intel_ringbuffer.c 38.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/*
 * Copyright © 2008-2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Zou Nan hai <nanhai.zou@intel.com>
 *    Xiang Hai hao<haihao.xiang@intel.com>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drv.h"
33
#include "i915_drm.h"
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36

37 38 39 40 41 42 43 44 45 46
/*
 * 965+ support PIPE_CONTROL commands, which provide finer grained control
 * over cache flushing.
 */
struct pipe_control {
	struct drm_i915_gem_object *obj;
	volatile u32 *cpu_page;
	u32 gtt_offset;
};

47 48 49 50 51 52 53 54
static inline int ring_space(struct intel_ring_buffer *ring)
{
	int space = (ring->head & HEAD_ADDR) - (ring->tail + 8);
	if (space < 0)
		space += ring->size;
	return space;
}

55
static int
56
render_ring_flush(struct intel_ring_buffer *ring,
57 58
		  u32	invalidate_domains,
		  u32	flush_domains)
59
{
60
	struct drm_device *dev = ring->dev;
61
	u32 cmd;
62
	int ret;
63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
	/*
	 * read/write caches:
	 *
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
	 * also flushed at 2d versus 3d pipeline switches.
	 *
	 * read-only caches:
	 *
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
	 * MI_READ_FLUSH is set, and is always flushed on 965.
	 *
	 * I915_GEM_DOMAIN_COMMAND may not exist?
	 *
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
	 * invalidated when MI_EXE_FLUSH is set.
	 *
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
	 * invalidated with every MI_FLUSH.
	 *
	 * TLBs:
	 *
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
	 * are flushed at any MI_FLUSH.
	 */

	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
	if ((invalidate_domains|flush_domains) &
	    I915_GEM_DOMAIN_RENDER)
		cmd &= ~MI_NO_WRITE_FLUSH;
	if (INTEL_INFO(dev)->gen < 4) {
97
		/*
98 99
		 * On the 965, the sampler cache always gets flushed
		 * and this bit is reserved.
100
		 */
101 102 103 104 105
		if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
			cmd |= MI_READ_FLUSH;
	}
	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
		cmd |= MI_EXE_FLUSH;
106

107 108 109
	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
	    (IS_G4X(dev) || IS_GEN5(dev)))
		cmd |= MI_INVALIDATE_ISP;
110

111 112 113
	ret = intel_ring_begin(ring, 2);
	if (ret)
		return ret;
114

115 116 117
	intel_ring_emit(ring, cmd);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
118 119

	return 0;
120 121
}

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
/**
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 * implementing two workarounds on gen6.  From section 1.4.7.1
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 *
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 * produced by non-pipelined state commands), software needs to first
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 * 0.
 *
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 *
 * And the workaround for these two requires this workaround first:
 *
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 * BEFORE the pipe-control with a post-sync op and no write-cache
 * flushes.
 *
 * And this last workaround is tricky because of the requirements on
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 * volume 2 part 1:
 *
 *     "1 of the following must also be set:
 *      - Render Target Cache Flush Enable ([12] of DW1)
 *      - Depth Cache Flush Enable ([0] of DW1)
 *      - Stall at Pixel Scoreboard ([1] of DW1)
 *      - Depth Stall ([13] of DW1)
 *      - Post-Sync Operation ([13] of DW1)
 *      - Notify Enable ([8] of DW1)"
 *
 * The cache flushes require the workaround flush that triggered this
 * one, so we can't use it.  Depth stall would trigger the same.
 * Post-sync nonzero is what triggered this second workaround, so we
 * can't use that one either.  Notify enable is IRQs, which aren't
 * really our business.  That leaves only stall at scoreboard.
 */
static int
intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
{
	struct pipe_control *pc = ring->private;
	u32 scratch_addr = pc->gtt_offset + 128;
	int ret;


	ret = intel_ring_begin(ring, 6);
	if (ret)
		return ret;

	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
	intel_ring_emit(ring, 0); /* low dword */
	intel_ring_emit(ring, 0); /* high dword */
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);

	ret = intel_ring_begin(ring, 6);
	if (ret)
		return ret;

	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);

	return 0;
}

static int
gen6_render_ring_flush(struct intel_ring_buffer *ring,
                         u32 invalidate_domains, u32 flush_domains)
{
	u32 flags = 0;
	struct pipe_control *pc = ring->private;
	u32 scratch_addr = pc->gtt_offset + 128;
	int ret;

	/* Force SNB workarounds for PIPE_CONTROL flushes */
	intel_emit_post_sync_nonzero_flush(ring);

	/* Just flush everything.  Experiments have shown that reducing the
	 * number of bits based on the write domains has little performance
	 * impact.
	 */
	flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
	flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
	flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
	flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
	flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
	flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
	flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;

	ret = intel_ring_begin(ring, 6);
	if (ret)
		return ret;

	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
	intel_ring_emit(ring, flags);
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, 0); /* lower dword */
	intel_ring_emit(ring, 0); /* uppwer dword */
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);

	return 0;
}

234
static void ring_write_tail(struct intel_ring_buffer *ring,
235
			    u32 value)
236
{
237
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
238
	I915_WRITE_TAIL(ring, value);
239 240
}

241
u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
242
{
243 244
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
	u32 acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
D
Daniel Vetter 已提交
245
			RING_ACTHD(ring->mmio_base) : ACTHD;
246 247 248 249

	return I915_READ(acthd_reg);
}

250
static int init_ring_common(struct intel_ring_buffer *ring)
251
{
252
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
253
	struct drm_i915_gem_object *obj = ring->obj;
254 255 256
	u32 head;

	/* Stop the ring if it's running. */
257
	I915_WRITE_CTL(ring, 0);
258
	I915_WRITE_HEAD(ring, 0);
259
	ring->write_tail(ring, 0);
260 261

	/* Initialize the ring. */
262
	I915_WRITE_START(ring, obj->gtt_offset);
263
	head = I915_READ_HEAD(ring) & HEAD_ADDR;
264 265 266

	/* G45 ring initialization fails to reset head to zero */
	if (head != 0) {
267 268 269 270 271 272 273
		DRM_DEBUG_KMS("%s head not reset to zero "
			      "ctl %08x head %08x tail %08x start %08x\n",
			      ring->name,
			      I915_READ_CTL(ring),
			      I915_READ_HEAD(ring),
			      I915_READ_TAIL(ring),
			      I915_READ_START(ring));
274

275
		I915_WRITE_HEAD(ring, 0);
276

277 278 279 280 281 282 283 284 285
		if (I915_READ_HEAD(ring) & HEAD_ADDR) {
			DRM_ERROR("failed to set %s head to zero "
				  "ctl %08x head %08x tail %08x start %08x\n",
				  ring->name,
				  I915_READ_CTL(ring),
				  I915_READ_HEAD(ring),
				  I915_READ_TAIL(ring),
				  I915_READ_START(ring));
		}
286 287
	}

288
	I915_WRITE_CTL(ring,
289
			((ring->size - PAGE_SIZE) & RING_NR_PAGES)
290
			| RING_VALID);
291 292

	/* If the head is still not zero, the ring is dead */
293
	if ((I915_READ_CTL(ring) & RING_VALID) == 0 ||
294
	    I915_READ_START(ring) != obj->gtt_offset ||
295
	    (I915_READ_HEAD(ring) & HEAD_ADDR) != 0) {
296 297 298 299 300 301 302 303
		DRM_ERROR("%s initialization failed "
				"ctl %08x head %08x tail %08x start %08x\n",
				ring->name,
				I915_READ_CTL(ring),
				I915_READ_HEAD(ring),
				I915_READ_TAIL(ring),
				I915_READ_START(ring));
		return -EIO;
304 305
	}

306 307
	if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
		i915_kernel_lost_context(ring->dev);
308
	else {
309
		ring->head = I915_READ_HEAD(ring);
310
		ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
311
		ring->space = ring_space(ring);
312
	}
313

314 315 316
	return 0;
}

317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
static int
init_pipe_control(struct intel_ring_buffer *ring)
{
	struct pipe_control *pc;
	struct drm_i915_gem_object *obj;
	int ret;

	if (ring->private)
		return 0;

	pc = kmalloc(sizeof(*pc), GFP_KERNEL);
	if (!pc)
		return -ENOMEM;

	obj = i915_gem_alloc_object(ring->dev, 4096);
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate seqno page\n");
		ret = -ENOMEM;
		goto err;
	}
337 338

	i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379

	ret = i915_gem_object_pin(obj, 4096, true);
	if (ret)
		goto err_unref;

	pc->gtt_offset = obj->gtt_offset;
	pc->cpu_page =  kmap(obj->pages[0]);
	if (pc->cpu_page == NULL)
		goto err_unpin;

	pc->obj = obj;
	ring->private = pc;
	return 0;

err_unpin:
	i915_gem_object_unpin(obj);
err_unref:
	drm_gem_object_unreference(&obj->base);
err:
	kfree(pc);
	return ret;
}

static void
cleanup_pipe_control(struct intel_ring_buffer *ring)
{
	struct pipe_control *pc = ring->private;
	struct drm_i915_gem_object *obj;

	if (!ring->private)
		return;

	obj = pc->obj;
	kunmap(obj->pages[0]);
	i915_gem_object_unpin(obj);
	drm_gem_object_unreference(&obj->base);

	kfree(pc);
	ring->private = NULL;
}

380
static int init_render_ring(struct intel_ring_buffer *ring)
381
{
382
	struct drm_device *dev = ring->dev;
383
	struct drm_i915_private *dev_priv = dev->dev_private;
384
	int ret = init_ring_common(ring);
385

386
	if (INTEL_INFO(dev)->gen > 3) {
387
		int mode = VS_TIMER_DISPATCH << 16 | VS_TIMER_DISPATCH;
388
		I915_WRITE(MI_MODE, mode);
389 390 391 392
		if (IS_GEN7(dev))
			I915_WRITE(GFX_MODE_GEN7,
				   GFX_MODE_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
				   GFX_MODE_ENABLE(GFX_REPLAY_MODE));
393
	}
394

395
	if (INTEL_INFO(dev)->gen >= 5) {
396 397 398 399 400
		ret = init_pipe_control(ring);
		if (ret)
			return ret;
	}

401

402
	if (IS_GEN6(dev)) {
403 404 405 406 407 408 409
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
		 * "If this bit is set, STCunit will have LRA as replacement
		 *  policy. [...] This bit must be reset.  LRA replacement
		 *  policy is not supported."
		 */
		I915_WRITE(CACHE_MODE_0,
			   CM0_STC_EVICT_DISABLE_LRA_SNB << CM0_MASK_SHIFT);
410 411
	}

412 413 414 415 416
	if (INTEL_INFO(dev)->gen >= 6) {
		I915_WRITE(INSTPM,
			   INSTPM_FORCE_ORDERING << 16 | INSTPM_FORCE_ORDERING);
	}

417 418 419
	return ret;
}

420 421 422 423 424 425 426 427
static void render_ring_cleanup(struct intel_ring_buffer *ring)
{
	if (!ring->private)
		return;

	cleanup_pipe_control(ring);
}

428
static void
429 430 431
update_mboxes(struct intel_ring_buffer *ring,
	    u32 seqno,
	    u32 mmio_offset)
432
{
433 434 435 436
	intel_ring_emit(ring, MI_SEMAPHORE_MBOX |
			      MI_SEMAPHORE_GLOBAL_GTT |
			      MI_SEMAPHORE_REGISTER |
			      MI_SEMAPHORE_UPDATE);
437
	intel_ring_emit(ring, seqno);
438
	intel_ring_emit(ring, mmio_offset);
439 440
}

441 442 443 444 445 446 447 448 449
/**
 * gen6_add_request - Update the semaphore mailbox registers
 * 
 * @ring - ring that is adding a request
 * @seqno - return seqno stuck into the ring
 *
 * Update the mailbox registers in the *other* rings with the current seqno.
 * This acts like a signal in the canonical semaphore.
 */
450 451
static int
gen6_add_request(struct intel_ring_buffer *ring,
452
		 u32 *seqno)
453
{
454 455
	u32 mbox1_reg;
	u32 mbox2_reg;
456 457 458 459 460 461
	int ret;

	ret = intel_ring_begin(ring, 10);
	if (ret)
		return ret;

462 463
	mbox1_reg = ring->signal_mbox[0];
	mbox2_reg = ring->signal_mbox[1];
464

465
	*seqno = i915_gem_next_request_seqno(ring);
466 467 468

	update_mboxes(ring, *seqno, mbox1_reg);
	update_mboxes(ring, *seqno, mbox2_reg);
469 470
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
471
	intel_ring_emit(ring, *seqno);
472 473 474 475 476 477
	intel_ring_emit(ring, MI_USER_INTERRUPT);
	intel_ring_advance(ring);

	return 0;
}

478 479 480 481 482 483 484 485 486 487 488
/**
 * intel_ring_sync - sync the waiter to the signaller on seqno
 *
 * @waiter - ring that is waiting
 * @signaller - ring which has, or will signal
 * @seqno - seqno which the waiter will block on
 */
static int
intel_ring_sync(struct intel_ring_buffer *waiter,
		struct intel_ring_buffer *signaller,
		int ring,
489 490 491
		u32 seqno)
{
	int ret;
492 493 494
	u32 dw1 = MI_SEMAPHORE_MBOX |
		  MI_SEMAPHORE_COMPARE |
		  MI_SEMAPHORE_REGISTER;
495

496
	ret = intel_ring_begin(waiter, 4);
497 498 499
	if (ret)
		return ret;

500 501 502 503 504
	intel_ring_emit(waiter, dw1 | signaller->semaphore_register[ring]);
	intel_ring_emit(waiter, seqno);
	intel_ring_emit(waiter, 0);
	intel_ring_emit(waiter, MI_NOOP);
	intel_ring_advance(waiter);
505 506 507 508

	return 0;
}

509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
/* VCS->RCS (RVSYNC) or BCS->RCS (RBSYNC) */
int
render_ring_sync_to(struct intel_ring_buffer *waiter,
		    struct intel_ring_buffer *signaller,
		    u32 seqno)
{
	WARN_ON(signaller->semaphore_register[RCS] == MI_SEMAPHORE_SYNC_INVALID);
	return intel_ring_sync(waiter,
			       signaller,
			       RCS,
			       seqno);
}

/* RCS->VCS (VRSYNC) or BCS->VCS (VBSYNC) */
int
gen6_bsd_ring_sync_to(struct intel_ring_buffer *waiter,
		      struct intel_ring_buffer *signaller,
		      u32 seqno)
{
	WARN_ON(signaller->semaphore_register[VCS] == MI_SEMAPHORE_SYNC_INVALID);
	return intel_ring_sync(waiter,
			       signaller,
			       VCS,
			       seqno);
}

/* RCS->BCS (BRSYNC) or VCS->BCS (BVSYNC) */
int
gen6_blt_ring_sync_to(struct intel_ring_buffer *waiter,
		      struct intel_ring_buffer *signaller,
		      u32 seqno)
{
	WARN_ON(signaller->semaphore_register[BCS] == MI_SEMAPHORE_SYNC_INVALID);
	return intel_ring_sync(waiter,
			       signaller,
			       BCS,
			       seqno);
}



550 551
#define PIPE_CONTROL_FLUSH(ring__, addr__)					\
do {									\
552 553
	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
		 PIPE_CONTROL_DEPTH_STALL);				\
554 555 556 557 558 559 560 561 562
	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
	intel_ring_emit(ring__, 0);							\
	intel_ring_emit(ring__, 0);							\
} while (0)

static int
pc_render_add_request(struct intel_ring_buffer *ring,
		      u32 *result)
{
563
	u32 seqno = i915_gem_next_request_seqno(ring);
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
	struct pipe_control *pc = ring->private;
	u32 scratch_addr = pc->gtt_offset + 128;
	int ret;

	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
	 * incoherent with writes to memory, i.e. completely fubar,
	 * so we need to use PIPE_NOTIFY instead.
	 *
	 * However, we also need to workaround the qword write
	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
	 * memory before requesting an interrupt.
	 */
	ret = intel_ring_begin(ring, 32);
	if (ret)
		return ret;

580
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
581 582
			PIPE_CONTROL_WRITE_FLUSH |
			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
583 584 585 586 587 588 589 590 591 592 593 594 595 596
	intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, seqno);
	intel_ring_emit(ring, 0);
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
	scratch_addr += 128; /* write to separate cachelines */
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
	scratch_addr += 128;
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
	scratch_addr += 128;
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
	scratch_addr += 128;
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
	scratch_addr += 128;
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
597

598
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
599 600
			PIPE_CONTROL_WRITE_FLUSH |
			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
601 602 603 604 605 606 607 608 609 610
			PIPE_CONTROL_NOTIFY);
	intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
	intel_ring_emit(ring, seqno);
	intel_ring_emit(ring, 0);
	intel_ring_advance(ring);

	*result = seqno;
	return 0;
}

611 612 613 614
static int
render_ring_add_request(struct intel_ring_buffer *ring,
			u32 *result)
{
615
	u32 seqno = i915_gem_next_request_seqno(ring);
616
	int ret;
617

618 619 620
	ret = intel_ring_begin(ring, 4);
	if (ret)
		return ret;
621

622 623 624 625
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
	intel_ring_emit(ring, seqno);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
626
	intel_ring_advance(ring);
627

628 629
	*result = seqno;
	return 0;
630 631
}

632 633 634 635 636 637 638 639
static u32
gen6_ring_get_seqno(struct intel_ring_buffer *ring)
{
	struct drm_device *dev = ring->dev;

	/* Workaround to force correct ordering between irq and seqno writes on
	 * ivb (and maybe also on snb) by reading from a CS register (like
	 * ACTHD) before reading the status page. */
640
	if (IS_GEN6(dev) || IS_GEN7(dev))
641 642 643 644
		intel_ring_get_active_head(ring);
	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
}

645
static u32
646
ring_get_seqno(struct intel_ring_buffer *ring)
647
{
648 649 650
	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
}

651 652 653 654 655 656 657
static u32
pc_render_get_seqno(struct intel_ring_buffer *ring)
{
	struct pipe_control *pc = ring->private;
	return pc->cpu_page[0];
}

658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
static void
ironlake_enable_irq(drm_i915_private_t *dev_priv, u32 mask)
{
	dev_priv->gt_irq_mask &= ~mask;
	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
	POSTING_READ(GTIMR);
}

static void
ironlake_disable_irq(drm_i915_private_t *dev_priv, u32 mask)
{
	dev_priv->gt_irq_mask |= mask;
	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
	POSTING_READ(GTIMR);
}

static void
i915_enable_irq(drm_i915_private_t *dev_priv, u32 mask)
{
	dev_priv->irq_mask &= ~mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
	POSTING_READ(IMR);
}

static void
i915_disable_irq(drm_i915_private_t *dev_priv, u32 mask)
{
	dev_priv->irq_mask |= mask;
	I915_WRITE(IMR, dev_priv->irq_mask);
	POSTING_READ(IMR);
}

690
static bool
691
render_ring_get_irq(struct intel_ring_buffer *ring)
692
{
693
	struct drm_device *dev = ring->dev;
694
	drm_i915_private_t *dev_priv = dev->dev_private;
695

696 697 698
	if (!dev->irq_enabled)
		return false;

699
	spin_lock(&ring->irq_lock);
700
	if (ring->irq_refcount++ == 0) {
701
		if (HAS_PCH_SPLIT(dev))
702 703
			ironlake_enable_irq(dev_priv,
					    GT_PIPE_NOTIFY | GT_USER_INTERRUPT);
704 705 706
		else
			i915_enable_irq(dev_priv, I915_USER_INTERRUPT);
	}
707
	spin_unlock(&ring->irq_lock);
708 709

	return true;
710 711
}

712
static void
713
render_ring_put_irq(struct intel_ring_buffer *ring)
714
{
715
	struct drm_device *dev = ring->dev;
716
	drm_i915_private_t *dev_priv = dev->dev_private;
717

718
	spin_lock(&ring->irq_lock);
719
	if (--ring->irq_refcount == 0) {
720
		if (HAS_PCH_SPLIT(dev))
721 722 723
			ironlake_disable_irq(dev_priv,
					     GT_USER_INTERRUPT |
					     GT_PIPE_NOTIFY);
724 725 726
		else
			i915_disable_irq(dev_priv, I915_USER_INTERRUPT);
	}
727
	spin_unlock(&ring->irq_lock);
728 729
}

730
void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
731
{
732
	struct drm_device *dev = ring->dev;
733
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
734 735 736 737 738 739 740
	u32 mmio = 0;

	/* The ring status page addresses are no longer next to the rest of
	 * the ring registers as of gen7.
	 */
	if (IS_GEN7(dev)) {
		switch (ring->id) {
741
		case RCS:
742 743
			mmio = RENDER_HWS_PGA_GEN7;
			break;
744
		case BCS:
745 746
			mmio = BLT_HWS_PGA_GEN7;
			break;
747
		case VCS:
748 749 750 751 752 753 754 755 756
			mmio = BSD_HWS_PGA_GEN7;
			break;
		}
	} else if (IS_GEN6(ring->dev)) {
		mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
	} else {
		mmio = RING_HWS_PGA(ring->mmio_base);
	}

757 758
	I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
	POSTING_READ(mmio);
759 760
}

761
static int
762 763 764
bsd_ring_flush(struct intel_ring_buffer *ring,
	       u32     invalidate_domains,
	       u32     flush_domains)
765
{
766 767 768 769 770 771 772 773 774 775
	int ret;

	ret = intel_ring_begin(ring, 2);
	if (ret)
		return ret;

	intel_ring_emit(ring, MI_FLUSH);
	intel_ring_emit(ring, MI_NOOP);
	intel_ring_advance(ring);
	return 0;
776 777
}

778
static int
779
ring_add_request(struct intel_ring_buffer *ring,
780
		 u32 *result)
781 782
{
	u32 seqno;
783 784 785 786 787
	int ret;

	ret = intel_ring_begin(ring, 4);
	if (ret)
		return ret;
788

789
	seqno = i915_gem_next_request_seqno(ring);
790

791 792 793 794 795
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
	intel_ring_emit(ring, seqno);
	intel_ring_emit(ring, MI_USER_INTERRUPT);
	intel_ring_advance(ring);
796

797 798
	*result = seqno;
	return 0;
799 800
}

801 802 803 804
static bool
gen6_ring_get_irq(struct intel_ring_buffer *ring, u32 gflag, u32 rflag)
{
	struct drm_device *dev = ring->dev;
805
	drm_i915_private_t *dev_priv = dev->dev_private;
806 807 808 809

	if (!dev->irq_enabled)
	       return false;

810 811 812
	/* It looks like we need to prevent the gt from suspending while waiting
	 * for an notifiy irq, otherwise irqs seem to get lost on at least the
	 * blt/bsd rings on ivb. */
813
	gen6_gt_force_wake_get(dev_priv);
814

815
	spin_lock(&ring->irq_lock);
816
	if (ring->irq_refcount++ == 0) {
817 818 819 820
		ring->irq_mask &= ~rflag;
		I915_WRITE_IMR(ring, ring->irq_mask);
		ironlake_enable_irq(dev_priv, gflag);
	}
821
	spin_unlock(&ring->irq_lock);
822 823 824 825 826 827 828 829

	return true;
}

static void
gen6_ring_put_irq(struct intel_ring_buffer *ring, u32 gflag, u32 rflag)
{
	struct drm_device *dev = ring->dev;
830
	drm_i915_private_t *dev_priv = dev->dev_private;
831

832
	spin_lock(&ring->irq_lock);
833
	if (--ring->irq_refcount == 0) {
834 835 836
		ring->irq_mask |= rflag;
		I915_WRITE_IMR(ring, ring->irq_mask);
		ironlake_disable_irq(dev_priv, gflag);
837
	}
838
	spin_unlock(&ring->irq_lock);
839

840
	gen6_gt_force_wake_put(dev_priv);
841 842
}

843
static bool
844
bsd_ring_get_irq(struct intel_ring_buffer *ring)
845
{
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
	struct drm_device *dev = ring->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;

	if (!dev->irq_enabled)
		return false;

	spin_lock(&ring->irq_lock);
	if (ring->irq_refcount++ == 0) {
		if (IS_G4X(dev))
			i915_enable_irq(dev_priv, I915_BSD_USER_INTERRUPT);
		else
			ironlake_enable_irq(dev_priv, GT_BSD_USER_INTERRUPT);
	}
	spin_unlock(&ring->irq_lock);

	return true;
862 863 864 865
}
static void
bsd_ring_put_irq(struct intel_ring_buffer *ring)
{
866 867 868 869 870 871 872 873 874 875 876
	struct drm_device *dev = ring->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;

	spin_lock(&ring->irq_lock);
	if (--ring->irq_refcount == 0) {
		if (IS_G4X(dev))
			i915_disable_irq(dev_priv, I915_BSD_USER_INTERRUPT);
		else
			ironlake_disable_irq(dev_priv, GT_BSD_USER_INTERRUPT);
	}
	spin_unlock(&ring->irq_lock);
877 878 879
}

static int
880
ring_dispatch_execbuffer(struct intel_ring_buffer *ring, u32 offset, u32 length)
881
{
882
	int ret;
883

884 885 886 887
	ret = intel_ring_begin(ring, 2);
	if (ret)
		return ret;

888
	intel_ring_emit(ring,
889
			MI_BATCH_BUFFER_START | (2 << 6) |
890
			MI_BATCH_NON_SECURE_I965);
891
	intel_ring_emit(ring, offset);
892 893
	intel_ring_advance(ring);

894 895 896
	return 0;
}

897
static int
898
render_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
899
				u32 offset, u32 len)
900
{
901
	struct drm_device *dev = ring->dev;
902
	int ret;
903

904 905 906 907
	if (IS_I830(dev) || IS_845G(dev)) {
		ret = intel_ring_begin(ring, 4);
		if (ret)
			return ret;
908

909 910 911 912 913 914 915 916
		intel_ring_emit(ring, MI_BATCH_BUFFER);
		intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
		intel_ring_emit(ring, offset + len - 8);
		intel_ring_emit(ring, 0);
	} else {
		ret = intel_ring_begin(ring, 2);
		if (ret)
			return ret;
917

918 919 920 921 922
		if (INTEL_INFO(dev)->gen >= 4) {
			intel_ring_emit(ring,
					MI_BATCH_BUFFER_START | (2 << 6) |
					MI_BATCH_NON_SECURE_I965);
			intel_ring_emit(ring, offset);
923
		} else {
924 925 926
			intel_ring_emit(ring,
					MI_BATCH_BUFFER_START | (2 << 6));
			intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
927 928
		}
	}
929
	intel_ring_advance(ring);
930 931 932 933

	return 0;
}

934
static void cleanup_status_page(struct intel_ring_buffer *ring)
935
{
936
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
937
	struct drm_i915_gem_object *obj;
938

939 940
	obj = ring->status_page.obj;
	if (obj == NULL)
941 942
		return;

943
	kunmap(obj->pages[0]);
944
	i915_gem_object_unpin(obj);
945
	drm_gem_object_unreference(&obj->base);
946
	ring->status_page.obj = NULL;
947 948 949 950

	memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
}

951
static int init_status_page(struct intel_ring_buffer *ring)
952
{
953
	struct drm_device *dev = ring->dev;
954
	drm_i915_private_t *dev_priv = dev->dev_private;
955
	struct drm_i915_gem_object *obj;
956 957 958 959 960 961 962 963
	int ret;

	obj = i915_gem_alloc_object(dev, 4096);
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate status page\n");
		ret = -ENOMEM;
		goto err;
	}
964 965

	i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
966

967
	ret = i915_gem_object_pin(obj, 4096, true);
968 969 970 971
	if (ret != 0) {
		goto err_unref;
	}

972 973
	ring->status_page.gfx_addr = obj->gtt_offset;
	ring->status_page.page_addr = kmap(obj->pages[0]);
974
	if (ring->status_page.page_addr == NULL) {
975 976 977
		memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
		goto err_unpin;
	}
978 979
	ring->status_page.obj = obj;
	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
980

981
	intel_ring_setup_status_page(ring);
982 983
	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
			ring->name, ring->status_page.gfx_addr);
984 985 986 987 988 989

	return 0;

err_unpin:
	i915_gem_object_unpin(obj);
err_unref:
990
	drm_gem_object_unreference(&obj->base);
991
err:
992
	return ret;
993 994
}

995
int intel_init_ring_buffer(struct drm_device *dev,
996
			   struct intel_ring_buffer *ring)
997
{
998
	struct drm_i915_gem_object *obj;
999 1000
	int ret;

1001
	ring->dev = dev;
1002 1003
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
1004
	INIT_LIST_HEAD(&ring->gpu_write_list);
1005

1006
	init_waitqueue_head(&ring->irq_queue);
1007
	spin_lock_init(&ring->irq_lock);
1008
	ring->irq_mask = ~0;
1009

1010
	if (I915_NEED_GFX_HWS(dev)) {
1011
		ret = init_status_page(ring);
1012 1013 1014
		if (ret)
			return ret;
	}
1015

1016
	obj = i915_gem_alloc_object(dev, ring->size);
1017 1018
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate ringbuffer\n");
1019
		ret = -ENOMEM;
1020
		goto err_hws;
1021 1022
	}

1023
	ring->obj = obj;
1024

1025
	ret = i915_gem_object_pin(obj, PAGE_SIZE, true);
1026 1027
	if (ret)
		goto err_unref;
1028

1029
	ring->map.size = ring->size;
1030
	ring->map.offset = dev->agp->base + obj->gtt_offset;
1031 1032 1033 1034 1035 1036 1037
	ring->map.type = 0;
	ring->map.flags = 0;
	ring->map.mtrr = 0;

	drm_core_ioremap_wc(&ring->map, dev);
	if (ring->map.handle == NULL) {
		DRM_ERROR("Failed to map ringbuffer.\n");
1038
		ret = -EINVAL;
1039
		goto err_unpin;
1040 1041
	}

1042
	ring->virtual_start = ring->map.handle;
1043
	ret = ring->init(ring);
1044 1045
	if (ret)
		goto err_unmap;
1046

1047 1048 1049 1050 1051
	/* Workaround an erratum on the i830 which causes a hang if
	 * the TAIL pointer points to within the last 2 cachelines
	 * of the buffer.
	 */
	ring->effective_size = ring->size;
1052
	if (IS_I830(ring->dev) || IS_845G(ring->dev))
1053 1054
		ring->effective_size -= 128;

1055
	return 0;
1056 1057 1058 1059 1060 1061

err_unmap:
	drm_core_ioremapfree(&ring->map, dev);
err_unpin:
	i915_gem_object_unpin(obj);
err_unref:
1062 1063
	drm_gem_object_unreference(&obj->base);
	ring->obj = NULL;
1064
err_hws:
1065
	cleanup_status_page(ring);
1066
	return ret;
1067 1068
}

1069
void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1070
{
1071 1072 1073
	struct drm_i915_private *dev_priv;
	int ret;

1074
	if (ring->obj == NULL)
1075 1076
		return;

1077 1078
	/* Disable the ring buffer. The ring must be idle at this point */
	dev_priv = ring->dev->dev_private;
1079
	ret = intel_wait_ring_idle(ring);
1080 1081 1082 1083
	if (ret)
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
			  ring->name, ret);

1084 1085
	I915_WRITE_CTL(ring, 0);

1086
	drm_core_ioremapfree(&ring->map, ring->dev);
1087

1088 1089 1090
	i915_gem_object_unpin(ring->obj);
	drm_gem_object_unreference(&ring->obj->base);
	ring->obj = NULL;
1091

Z
Zou Nan hai 已提交
1092 1093 1094
	if (ring->cleanup)
		ring->cleanup(ring);

1095
	cleanup_status_page(ring);
1096 1097
}

1098
static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1099
{
1100
	unsigned int *virt;
1101
	int rem = ring->size - ring->tail;
1102

1103
	if (ring->space < rem) {
1104
		int ret = intel_wait_ring_buffer(ring, rem);
1105 1106 1107 1108
		if (ret)
			return ret;
	}

1109
	virt = (unsigned int *)(ring->virtual_start + ring->tail);
1110 1111
	rem /= 8;
	while (rem--) {
1112
		*virt++ = MI_NOOP;
1113 1114
		*virt++ = MI_NOOP;
	}
1115

1116
	ring->tail = 0;
1117
	ring->space = ring_space(ring);
1118 1119 1120 1121

	return 0;
}

1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
static int intel_ring_wait_seqno(struct intel_ring_buffer *ring, u32 seqno)
{
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
	bool was_interruptible;
	int ret;

	/* XXX As we have not yet audited all the paths to check that
	 * they are ready for ERESTARTSYS from intel_ring_begin, do not
	 * allow us to be interruptible by a signal.
	 */
	was_interruptible = dev_priv->mm.interruptible;
	dev_priv->mm.interruptible = false;

	ret = i915_wait_request(ring, seqno, true);

	dev_priv->mm.interruptible = was_interruptible;

	return ret;
}

static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
{
	struct drm_i915_gem_request *request;
	u32 seqno = 0;
	int ret;

	i915_gem_retire_requests_ring(ring);

	if (ring->last_retired_head != -1) {
		ring->head = ring->last_retired_head;
		ring->last_retired_head = -1;
		ring->space = ring_space(ring);
		if (ring->space >= n)
			return 0;
	}

	list_for_each_entry(request, &ring->request_list, list) {
		int space;

		if (request->tail == -1)
			continue;

		space = request->tail - (ring->tail + 8);
		if (space < 0)
			space += ring->size;
		if (space >= n) {
			seqno = request->seqno;
			break;
		}

		/* Consume this request in case we need more space than
		 * is available and so need to prevent a race between
		 * updating last_retired_head and direct reads of
		 * I915_RING_HEAD. It also provides a nice sanity check.
		 */
		request->tail = -1;
	}

	if (seqno == 0)
		return -ENOSPC;

	ret = intel_ring_wait_seqno(ring, seqno);
	if (ret)
		return ret;

	if (WARN_ON(ring->last_retired_head == -1))
		return -ENOSPC;

	ring->head = ring->last_retired_head;
	ring->last_retired_head = -1;
	ring->space = ring_space(ring);
	if (WARN_ON(ring->space < n))
		return -ENOSPC;

	return 0;
}

1199
int intel_wait_ring_buffer(struct intel_ring_buffer *ring, int n)
1200
{
1201
	struct drm_device *dev = ring->dev;
1202
	struct drm_i915_private *dev_priv = dev->dev_private;
1203
	unsigned long end;
1204
	int ret;
1205

1206 1207 1208 1209
	ret = intel_ring_wait_request(ring, n);
	if (ret != -ENOSPC)
		return ret;

C
Chris Wilson 已提交
1210
	trace_i915_ring_wait_begin(ring);
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
	if (drm_core_check_feature(dev, DRIVER_GEM))
		/* With GEM the hangcheck timer should kick us out of the loop,
		 * leaving it early runs the risk of corrupting GEM state (due
		 * to running on almost untested codepaths). But on resume
		 * timers don't work yet, so prevent a complete hang in that
		 * case by choosing an insanely large timeout. */
		end = jiffies + 60 * HZ;
	else
		end = jiffies + 3 * HZ;

1221
	do {
1222 1223
		ring->head = I915_READ_HEAD(ring);
		ring->space = ring_space(ring);
1224
		if (ring->space >= n) {
C
Chris Wilson 已提交
1225
			trace_i915_ring_wait_end(ring);
1226 1227 1228 1229 1230 1231 1232 1233
			return 0;
		}

		if (dev->primary->master) {
			struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
			if (master_priv->sarea_priv)
				master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
		}
1234

1235
		msleep(1);
1236 1237
		if (atomic_read(&dev_priv->mm.wedged))
			return -EAGAIN;
1238
	} while (!time_after(jiffies, end));
C
Chris Wilson 已提交
1239
	trace_i915_ring_wait_end(ring);
1240 1241
	return -EBUSY;
}
1242

1243 1244
int intel_ring_begin(struct intel_ring_buffer *ring,
		     int num_dwords)
1245
{
1246
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1247
	int n = 4*num_dwords;
1248
	int ret;
1249

1250 1251 1252
	if (unlikely(atomic_read(&dev_priv->mm.wedged)))
		return -EIO;

1253
	if (unlikely(ring->tail + n > ring->effective_size)) {
1254 1255 1256 1257
		ret = intel_wrap_ring_buffer(ring);
		if (unlikely(ret))
			return ret;
	}
1258

1259 1260 1261 1262 1263
	if (unlikely(ring->space < n)) {
		ret = intel_wait_ring_buffer(ring, n);
		if (unlikely(ret))
			return ret;
	}
1264 1265

	ring->space -= n;
1266
	return 0;
1267
}
1268

1269
void intel_ring_advance(struct intel_ring_buffer *ring)
1270
{
1271
	ring->tail &= ring->size - 1;
1272
	ring->write_tail(ring, ring->tail);
1273
}
1274

1275
static const struct intel_ring_buffer render_ring = {
1276
	.name			= "render ring",
1277
	.id			= RCS,
1278
	.mmio_base		= RENDER_RING_BASE,
1279 1280
	.size			= 32 * PAGE_SIZE,
	.init			= init_render_ring,
1281
	.write_tail		= ring_write_tail,
1282 1283
	.flush			= render_ring_flush,
	.add_request		= render_ring_add_request,
1284 1285 1286
	.get_seqno		= ring_get_seqno,
	.irq_get		= render_ring_get_irq,
	.irq_put		= render_ring_put_irq,
1287
	.dispatch_execbuffer	= render_ring_dispatch_execbuffer,
1288
	.cleanup		= render_ring_cleanup,
1289 1290 1291 1292 1293
	.sync_to		= render_ring_sync_to,
	.semaphore_register	= {MI_SEMAPHORE_SYNC_INVALID,
				   MI_SEMAPHORE_SYNC_RV,
				   MI_SEMAPHORE_SYNC_RB},
	.signal_mbox		= {GEN6_VRSYNC, GEN6_BRSYNC},
1294
};
1295 1296 1297

/* ring buffer for bit-stream decoder */

1298
static const struct intel_ring_buffer bsd_ring = {
1299
	.name                   = "bsd ring",
1300
	.id			= VCS,
1301
	.mmio_base		= BSD_RING_BASE,
1302
	.size			= 32 * PAGE_SIZE,
1303
	.init			= init_ring_common,
1304
	.write_tail		= ring_write_tail,
1305
	.flush			= bsd_ring_flush,
1306
	.add_request		= ring_add_request,
1307 1308 1309
	.get_seqno		= ring_get_seqno,
	.irq_get		= bsd_ring_get_irq,
	.irq_put		= bsd_ring_put_irq,
1310
	.dispatch_execbuffer	= ring_dispatch_execbuffer,
1311
};
1312

1313

1314
static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1315
				     u32 value)
1316
{
1317
	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1318 1319

       /* Every tail move must follow the sequence below */
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
		GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_MODIFY_MASK |
		GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_DISABLE);
	I915_WRITE(GEN6_BSD_RNCID, 0x0);

	if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
		GEN6_BSD_SLEEP_PSMI_CONTROL_IDLE_INDICATOR) == 0,
		50))
	DRM_ERROR("timed out waiting for IDLE Indicator\n");

	I915_WRITE_TAIL(ring, value);
	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
		GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_MODIFY_MASK |
		GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_ENABLE);
1334 1335
}

1336
static int gen6_ring_flush(struct intel_ring_buffer *ring,
1337
			   u32 invalidate, u32 flush)
1338
{
1339
	uint32_t cmd;
1340 1341 1342 1343 1344 1345
	int ret;

	ret = intel_ring_begin(ring, 4);
	if (ret)
		return ret;

1346 1347 1348 1349
	cmd = MI_FLUSH_DW;
	if (invalidate & I915_GEM_GPU_DOMAINS)
		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
	intel_ring_emit(ring, cmd);
1350 1351
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
1352
	intel_ring_emit(ring, MI_NOOP);
1353 1354
	intel_ring_advance(ring);
	return 0;
1355 1356 1357
}

static int
1358
gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1359
			      u32 offset, u32 len)
1360
{
1361
	int ret;
1362

1363 1364 1365
	ret = intel_ring_begin(ring, 2);
	if (ret)
		return ret;
1366

1367 1368 1369 1370
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_NON_SECURE_I965);
	/* bit0-7 is the length on GEN6+ */
	intel_ring_emit(ring, offset);
	intel_ring_advance(ring);
1371

1372
	return 0;
1373 1374
}

1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
static bool
gen6_render_ring_get_irq(struct intel_ring_buffer *ring)
{
	return gen6_ring_get_irq(ring,
				 GT_USER_INTERRUPT,
				 GEN6_RENDER_USER_INTERRUPT);
}

static void
gen6_render_ring_put_irq(struct intel_ring_buffer *ring)
{
	return gen6_ring_put_irq(ring,
				 GT_USER_INTERRUPT,
				 GEN6_RENDER_USER_INTERRUPT);
}

1391
static bool
1392 1393
gen6_bsd_ring_get_irq(struct intel_ring_buffer *ring)
{
1394 1395 1396
	return gen6_ring_get_irq(ring,
				 GT_GEN6_BSD_USER_INTERRUPT,
				 GEN6_BSD_USER_INTERRUPT);
1397 1398 1399 1400 1401
}

static void
gen6_bsd_ring_put_irq(struct intel_ring_buffer *ring)
{
1402 1403 1404
	return gen6_ring_put_irq(ring,
				 GT_GEN6_BSD_USER_INTERRUPT,
				 GEN6_BSD_USER_INTERRUPT);
1405 1406
}

1407
/* ring buffer for Video Codec for Gen6+ */
1408
static const struct intel_ring_buffer gen6_bsd_ring = {
1409
	.name			= "gen6 bsd ring",
1410
	.id			= VCS,
1411 1412 1413 1414 1415 1416
	.mmio_base		= GEN6_BSD_RING_BASE,
	.size			= 32 * PAGE_SIZE,
	.init			= init_ring_common,
	.write_tail		= gen6_bsd_ring_write_tail,
	.flush			= gen6_ring_flush,
	.add_request		= gen6_add_request,
1417
	.get_seqno		= gen6_ring_get_seqno,
1418 1419 1420
	.irq_get		= gen6_bsd_ring_get_irq,
	.irq_put		= gen6_bsd_ring_put_irq,
	.dispatch_execbuffer	= gen6_ring_dispatch_execbuffer,
1421 1422 1423 1424 1425
	.sync_to		= gen6_bsd_ring_sync_to,
	.semaphore_register	= {MI_SEMAPHORE_SYNC_VR,
				   MI_SEMAPHORE_SYNC_INVALID,
				   MI_SEMAPHORE_SYNC_VB},
	.signal_mbox		= {GEN6_RVSYNC, GEN6_BVSYNC},
1426 1427 1428 1429
};

/* Blitter support (SandyBridge+) */

1430
static bool
1431
blt_ring_get_irq(struct intel_ring_buffer *ring)
1432
{
1433 1434 1435
	return gen6_ring_get_irq(ring,
				 GT_BLT_USER_INTERRUPT,
				 GEN6_BLITTER_USER_INTERRUPT);
1436
}
1437

1438
static void
1439
blt_ring_put_irq(struct intel_ring_buffer *ring)
1440
{
1441 1442 1443
	gen6_ring_put_irq(ring,
			  GT_BLT_USER_INTERRUPT,
			  GEN6_BLITTER_USER_INTERRUPT);
1444 1445
}

1446
static int blt_ring_flush(struct intel_ring_buffer *ring,
1447
			  u32 invalidate, u32 flush)
Z
Zou Nan hai 已提交
1448
{
1449
	uint32_t cmd;
1450 1451
	int ret;

1452
	ret = intel_ring_begin(ring, 4);
1453 1454 1455
	if (ret)
		return ret;

1456 1457 1458 1459
	cmd = MI_FLUSH_DW;
	if (invalidate & I915_GEM_DOMAIN_RENDER)
		cmd |= MI_INVALIDATE_TLB;
	intel_ring_emit(ring, cmd);
1460 1461
	intel_ring_emit(ring, 0);
	intel_ring_emit(ring, 0);
1462
	intel_ring_emit(ring, MI_NOOP);
1463 1464
	intel_ring_advance(ring);
	return 0;
Z
Zou Nan hai 已提交
1465 1466
}

1467
static const struct intel_ring_buffer gen6_blt_ring = {
1468
	.name			= "blt ring",
1469
	.id			= BCS,
1470 1471
	.mmio_base		= BLT_RING_BASE,
	.size			= 32 * PAGE_SIZE,
1472
	.init			= init_ring_common,
1473 1474 1475
	.write_tail		= ring_write_tail,
	.flush			= blt_ring_flush,
	.add_request		= gen6_add_request,
1476
	.get_seqno		= gen6_ring_get_seqno,
1477 1478
	.irq_get		= blt_ring_get_irq,
	.irq_put		= blt_ring_put_irq,
1479
	.dispatch_execbuffer	= gen6_ring_dispatch_execbuffer,
1480 1481 1482 1483 1484
	.sync_to		= gen6_blt_ring_sync_to,
	.semaphore_register	= {MI_SEMAPHORE_SYNC_BR,
				   MI_SEMAPHORE_SYNC_BV,
				   MI_SEMAPHORE_SYNC_INVALID},
	.signal_mbox		= {GEN6_RBSYNC, GEN6_VBSYNC},
1485 1486
};

1487 1488 1489
int intel_init_render_ring_buffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1490
	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1491

1492 1493 1494
	*ring = render_ring;
	if (INTEL_INFO(dev)->gen >= 6) {
		ring->add_request = gen6_add_request;
1495
		ring->flush = gen6_render_ring_flush;
1496 1497
		ring->irq_get = gen6_render_ring_get_irq;
		ring->irq_put = gen6_render_ring_put_irq;
1498
		ring->get_seqno = gen6_ring_get_seqno;
1499 1500 1501
	} else if (IS_GEN5(dev)) {
		ring->add_request = pc_render_add_request;
		ring->get_seqno = pc_render_get_seqno;
1502
	}
1503 1504

	if (!I915_NEED_GFX_HWS(dev)) {
1505 1506
		ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
		memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1507 1508
	}

1509
	return intel_init_ring_buffer(dev, ring);
1510 1511
}

1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];

	*ring = render_ring;
	if (INTEL_INFO(dev)->gen >= 6) {
		ring->add_request = gen6_add_request;
		ring->irq_get = gen6_render_ring_get_irq;
		ring->irq_put = gen6_render_ring_put_irq;
	} else if (IS_GEN5(dev)) {
		ring->add_request = pc_render_add_request;
		ring->get_seqno = pc_render_get_seqno;
	}

1527 1528 1529
	if (!I915_NEED_GFX_HWS(dev))
		ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;

1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
	ring->dev = dev;
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
	INIT_LIST_HEAD(&ring->gpu_write_list);

	ring->size = size;
	ring->effective_size = ring->size;
	if (IS_I830(ring->dev))
		ring->effective_size -= 128;

	ring->map.offset = start;
	ring->map.size = size;
	ring->map.type = 0;
	ring->map.flags = 0;
	ring->map.mtrr = 0;

	drm_core_ioremap_wc(&ring->map, dev);
	if (ring->map.handle == NULL) {
		DRM_ERROR("can not ioremap virtual address for"
			  " ring buffer\n");
		return -ENOMEM;
	}

	ring->virtual_start = (void __force __iomem *)ring->map.handle;
	return 0;
}

1557 1558 1559
int intel_init_bsd_ring_buffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1560
	struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
1561

1562
	if (IS_GEN6(dev) || IS_GEN7(dev))
1563
		*ring = gen6_bsd_ring;
1564
	else
1565
		*ring = bsd_ring;
1566

1567
	return intel_init_ring_buffer(dev, ring);
1568
}
1569 1570 1571 1572

int intel_init_blt_ring_buffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1573
	struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
1574

1575
	*ring = gen6_blt_ring;
1576

1577
	return intel_init_ring_buffer(dev, ring);
1578
}