perf_event_intel.c 52.4 KB
Newer Older
1
/*
2 3 4 5
 * Per core/cpu state
 *
 * Used to coordinate shared registers between HT threads or
 * among events on a single PMU.
6
 */
7 8 9 10 11

#include <linux/stddef.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/slab.h>
12
#include <linux/export.h>
13 14 15 16 17

#include <asm/hardirq.h>
#include <asm/apic.h>

#include "perf_event.h"
18

19
/*
20
 * Intel PerfMon, used on Core and later.
21
 */
22
static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
23 24 25 26 27 28 29 30
{
  [PERF_COUNT_HW_CPU_CYCLES]		= 0x003c,
  [PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
  [PERF_COUNT_HW_CACHE_REFERENCES]	= 0x4f2e,
  [PERF_COUNT_HW_CACHE_MISSES]		= 0x412e,
  [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c4,
  [PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c5,
  [PERF_COUNT_HW_BUS_CYCLES]		= 0x013c,
31
  [PERF_COUNT_HW_REF_CPU_CYCLES]	= 0x0300, /* pseudo-encoding */
32 33
};

34
static struct event_constraint intel_core_event_constraints[] __read_mostly =
35 36 37 38 39 40 41 42 43 44
{
	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
	INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
	EVENT_CONSTRAINT_END
};

45
static struct event_constraint intel_core2_event_constraints[] __read_mostly =
46
{
47 48
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
49
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
50 51 52 53 54 55 56 57
	INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
	INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
	INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
58
	INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
59 60 61 62
	INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
	EVENT_CONSTRAINT_END
};

63
static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
64
{
65 66
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
67
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
68 69 70 71 72 73 74 75 76 77 78
	INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
	INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
	INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
	INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
	INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
	INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
	EVENT_CONSTRAINT_END
};

79
static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
80
{
81
	INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
82 83 84
	EVENT_EXTRA_END
};

85
static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
86
{
87 88
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
89
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
90 91 92
	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
	INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
93
	INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
94 95 96
	EVENT_CONSTRAINT_END
};

97
static struct event_constraint intel_snb_event_constraints[] __read_mostly =
98 99 100
{
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
101
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
102 103 104 105 106 107
	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
	EVENT_CONSTRAINT_END
};

108
static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
109
{
110 111
	INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
	INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
112 113 114
	EVENT_EXTRA_END
};

115 116 117 118 119
static struct event_constraint intel_v1_event_constraints[] __read_mostly =
{
	EVENT_CONSTRAINT_END
};

120
static struct event_constraint intel_gen_event_constraints[] __read_mostly =
121
{
122 123
	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
124
	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
125 126 127
	EVENT_CONSTRAINT_END
};

128 129 130 131 132 133
static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
	INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
	INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
	EVENT_EXTRA_END
};

134 135 136 137 138
static u64 intel_pmu_event_map(int hw_event)
{
	return intel_perfmon_event_map[hw_event];
}

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
static __initconst const u64 snb_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
		[ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
174
		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
175
		[ C(RESULT_ACCESS) ] = 0x01b7,
176 177
		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
178 179
	},
	[ C(OP_WRITE) ] = {
180
		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
181
		[ C(RESULT_ACCESS) ] = 0x01b7,
182 183
		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
184 185
	},
	[ C(OP_PREFETCH) ] = {
186
		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
187
		[ C(RESULT_ACCESS) ] = 0x01b7,
188 189
		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
		[ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },

249 250
};

251
static __initconst const u64 westmere_hw_cache_event_ids
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
286
		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
287
		[ C(RESULT_ACCESS) ] = 0x01b7,
288 289
		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
290
	},
291 292 293 294
	/*
	 * Use RFO, not WRITEBACK, because a write miss would typically occur
	 * on RFO.
	 */
295
	[ C(OP_WRITE) ] = {
296 297 298
		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
299
		[ C(RESULT_MISS)   ] = 0x01b7,
300 301
	},
	[ C(OP_PREFETCH) ] = {
302
		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
303
		[ C(RESULT_ACCESS) ] = 0x01b7,
304 305
		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
350 351 352 353 354 355 356 357 358 359 360 361 362 363
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
 },
364 365
};

366
/*
367 368
 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
 * See IA32 SDM Vol 3B 30.6.1.3
369 370
 */

371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
#define NHM_DMND_DATA_RD	(1 << 0)
#define NHM_DMND_RFO		(1 << 1)
#define NHM_DMND_IFETCH		(1 << 2)
#define NHM_DMND_WB		(1 << 3)
#define NHM_PF_DATA_RD		(1 << 4)
#define NHM_PF_DATA_RFO		(1 << 5)
#define NHM_PF_IFETCH		(1 << 6)
#define NHM_OFFCORE_OTHER	(1 << 7)
#define NHM_UNCORE_HIT		(1 << 8)
#define NHM_OTHER_CORE_HIT_SNP	(1 << 9)
#define NHM_OTHER_CORE_HITM	(1 << 10)
        			/* reserved */
#define NHM_REMOTE_CACHE_FWD	(1 << 12)
#define NHM_REMOTE_DRAM		(1 << 13)
#define NHM_LOCAL_DRAM		(1 << 14)
#define NHM_NON_DRAM		(1 << 15)

388 389
#define NHM_LOCAL		(NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
#define NHM_REMOTE		(NHM_REMOTE_DRAM)
390 391 392 393 394 395

#define NHM_DMND_READ		(NHM_DMND_DATA_RD)
#define NHM_DMND_WRITE		(NHM_DMND_RFO|NHM_DMND_WB)
#define NHM_DMND_PREFETCH	(NHM_PF_DATA_RD|NHM_PF_DATA_RFO)

#define NHM_L3_HIT	(NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
396
#define NHM_L3_MISS	(NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
397
#define NHM_L3_ACCESS	(NHM_L3_HIT|NHM_L3_MISS)
398 399 400 401 402 403 404 405

static __initconst const u64 nehalem_hw_cache_extra_regs
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
406 407
		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
408 409
	},
	[ C(OP_WRITE) ] = {
410 411
		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
412 413
	},
	[ C(OP_PREFETCH) ] = {
414 415
		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
416
	},
417 418 419
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
420 421
		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
422 423
	},
	[ C(OP_WRITE) ] = {
424 425
		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
426 427
	},
	[ C(OP_PREFETCH) ] = {
428 429
		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
430 431
	},
 },
432 433
};

434
static __initconst const u64 nehalem_hw_cache_event_ids
435 436 437 438 439 440
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
441 442
		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
443 444
	},
	[ C(OP_WRITE) ] = {
445 446
		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
469 470 471 472
		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
473
	},
474 475 476 477
	/*
	 * Use RFO, not WRITEBACK, because a write miss would typically occur
	 * on RFO.
	 */
478
	[ C(OP_WRITE) ] = {
479 480 481 482
		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
483 484
	},
	[ C(OP_PREFETCH) ] = {
485 486 487 488
		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
		[ C(RESULT_ACCESS) ] = 0x01b7,
		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
		[ C(RESULT_MISS)   ] = 0x01b7,
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0x0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
		[ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
533 534 535 536 537 538 539 540 541 542 543 544 545 546
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x01b7,
		[ C(RESULT_MISS)   ] = 0x01b7,
	},
 },
547 548
};

549
static __initconst const u64 core2_hw_cache_event_ids
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
		[ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
		[ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
		[ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
		[ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
};

640
static __initconst const u64 atom_hw_cache_event_ids
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
		[ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
		[ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
};

731 732 733 734 735 736 737 738 739 740 741 742 743
static inline bool intel_pmu_needs_lbr_smpl(struct perf_event *event)
{
	/* user explicitly requested branch sampling */
	if (has_branch_stack(event))
		return true;

	/* implicit branch sampling to correct PEBS skid */
	if (x86_pmu.intel_cap.pebs_trap && event->attr.precise_ip > 1)
		return true;

	return false;
}

744 745 746 747 748 749
static void intel_pmu_disable_all(void)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);

	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);

750
	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
751
		intel_pmu_disable_bts();
752 753

	intel_pmu_pebs_disable_all();
754
	intel_pmu_lbr_disable_all();
755 756
}

757
static void intel_pmu_enable_all(int added)
758 759 760
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);

761 762
	intel_pmu_pebs_enable_all();
	intel_pmu_lbr_enable_all();
763 764
	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
			x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
765

766
	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
767
		struct perf_event *event =
768
			cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
769 770 771 772 773 774 775 776

		if (WARN_ON_ONCE(!event))
			return;

		intel_pmu_enable_bts(event->hw.config);
	}
}

777 778 779 780
/*
 * Workaround for:
 *   Intel Errata AAK100 (model 26)
 *   Intel Errata AAP53  (model 30)
781
 *   Intel Errata BD53   (model 44)
782
 *
783 784 785 786 787 788 789
 * The official story:
 *   These chips need to be 'reset' when adding counters by programming the
 *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
 *   in sequence on the same PMC or on different PMCs.
 *
 * In practise it appears some of these events do in fact count, and
 * we need to programm all 4 events.
790
 */
791
static void intel_pmu_nhm_workaround(void)
792
{
793 794 795 796 797 798 799 800 801
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	static const unsigned long nhm_magic[4] = {
		0x4300B5,
		0x4300D2,
		0x4300B1,
		0x4300B1
	};
	struct perf_event *event;
	int i;
802

803 804 805 806 807 808 809 810 811
	/*
	 * The Errata requires below steps:
	 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
	 * 2) Configure 4 PERFEVTSELx with the magic events and clear
	 *    the corresponding PMCx;
	 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
	 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
	 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
	 */
812

813 814 815 816 817 818 819 820 821 822
	/*
	 * The real steps we choose are a little different from above.
	 * A) To reduce MSR operations, we don't run step 1) as they
	 *    are already cleared before this function is called;
	 * B) Call x86_perf_event_update to save PMCx before configuring
	 *    PERFEVTSELx with magic number;
	 * C) With step 5), we do clear only when the PERFEVTSELx is
	 *    not used currently.
	 * D) Call x86_perf_event_set_period to restore PMCx;
	 */
823

824 825 826 827 828 829
	/* We always operate 4 pairs of PERF Counters */
	for (i = 0; i < 4; i++) {
		event = cpuc->events[i];
		if (event)
			x86_perf_event_update(event);
	}
830

831 832 833 834 835 836 837
	for (i = 0; i < 4; i++) {
		wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
		wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
	}

	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
838

839 840 841 842 843
	for (i = 0; i < 4; i++) {
		event = cpuc->events[i];

		if (event) {
			x86_perf_event_set_period(event);
844
			__x86_pmu_enable_event(&event->hw,
845 846 847
					ARCH_PERFMON_EVENTSEL_ENABLE);
		} else
			wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
848
	}
849 850 851 852 853 854
}

static void intel_pmu_nhm_enable_all(int added)
{
	if (added)
		intel_pmu_nhm_workaround();
855 856 857
	intel_pmu_enable_all(added);
}

858 859 860 861 862 863 864 865 866 867 868 869 870 871
static inline u64 intel_pmu_get_status(void)
{
	u64 status;

	rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);

	return status;
}

static inline void intel_pmu_ack_status(u64 ack)
{
	wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
}

872
static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
873
{
874
	int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
875 876 877 878 879 880
	u64 ctrl_val, mask;

	mask = 0xfULL << (idx * 4);

	rdmsrl(hwc->config_base, ctrl_val);
	ctrl_val &= ~mask;
881
	wrmsrl(hwc->config_base, ctrl_val);
882 883
}

884
static void intel_pmu_disable_event(struct perf_event *event)
885
{
886
	struct hw_perf_event *hwc = &event->hw;
887
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
888

889
	if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
890 891 892 893 894
		intel_pmu_disable_bts();
		intel_pmu_drain_bts_buffer();
		return;
	}

895 896 897
	cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
	cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);

898 899 900 901 902 903 904
	/*
	 * must disable before any actual event
	 * because any event may be combined with LBR
	 */
	if (intel_pmu_needs_lbr_smpl(event))
		intel_pmu_lbr_disable(event);

905
	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
906
		intel_pmu_disable_fixed(hwc);
907 908 909
		return;
	}

910
	x86_pmu_disable_event(event);
911

P
Peter Zijlstra 已提交
912
	if (unlikely(event->attr.precise_ip))
913
		intel_pmu_pebs_disable(event);
914 915
}

916
static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
917
{
918
	int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
	u64 ctrl_val, bits, mask;

	/*
	 * Enable IRQ generation (0x8),
	 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
	 * if requested:
	 */
	bits = 0x8ULL;
	if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
		bits |= 0x2;
	if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
		bits |= 0x1;

	/*
	 * ANY bit is supported in v3 and up
	 */
	if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
		bits |= 0x4;

	bits <<= (idx * 4);
	mask = 0xfULL << (idx * 4);

	rdmsrl(hwc->config_base, ctrl_val);
	ctrl_val &= ~mask;
	ctrl_val |= bits;
944
	wrmsrl(hwc->config_base, ctrl_val);
945 946
}

947
static void intel_pmu_enable_event(struct perf_event *event)
948
{
949
	struct hw_perf_event *hwc = &event->hw;
950
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
951

952
	if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
T
Tejun Heo 已提交
953
		if (!__this_cpu_read(cpu_hw_events.enabled))
954 955 956 957 958
			return;

		intel_pmu_enable_bts(hwc->config);
		return;
	}
959 960 961 962 963 964
	/*
	 * must enabled before any actual event
	 * because any event may be combined with LBR
	 */
	if (intel_pmu_needs_lbr_smpl(event))
		intel_pmu_lbr_enable(event);
965

966 967 968 969 970
	if (event->attr.exclude_host)
		cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
	if (event->attr.exclude_guest)
		cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);

971
	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
972
		intel_pmu_enable_fixed(hwc);
973 974 975
		return;
	}

P
Peter Zijlstra 已提交
976
	if (unlikely(event->attr.precise_ip))
977
		intel_pmu_pebs_enable(event);
978

979
	__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
980 981 982 983 984 985
}

/*
 * Save and restart an expired event. Called by NMI contexts,
 * so it has to be careful about preempting normal event ops:
 */
986
int intel_pmu_save_and_restart(struct perf_event *event)
987
{
988 989
	x86_perf_event_update(event);
	return x86_perf_event_set_period(event);
990 991 992 993
}

static void intel_pmu_reset(void)
{
T
Tejun Heo 已提交
994
	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
995 996 997
	unsigned long flags;
	int idx;

998
	if (!x86_pmu.num_counters)
999 1000 1001 1002 1003 1004
		return;

	local_irq_save(flags);

	printk("clearing PMU state on CPU#%d\n", smp_processor_id());

1005
	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1006 1007
		wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
		wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
1008
	}
1009
	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
1010
		wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1011

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
	if (ds)
		ds->bts_index = ds->bts_buffer_base;

	local_irq_restore(flags);
}

/*
 * This handler is triggered by the local APIC, so the APIC IRQ handling
 * rules apply:
 */
static int intel_pmu_handle_irq(struct pt_regs *regs)
{
	struct perf_sample_data data;
	struct cpu_hw_events *cpuc;
	int bit, loops;
1027
	u64 status;
1028
	int handled;
1029 1030 1031

	cpuc = &__get_cpu_var(cpu_hw_events);

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
	/*
	 * Some chipsets need to unmask the LVTPC in a particular spot
	 * inside the nmi handler.  As a result, the unmasking was pushed
	 * into all the nmi handlers.
	 *
	 * This handler doesn't seem to have any issues with the unmasking
	 * so it was left at the top.
	 */
	apic_write(APIC_LVTPC, APIC_DM_NMI);

1042
	intel_pmu_disable_all();
1043
	handled = intel_pmu_drain_bts_buffer();
1044 1045
	status = intel_pmu_get_status();
	if (!status) {
1046
		intel_pmu_enable_all(0);
1047
		return handled;
1048 1049 1050 1051
	}

	loops = 0;
again:
1052
	intel_pmu_ack_status(status);
1053 1054 1055 1056
	if (++loops > 100) {
		WARN_ONCE(1, "perfevents: irq loop stuck!\n");
		perf_event_print_debug();
		intel_pmu_reset();
1057
		goto done;
1058 1059 1060
	}

	inc_irq_stat(apic_perf_irqs);
1061

1062 1063
	intel_pmu_lbr_read();

1064 1065 1066
	/*
	 * PEBS overflow sets bit 62 in the global status register
	 */
1067 1068
	if (__test_and_clear_bit(62, (unsigned long *)&status)) {
		handled++;
1069
		x86_pmu.drain_pebs(regs);
1070
	}
1071

1072
	for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
1073 1074
		struct perf_event *event = cpuc->events[bit];

1075 1076
		handled++;

1077 1078 1079 1080 1081 1082
		if (!test_bit(bit, cpuc->active_mask))
			continue;

		if (!intel_pmu_save_and_restart(event))
			continue;

1083
		perf_sample_data_init(&data, 0, event->hw.last_period);
1084

1085 1086 1087
		if (has_branch_stack(event))
			data.br_stack = &cpuc->lbr_stack;

1088
		if (perf_event_overflow(event, &data, regs))
P
Peter Zijlstra 已提交
1089
			x86_pmu_stop(event, 0);
1090 1091 1092 1093 1094 1095 1096 1097 1098
	}

	/*
	 * Repeat if there is more work to be done:
	 */
	status = intel_pmu_get_status();
	if (status)
		goto again;

1099
done:
1100
	intel_pmu_enable_all(0);
1101
	return handled;
1102 1103 1104
}

static struct event_constraint *
1105
intel_bts_constraints(struct perf_event *event)
1106
{
1107 1108
	struct hw_perf_event *hwc = &event->hw;
	unsigned int hw_event, bts_event;
1109

P
Peter Zijlstra 已提交
1110 1111 1112
	if (event->attr.freq)
		return NULL;

1113 1114
	hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
	bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
1115

1116
	if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
1117
		return &bts_constraint;
1118

1119 1120 1121
	return NULL;
}

1122
static int intel_alt_er(int idx)
1123 1124
{
	if (!(x86_pmu.er_flags & ERF_HAS_RSP_1))
1125
		return idx;
1126

1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
	if (idx == EXTRA_REG_RSP_0)
		return EXTRA_REG_RSP_1;

	if (idx == EXTRA_REG_RSP_1)
		return EXTRA_REG_RSP_0;

	return idx;
}

static void intel_fixup_er(struct perf_event *event, int idx)
{
	event->hw.extra_reg.idx = idx;

	if (idx == EXTRA_REG_RSP_0) {
1141 1142 1143
		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
		event->hw.config |= 0x01b7;
		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
1144 1145 1146 1147
	} else if (idx == EXTRA_REG_RSP_1) {
		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
		event->hw.config |= 0x01bb;
		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
1148 1149 1150
	}
}

1151 1152 1153 1154 1155 1156 1157
/*
 * manage allocation of shared extra msr for certain events
 *
 * sharing can be:
 * per-cpu: to be shared between the various events on a single PMU
 * per-core: per-cpu + shared by HT threads
 */
1158
static struct event_constraint *
1159
__intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
1160 1161
				   struct perf_event *event,
				   struct hw_perf_event_extra *reg)
1162
{
1163
	struct event_constraint *c = &emptyconstraint;
1164
	struct er_account *era;
1165
	unsigned long flags;
1166
	int idx = reg->idx;
1167

1168 1169 1170 1171 1172 1173
	/*
	 * reg->alloc can be set due to existing state, so for fake cpuc we
	 * need to ignore this, otherwise we might fail to allocate proper fake
	 * state for this extra reg constraint. Also see the comment below.
	 */
	if (reg->alloc && !cpuc->is_fake)
1174
		return NULL; /* call x86_get_event_constraint() */
1175

1176
again:
1177
	era = &cpuc->shared_regs->regs[idx];
1178 1179 1180 1181 1182
	/*
	 * we use spin_lock_irqsave() to avoid lockdep issues when
	 * passing a fake cpuc
	 */
	raw_spin_lock_irqsave(&era->lock, flags);
1183 1184 1185

	if (!atomic_read(&era->ref) || era->config == reg->config) {

1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
		/*
		 * If its a fake cpuc -- as per validate_{group,event}() we
		 * shouldn't touch event state and we can avoid doing so
		 * since both will only call get_event_constraints() once
		 * on each event, this avoids the need for reg->alloc.
		 *
		 * Not doing the ER fixup will only result in era->reg being
		 * wrong, but since we won't actually try and program hardware
		 * this isn't a problem either.
		 */
		if (!cpuc->is_fake) {
			if (idx != reg->idx)
				intel_fixup_er(event, idx);

			/*
			 * x86_schedule_events() can call get_event_constraints()
			 * multiple times on events in the case of incremental
			 * scheduling(). reg->alloc ensures we only do the ER
			 * allocation once.
			 */
			reg->alloc = 1;
		}

1209 1210 1211 1212 1213 1214 1215
		/* lock in msr value */
		era->config = reg->config;
		era->reg = reg->reg;

		/* one more user */
		atomic_inc(&era->ref);

1216
		/*
1217 1218
		 * need to call x86_get_event_constraint()
		 * to check if associated event has constraints
1219
		 */
1220
		c = NULL;
1221 1222 1223 1224 1225 1226
	} else {
		idx = intel_alt_er(idx);
		if (idx != reg->idx) {
			raw_spin_unlock_irqrestore(&era->lock, flags);
			goto again;
		}
1227
	}
1228
	raw_spin_unlock_irqrestore(&era->lock, flags);
1229

1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
	return c;
}

static void
__intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
				   struct hw_perf_event_extra *reg)
{
	struct er_account *era;

	/*
1240 1241 1242 1243 1244 1245
	 * Only put constraint if extra reg was actually allocated. Also takes
	 * care of event which do not use an extra shared reg.
	 *
	 * Also, if this is a fake cpuc we shouldn't touch any event state
	 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
	 * either since it'll be thrown out.
1246
	 */
1247
	if (!reg->alloc || cpuc->is_fake)
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
		return;

	era = &cpuc->shared_regs->regs[reg->idx];

	/* one fewer user */
	atomic_dec(&era->ref);

	/* allocate again next time */
	reg->alloc = 0;
}

static struct event_constraint *
intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
			      struct perf_event *event)
{
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
	struct event_constraint *c = NULL, *d;
	struct hw_perf_event_extra *xreg, *breg;

	xreg = &event->hw.extra_reg;
	if (xreg->idx != EXTRA_REG_NONE) {
		c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
		if (c == &emptyconstraint)
			return c;
	}
	breg = &event->hw.branch_reg;
	if (breg->idx != EXTRA_REG_NONE) {
		d = __intel_shared_reg_get_constraints(cpuc, event, breg);
		if (d == &emptyconstraint) {
			__intel_shared_reg_put_constraints(cpuc, xreg);
			c = d;
		}
	}
1280
	return c;
1281 1282
}

1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
struct event_constraint *
x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
{
	struct event_constraint *c;

	if (x86_pmu.event_constraints) {
		for_each_event_constraint(c, x86_pmu.event_constraints) {
			if ((event->hw.config & c->cmask) == c->code)
				return c;
		}
	}

	return &unconstrained;
}

1298 1299 1300 1301 1302
static struct event_constraint *
intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
{
	struct event_constraint *c;

1303 1304 1305 1306 1307
	c = intel_bts_constraints(event);
	if (c)
		return c;

	c = intel_pebs_constraints(event);
1308 1309 1310
	if (c)
		return c;

1311
	c = intel_shared_regs_constraints(cpuc, event);
1312 1313 1314
	if (c)
		return c;

1315 1316 1317
	return x86_get_event_constraints(cpuc, event);
}

1318 1319
static void
intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
1320 1321
					struct perf_event *event)
{
1322
	struct hw_perf_event_extra *reg;
1323

1324 1325 1326
	reg = &event->hw.extra_reg;
	if (reg->idx != EXTRA_REG_NONE)
		__intel_shared_reg_put_constraints(cpuc, reg);
1327 1328 1329 1330

	reg = &event->hw.branch_reg;
	if (reg->idx != EXTRA_REG_NONE)
		__intel_shared_reg_put_constraints(cpuc, reg);
1331
}
1332

1333 1334 1335 1336
static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
					struct perf_event *event)
{
	intel_put_shared_regs_event_constraints(cpuc, event);
1337 1338
}

1339
static void intel_pebs_aliases_core2(struct perf_event *event)
1340
{
1341
	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
		/*
		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
		 * (0x003c) so that we can use it with PEBS.
		 *
		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
		 * PEBS capable. However we can use INST_RETIRED.ANY_P
		 * (0x00c0), which is a PEBS capable event, to get the same
		 * count.
		 *
		 * INST_RETIRED.ANY_P counts the number of cycles that retires
		 * CNTMASK instructions. By setting CNTMASK to a value (16)
		 * larger than the maximum number of instructions that can be
		 * retired per cycle (4) and then inverting the condition, we
		 * count all cycles that retire 16 or less instructions, which
		 * is every cycle.
		 *
		 * Thereby we gain a PEBS capable cycle counter.
		 */
1360 1361
		u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);

1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
		event->hw.config = alt_config;
	}
}

static void intel_pebs_aliases_snb(struct perf_event *event)
{
	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
		/*
		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
		 * (0x003c) so that we can use it with PEBS.
		 *
		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
		 * PEBS capable. However we can use UOPS_RETIRED.ALL
		 * (0x01c2), which is a PEBS capable event, to get the same
		 * count.
		 *
		 * UOPS_RETIRED.ALL counts the number of cycles that retires
		 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
		 * larger than the maximum number of micro-ops that can be
		 * retired per cycle (4) and then inverting the condition, we
		 * count all cycles that retire 16 or less micro-ops, which
		 * is every cycle.
		 *
		 * Thereby we gain a PEBS capable cycle counter.
		 */
		u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
1389 1390 1391 1392

		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
		event->hw.config = alt_config;
	}
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
}

static int intel_pmu_hw_config(struct perf_event *event)
{
	int ret = x86_pmu_hw_config(event);

	if (ret)
		return ret;

	if (event->attr.precise_ip && x86_pmu.pebs_aliases)
		x86_pmu.pebs_aliases(event);
1404

1405 1406 1407 1408 1409 1410
	if (intel_pmu_needs_lbr_smpl(event)) {
		ret = intel_pmu_setup_lbr_filter(event);
		if (ret)
			return ret;
	}

1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
	if (event->attr.type != PERF_TYPE_RAW)
		return 0;

	if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
		return 0;

	if (x86_pmu.version < 3)
		return -EINVAL;

	if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
		return -EACCES;

	event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;

	return 0;
}

1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
{
	if (x86_pmu.guest_get_msrs)
		return x86_pmu.guest_get_msrs(nr);
	*nr = 0;
	return NULL;
}
EXPORT_SYMBOL_GPL(perf_guest_get_msrs);

static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;

	arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
	arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
	arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;

	*nr = 1;
	return arr;
}

static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
	int idx;

	for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
		struct perf_event *event = cpuc->events[idx];

		arr[idx].msr = x86_pmu_config_addr(idx);
		arr[idx].host = arr[idx].guest = 0;

		if (!test_bit(idx, cpuc->active_mask))
			continue;

		arr[idx].host = arr[idx].guest =
			event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;

		if (event->attr.exclude_host)
			arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
		else if (event->attr.exclude_guest)
			arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
	}

	*nr = x86_pmu.num_counters;
	return arr;
}

static void core_pmu_enable_event(struct perf_event *event)
{
	if (!event->attr.exclude_host)
		x86_pmu_enable_event(event);
}

static void core_pmu_enable_all(int added)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	int idx;

	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;

		if (!test_bit(idx, cpuc->active_mask) ||
				cpuc->events[idx]->attr.exclude_host)
			continue;

		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
	}
}

1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
PMU_FORMAT_ATTR(event,	"config:0-7"	);
PMU_FORMAT_ATTR(umask,	"config:8-15"	);
PMU_FORMAT_ATTR(edge,	"config:18"	);
PMU_FORMAT_ATTR(pc,	"config:19"	);
PMU_FORMAT_ATTR(any,	"config:21"	); /* v3 + */
PMU_FORMAT_ATTR(inv,	"config:23"	);
PMU_FORMAT_ATTR(cmask,	"config:24-31"	);

static struct attribute *intel_arch_formats_attr[] = {
	&format_attr_event.attr,
	&format_attr_umask.attr,
	&format_attr_edge.attr,
	&format_attr_pc.attr,
	&format_attr_inv.attr,
	&format_attr_cmask.attr,
	NULL,
};

1518
static __initconst const struct x86_pmu core_pmu = {
1519 1520 1521
	.name			= "core",
	.handle_irq		= x86_pmu_handle_irq,
	.disable_all		= x86_pmu_disable_all,
1522 1523
	.enable_all		= core_pmu_enable_all,
	.enable			= core_pmu_enable_event,
1524
	.disable		= x86_pmu_disable_event,
1525
	.hw_config		= x86_pmu_hw_config,
1526
	.schedule_events	= x86_schedule_events,
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
	.event_map		= intel_pmu_event_map,
	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
	.apic			= 1,
	/*
	 * Intel PMCs cannot be accessed sanely above 32 bit width,
	 * so we install an artificial 1<<31 period regardless of
	 * the generic event period:
	 */
	.max_period		= (1ULL << 31) - 1,
	.get_event_constraints	= intel_get_event_constraints,
1539
	.put_event_constraints	= intel_put_event_constraints,
1540
	.event_constraints	= intel_core_event_constraints,
1541
	.guest_get_msrs		= core_guest_get_msrs,
1542
	.format_attrs		= intel_arch_formats_attr,
1543 1544
};

1545
struct intel_shared_regs *allocate_shared_regs(int cpu)
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
{
	struct intel_shared_regs *regs;
	int i;

	regs = kzalloc_node(sizeof(struct intel_shared_regs),
			    GFP_KERNEL, cpu_to_node(cpu));
	if (regs) {
		/*
		 * initialize the locks to keep lockdep happy
		 */
		for (i = 0; i < EXTRA_REG_MAX; i++)
			raw_spin_lock_init(&regs->regs[i].lock);

		regs->core_id = -1;
	}
	return regs;
}

1564 1565 1566 1567
static int intel_pmu_cpu_prepare(int cpu)
{
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);

1568
	if (!(x86_pmu.extra_regs || x86_pmu.lbr_sel_map))
1569 1570
		return NOTIFY_OK;

1571 1572
	cpuc->shared_regs = allocate_shared_regs(cpu);
	if (!cpuc->shared_regs)
1573 1574 1575 1576 1577
		return NOTIFY_BAD;

	return NOTIFY_OK;
}

1578 1579
static void intel_pmu_cpu_starting(int cpu)
{
1580 1581 1582 1583
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
	int core_id = topology_core_id(cpu);
	int i;

1584 1585 1586 1587 1588 1589
	init_debug_store_on_cpu(cpu);
	/*
	 * Deal with CPUs that don't clear their LBRs on power-up.
	 */
	intel_pmu_lbr_reset();

1590 1591 1592
	cpuc->lbr_sel = NULL;

	if (!cpuc->shared_regs)
1593 1594
		return;

1595 1596 1597
	if (!(x86_pmu.er_flags & ERF_NO_HT_SHARING)) {
		for_each_cpu(i, topology_thread_cpumask(cpu)) {
			struct intel_shared_regs *pc;
1598

1599 1600 1601 1602 1603 1604
			pc = per_cpu(cpu_hw_events, i).shared_regs;
			if (pc && pc->core_id == core_id) {
				cpuc->kfree_on_online = cpuc->shared_regs;
				cpuc->shared_regs = pc;
				break;
			}
1605
		}
1606 1607
		cpuc->shared_regs->core_id = core_id;
		cpuc->shared_regs->refcnt++;
1608 1609
	}

1610 1611
	if (x86_pmu.lbr_sel_map)
		cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
1612 1613 1614 1615
}

static void intel_pmu_cpu_dying(int cpu)
{
1616
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1617
	struct intel_shared_regs *pc;
1618

1619
	pc = cpuc->shared_regs;
1620 1621 1622
	if (pc) {
		if (pc->core_id == -1 || --pc->refcnt == 0)
			kfree(pc);
1623
		cpuc->shared_regs = NULL;
1624 1625
	}

1626 1627 1628
	fini_debug_store_on_cpu(cpu);
}

1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
static void intel_pmu_flush_branch_stack(void)
{
	/*
	 * Intel LBR does not tag entries with the
	 * PID of the current task, then we need to
	 * flush it on ctxsw
	 * For now, we simply reset it
	 */
	if (x86_pmu.lbr_nr)
		intel_pmu_lbr_reset();
}

1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");

static struct attribute *intel_arch3_formats_attr[] = {
	&format_attr_event.attr,
	&format_attr_umask.attr,
	&format_attr_edge.attr,
	&format_attr_pc.attr,
	&format_attr_any.attr,
	&format_attr_inv.attr,
	&format_attr_cmask.attr,

	&format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
	NULL,
};

1656
static __initconst const struct x86_pmu intel_pmu = {
1657 1658 1659 1660 1661 1662
	.name			= "Intel",
	.handle_irq		= intel_pmu_handle_irq,
	.disable_all		= intel_pmu_disable_all,
	.enable_all		= intel_pmu_enable_all,
	.enable			= intel_pmu_enable_event,
	.disable		= intel_pmu_disable_event,
1663
	.hw_config		= intel_pmu_hw_config,
1664
	.schedule_events	= x86_schedule_events,
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
	.event_map		= intel_pmu_event_map,
	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
	.apic			= 1,
	/*
	 * Intel PMCs cannot be accessed sanely above 32 bit width,
	 * so we install an artificial 1<<31 period regardless of
	 * the generic event period:
	 */
	.max_period		= (1ULL << 31) - 1,
1676
	.get_event_constraints	= intel_get_event_constraints,
1677
	.put_event_constraints	= intel_put_event_constraints,
1678
	.pebs_aliases		= intel_pebs_aliases_core2,
1679

1680 1681
	.format_attrs		= intel_arch3_formats_attr,

1682
	.cpu_prepare		= intel_pmu_cpu_prepare,
1683 1684
	.cpu_starting		= intel_pmu_cpu_starting,
	.cpu_dying		= intel_pmu_cpu_dying,
1685
	.guest_get_msrs		= intel_guest_get_msrs,
1686
	.flush_branch_stack	= intel_pmu_flush_branch_stack,
1687 1688
};

1689
static __init void intel_clovertown_quirk(void)
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
{
	/*
	 * PEBS is unreliable due to:
	 *
	 *   AJ67  - PEBS may experience CPL leaks
	 *   AJ68  - PEBS PMI may be delayed by one event
	 *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
	 *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
	 *
	 * AJ67 could be worked around by restricting the OS/USR flags.
	 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
	 *
	 * AJ106 could possibly be worked around by not allowing LBR
	 *       usage from PEBS, including the fixup.
	 * AJ68  could possibly be worked around by always programming
1705
	 *	 a pebs_event_reset[0] value and coping with the lost events.
1706 1707 1708 1709 1710 1711 1712 1713 1714
	 *
	 * But taken together it might just make sense to not enable PEBS on
	 * these chips.
	 */
	printk(KERN_WARNING "PEBS disabled due to CPU errata.\n");
	x86_pmu.pebs = 0;
	x86_pmu.pebs_constraints = NULL;
}

1715
static __init void intel_sandybridge_quirk(void)
1716 1717 1718 1719 1720 1721
{
	printk(KERN_WARNING "PEBS disabled due to CPU errata.\n");
	x86_pmu.pebs = 0;
	x86_pmu.pebs_constraints = NULL;
}

1722 1723 1724 1725 1726 1727 1728 1729
static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
	{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
	{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
	{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
	{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
	{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
	{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
	{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
1730 1731
};

1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
static __init void intel_arch_events_quirk(void)
{
	int bit;

	/* disable event that reported as not presend by cpuid */
	for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
		intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
		printk(KERN_WARNING "CPUID marked event: \'%s\' unavailable\n",
				intel_arch_events_map[bit].name);
	}
}

static __init void intel_nehalem_quirk(void)
{
	union cpuid10_ebx ebx;

	ebx.full = x86_pmu.events_maskl;
	if (ebx.split.no_branch_misses_retired) {
		/*
		 * Erratum AAJ80 detected, we work it around by using
		 * the BR_MISP_EXEC.ANY event. This will over-count
		 * branch-misses, but it's still much better than the
		 * architectural event which is often completely bogus:
		 */
		intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
		ebx.split.no_branch_misses_retired = 0;
		x86_pmu.events_maskl = ebx.full;
		printk(KERN_INFO "CPU erratum AAJ80 worked around\n");
	}
}

1763
__init int intel_pmu_init(void)
1764 1765 1766
{
	union cpuid10_edx edx;
	union cpuid10_eax eax;
1767
	union cpuid10_ebx ebx;
1768 1769 1770 1771
	unsigned int unused;
	int version;

	if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
1772 1773 1774 1775 1776 1777
		switch (boot_cpu_data.x86) {
		case 0x6:
			return p6_pmu_init();
		case 0xf:
			return p4_pmu_init();
		}
1778 1779 1780 1781 1782 1783 1784
		return -ENODEV;
	}

	/*
	 * Check whether the Architectural PerfMon supports
	 * Branch Misses Retired hw_event or not.
	 */
1785 1786
	cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
	if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
1787 1788 1789 1790 1791 1792 1793 1794 1795
		return -ENODEV;

	version = eax.split.version_id;
	if (version < 2)
		x86_pmu = core_pmu;
	else
		x86_pmu = intel_pmu;

	x86_pmu.version			= version;
1796 1797 1798
	x86_pmu.num_counters		= eax.split.num_counters;
	x86_pmu.cntval_bits		= eax.split.bit_width;
	x86_pmu.cntval_mask		= (1ULL << eax.split.bit_width) - 1;
1799

1800 1801 1802
	x86_pmu.events_maskl		= ebx.full;
	x86_pmu.events_mask_len		= eax.split.mask_length;

1803 1804
	x86_pmu.max_pebs_events		= min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);

1805 1806 1807 1808 1809
	/*
	 * Quirk: v2 perfmon does not report fixed-purpose events, so
	 * assume at least 3 events:
	 */
	if (version > 1)
1810
		x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
1811

1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
	/*
	 * v2 and above have a perf capabilities MSR
	 */
	if (version > 1) {
		u64 capabilities;

		rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
		x86_pmu.intel_cap.capabilities = capabilities;
	}

1822 1823
	intel_ds_init();

1824 1825
	x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */

1826 1827 1828 1829 1830 1831 1832 1833 1834
	/*
	 * Install the hw-cache-events table:
	 */
	switch (boot_cpu_data.x86_model) {
	case 14: /* 65 nm core solo/duo, "Yonah" */
		pr_cont("Core events, ");
		break;

	case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
1835
		x86_add_quirk(intel_clovertown_quirk);
1836 1837 1838 1839 1840 1841
	case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
	case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
	case 29: /* six-core 45 nm xeon "Dunnington" */
		memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));

1842 1843
		intel_pmu_lbr_init_core();

1844
		x86_pmu.event_constraints = intel_core2_event_constraints;
1845
		x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
1846 1847 1848 1849 1850
		pr_cont("Core2 events, ");
		break;

	case 26: /* 45 nm nehalem, "Bloomfield" */
	case 30: /* 45 nm nehalem, "Lynnfield" */
1851
	case 46: /* 45 nm nehalem-ex, "Beckton" */
1852 1853
		memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
1854 1855
		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));
1856

1857 1858
		intel_pmu_lbr_init_nhm();

1859
		x86_pmu.event_constraints = intel_nehalem_event_constraints;
1860
		x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
1861
		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
1862
		x86_pmu.extra_regs = intel_nehalem_extra_regs;
1863

1864
		/* UOPS_ISSUED.STALLED_CYCLES */
1865 1866
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
1867
		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
1868 1869
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
1870

1871
		x86_add_quirk(intel_nehalem_quirk);
1872

1873
		pr_cont("Nehalem events, ");
1874
		break;
1875

1876
	case 28: /* Atom */
1877 1878 1879
		memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));

1880 1881
		intel_pmu_lbr_init_atom();

1882
		x86_pmu.event_constraints = intel_gen_event_constraints;
1883
		x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
1884 1885 1886 1887 1888
		pr_cont("Atom events, ");
		break;

	case 37: /* 32 nm nehalem, "Clarkdale" */
	case 44: /* 32 nm nehalem, "Gulftown" */
1889
	case 47: /* 32 nm Xeon E7 */
1890 1891
		memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));
1892 1893
		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
		       sizeof(hw_cache_extra_regs));
1894

1895 1896
		intel_pmu_lbr_init_nhm();

1897
		x86_pmu.event_constraints = intel_westmere_event_constraints;
1898
		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
1899
		x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
1900
		x86_pmu.extra_regs = intel_westmere_extra_regs;
1901
		x86_pmu.er_flags |= ERF_HAS_RSP_1;
1902 1903

		/* UOPS_ISSUED.STALLED_CYCLES */
1904 1905
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
1906
		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
1907 1908
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
1909

1910 1911
		pr_cont("Westmere events, ");
		break;
1912

1913
	case 42: /* SandyBridge */
1914
	case 45: /* SandyBridge, "Romely-EP" */
1915 1916
		x86_add_quirk(intel_sandybridge_quirk);
	case 58: /* IvyBridge */
1917 1918 1919
		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
		       sizeof(hw_cache_event_ids));

1920
		intel_pmu_lbr_init_snb();
1921 1922

		x86_pmu.event_constraints = intel_snb_event_constraints;
1923
		x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
1924
		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
1925 1926
		x86_pmu.extra_regs = intel_snb_extra_regs;
		/* all extra regs are per-cpu when HT is on */
1927 1928
		x86_pmu.er_flags |= ERF_HAS_RSP_1;
		x86_pmu.er_flags |= ERF_NO_HT_SHARING;
1929 1930

		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
1931 1932
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
1933
		/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
1934 1935
		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
			X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
1936

1937 1938 1939
		pr_cont("SandyBridge events, ");
		break;

1940
	default:
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
		switch (x86_pmu.version) {
		case 1:
			x86_pmu.event_constraints = intel_v1_event_constraints;
			pr_cont("generic architected perfmon v1, ");
			break;
		default:
			/*
			 * default constraints for v2 and up
			 */
			x86_pmu.event_constraints = intel_gen_event_constraints;
			pr_cont("generic architected perfmon, ");
			break;
		}
1954
	}
1955

1956 1957
	return 0;
}