
502 503
	},
	[ C(OP_WRITE) ] = {
504 505
		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
506 507
	},
	[ C(OP_PREFETCH) ] = {
508 509
		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
510 511
	},
 },
512 513
};

514
static __initconst const u64 nehalem_hw_cache_event_ids
515 516 517 518 519 520
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
521 522
		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
523 524
	},
	[ C(OP_WRITE) ] = {
525 526
		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
549 550 551 552
		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
553
	},
554 555 556 557
	/*
	 * Use RFO, not WRITEBACK, because a write miss would typically occur
	 * on RFO.
	 */
558
	[ C(OP_WRITE) ] = {
559 560 561 562
		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
563 564
	},
	[ C(OP_PREFETCH) ] = {
565 566 567 568
		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
		[ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
613 614 615 616 617 618 619 620 621 622 623 624 625 626
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
 },
627 628
};

629
static __initconst const u64 core2_hw_cache_event_ids
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
		[ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
		[ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
		[ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
		[ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
};

720
static __initconst const u64 atom_hw_cache_event_ids
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
		[ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
};

811 812 813 814 815 816 817 818 819 820 821 822 823
static inline bool intel_pmu_needs_lbr_smpl(struct perf_event *event)
{
	/* user explicitly requested branch sampling */
	if (has_branch_stack(event))
		return true;

	/* implicit branch sampling to correct PEBS skid */
	if (x86_pmu.intel_cap.pebs_trap && event->attr.precise_ip > 1)
		return true;

	return false;
}

824 825 826 827 828 829
static void intel_pmu_disable_all(void)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);

	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);

830
	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
831
		intel_pmu_disable_bts();
832 833

	intel_pmu_pebs_disable_all();
834
	intel_pmu_lbr_disable_all();
835 836
}

837
static void intel_pmu_enable_all(int added)
838 839 840
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);

841 842
	intel_pmu_pebs_enable_all();
	intel_pmu_lbr_enable_all();
843 844
	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
			x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
845

846
	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
847
		struct perf_event *event =
848
			cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
849 850 851 852 853 854 855 856

		if (WARN_ON_ONCE(!event))
			return;

		intel_pmu_enable_bts(event->hw.config);
	}
}

857 858 859 860
/*
 * Workaround for:
 *   Intel Errata AAK100 (model 26)
 *   Intel Errata AAP53  (model 30)
861
 *   Intel Errata BD53   (model 44)
862
 *
863 864 865 866 867 868 869
 * The official story:
 *   These chips need to be 'reset' when adding counters by programming the
 *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
 *   in sequence on the same PMC or on different PMCs.
 *
 * In practise it appears some of these events do in fact count, and
 * we need to programm all 4 events.
870
 */
871
static void intel_pmu_nhm_workaround(void)
872
{
873 874 875 876 877 878 879 880 881
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	static const unsigned long nhm_magic[4] = {
		0x4300B5,
		0x4300D2,
		0x4300B1,
		0x4300B1
	};
	struct perf_event *event;
	int i;
882

883 884 885 886 887 888 889 890 891
	/*
	 * The Errata requires below steps:
	 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
	 * 2) Configure 4 PERFEVTSELx with the magic events and clear
	 *    the corresponding PMCx;
	 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
	 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
	 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
	 */
892

893 894 895 896 897 898 899 900 901 902
	/*
	 * The real steps we choose are a little different from above.
	 * A) To reduce MSR operations, we don't run step 1) as they
	 *    are already cleared before this function is called;
	 * B) Call x86_perf_event_update to save PMCx before configuring
	 *    PERFEVTSELx with magic number;
	 * C) With step 5), we do clear only when the PERFEVTSELx is
	 *    not used currently.
	 * D) Call x86_perf_event_set_period to restore PMCx;
	 */
903

904 905 906 907 908 909
	/* We always operate 4 pairs of PERF Counters */
	for (i = 0; i < 4; i++) {
		event = cpuc->events[i];
		if (event)
			x86_perf_event_update(event);
	}
910

911 912 913 914 915 916 917
	for (i = 0; i < 4; i++) {
		wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
		wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
	}

	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
918

919 920 921 922 923
	for (i = 0; i < 4; i++) {
		event = cpuc->events[i];

		if (event) {
			x86_perf_event_set_period(event);
924
			__x86_pmu_enable_event(&event->hw,
925 926 927
					ARCH_PERFMON_EVENTSEL_ENABLE);
		} else
			wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
928
	}
929 930 931 932 933 934
}

static void intel_pmu_nhm_enable_all(int added)
{
	if (added)
		intel_pmu_nhm_workaround();
935 936 937
	intel_pmu_enable_all(added);
}

938 939 940 941 942 943 944 945 946 947 948 949 950 951
static inline u64 intel_pmu_get_status(void)
{
	u64 status;

	rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);

	return status;
}

static inline void intel_pmu_ack_status(u64 ack)
{
	wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
}

952
static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
953
{
954
	int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
955 956 957 958 959 960
	u64 ctrl_val, mask;

	mask = 0xfULL << (idx * 4);

	rdmsrl(hwc->config_base, ctrl_val);
	ctrl_val &= ~mask;
961
	wrmsrl(hwc->config_base, ctrl_val);
962 963
}

964
static void intel_pmu_disable_event(struct perf_event *event)
965
{
966
	struct hw_perf_event *hwc = &event->hw;
967
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
968

969
	if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
970 971 972 973 974
		intel_pmu_disable_bts();
		intel_pmu_drain_bts_buffer();
		return;
	}

975 976 977
	cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
	cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);

978 979 980 981 982 983 984
	/*
	 * must disable before any actual event
	 * because any event may be combined with LBR
	 */
	if (intel_pmu_needs_lbr_smpl(event))
		intel_pmu_lbr_disable(event);

985
	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
986
		intel_pmu_disable_fixed(hwc);
987 988 989
		return;
	}

990
	x86_pmu_disable_event(event);
991

P
Peter Zijlstra 已提交
992
	if (unlikely(event->attr.precise_ip))
993
		intel_pmu_pebs_disable(event);
994 995
}

996
static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
997
{
998
	int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
	u64 ctrl_val, bits, mask;

	/*
	 * Enable IRQ generation (0x8),
	 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
	 * if requested:
	 */
	bits = 0x8ULL;
	if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
		bits |= 0x2;
	if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
		bits |= 0x1;

	/*
	 * ANY bit is supported in v3 and up
	 */
	if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
		bits |= 0x4;

	bits <<= (idx * 4);
	mask = 0xfULL << (idx * 4);

	rdmsrl(hwc->config_base, ctrl_val);
	ctrl_val &= ~mask;
	ctrl_val |= bits;
1024
	wrmsrl(hwc->config_base, ctrl_val);
1025 1026
}

1027
static void intel_pmu_enable_event(struct perf_event *event)
1028
{
1029
	struct hw_perf_event *hwc = &event->hw;
1030
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1031

1032
	if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
T
Tejun Heo 已提交
1033
		if (!__this_cpu_read(cpu_hw_events.enabled))
1034 1035 1036 1037 1038
			return;

		intel_pmu_enable_bts(hwc->config);
		return;
	}
1039 1040 1041 1042 1043 1044
	/*
	 * must enabled before any actual event
	 * because any event may be combined with LBR
	 */
	if (intel_pmu_needs_lbr_smpl(event))
		intel_pmu_lbr_enable(event);
1045

1046 1047 1048 1049 1050
	if (event->attr.exclude_host)
		cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
	if (event->attr.exclude_guest)
		cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);

1051
	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1052
		intel_pmu_enable_fixed(hwc);
1053 1054 1055
		return;
	}

P
Peter Zijlstra 已提交
1056
	if (unlikely(event->attr.precise_ip))
1057
		intel_pmu_pebs_enable(event);
1058

1059
	__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1060 1061 1062 1063 1064 1065
}

/*
 * Save and restart an expired event. Called by NMI contexts,
 * so it has to be careful about preempting normal event ops:
 */
1066
int intel_pmu_save_and_restart(struct perf_event *event)
1067
{
1068 1069
	x86_perf_event_update(event);
	return x86_perf_event_set_period(event);
1070 1071 1072 1073
}

static void intel_pmu_reset(void)
{
T
Tejun Heo 已提交
1074
	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1075 1076 1077
	unsigned long flags;
	int idx;

1078
	if (!x86_pmu.num_counters)
1079 1080 1081 1082
		return;

	local_irq_save(flags);

1083
	pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
1084

1085
	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1086 1087
		wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
		wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
1088
	}
1089
	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
1090
		wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1091

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
	if (ds)
		ds->bts_index = ds->bts_buffer_base;

	local_irq_restore(flags);
}

/*
 * This handler is triggered by the local APIC, so the APIC IRQ handling
 * rules apply:
 */
static int intel_pmu_handle_irq(struct pt_regs *regs)
{
	struct perf_sample_data data;
	struct cpu_hw_events *cpuc;
	int bit, loops;
1107
	u64 status;
1108
	int handled;
1109 1110 1111

	cpuc = &__get_cpu_var(cpu_hw_events);

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
	/*
	 * Some chipsets need to unmask the LVTPC in a particular spot
	 * inside the nmi handler.  As a result, the unmasking was pushed
	 * into all the nmi handlers.
	 *
	 * This handler doesn't seem to have any issues with the unmasking
	 * so it was left at the top.
	 */
	apic_write(APIC_LVTPC, APIC_DM_NMI);

1122
	intel_pmu_disable_all();
1123
	handled = intel_pmu_drain_bts_buffer();
1124 1125
	status = intel_pmu_get_status();
	if (!status) {
1126
		intel_pmu_enable_all(0);
1127
		return handled;
1128 1129 1130 1131
	}

	loops = 0;
again:
1132
	intel_pmu_ack_status(status);
1133 1134 1135 1136
	if (++loops > 100) {
		WARN_ONCE(1, "perfevents: irq loop stuck!\n");
		perf_event_print_debug();
		intel_pmu_reset();
1137
		goto done;
1138 1139 1140
	}

	inc_irq_stat(apic_perf_irqs);
1141

1142 1143
	intel_pmu_lbr_read();

1144 1145 1146
	/*
	 * PEBS overflow sets bit 62 in the global status register
	 */
1147 1148
	if (__test_and_clear_bit(62, (unsigned long *)&status)) {
		handled++;
1149
		x86_pmu.drain_pebs(regs);
1150
	}
1151

1152
	for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
1153 1154
		struct perf_event *event = cpuc->events[bit];

1155 1156
		handled++;

1157 1158 1159 1160 1161 1162
		if (!test_bit(bit, cpuc->active_mask))
			continue;

		if (!intel_pmu_save_and_restart(event))
			continue;

1163
		perf_sample_data_init(&data, 0, event->hw.last_period);
1164

1165 1166 1167
		if (has_branch_stack(event))
			data.br_stack = &cpuc->lbr_stack;

1168
		if (perf_event_overflow(event, &data, regs))
P
Peter Zijlstra 已提交
1169
			x86_pmu_stop(event, 0);
1170 1171 1172 1173 1174 1175 1176 1177 1178
	}

	/*
	 * Repeat if there is more work to be done:
	 */
	status = intel_pmu_get_status();
	if (status)
		goto again;

1179
done:
1180
	intel_pmu_enable_all(0);
1181
	return handled;
1182 1183 1184
}

static struct event_constraint *
1185
intel_bts_constraints(struct perf_event *event)
1186
{
1187 1188
	struct hw_perf_event *hwc = &event->hw;
	unsigned int hw_event, bts_event;
1189

P
Peter Zijlstra 已提交
1190 1191 1192
	if (event->attr.freq)
		return NULL;

1193 1194
	hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
	bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
1195

1196
	if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
1197
		return &bts_constraint;
1198

1199 1200 1201
	return NULL;
}

1202
static int intel_alt_er(int idx)
1203 1204
{
	if (!(x86_pmu.er_flags & ERF_HAS_RSP_1))
1205
		return idx;
1206

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
	if (idx == EXTRA_REG_RSP_0)
		return EXTRA_REG_RSP_1;

	if (idx == EXTRA_REG_RSP_1)
		return EXTRA_REG_RSP_0;

	return idx;
}

static void intel_fixup_er(struct perf_event *event, int idx)
{
	event->hw.extra_reg.idx = idx;

	if (idx == EXTRA_REG_RSP_0) {
1221 1222 1223
		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
		event->hw.config |= 0x01b7;
		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
1224 1225 1226 1227
	} else if (idx == EXTRA_REG_RSP_1) {
		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
		event->hw.config |= 0x01bb;
		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
1228 1229 1230
	}
}

1231 1232 1233 1234 1235 1236 1237
/*
 * manage allocation of shared extra msr for certain events
 *
 * sharing can be:
 * per-cpu: to be shared between the various events on a single PMU
 * per-core: per-cpu + shared by HT threads
 */
1238
static struct event_constraint *
1239
__intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
1240 1241
				   struct perf_event *event,
				   struct hw_perf_event_extra *reg)
1242
{
1243
	struct event_constraint *c = &emptyconstraint;
1244
	struct er_account *era;
1245
	unsigned long flags;
1246
	int idx = reg->idx;
1247

1248 1249 1250 1251 1252 1253
	/*
	 * reg->alloc can be set due to existing state, so for fake cpuc we
	 * need to ignore this, otherwise we might fail to allocate proper fake
	 * state for this extra reg constraint. Also see the comment below.
	 */
	if (reg->alloc && !cpuc->is_fake)
1254
		return NULL; /* call x86_get_event_constraint() */
1255

1256
again:
1257
	era = &cpuc->shared_regs->regs[idx];
1258 1259 1260 1261 1262
	/*
	 * we use spin_lock_irqsave() to avoid lockdep issues when
	 * passing a fake cpuc
	 */
	raw_spin_lock_irqsave(&era->lock, flags);
1263 1264 1265

	if (!atomic_read(&era->ref) || era->config == reg->config) {

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
		/*
		 * If its a fake cpuc -- as per validate_{group,event}() we
		 * shouldn't touch event state and we can avoid doing so
		 * since both will only call get_event_constraints() once
		 * on each event, this avoids the need for reg->alloc.
		 *
		 * Not doing the ER fixup will only result in era->reg being
		 * wrong, but since we won't actually try and program hardware
		 * this isn't a problem either.
		 */
		if (!cpuc->is_fake) {
			if (idx != reg->idx)
				intel_fixup_er(event, idx);

			/*
			 * x86_schedule_events() can call get_event_constraints()
			 * multiple times on events in the case of incremental
			 * scheduling(). reg->alloc ensures we only do the ER
			 * allocation once.
			 */
			reg->alloc = 1;
		}

1289 1290 1291 1292 1293 1294 1295
		/* lock in msr value */
		era->config = reg->config;
		era->reg = reg->reg;

		/* one more user */
		atomic_inc(&era->ref);

1296
		/*
1297 1298
		 * need to call x86_get_event_constraint()
		 * to check if associated event has constraints
1299
		 */
1300
		c = NULL;
1301 1302 1303 1304 1305 1306
	} else {
		idx = intel_alt_er(idx);
		if (idx != reg->idx) {
			raw_spin_unlock_irqrestore(&era->lock, flags);
			goto again;
		}
1307
	}
1308
	raw_spin_unlock_irqrestore(&era->lock, flags);
1309

1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
	return c;
}

static void
__intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
				   struct hw_perf_event_extra *reg)
{
	struct er_account *era;

	/*
1320 1321 1322 1323 1324 1325
	 * Only put constraint if extra reg was actually allocated. Also takes
	 * care of event which do not use an extra shared reg.
	 *
	 * Also, if this is a fake cpuc we shouldn't touch any event state
	 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
	 * either since it'll be thrown out.
1326
	 */
1327
	if (!reg->alloc || cpuc->is_fake)
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
		return;

	era = &cpuc->shared_regs->regs[reg->idx];

	/* one fewer user */
	atomic_dec(&era->ref);

	/* allocate again next time */
	reg->alloc = 0;
}

static struct event_constraint *
intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
			      struct perf_event *event)
{
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
	struct event_constraint *c = NULL, *d;
	struct hw_perf_event_extra *xreg, *breg;

	xreg = &event->hw.extra_reg;
	if (xreg->idx != EXTRA_REG_NONE) {
		c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
		if (c == &emptyconstraint)
			return c;
	}
	breg = &event->hw.branch_reg;
	if (breg->idx != EXTRA_REG_NONE) {
		d = __intel_shared_reg_get_constraints(cpuc, event, breg);
		if (d == &emptyconstraint) {
			__intel_shared_reg_put_constraints(cpuc, xreg);
			c = d;
		}
	}
1360
	return c;
1361 1362
}

1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
struct event_constraint *
x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
{
	struct event_constraint *c;

	if (x86_pmu.event_constraints) {
		for_each_event_constraint(c, x86_pmu.event_constraints) {
			if ((event->hw.config & c->cmask) == c->code)
				return c;
		}
	}

	return &unconstrained;
}

1378 1379 1380 1381 1382
static struct event_constraint *
intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
{
	struct event_constraint *c;

1383 1384 1385 1386 1387
	c = intel_bts_constraints(event);
	if (c)
		return c;

	c = intel_pebs_constraints(event);
1388 1389 1390
	if (c)
		return c;

1391
	c = intel_shared_regs_constraints(cpuc, event);
1392 1393 1394
	if (c)
		return c;

1395 1396 1397
	return x86_get_event_constraints(cpuc, event);
}

1398 1399
static void
intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
1400 1401
					struct perf_event *event)
{
1402
	struct hw_perf_event_extra *reg;
1403

1404 1405 1406
	reg = &event->hw.extra_reg;
	if (reg->idx != EXTRA_REG_NONE)
		__intel_shared_reg_put_constraints(cpuc, reg);
1407 1408 1409 1410

	reg = &event->hw.branch_reg;
	if (reg->idx != EXTRA_REG_NONE)
		__intel_shared_reg_put_constraints(cpuc, reg);
1411
}
1412

1413 1414 1415 1416
static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
					struct perf_event *event)
{
	intel_put_shared_regs_event_constraints(cpuc, event);
1417 1418
}

1419
static void intel_pebs_aliases_core2(struct perf_event *event)
1420
{
1421
	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
		/*
		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
		 * (0x003c) so that we can use it with PEBS.
		 *
		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
		 * PEBS capable. However we can use INST_RETIRED.ANY_P
		 * (0x00c0), which is a PEBS capable event, to get the same
		 * count.
		 *
		 * INST_RETIRED.ANY_P counts the number of cycles that retires
		 * CNTMASK instructions. By setting CNTMASK to a value (16)
		 * larger than the maximum number of instructions that can be
		 * retired per cycle (4) and then inverting the condition, we
		 * count all cycles that retire 16 or less instructions, which
		 * is every cycle.
		 *
		 * Thereby we gain a PEBS capable cycle counter.
		 */
1440 1441
		u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);

1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
		event->hw.config = alt_config;
	}
}

static void intel_pebs_aliases_snb(struct perf_event *event)
{
	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
		/*
		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
		 * (0x003c) so that we can use it with PEBS.
		 *
		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
		 * PEBS capable. However we can use UOPS_RETIRED.ALL
		 * (0x01c2), which is a PEBS capable event, to get the same
		 * count.
		 *
		 * UOPS_RETIRED.ALL counts the number of cycles that retires
		 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
		 * larger than the maximum number of micro-ops that can be
		 * retired per cycle (4) and then inverting the condition, we
		 * count all cycles that retire 16 or less micro-ops, which
		 * is every cycle.
		 *
		 * Thereby we gain a PEBS capable cycle counter.
		 */
		u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
1469 1470 1471 1472

		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
		event->hw.config = alt_config;
	}
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
}

static int intel_pmu_hw_config(struct perf_event *event)
{
	int ret = x86_pmu_hw_config(event);

	if (ret)
		return ret;

	if (event->attr.precise_ip && x86_pmu.pebs_aliases)
		x86_pmu.pebs_aliases(event);
1484

1485 1486 1487 1488 1489 1490
	if (intel_pmu_needs_lbr_smpl(event)) {
		ret = intel_pmu_setup_lbr_filter(event);
		if (ret)
			return ret;
	}

1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
	if (event->attr.type != PERF_TYPE_RAW)
		return 0;

	if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
		return 0;

	if (x86_pmu.version < 3)
		return -EINVAL;

	if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
		return -EACCES;

	event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;

	return 0;
}

1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
{
	if (x86_pmu.guest_get_msrs)
		return x86_pmu.guest_get_msrs(nr);
	*nr = 0;
	return NULL;
}
EXPORT_SYMBOL_GPL(perf_guest_get_msrs);

static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;

	arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
	arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
	arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;

	*nr = 1;
	return arr;
}

static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
	int idx;

	for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
		struct perf_event *event = cpuc->events[idx];

		arr[idx].msr = x86_pmu_config_addr(idx);
		arr[idx].host = arr[idx].guest = 0;

		if (!test_bit(idx, cpuc->active_mask))
			continue;

		arr[idx].host = arr[idx].guest =
			event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;

		if (event->attr.exclude_host)
			arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
		else if (event->attr.exclude_guest)
			arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
	}

	*nr = x86_pmu.num_counters;
	return arr;
}

static void core_pmu_enable_event(struct perf_event *event)
{
	if (!event->attr.exclude_host)
		x86_pmu_enable_event(event);
}

static void core_pmu_enable_all(int added)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	int idx;

	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;

		if (!test_bit(idx, cpuc->active_mask) ||
				cpuc->events[idx]->attr.exclude_host)
			continue;

		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
	}
}

1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
PMU_FORMAT_ATTR(event,	"config:0-7"	);
PMU_FORMAT_ATTR(umask,	"config:8-15"	);
PMU_FORMAT_ATTR(edge,	"config:18"	);
PMU_FORMAT_ATTR(pc,	"config:19"	);
PMU_FORMAT_ATTR(any,	"config:21"	); /* v3 + */
PMU_FORMAT_ATTR(inv,	"config:23"	);
PMU_FORMAT_ATTR(cmask,	"config:24-31"	);

static struct attribute *intel_arch_formats_attr[] = {
	&format_attr_event.attr,
	&format_attr_umask.attr,
	&format_attr_edge.attr,
	&format_attr_pc.attr,
	&format_attr_inv.attr,
	&format_attr_cmask.attr,
	NULL,
};

1598
static __initconst const struct x86_pmu core_pmu = {
1599 1600 1601
	.name			= "core",
	.handle_irq		= x86_pmu_handle_irq,
	.disable_all		= x86_pmu_disable_all,
1602 1603
	.enable_all		= core_pmu_enable_all,
	.enable			= core_pmu_enable_event,
1604
	.disable		= x86_pmu_disable_event,
1605
	.hw_config		= x86_pmu_hw_config,
1606
	.schedule_events	= x86_schedule_events,
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
	.event_map		= intel_pmu_event_map,
	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
	.apic			= 1,
	/*
	 * Intel PMCs cannot be accessed sanely above 32 bit width,
	 * so we install an artificial 1<<31 period regardless of
	 * the generic event period:
	 */
	.max_period		= (1ULL << 31) - 1,
	.get_event_constraints	= intel_get_event_constraints,
1619
	.put_event_constraints	= intel_put_event_constraints,
1620
	.event_constraints	= intel_core_event_constraints,
1621
	.guest_get_msrs		= core_guest_get_msrs,
1622
	.format_attrs		= intel_arch_formats_attr,
1623 1624
};

1625
struct intel_shared_regs *allocate_shared_regs(int cpu)
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
{
	struct intel_shared_regs *regs;
	int i;

	regs = kzalloc_node(sizeof(struct intel_shared_regs),
			    GFP_KERNEL, cpu_to_node(cpu));
	if (regs) {
		/*
		 * initialize the locks to keep lockdep happy
		 */
		for (i = 0; i < EXTRA_REG_MAX; i++)
			raw_spin_lock_init(&regs->regs[i].lock);

		regs->core_id = -1;
	}
	return regs;
}

1644 1645 1646 1647
static int intel_pmu_cpu_prepare(int cpu)
{
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);

1648
	if (!(x86_pmu.extra_regs || x86_pmu.lbr_sel_map))
1649 1650
		return NOTIFY_OK;

1651 1652
	cpuc->shared_regs = allocate_shared_regs(cpu);
	if (!cpuc->shared_regs)
1653 1654 1655 1656 1657
		return NOTIFY_BAD;

	return NOTIFY_OK;
}

1658 1659
static void intel_pmu_cpu_starting(int cpu)
{
1660 1661 1662 1663
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
	int core_id = topology_core_id(cpu);
	int i;

1664 1665 1666 1667 1668 1669
	init_debug_store_on_cpu(cpu);
	/*
	 * Deal with CPUs that don't clear their LBRs on power-up.
	 */
	intel_pmu_lbr_reset();

1670 1671 1672
	cpuc->lbr_sel = NULL;

	if (!cpuc->shared_regs)
1673 1674
		return;

1675 1676 1677
	if (!(x86_pmu.er_flags & ERF_NO_HT_SHARING)) {
		for_each_cpu(i, topology_thread_cpumask(cpu)) {
			struct intel_shared_regs *pc;
1678

1679 1680 1681 1682 1683 1684
			pc = per_cpu(cpu_hw_events, i).shared_regs;
			if (pc && pc->core_id == core_id) {
				cpuc->kfree_on_online = cpuc->shared_regs;
				cpuc->shared_regs = pc;
				break;
			}
1685
		}
1686 1687
		cpuc->shared_regs->core_id = core_id;
		cpuc->shared_regs->refcnt++;
1688 1689
	}

1690 1691
	if (x86_pmu.lbr_sel_map)
		cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
1692 1693 1694 1695
}

static void intel_pmu_cpu_dying(int cpu)
{
1696
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1697
	struct intel_shared_regs *pc;
1698

1699
	pc = cpuc->shared_regs;
1700 1701 1702
	if (pc) {
		if (pc->core_id == -1 || --pc->refcnt == 0)
			kfree(pc);
1703
		cpuc->shared_regs = NULL;
1704 1705
	}

1706 1707 1708
	fini_debug_store_on_cpu(cpu);
}

1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
static void intel_pmu_flush_branch_stack(void)
{
	/*
	 * Intel LBR does not tag entries with the
	 * PID of the current task, then we need to
	 * flush it on ctxsw
	 * For now, we simply reset it
	 */
	if (x86_pmu.lbr_nr)
		intel_pmu_lbr_reset();
}

1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");

static struct attribute *intel_arch3_formats_attr[] = {
	&format_attr_event.attr,
	&format_attr_umask.attr,
	&format_attr_edge.attr,
	&format_attr_pc.attr,
	&format_attr_any.attr,
	&format_attr_inv.attr,
	&format_attr_cmask.attr,

	&format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
	NULL,
};

1736
static __initconst const struct x86_pmu intel_pmu = {
1737 1738 1739 1740 1741 1742
	.name			= "Intel",
	.handle_irq		= intel_pmu_handle_irq,
	.disable_all		= intel_pmu_disable_all,
	.enable_all		= intel_pmu_enable_all,
	.enable			= intel_pmu_enable_event,
	.disable		= intel_pmu_disable_event,
1743
	.hw_config		= intel_pmu_hw_config,
1744
	.schedule_events	= x86_schedule_events,
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
	.event_map		= intel_pmu_event_map,
	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
	.apic			= 1,
	/*
	 * Intel PMCs cannot be accessed sanely above 32 bit width,
	 * so we install an artificial 1<<31 period regardless of
	 * the generic event period:
	 */
	.max_period		= (1ULL << 31) - 1,
1756
	.get_event_constraints	= intel_get_event_constraints,
1757
	.put_event_constraints	= intel_put_event_constraints,
1758
	.pebs_aliases		= intel_pebs_aliases_core2,
1759

1760 1761
	.format_attrs		= intel_arch3_formats_attr,

1762
	.cpu_prepare		= intel_pmu_cpu_prepare,
1763 1764
	.cpu_starting		= intel_pmu_cpu_starting,
	.cpu_dying		= intel_pmu_cpu_dying,
1765
	.guest_get_msrs		= intel_guest_get_msrs,
1766
	.flush_branch_stack	= intel_pmu_flush_branch_stack,
1767 1768
};

1769
static __init void intel_clovertown_quirk(void)
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
{
	/*
	 * PEBS is unreliable due to:
	 *
	 *   AJ67  - PEBS may experience CPL leaks
	 *   AJ68  - PEBS PMI may be delayed by one event
	 *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
	 *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
	 *
	 * AJ67 could be worked around by restricting the OS/USR flags.
	 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
	 *
	 * AJ106 could possibly be worked around by not allowing LBR
	 *       usage from PEBS, including the fixup.
	 * AJ68  could possibly be worked around by always programming
1785
	 *	 a pebs_event_reset[0] value and coping with the lost events.
1786 1787 1788 1789
	 *
	 * But taken together it might just make sense to not enable PEBS on
	 * these chips.
	 */
1790
	pr_warn("PEBS disabled due to CPU errata\n");
1791 1792 1793 1794
	x86_pmu.pebs = 0;
	x86_pmu.pebs_constraints = NULL;
}

1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
static int intel_snb_pebs_broken(int cpu)
{
	u32 rev = UINT_MAX; /* default to broken for unknown models */

	switch (cpu_data(cpu).x86_model) {
	case 42: /* SNB */
		rev = 0x28;
		break;

	case 45: /* SNB-EP */
		switch (cpu_data(cpu).x86_mask) {
		case 6: rev = 0x618; break;
		case 7: rev = 0x70c; break;
		}
	}

	return (cpu_data(cpu).microcode < rev);
}

static void intel_snb_check_microcode(void)
{
	int pebs_broken = 0;
	int cpu;

	get_online_cpus();
	for_each_online_cpu(cpu) {
		if ((pebs_broken = intel_snb_pebs_broken(cpu)))
			break;
	}
	put_online_cpus();

	if (pebs_broken == x86_pmu.pebs_broken)
		return;

	/*
	 * Serialized by the microcode lock..
	 */
	if (x86_pmu.pebs_broken) {
		pr_info("PEBS enabled due to microcode update\n");
		x86_pmu.pebs_broken = 0;
	} else {
		pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
		x86_pmu.pebs_broken = 1;
	}
}

1841
static __init void intel_sandybridge_quirk(void)
1842
{
1843 1844
	x86_pmu.check_microcode = intel_snb_check_microcode;
	intel_snb_check_microcode();
1845 1846
}

1847 1848 1849 1850 1851 1852 1853 1854
static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
	{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
	{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
	{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
	{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
	{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
	{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
	{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
1855 1856
};

1857 1858 1859 1860 1861 1862 1863
static __init void intel_arch_events_quirk(void)
{
	int bit;

	/* disable event that reported as not presend by cpuid */
	for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
		intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
1864 1865
		pr_warn("CPUID marked event: \'%s\' unavailable\n",
			intel_arch_events_map[bit].name);
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
	}
}

static __init void intel_nehalem_quirk(void)
{
	union cpuid10_ebx ebx;

	ebx.full = x86_pmu.events_maskl;
	if (ebx.split.no_branch_misses_retired) {
		/*
		 * Erratum AAJ80 detected, we work it around by using
		 * the BR_MISP_EXEC.ANY event. This will over-count
		 * branch-misses, but it's still much better than the
		 * architectural event which is often completely bogus:
		 */
		intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
		ebx.split.no_branch_misses_retired = 0;
		x86_pmu.events_maskl = ebx.full;
1884
		pr_info("CPU erratum AAJ80 worked around\n");
1885 1886 1887
	}
}

1888
__init int intel_pmu_init(void)
1889 1890 1891
{
	union cpuid10_edx edx;
	union cpuid10_eax eax;
1892
	union cpuid10_ebx ebx;
1893
	struct event_constraint *c;
1894 1895 1896 1897
	unsigned int unused;
	int version;

	if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
1898 1899 1900 1901 1902 1903
		switch (boot_cpu_data.x86) {
		case 0x6:
			return p6_pmu_init();
		case 0xf:
			return p4_pmu_init();
		}
1904 1905 1906 1907 1908 1909 1910
		return -ENODEV;
	}

	/*
	 * Check whether the Architectural PerfMon supports
	 * Branch Misses Retired hw_event or not.
	 */
1911 1912
	cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
	if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
1913 1914 1915 1916 1917 1918 1919 1920 1921
		return -ENODEV;

	version = eax.split.version_id;
	if (version < 2)
		x86_pmu = core_pmu;
	else
		x86_pmu = intel_pmu;

	x86_pmu.version			= version;
1922 1923 1924
	x86_pmu.num_counters		= eax.split.num_counters;
	x86_pmu.cntval_bits		= eax.split.bit_width;
	x86_pmu.cntval_mask		= (1ULL << eax.split.bit_width) - 1;
1925

1926 1927 1928
	x86_pmu.events_maskl		= ebx.full;
	x86_pmu.events_mask_len		= eax.split.mask_length;

1929 1930
	x86_pmu.max_pebs_events		= min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);

1931 1932 1933 1934 1935
	/*
	 * Quirk: v2 perfmon does not report fixed-purpose events, so
	 * assume at least 3 events:
	 */
	if (version > 1)
1936
		x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
1937

1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
	/*
	 * v2 and above have a perf capabilities MSR
	 */
	if (version > 1) {
		u64 capabilities;

		rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
		x86_pmu.intel_cap.capabilities = capabilities;
	}

1948 1949
	intel_ds_init();

1950 1951
	x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */

1952 1953 1954 1955 1956 1957 1958 1959 1960
	/*
	 * Install the hw-cache-events table:
	 */
	switch (boot_cpu_data.x86_model) {
	case 14: /* 65 nm core solo/duo, "Yonah" */
		pr_cont("Core events, ");
		break;

	case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
1961
		x86_add_quirk(intel_clovertown_quirk);
1962 1963 1964 1965 1966 1967
	case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
	case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
	case 29: /* six-core 45 nm xeon "Dunnington" */
		memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));

1968 1969
		intel_pmu_lbr_init_core();

1970
		x86_pmu.event_constraints = intel_core2_event_constraints;
1971
		x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
1972 1973 1974 1975 1976
		pr_cont("Core2 events, ");
		break;

	case 26: /* 45 nm nehalem, "Bloomfield" */
	case 30: /* 45 nm nehalem, "Lynnfield" */
1977
	case 46: /* 45 nm nehalem-ex, "Beckton" */
1978 1979
		memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
1980 1981
		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));
1982

1983 1984
		intel_pmu_lbr_init_nhm();

1985
		x86_pmu.event_constraints = intel_nehalem_event_constraints;
1986
		x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
1987
		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
1988
		x86_pmu.extra_regs = intel_nehalem_extra_regs;
1989

1990
		/* UOPS_ISSUED.STALLED_CYCLES */
1991 1992
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
1993
		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
1994 1995
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
1996

1997
		x86_add_quirk(intel_nehalem_quirk);
1998

1999
		pr_cont("Nehalem events, ");
2000
		break;
2001

2002
	case 28: /* Atom */
2003 2004 2005
		memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));

2006 2007
		intel_pmu_lbr_init_atom();

2008
		x86_pmu.event_constraints = intel_gen_event_constraints;
2009
		x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
2010 2011 2012 2013 2014
		pr_cont("Atom events, ");
		break;

	case 37: /* 32 nm nehalem, "Clarkdale" */
	case 44: /* 32 nm nehalem, "Gulftown" */
2015
	case 47: /* 32 nm Xeon E7 */
2016 2017
		memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
2018 2019
		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));
2020

2021 2022
		intel_pmu_lbr_init_nhm();

2023
		x86_pmu.event_constraints = intel_westmere_event_constraints;
2024
		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
2025
		x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
2026
		x86_pmu.extra_regs = intel_westmere_extra_regs;
2027
		x86_pmu.er_flags |= ERF_HAS_RSP_1;
2028 2029

		/* UOPS_ISSUED.STALLED_CYCLES */
2030 2031
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2032
		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
2033 2034
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
2035

2036 2037
		pr_cont("Westmere events, ");
		break;
2038

2039
	case 42: /* SandyBridge */
2040
	case 45: /* SandyBridge, "Romely-EP" */
2041 2042
		x86_add_quirk(intel_sandybridge_quirk);
	case 58: /* IvyBridge */
2043 2044
		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
2045 2046
		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));
2047

2048
		intel_pmu_lbr_init_snb();
2049 2050

		x86_pmu.event_constraints = intel_snb_event_constraints;
2051
		x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
2052
		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
2053 2054
		x86_pmu.extra_regs = intel_snb_extra_regs;
		/* all extra regs are per-cpu when HT is on */
2055 2056
		x86_pmu.er_flags |= ERF_HAS_RSP_1;
		x86_pmu.er_flags |= ERF_NO_HT_SHARING;
2057 2058

		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
2059 2060
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
2061
		/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
2062 2063
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
			X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
2064

2065 2066 2067
		pr_cont("SandyBridge events, ");
		break;

2068
	default:
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
		switch (x86_pmu.version) {
		case 1:
			x86_pmu.event_constraints = intel_v1_event_constraints;
			pr_cont("generic architected perfmon v1, ");
			break;
		default:
			/*
			 * default constraints for v2 and up
			 */
			x86_pmu.event_constraints = intel_gen_event_constraints;
			pr_cont("generic architected perfmon, ");
			break;
		}
2082
	}
2083

2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
	if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
		WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
		     x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
		x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
	}
	x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;

	if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
		WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
		     x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
		x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
	}

	x86_pmu.intel_ctrl |=
		((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;

	if (x86_pmu.event_constraints) {
		/*
		 * event on fixed counter2 (REF_CYCLES) only works on this
		 * counter, so do not extend mask to generic counters
		 */
		for_each_event_constraint(c, x86_pmu.event_constraints) {
			if (c->cmask != X86_RAW_EVENT_MASK
			    || c->idxmsk64 == INTEL_PMC_MSK_FIXED_REF_CYCLES) {
				continue;
			}

			c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
			c->weight += x86_pmu.num_counters;
		}
	}

2116 2117
	return 0;
}