random.c 61.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3
/*
 * random.c -- A strong random number generator
 *
4
 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
L
Linus Torvalds 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
 *
 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
 * rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, and the entire permission notice in its entirety,
 *    including the disclaimer of warranties.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. The name of the author may not be used to endorse or promote
 *    products derived from this software without specific prior
 *    written permission.
 *
 * ALTERNATIVELY, this product may be distributed under the terms of
 * the GNU General Public License, in which case the provisions of the GPL are
 * required INSTEAD OF the above restrictions.  (This clause is
 * necessary due to a potential bad interaction between the GPL and
 * the restrictions contained in a BSD-style copyright.)
 *
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
 * DAMAGE.
 */

/*
 * (now, with legal B.S. out of the way.....)
 *
 * This routine gathers environmental noise from device drivers, etc.,
 * and returns good random numbers, suitable for cryptographic use.
 * Besides the obvious cryptographic uses, these numbers are also good
 * for seeding TCP sequence numbers, and other places where it is
 * desirable to have numbers which are not only random, but hard to
 * predict by an attacker.
 *
 * Theory of operation
 * ===================
 *
 * Computers are very predictable devices.  Hence it is extremely hard
 * to produce truly random numbers on a computer --- as opposed to
 * pseudo-random numbers, which can easily generated by using a
 * algorithm.  Unfortunately, it is very easy for attackers to guess
 * the sequence of pseudo-random number generators, and for some
 * applications this is not acceptable.  So instead, we must try to
 * gather "environmental noise" from the computer's environment, which
 * must be hard for outside attackers to observe, and use that to
 * generate random numbers.  In a Unix environment, this is best done
 * from inside the kernel.
 *
 * Sources of randomness from the environment include inter-keyboard
 * timings, inter-interrupt timings from some interrupts, and other
 * events which are both (a) non-deterministic and (b) hard for an
 * outside observer to measure.  Randomness from these sources are
 * added to an "entropy pool", which is mixed using a CRC-like function.
 * This is not cryptographically strong, but it is adequate assuming
 * the randomness is not chosen maliciously, and it is fast enough that
 * the overhead of doing it on every interrupt is very reasonable.
 * As random bytes are mixed into the entropy pool, the routines keep
 * an *estimate* of how many bits of randomness have been stored into
 * the random number generator's internal state.
 *
 * When random bytes are desired, they are obtained by taking the SHA
 * hash of the contents of the "entropy pool".  The SHA hash avoids
 * exposing the internal state of the entropy pool.  It is believed to
 * be computationally infeasible to derive any useful information
 * about the input of SHA from its output.  Even if it is possible to
 * analyze SHA in some clever way, as long as the amount of data
 * returned from the generator is less than the inherent entropy in
 * the pool, the output data is totally unpredictable.  For this
 * reason, the routine decreases its internal estimate of how many
 * bits of "true randomness" are contained in the entropy pool as it
 * outputs random numbers.
 *
 * If this estimate goes to zero, the routine can still generate
 * random numbers; however, an attacker may (at least in theory) be
 * able to infer the future output of the generator from prior
 * outputs.  This requires successful cryptanalysis of SHA, which is
 * not believed to be feasible, but there is a remote possibility.
 * Nonetheless, these numbers should be useful for the vast majority
 * of purposes.
 *
 * Exported interfaces ---- output
 * ===============================
 *
 * There are three exported interfaces; the first is one designed to
 * be used from within the kernel:
 *
 * 	void get_random_bytes(void *buf, int nbytes);
 *
 * This interface will return the requested number of random bytes,
 * and place it in the requested buffer.
 *
 * The two other interfaces are two character devices /dev/random and
 * /dev/urandom.  /dev/random is suitable for use when very high
 * quality randomness is desired (for example, for key generation or
 * one-time pads), as it will only return a maximum of the number of
 * bits of randomness (as estimated by the random number generator)
 * contained in the entropy pool.
 *
 * The /dev/urandom device does not have this limit, and will return
 * as many bytes as are requested.  As more and more random bytes are
 * requested without giving time for the entropy pool to recharge,
 * this will result in random numbers that are merely cryptographically
 * strong.  For many applications, however, this is acceptable.
 *
 * Exported interfaces ---- input
 * ==============================
 *
 * The current exported interfaces for gathering environmental noise
 * from the devices are:
 *
128
 *	void add_device_randomness(const void *buf, unsigned int size);
L
Linus Torvalds 已提交
129 130
 * 	void add_input_randomness(unsigned int type, unsigned int code,
 *                                unsigned int value);
131
 *	void add_interrupt_randomness(int irq, int irq_flags);
132
 * 	void add_disk_randomness(struct gendisk *disk);
L
Linus Torvalds 已提交
133
 *
134 135 136 137 138 139 140 141
 * add_device_randomness() is for adding data to the random pool that
 * is likely to differ between two devices (or possibly even per boot).
 * This would be things like MAC addresses or serial numbers, or the
 * read-out of the RTC. This does *not* add any actual entropy to the
 * pool, but it initializes the pool to different values for devices
 * that might otherwise be identical and have very little entropy
 * available to them (particularly common in the embedded world).
 *
L
Linus Torvalds 已提交
142 143 144
 * add_input_randomness() uses the input layer interrupt timing, as well as
 * the event type information from the hardware.
 *
145 146 147
 * add_interrupt_randomness() uses the interrupt timing as random
 * inputs to the entropy pool. Using the cycle counters and the irq source
 * as inputs, it feeds the randomness roughly once a second.
148 149 150 151 152 153
 *
 * add_disk_randomness() uses what amounts to the seek time of block
 * layer request events, on a per-disk_devt basis, as input to the
 * entropy pool. Note that high-speed solid state drives with very low
 * seek times do not make for good sources of entropy, as their seek
 * times are usually fairly consistent.
L
Linus Torvalds 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
 *
 * All of these routines try to estimate how many bits of randomness a
 * particular randomness source.  They do this by keeping track of the
 * first and second order deltas of the event timings.
 *
 * Ensuring unpredictability at system startup
 * ============================================
 *
 * When any operating system starts up, it will go through a sequence
 * of actions that are fairly predictable by an adversary, especially
 * if the start-up does not involve interaction with a human operator.
 * This reduces the actual number of bits of unpredictability in the
 * entropy pool below the value in entropy_count.  In order to
 * counteract this effect, it helps to carry information in the
 * entropy pool across shut-downs and start-ups.  To do this, put the
 * following lines an appropriate script which is run during the boot
 * sequence:
 *
 *	echo "Initializing random number generator..."
 *	random_seed=/var/run/random-seed
 *	# Carry a random seed from start-up to start-up
 *	# Load and then save the whole entropy pool
 *	if [ -f $random_seed ]; then
 *		cat $random_seed >/dev/urandom
 *	else
 *		touch $random_seed
 *	fi
 *	chmod 600 $random_seed
 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 *
 * and the following lines in an appropriate script which is run as
 * the system is shutdown:
 *
 *	# Carry a random seed from shut-down to start-up
 *	# Save the whole entropy pool
 *	echo "Saving random seed..."
 *	random_seed=/var/run/random-seed
 *	touch $random_seed
 *	chmod 600 $random_seed
 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 *
 * For example, on most modern systems using the System V init
 * scripts, such code fragments would be found in
 * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
 *
 * Effectively, these commands cause the contents of the entropy pool
 * to be saved at shut-down time and reloaded into the entropy pool at
 * start-up.  (The 'dd' in the addition to the bootup script is to
 * make sure that /etc/random-seed is different for every start-up,
 * even if the system crashes without executing rc.0.)  Even with
 * complete knowledge of the start-up activities, predicting the state
 * of the entropy pool requires knowledge of the previous history of
 * the system.
 *
 * Configuring the /dev/random driver under Linux
 * ==============================================
 *
 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
 * the /dev/mem major number (#1).  So if your system does not have
 * /dev/random and /dev/urandom created already, they can be created
 * by using the commands:
 *
 * 	mknod /dev/random c 1 8
 * 	mknod /dev/urandom c 1 9
 *
 * Acknowledgements:
 * =================
 *
 * Ideas for constructing this random number generator were derived
 * from Pretty Good Privacy's random number generator, and from private
 * discussions with Phil Karn.  Colin Plumb provided a faster random
 * number generator, which speed up the mixing function of the entropy
 * pool, taken from PGPfone.  Dale Worley has also contributed many
 * useful ideas and suggestions to improve this driver.
 *
 * Any flaws in the design are solely my responsibility, and should
 * not be attributed to the Phil, Colin, or any of authors of PGP.
 *
 * Further background information on this topic may be obtained from
 * RFC 1750, "Randomness Recommendations for Security", by Donald
 * Eastlake, Steve Crocker, and Jeff Schiller.
 */

#include <linux/utsname.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/genhd.h>
#include <linux/interrupt.h>
251
#include <linux/mm.h>
252
#include <linux/nodemask.h>
L
Linus Torvalds 已提交
253
#include <linux/spinlock.h>
254
#include <linux/kthread.h>
L
Linus Torvalds 已提交
255 256
#include <linux/percpu.h>
#include <linux/cryptohash.h>
257
#include <linux/fips.h>
258
#include <linux/ptrace.h>
259
#include <linux/kmemcheck.h>
260
#include <linux/workqueue.h>
261
#include <linux/irq.h>
262 263
#include <linux/syscalls.h>
#include <linux/completion.h>
264
#include <linux/uuid.h>
265
#include <crypto/chacha20.h>
266

L
Linus Torvalds 已提交
267
#include <asm/processor.h>
268
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
269
#include <asm/irq.h>
270
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
271 272
#include <asm/io.h>

273 274 275
#define CREATE_TRACE_POINTS
#include <trace/events/random.h>

276 277
/* #define ADD_INTERRUPT_BENCH */

L
Linus Torvalds 已提交
278 279 280
/*
 * Configuration information
 */
281 282 283 284 285 286
#define INPUT_POOL_SHIFT	12
#define INPUT_POOL_WORDS	(1 << (INPUT_POOL_SHIFT-5))
#define OUTPUT_POOL_SHIFT	10
#define OUTPUT_POOL_WORDS	(1 << (OUTPUT_POOL_SHIFT-5))
#define SEC_XFER_SIZE		512
#define EXTRACT_SIZE		10
L
Linus Torvalds 已提交
287

288
#define DEBUG_RANDOM_BOOT 0
L
Linus Torvalds 已提交
289

290 291
#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))

292
/*
T
Theodore Ts'o 已提交
293 294
 * To allow fractional bits to be tracked, the entropy_count field is
 * denominated in units of 1/8th bits.
295 296 297
 *
 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
 * credit_entropy_bits() needs to be 64 bits wide.
298 299 300 301
 */
#define ENTROPY_SHIFT 3
#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)

L
Linus Torvalds 已提交
302 303 304 305
/*
 * The minimum number of bits of entropy before we wake up a read on
 * /dev/random.  Should be enough to do a significant reseed.
 */
306
static int random_read_wakeup_bits = 64;
L
Linus Torvalds 已提交
307 308 309 310 311 312

/*
 * If the entropy count falls under this number of bits, then we
 * should wake up processes which are selecting or polling on write
 * access to /dev/random.
 */
313
static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
L
Linus Torvalds 已提交
314 315

/*
316
 * The minimum number of seconds between urandom pool reseeding.  We
317 318
 * do this to limit the amount of entropy that can be drained from the
 * input pool even if there are heavy demands on /dev/urandom.
L
Linus Torvalds 已提交
319
 */
320
static int random_min_urandom_seed = 60;
L
Linus Torvalds 已提交
321 322

/*
323 324 325 326 327 328 329 330 331 332
 * Originally, we used a primitive polynomial of degree .poolwords
 * over GF(2).  The taps for various sizes are defined below.  They
 * were chosen to be evenly spaced except for the last tap, which is 1
 * to get the twisting happening as fast as possible.
 *
 * For the purposes of better mixing, we use the CRC-32 polynomial as
 * well to make a (modified) twisted Generalized Feedback Shift
 * Register.  (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR
 * generators.  ACM Transactions on Modeling and Computer Simulation
 * 2(3):179-194.  Also see M. Matsumoto & Y. Kurita, 1994.  Twisted
333
 * GFSR generators II.  ACM Transactions on Modeling and Computer
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
 * Simulation 4:254-266)
 *
 * Thanks to Colin Plumb for suggesting this.
 *
 * The mixing operation is much less sensitive than the output hash,
 * where we use SHA-1.  All that we want of mixing operation is that
 * it be a good non-cryptographic hash; i.e. it not produce collisions
 * when fed "random" data of the sort we expect to see.  As long as
 * the pool state differs for different inputs, we have preserved the
 * input entropy and done a good job.  The fact that an intelligent
 * attacker can construct inputs that will produce controlled
 * alterations to the pool's state is not important because we don't
 * consider such inputs to contribute any randomness.  The only
 * property we need with respect to them is that the attacker can't
 * increase his/her knowledge of the pool's state.  Since all
 * additions are reversible (knowing the final state and the input,
 * you can reconstruct the initial state), if an attacker has any
 * uncertainty about the initial state, he/she can only shuffle that
 * uncertainty about, but never cause any collisions (which would
 * decrease the uncertainty).
 *
 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
 * Videau in their paper, "The Linux Pseudorandom Number Generator
 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf).  In their
 * paper, they point out that we are not using a true Twisted GFSR,
 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
 * is, with only three taps, instead of the six that we are using).
 * As a result, the resulting polynomial is neither primitive nor
 * irreducible, and hence does not have a maximal period over
 * GF(2**32).  They suggest a slight change to the generator
 * polynomial which improves the resulting TGFSR polynomial to be
 * irreducible, which we have made here.
L
Linus Torvalds 已提交
366 367
 */
static struct poolinfo {
368 369
	int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
#define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
L
Linus Torvalds 已提交
370 371
	int tap1, tap2, tap3, tap4, tap5;
} poolinfo_table[] = {
372 373 374 375 376 377
	/* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
	/* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
	{ S(128),	104,	76,	51,	25,	1 },
	/* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
	/* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
	{ S(32),	26,	19,	14,	7,	1 },
L
Linus Torvalds 已提交
378 379
#if 0
	/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
380
	{ S(2048),	1638,	1231,	819,	411,	1 },
L
Linus Torvalds 已提交
381 382

	/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
383
	{ S(1024),	817,	615,	412,	204,	1 },
L
Linus Torvalds 已提交
384 385

	/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
386
	{ S(1024),	819,	616,	410,	207,	2 },
L
Linus Torvalds 已提交
387 388

	/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
389
	{ S(512),	411,	308,	208,	104,	1 },
L
Linus Torvalds 已提交
390 391

	/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
392
	{ S(512),	409,	307,	206,	102,	2 },
L
Linus Torvalds 已提交
393
	/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
394
	{ S(512),	409,	309,	205,	103,	2 },
L
Linus Torvalds 已提交
395 396

	/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
397
	{ S(256),	205,	155,	101,	52,	1 },
L
Linus Torvalds 已提交
398 399

	/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
400
	{ S(128),	103,	78,	51,	27,	2 },
L
Linus Torvalds 已提交
401 402

	/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
403
	{ S(64),	52,	39,	26,	14,	1 },
L
Linus Torvalds 已提交
404 405 406 407 408 409 410 411
#endif
};

/*
 * Static global variables
 */
static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
412
static struct fasync_struct *fasync;
L
Linus Torvalds 已提交
413

414 415 416
static DEFINE_SPINLOCK(random_ready_list_lock);
static LIST_HEAD(random_ready_list);

417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
struct crng_state {
	__u32		state[16];
	unsigned long	init_time;
	spinlock_t	lock;
};

struct crng_state primary_crng = {
	.lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
};

/*
 * crng_init =  0 --> Uninitialized
 *		1 --> Initialized
 *		2 --> Initialized from input_pool
 *
 * crng_init is protected by primary_crng->lock, and only increases
 * its value (from 0->1->2).
 */
static int crng_init = 0;
#define crng_ready() (likely(crng_init > 0))
static int crng_init_cnt = 0;
#define CRNG_INIT_CNT_THRESH (2*CHACHA20_KEY_SIZE)
439 440
static void _extract_crng(struct crng_state *crng,
			  __u8 out[CHACHA20_BLOCK_SIZE]);
441 442
static void _crng_backtrack_protect(struct crng_state *crng,
				    __u8 tmp[CHACHA20_BLOCK_SIZE], int used);
443 444
static void process_random_ready_list(void);

L
Linus Torvalds 已提交
445 446 447 448 449 450 451 452 453
/**********************************************************************
 *
 * OS independent entropy store.   Here are the functions which handle
 * storing entropy in an entropy pool.
 *
 **********************************************************************/

struct entropy_store;
struct entropy_store {
454
	/* read-only data: */
455
	const struct poolinfo *poolinfo;
L
Linus Torvalds 已提交
456 457 458
	__u32 *pool;
	const char *name;
	struct entropy_store *pull;
459
	struct work_struct push_work;
L
Linus Torvalds 已提交
460 461

	/* read-write data: */
462
	unsigned long last_pulled;
463
	spinlock_t lock;
464 465
	unsigned short add_ptr;
	unsigned short input_rotate;
466
	int entropy_count;
467 468
	int entropy_total;
	unsigned int initialized:1;
469 470
	unsigned int limit:1;
	unsigned int last_data_init:1;
M
Matt Mackall 已提交
471
	__u8 last_data[EXTRACT_SIZE];
L
Linus Torvalds 已提交
472 473
};

474 475 476 477 478 479
static ssize_t extract_entropy(struct entropy_store *r, void *buf,
			       size_t nbytes, int min, int rsvd);
static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
				size_t nbytes, int fips);

static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
480
static void push_to_pool(struct work_struct *work);
481 482
static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy;
L
Linus Torvalds 已提交
483 484 485 486 487

static struct entropy_store input_pool = {
	.poolinfo = &poolinfo_table[0],
	.name = "input",
	.limit = 1,
488
	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
L
Linus Torvalds 已提交
489 490 491 492 493 494 495 496
	.pool = input_pool_data
};

static struct entropy_store blocking_pool = {
	.poolinfo = &poolinfo_table[1],
	.name = "blocking",
	.limit = 1,
	.pull = &input_pool,
497
	.lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
498 499 500
	.pool = blocking_pool_data,
	.push_work = __WORK_INITIALIZER(blocking_pool.push_work,
					push_to_pool),
L
Linus Torvalds 已提交
501 502
};

503 504 505 506
static __u32 const twist_table[8] = {
	0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
	0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };

L
Linus Torvalds 已提交
507
/*
508
 * This function adds bytes into the entropy "pool".  It does not
L
Linus Torvalds 已提交
509
 * update the entropy estimate.  The caller should call
510
 * credit_entropy_bits if this is appropriate.
L
Linus Torvalds 已提交
511 512 513 514 515 516
 *
 * The pool is stirred with a primitive polynomial of the appropriate
 * degree, and then twisted.  We twist by three bits at a time because
 * it's cheap to do so and helps slightly in the expected case where
 * the entropy is concentrated in the low-order bits.
 */
517
static void _mix_pool_bytes(struct entropy_store *r, const void *in,
518
			    int nbytes)
L
Linus Torvalds 已提交
519
{
520
	unsigned long i, tap1, tap2, tap3, tap4, tap5;
521
	int input_rotate;
L
Linus Torvalds 已提交
522
	int wordmask = r->poolinfo->poolwords - 1;
523
	const char *bytes = in;
524
	__u32 w;
L
Linus Torvalds 已提交
525 526 527 528 529 530 531

	tap1 = r->poolinfo->tap1;
	tap2 = r->poolinfo->tap2;
	tap3 = r->poolinfo->tap3;
	tap4 = r->poolinfo->tap4;
	tap5 = r->poolinfo->tap5;

532 533
	input_rotate = r->input_rotate;
	i = r->add_ptr;
L
Linus Torvalds 已提交
534

535 536
	/* mix one byte at a time to simplify size handling and churn faster */
	while (nbytes--) {
537
		w = rol32(*bytes++, input_rotate);
M
Matt Mackall 已提交
538
		i = (i - 1) & wordmask;
L
Linus Torvalds 已提交
539 540

		/* XOR in the various taps */
M
Matt Mackall 已提交
541
		w ^= r->pool[i];
L
Linus Torvalds 已提交
542 543 544 545 546
		w ^= r->pool[(i + tap1) & wordmask];
		w ^= r->pool[(i + tap2) & wordmask];
		w ^= r->pool[(i + tap3) & wordmask];
		w ^= r->pool[(i + tap4) & wordmask];
		w ^= r->pool[(i + tap5) & wordmask];
M
Matt Mackall 已提交
547 548

		/* Mix the result back in with a twist */
L
Linus Torvalds 已提交
549
		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
550 551 552 553 554 555 556

		/*
		 * Normally, we add 7 bits of rotation to the pool.
		 * At the beginning of the pool, add an extra 7 bits
		 * rotation, so that successive passes spread the
		 * input bits across the pool evenly.
		 */
557
		input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
L
Linus Torvalds 已提交
558 559
	}

560 561
	r->input_rotate = input_rotate;
	r->add_ptr = i;
L
Linus Torvalds 已提交
562 563
}

564
static void __mix_pool_bytes(struct entropy_store *r, const void *in,
565
			     int nbytes)
566 567
{
	trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
568
	_mix_pool_bytes(r, in, nbytes);
569 570 571
}

static void mix_pool_bytes(struct entropy_store *r, const void *in,
572
			   int nbytes)
L
Linus Torvalds 已提交
573
{
574 575
	unsigned long flags;

576
	trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
577
	spin_lock_irqsave(&r->lock, flags);
578
	_mix_pool_bytes(r, in, nbytes);
579
	spin_unlock_irqrestore(&r->lock, flags);
L
Linus Torvalds 已提交
580 581
}

582 583 584
struct fast_pool {
	__u32		pool[4];
	unsigned long	last;
585
	unsigned short	reg_idx;
586
	unsigned char	count;
587 588 589 590 591 592 593
};

/*
 * This is a fast mixing routine used by the interrupt randomness
 * collector.  It's hardcoded for an 128 bit pool and assumes that any
 * locks that might be needed are taken by the caller.
 */
594
static void fast_mix(struct fast_pool *f)
595
{
596 597 598 599
	__u32 a = f->pool[0],	b = f->pool[1];
	__u32 c = f->pool[2],	d = f->pool[3];

	a += b;			c += d;
G
George Spelvin 已提交
600
	b = rol32(b, 6);	d = rol32(d, 27);
601 602 603
	d ^= a;			b ^= c;

	a += b;			c += d;
G
George Spelvin 已提交
604
	b = rol32(b, 16);	d = rol32(d, 14);
605 606 607
	d ^= a;			b ^= c;

	a += b;			c += d;
G
George Spelvin 已提交
608
	b = rol32(b, 6);	d = rol32(d, 27);
609 610 611
	d ^= a;			b ^= c;

	a += b;			c += d;
G
George Spelvin 已提交
612
	b = rol32(b, 16);	d = rol32(d, 14);
613 614 615 616
	d ^= a;			b ^= c;

	f->pool[0] = a;  f->pool[1] = b;
	f->pool[2] = c;  f->pool[3] = d;
617
	f->count++;
618 619
}

620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
static void process_random_ready_list(void)
{
	unsigned long flags;
	struct random_ready_callback *rdy, *tmp;

	spin_lock_irqsave(&random_ready_list_lock, flags);
	list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
		struct module *owner = rdy->owner;

		list_del_init(&rdy->list);
		rdy->func(rdy);
		module_put(owner);
	}
	spin_unlock_irqrestore(&random_ready_list_lock, flags);
}

L
Linus Torvalds 已提交
636
/*
637 638 639
 * Credit (or debit) the entropy store with n bits of entropy.
 * Use credit_entropy_bits_safe() if the value comes from userspace
 * or otherwise should be checked for extreme values.
L
Linus Torvalds 已提交
640
 */
641
static void credit_entropy_bits(struct entropy_store *r, int nbits)
L
Linus Torvalds 已提交
642
{
643
	int entropy_count, orig;
644 645
	const int pool_size = r->poolinfo->poolfracbits;
	int nfrac = nbits << ENTROPY_SHIFT;
L
Linus Torvalds 已提交
646

647 648 649
	if (!nbits)
		return;

650 651
retry:
	entropy_count = orig = ACCESS_ONCE(r->entropy_count);
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
	if (nfrac < 0) {
		/* Debit */
		entropy_count += nfrac;
	} else {
		/*
		 * Credit: we have to account for the possibility of
		 * overwriting already present entropy.	 Even in the
		 * ideal case of pure Shannon entropy, new contributions
		 * approach the full value asymptotically:
		 *
		 * entropy <- entropy + (pool_size - entropy) *
		 *	(1 - exp(-add_entropy/pool_size))
		 *
		 * For add_entropy <= pool_size/2 then
		 * (1 - exp(-add_entropy/pool_size)) >=
		 *    (add_entropy/pool_size)*0.7869...
		 * so we can approximate the exponential with
		 * 3/4*add_entropy/pool_size and still be on the
		 * safe side by adding at most pool_size/2 at a time.
		 *
		 * The use of pool_size-2 in the while statement is to
		 * prevent rounding artifacts from making the loop
		 * arbitrarily long; this limits the loop to log2(pool_size)*2
		 * turns no matter how large nbits is.
		 */
		int pnfrac = nfrac;
		const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
		/* The +2 corresponds to the /4 in the denominator */

		do {
			unsigned int anfrac = min(pnfrac, pool_size/2);
			unsigned int add =
				((pool_size - entropy_count)*anfrac*3) >> s;

			entropy_count += add;
			pnfrac -= anfrac;
		} while (unlikely(entropy_count < pool_size-2 && pnfrac));
	}
690

691
	if (unlikely(entropy_count < 0)) {
692 693 694
		pr_warn("random: negative entropy/overflow: pool %s count %d\n",
			r->name, entropy_count);
		WARN_ON(1);
695
		entropy_count = 0;
696 697
	} else if (entropy_count > pool_size)
		entropy_count = pool_size;
698 699
	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
		goto retry;
L
Linus Torvalds 已提交
700

701
	r->entropy_total += nbits;
702 703 704
	if (!r->initialized && r->entropy_total > 128) {
		r->initialized = 1;
		r->entropy_total = 0;
705 706
	}

707 708
	trace_credit_entropy_bits(r->name, nbits,
				  entropy_count >> ENTROPY_SHIFT,
709 710
				  r->entropy_total, _RET_IP_);

711
	if (r == &input_pool) {
712
		int entropy_bits = entropy_count >> ENTROPY_SHIFT;
713

714 715 716 717 718
		if (crng_init < 2 && entropy_bits >= 128) {
			crng_reseed(&primary_crng, r);
			entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
		}

719
		/* should we wake readers? */
720
		if (entropy_bits >= random_read_wakeup_bits) {
721 722 723 724
			wake_up_interruptible(&random_read_wait);
			kill_fasync(&fasync, SIGIO, POLL_IN);
		}
		/* If the input pool is getting full, send some
725
		 * entropy to the blocking pool until it is 75% full.
726
		 */
727
		if (entropy_bits > random_write_wakeup_bits &&
728
		    r->initialized &&
729
		    r->entropy_total >= 2*random_read_wakeup_bits) {
730 731 732
			struct entropy_store *other = &blocking_pool;

			if (other->entropy_count <=
733 734
			    3 * other->poolinfo->poolfracbits / 4) {
				schedule_work(&other->push_work);
735 736 737
				r->entropy_total = 0;
			}
		}
738
	}
L
Linus Torvalds 已提交
739 740
}

741
static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
742 743 744
{
	const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));

745 746 747
	if (nbits < 0)
		return -EINVAL;

748 749 750 751
	/* Cap the value to avoid overflows */
	nbits = min(nbits,  nbits_max);

	credit_entropy_bits(r, nbits);
752
	return 0;
753 754
}

755 756 757 758 759 760 761 762 763 764
/*********************************************************************
 *
 * CRNG using CHACHA20
 *
 *********************************************************************/

#define CRNG_RESEED_INTERVAL (300*HZ)

static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);

765 766 767 768 769 770 771 772 773 774
#ifdef CONFIG_NUMA
/*
 * Hack to deal with crazy userspace progams when they are all trying
 * to access /dev/urandom in parallel.  The programs are almost
 * certainly doing something terribly wrong, but we'll work around
 * their brain damage.
 */
static struct crng_state **crng_node_pool __read_mostly;
#endif

775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
static void crng_initialize(struct crng_state *crng)
{
	int		i;
	unsigned long	rv;

	memcpy(&crng->state[0], "expand 32-byte k", 16);
	if (crng == &primary_crng)
		_extract_entropy(&input_pool, &crng->state[4],
				 sizeof(__u32) * 12, 0);
	else
		get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
	for (i = 4; i < 16; i++) {
		if (!arch_get_random_seed_long(&rv) &&
		    !arch_get_random_long(&rv))
			rv = random_get_entropy();
		crng->state[i] ^= rv;
	}
	crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
}

static int crng_fast_load(const char *cp, size_t len)
{
	unsigned long flags;
	char *p;

	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
		return 0;
	if (crng_ready()) {
		spin_unlock_irqrestore(&primary_crng.lock, flags);
		return 0;
	}
	p = (unsigned char *) &primary_crng.state[4];
	while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
		p[crng_init_cnt % CHACHA20_KEY_SIZE] ^= *cp;
		cp++; crng_init_cnt++; len--;
	}
	if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
		crng_init = 1;
		wake_up_interruptible(&crng_init_wait);
		pr_notice("random: fast init done\n");
	}
	spin_unlock_irqrestore(&primary_crng.lock, flags);
	return 1;
}

static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
{
	unsigned long	flags;
	int		i, num;
	union {
		__u8	block[CHACHA20_BLOCK_SIZE];
		__u32	key[8];
	} buf;

	if (r) {
		num = extract_entropy(r, &buf, 32, 16, 0);
		if (num == 0)
			return;
833
	} else {
834
		_extract_crng(&primary_crng, buf.block);
835 836 837
		_crng_backtrack_protect(&primary_crng, buf.block,
					CHACHA20_KEY_SIZE);
	}
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
	spin_lock_irqsave(&primary_crng.lock, flags);
	for (i = 0; i < 8; i++) {
		unsigned long	rv;
		if (!arch_get_random_seed_long(&rv) &&
		    !arch_get_random_long(&rv))
			rv = random_get_entropy();
		crng->state[i+4] ^= buf.key[i] ^ rv;
	}
	memzero_explicit(&buf, sizeof(buf));
	crng->init_time = jiffies;
	if (crng == &primary_crng && crng_init < 2) {
		crng_init = 2;
		process_random_ready_list();
		wake_up_interruptible(&crng_init_wait);
		pr_notice("random: crng init done\n");
	}
	spin_unlock_irqrestore(&primary_crng.lock, flags);
}

static inline void crng_wait_ready(void)
{
	wait_event_interruptible(crng_init_wait, crng_ready());
}

862 863
static void _extract_crng(struct crng_state *crng,
			  __u8 out[CHACHA20_BLOCK_SIZE])
864 865 866 867 868
{
	unsigned long v, flags;

	if (crng_init > 1 &&
	    time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL))
869
		crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
870 871 872 873 874 875 876 877 878
	spin_lock_irqsave(&crng->lock, flags);
	if (arch_get_random_long(&v))
		crng->state[14] ^= v;
	chacha20_block(&crng->state[0], out);
	if (crng->state[12] == 0)
		crng->state[13]++;
	spin_unlock_irqrestore(&crng->lock, flags);
}

879 880 881 882 883 884 885 886 887 888 889 890 891
static void extract_crng(__u8 out[CHACHA20_BLOCK_SIZE])
{
	struct crng_state *crng = NULL;

#ifdef CONFIG_NUMA
	if (crng_node_pool)
		crng = crng_node_pool[numa_node_id()];
	if (crng == NULL)
#endif
		crng = &primary_crng;
	_extract_crng(crng, out);
}

892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
/*
 * Use the leftover bytes from the CRNG block output (if there is
 * enough) to mutate the CRNG key to provide backtracking protection.
 */
static void _crng_backtrack_protect(struct crng_state *crng,
				    __u8 tmp[CHACHA20_BLOCK_SIZE], int used)
{
	unsigned long	flags;
	__u32		*s, *d;
	int		i;

	used = round_up(used, sizeof(__u32));
	if (used + CHACHA20_KEY_SIZE > CHACHA20_BLOCK_SIZE) {
		extract_crng(tmp);
		used = 0;
	}
	spin_lock_irqsave(&crng->lock, flags);
	s = (__u32 *) &tmp[used];
	d = &crng->state[4];
	for (i=0; i < 8; i++)
		*d++ ^= *s++;
	spin_unlock_irqrestore(&crng->lock, flags);
}

static void crng_backtrack_protect(__u8 tmp[CHACHA20_BLOCK_SIZE], int used)
{
	struct crng_state *crng = NULL;

#ifdef CONFIG_NUMA
	if (crng_node_pool)
		crng = crng_node_pool[numa_node_id()];
	if (crng == NULL)
#endif
		crng = &primary_crng;
	_crng_backtrack_protect(crng, tmp, used);
}

929 930
static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
{
931
	ssize_t ret = 0, i = CHACHA20_BLOCK_SIZE;
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
	__u8 tmp[CHACHA20_BLOCK_SIZE];
	int large_request = (nbytes > 256);

	while (nbytes) {
		if (large_request && need_resched()) {
			if (signal_pending(current)) {
				if (ret == 0)
					ret = -ERESTARTSYS;
				break;
			}
			schedule();
		}

		extract_crng(tmp);
		i = min_t(int, nbytes, CHACHA20_BLOCK_SIZE);
		if (copy_to_user(buf, tmp, i)) {
			ret = -EFAULT;
			break;
		}

		nbytes -= i;
		buf += i;
		ret += i;
	}
956
	crng_backtrack_protect(tmp, i);
957 958 959 960 961 962 963 964

	/* Wipe data just written to memory */
	memzero_explicit(tmp, sizeof(tmp));

	return ret;
}


L
Linus Torvalds 已提交
965 966 967 968 969 970 971 972 973
/*********************************************************************
 *
 * Entropy input management
 *
 *********************************************************************/

/* There is one of these per entropy source */
struct timer_rand_state {
	cycles_t last_time;
974
	long last_delta, last_delta2;
L
Linus Torvalds 已提交
975 976 977
	unsigned dont_count_entropy:1;
};

978 979
#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };

980
/*
981 982
 * Add device- or boot-specific data to the input pool to help
 * initialize it.
983
 *
984 985 986
 * None of this adds any entropy; it is meant to avoid the problem of
 * the entropy pool having similar initial state across largely
 * identical devices.
987 988 989
 */
void add_device_randomness(const void *buf, unsigned int size)
{
990
	unsigned long time = random_get_entropy() ^ jiffies;
991
	unsigned long flags;
992

993
	trace_add_device_randomness(size, _RET_IP_);
994
	spin_lock_irqsave(&input_pool.lock, flags);
995 996
	_mix_pool_bytes(&input_pool, buf, size);
	_mix_pool_bytes(&input_pool, &time, sizeof(time));
997
	spin_unlock_irqrestore(&input_pool.lock, flags);
998 999 1000
}
EXPORT_SYMBOL(add_device_randomness);

1001
static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
1002

L
Linus Torvalds 已提交
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
/*
 * This function adds entropy to the entropy "pool" by using timing
 * delays.  It uses the timer_rand_state structure to make an estimate
 * of how many bits of entropy this call has added to the pool.
 *
 * The number "num" is also added to the pool - it should somehow describe
 * the type of event which just happened.  This is currently 0-255 for
 * keyboard scan codes, and 256 upwards for interrupts.
 *
 */
static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
{
1015
	struct entropy_store	*r;
L
Linus Torvalds 已提交
1016 1017
	struct {
		long jiffies;
1018
		unsigned cycles;
L
Linus Torvalds 已提交
1019 1020 1021 1022 1023 1024 1025
		unsigned num;
	} sample;
	long delta, delta2, delta3;

	preempt_disable();

	sample.jiffies = jiffies;
1026
	sample.cycles = random_get_entropy();
L
Linus Torvalds 已提交
1027
	sample.num = num;
1028
	r = &input_pool;
1029
	mix_pool_bytes(r, &sample, sizeof(sample));
L
Linus Torvalds 已提交
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062

	/*
	 * Calculate number of bits of randomness we probably added.
	 * We take into account the first, second and third-order deltas
	 * in order to make our estimate.
	 */

	if (!state->dont_count_entropy) {
		delta = sample.jiffies - state->last_time;
		state->last_time = sample.jiffies;

		delta2 = delta - state->last_delta;
		state->last_delta = delta;

		delta3 = delta2 - state->last_delta2;
		state->last_delta2 = delta2;

		if (delta < 0)
			delta = -delta;
		if (delta2 < 0)
			delta2 = -delta2;
		if (delta3 < 0)
			delta3 = -delta3;
		if (delta > delta2)
			delta = delta2;
		if (delta > delta3)
			delta = delta3;

		/*
		 * delta is now minimum absolute delta.
		 * Round down by 1 bit on general principles,
		 * and limit entropy entimate to 12 bits.
		 */
1063
		credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
L
Linus Torvalds 已提交
1064 1065 1066 1067
	}
	preempt_enable();
}

1068
void add_input_randomness(unsigned int type, unsigned int code,
L
Linus Torvalds 已提交
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
				 unsigned int value)
{
	static unsigned char last_value;

	/* ignore autorepeat and the like */
	if (value == last_value)
		return;

	last_value = value;
	add_timer_randomness(&input_timer_state,
			     (type << 4) ^ code ^ (code >> 4) ^ value);
1080
	trace_add_input_randomness(ENTROPY_BITS(&input_pool));
L
Linus Torvalds 已提交
1081
}
1082
EXPORT_SYMBOL_GPL(add_input_randomness);
L
Linus Torvalds 已提交
1083

1084 1085
static DEFINE_PER_CPU(struct fast_pool, irq_randomness);

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
#ifdef ADD_INTERRUPT_BENCH
static unsigned long avg_cycles, avg_deviation;

#define AVG_SHIFT 8     /* Exponential average factor k=1/256 */
#define FIXED_1_2 (1 << (AVG_SHIFT-1))

static void add_interrupt_bench(cycles_t start)
{
        long delta = random_get_entropy() - start;

        /* Use a weighted moving average */
        delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
        avg_cycles += delta;
        /* And average deviation */
        delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
        avg_deviation += delta;
}
#else
#define add_interrupt_bench(x)
#endif

1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
{
	__u32 *ptr = (__u32 *) regs;

	if (regs == NULL)
		return 0;
	if (f->reg_idx >= sizeof(struct pt_regs) / sizeof(__u32))
		f->reg_idx = 0;
	return *(ptr + f->reg_idx++);
}

1118
void add_interrupt_randomness(int irq, int irq_flags)
L
Linus Torvalds 已提交
1119
{
1120
	struct entropy_store	*r;
1121
	struct fast_pool	*fast_pool = this_cpu_ptr(&irq_randomness);
1122 1123
	struct pt_regs		*regs = get_irq_regs();
	unsigned long		now = jiffies;
1124
	cycles_t		cycles = random_get_entropy();
1125
	__u32			c_high, j_high;
1126
	__u64			ip;
1127
	unsigned long		seed;
1128
	int			credit = 0;
1129

1130 1131
	if (cycles == 0)
		cycles = get_reg(fast_pool, regs);
1132 1133
	c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
	j_high = (sizeof(now) > 4) ? now >> 32 : 0;
1134 1135
	fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
	fast_pool->pool[1] ^= now ^ c_high;
1136
	ip = regs ? instruction_pointer(regs) : _RET_IP_;
1137
	fast_pool->pool[2] ^= ip;
1138 1139
	fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
		get_reg(fast_pool, regs);
1140

1141 1142
	fast_mix(fast_pool);
	add_interrupt_bench(cycles);
1143

1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
	if (!crng_ready()) {
		if ((fast_pool->count >= 64) &&
		    crng_fast_load((char *) fast_pool->pool,
				   sizeof(fast_pool->pool))) {
			fast_pool->count = 0;
			fast_pool->last = now;
		}
		return;
	}

1154 1155
	if ((fast_pool->count < 64) &&
	    !time_after(now, fast_pool->last + HZ))
L
Linus Torvalds 已提交
1156 1157
		return;

1158
	r = &input_pool;
1159
	if (!spin_trylock(&r->lock))
1160
		return;
1161

1162
	fast_pool->last = now;
1163
	__mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
1164 1165 1166

	/*
	 * If we have architectural seed generator, produce a seed and
1167 1168 1169
	 * add it to the pool.  For the sake of paranoia don't let the
	 * architectural seed generator dominate the input from the
	 * interrupt noise.
1170 1171
	 */
	if (arch_get_random_seed_long(&seed)) {
1172
		__mix_pool_bytes(r, &seed, sizeof(seed));
1173
		credit = 1;
1174
	}
1175
	spin_unlock(&r->lock);
1176

1177
	fast_pool->count = 0;
1178

1179 1180
	/* award one bit for the contents of the fast pool */
	credit_entropy_bits(r, credit + 1);
L
Linus Torvalds 已提交
1181
}
1182
EXPORT_SYMBOL_GPL(add_interrupt_randomness);
L
Linus Torvalds 已提交
1183

1184
#ifdef CONFIG_BLOCK
L
Linus Torvalds 已提交
1185 1186 1187 1188 1189
void add_disk_randomness(struct gendisk *disk)
{
	if (!disk || !disk->random)
		return;
	/* first major is 1, so we get >= 0x200 here */
1190
	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1191
	trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
L
Linus Torvalds 已提交
1192
}
1193
EXPORT_SYMBOL_GPL(add_disk_randomness);
1194
#endif
L
Linus Torvalds 已提交
1195 1196 1197 1198 1199 1200 1201 1202

/*********************************************************************
 *
 * Entropy extraction routines
 *
 *********************************************************************/

/*
L
Lucas De Marchi 已提交
1203
 * This utility inline function is responsible for transferring entropy
L
Linus Torvalds 已提交
1204 1205 1206
 * from the primary pool to the secondary extraction pool. We make
 * sure we pull enough for a 'catastrophic reseed'.
 */
1207
static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
L
Linus Torvalds 已提交
1208 1209
static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
{
1210 1211 1212 1213 1214
	if (!r->pull ||
	    r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
	    r->entropy_count > r->poolinfo->poolfracbits)
		return;

1215 1216
	if (r->limit == 0 && random_min_urandom_seed) {
		unsigned long now = jiffies;
L
Linus Torvalds 已提交
1217

1218 1219 1220 1221
		if (time_before(now,
				r->last_pulled + random_min_urandom_seed * HZ))
			return;
		r->last_pulled = now;
L
Linus Torvalds 已提交
1222
	}
1223 1224

	_xfer_secondary_pool(r, nbytes);
1225 1226 1227 1228 1229 1230
}

static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
{
	__u32	tmp[OUTPUT_POOL_WORDS];

1231 1232
	/* For /dev/random's pool, always leave two wakeups' worth */
	int rsvd_bytes = r->limit ? 0 : random_read_wakeup_bits / 4;
1233 1234
	int bytes = nbytes;

1235 1236
	/* pull at least as much as a wakeup */
	bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
1237 1238 1239
	/* but never more than the buffer size */
	bytes = min_t(int, bytes, sizeof(tmp));

1240 1241
	trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
				  ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
1242
	bytes = extract_entropy(r->pull, tmp, bytes,
1243
				random_read_wakeup_bits / 8, rsvd_bytes);
1244
	mix_pool_bytes(r, tmp, bytes);
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
	credit_entropy_bits(r, bytes*8);
}

/*
 * Used as a workqueue function so that when the input pool is getting
 * full, we can "spill over" some entropy to the output pools.  That
 * way the output pools can store some of the excess entropy instead
 * of letting it go to waste.
 */
static void push_to_pool(struct work_struct *work)
{
	struct entropy_store *r = container_of(work, struct entropy_store,
					      push_work);
	BUG_ON(!r);
1259
	_xfer_secondary_pool(r, random_read_wakeup_bits/8);
1260 1261
	trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
			   r->pull->entropy_count >> ENTROPY_SHIFT);
L
Linus Torvalds 已提交
1262 1263 1264
}

/*
G
Greg Price 已提交
1265 1266
 * This function decides how many bytes to actually take from the
 * given pool, and also debits the entropy count accordingly.
L
Linus Torvalds 已提交
1267 1268 1269 1270
 */
static size_t account(struct entropy_store *r, size_t nbytes, int min,
		      int reserved)
{
1271
	int entropy_count, orig;
1272
	size_t ibytes, nfrac;
L
Linus Torvalds 已提交
1273

1274
	BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
L
Linus Torvalds 已提交
1275 1276

	/* Can we pull enough? */
1277
retry:
1278 1279
	entropy_count = orig = ACCESS_ONCE(r->entropy_count);
	ibytes = nbytes;
G
Greg Price 已提交
1280
	/* If limited, never pull more than available */
1281 1282 1283 1284 1285 1286 1287
	if (r->limit) {
		int have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);

		if ((have_bytes -= reserved) < 0)
			have_bytes = 0;
		ibytes = min_t(size_t, ibytes, have_bytes);
	}
G
Greg Price 已提交
1288
	if (ibytes < min)
1289
		ibytes = 0;
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300

	if (unlikely(entropy_count < 0)) {
		pr_warn("random: negative entropy count: pool %s count %d\n",
			r->name, entropy_count);
		WARN_ON(1);
		entropy_count = 0;
	}
	nfrac = ibytes << (ENTROPY_SHIFT + 3);
	if ((size_t) entropy_count > nfrac)
		entropy_count -= nfrac;
	else
1301
		entropy_count = 0;
1302

G
Greg Price 已提交
1303 1304
	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
		goto retry;
L
Linus Torvalds 已提交
1305

1306
	trace_debit_entropy(r->name, 8 * ibytes);
G
Greg Price 已提交
1307
	if (ibytes &&
1308
	    (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
1309 1310 1311 1312
		wake_up_interruptible(&random_write_wait);
		kill_fasync(&fasync, SIGIO, POLL_OUT);
	}

1313
	return ibytes;
L
Linus Torvalds 已提交
1314 1315
}

G
Greg Price 已提交
1316 1317 1318 1319 1320 1321
/*
 * This function does the actual extraction for extract_entropy and
 * extract_entropy_user.
 *
 * Note: we assume that .poolwords is a multiple of 16 words.
 */
L
Linus Torvalds 已提交
1322 1323
static void extract_buf(struct entropy_store *r, __u8 *out)
{
1324
	int i;
1325 1326
	union {
		__u32 w[5];
1327
		unsigned long l[LONGS(20)];
1328 1329
	} hash;
	__u32 workspace[SHA_WORKSPACE_WORDS];
1330
	unsigned long flags;
L
Linus Torvalds 已提交
1331

1332
	/*
1333
	 * If we have an architectural hardware random number
1334
	 * generator, use it for SHA's initial vector
1335
	 */
1336
	sha_init(hash.w);
1337 1338 1339 1340
	for (i = 0; i < LONGS(20); i++) {
		unsigned long v;
		if (!arch_get_random_long(&v))
			break;
1341
		hash.l[i] = v;
1342 1343
	}

1344 1345 1346 1347 1348
	/* Generate a hash across the pool, 16 words (512 bits) at a time */
	spin_lock_irqsave(&r->lock, flags);
	for (i = 0; i < r->poolinfo->poolwords; i += 16)
		sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);

L
Linus Torvalds 已提交
1349
	/*
1350 1351 1352 1353 1354 1355 1356
	 * We mix the hash back into the pool to prevent backtracking
	 * attacks (where the attacker knows the state of the pool
	 * plus the current outputs, and attempts to find previous
	 * ouputs), unless the hash function can be inverted. By
	 * mixing at least a SHA1 worth of hash data back, we make
	 * brute-forcing the feedback as hard as brute-forcing the
	 * hash.
L
Linus Torvalds 已提交
1357
	 */
1358
	__mix_pool_bytes(r, hash.w, sizeof(hash.w));
1359
	spin_unlock_irqrestore(&r->lock, flags);
L
Linus Torvalds 已提交
1360

1361
	memzero_explicit(workspace, sizeof(workspace));
L
Linus Torvalds 已提交
1362 1363

	/*
1364 1365 1366
	 * In case the hash function has some recognizable output
	 * pattern, we fold it in half. Thus, we always feed back
	 * twice as much data as we output.
L
Linus Torvalds 已提交
1367
	 */
1368 1369 1370 1371 1372
	hash.w[0] ^= hash.w[3];
	hash.w[1] ^= hash.w[4];
	hash.w[2] ^= rol32(hash.w[2], 16);

	memcpy(out, &hash, EXTRACT_SIZE);
1373
	memzero_explicit(&hash, sizeof(hash));
L
Linus Torvalds 已提交
1374 1375
}

1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
				size_t nbytes, int fips)
{
	ssize_t ret = 0, i;
	__u8 tmp[EXTRACT_SIZE];
	unsigned long flags;

	while (nbytes) {
		extract_buf(r, tmp);

		if (fips) {
			spin_lock_irqsave(&r->lock, flags);
			if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
				panic("Hardware RNG duplicated output!\n");
			memcpy(r->last_data, tmp, EXTRACT_SIZE);
			spin_unlock_irqrestore(&r->lock, flags);
		}
		i = min_t(int, nbytes, EXTRACT_SIZE);
		memcpy(buf, tmp, i);
		nbytes -= i;
		buf += i;
		ret += i;
	}

	/* Wipe data just returned from memory */
	memzero_explicit(tmp, sizeof(tmp));

	return ret;
}

G
Greg Price 已提交
1406 1407 1408 1409 1410 1411 1412 1413 1414
/*
 * This function extracts randomness from the "entropy pool", and
 * returns it in a buffer.
 *
 * The min parameter specifies the minimum amount we can pull before
 * failing to avoid races that defeat catastrophic reseeding while the
 * reserved parameter indicates how much entropy we must leave in the
 * pool after each pull to avoid starving other readers.
 */
1415
static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1416
				 size_t nbytes, int min, int reserved)
L
Linus Torvalds 已提交
1417 1418
{
	__u8 tmp[EXTRACT_SIZE];
1419
	unsigned long flags;
L
Linus Torvalds 已提交
1420

1421
	/* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1422 1423 1424
	if (fips_enabled) {
		spin_lock_irqsave(&r->lock, flags);
		if (!r->last_data_init) {
1425
			r->last_data_init = 1;
1426 1427
			spin_unlock_irqrestore(&r->lock, flags);
			trace_extract_entropy(r->name, EXTRACT_SIZE,
1428
					      ENTROPY_BITS(r), _RET_IP_);
1429 1430 1431 1432 1433 1434 1435
			xfer_secondary_pool(r, EXTRACT_SIZE);
			extract_buf(r, tmp);
			spin_lock_irqsave(&r->lock, flags);
			memcpy(r->last_data, tmp, EXTRACT_SIZE);
		}
		spin_unlock_irqrestore(&r->lock, flags);
	}
1436

1437
	trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
L
Linus Torvalds 已提交
1438 1439 1440
	xfer_secondary_pool(r, nbytes);
	nbytes = account(r, nbytes, min, reserved);

1441
	return _extract_entropy(r, buf, nbytes, fips_enabled);
L
Linus Torvalds 已提交
1442 1443
}

G
Greg Price 已提交
1444 1445 1446 1447
/*
 * This function extracts randomness from the "entropy pool", and
 * returns it in a userspace buffer.
 */
L
Linus Torvalds 已提交
1448 1449 1450 1451 1452
static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
				    size_t nbytes)
{
	ssize_t ret = 0, i;
	__u8 tmp[EXTRACT_SIZE];
1453
	int large_request = (nbytes > 256);
L
Linus Torvalds 已提交
1454

1455
	trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
L
Linus Torvalds 已提交
1456 1457 1458 1459
	xfer_secondary_pool(r, nbytes);
	nbytes = account(r, nbytes, 0, 0);

	while (nbytes) {
1460
		if (large_request && need_resched()) {
L
Linus Torvalds 已提交
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
			if (signal_pending(current)) {
				if (ret == 0)
					ret = -ERESTARTSYS;
				break;
			}
			schedule();
		}

		extract_buf(r, tmp);
		i = min_t(int, nbytes, EXTRACT_SIZE);
		if (copy_to_user(buf, tmp, i)) {
			ret = -EFAULT;
			break;
		}

		nbytes -= i;
		buf += i;
		ret += i;
	}

	/* Wipe data just returned from memory */
1482
	memzero_explicit(tmp, sizeof(tmp));
L
Linus Torvalds 已提交
1483 1484 1485 1486 1487 1488

	return ret;
}

/*
 * This function is the exported kernel interface.  It returns some
1489
 * number of good random numbers, suitable for key generation, seeding
1490 1491 1492
 * TCP sequence numbers, etc.  It does not rely on the hardware random
 * number generator.  For random bytes direct from the hardware RNG
 * (when available), use get_random_bytes_arch().
L
Linus Torvalds 已提交
1493 1494
 */
void get_random_bytes(void *buf, int nbytes)
1495
{
1496 1497
	__u8 tmp[CHACHA20_BLOCK_SIZE];

1498
#if DEBUG_RANDOM_BOOT > 0
1499
	if (!crng_ready())
1500
		printk(KERN_NOTICE "random: %pF get_random_bytes called "
1501
		       "with crng_init = %d\n", (void *) _RET_IP_, crng_init);
1502
#endif
1503
	trace_get_random_bytes(nbytes, _RET_IP_);
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513

	while (nbytes >= CHACHA20_BLOCK_SIZE) {
		extract_crng(buf);
		buf += CHACHA20_BLOCK_SIZE;
		nbytes -= CHACHA20_BLOCK_SIZE;
	}

	if (nbytes > 0) {
		extract_crng(tmp);
		memcpy(buf, tmp, nbytes);
1514 1515 1516 1517
		crng_backtrack_protect(tmp, nbytes);
	} else
		crng_backtrack_protect(tmp, CHACHA20_BLOCK_SIZE);
	memzero_explicit(tmp, sizeof(tmp));
1518 1519 1520
}
EXPORT_SYMBOL(get_random_bytes);

1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
/*
 * Add a callback function that will be invoked when the nonblocking
 * pool is initialised.
 *
 * returns: 0 if callback is successfully added
 *	    -EALREADY if pool is already initialised (callback not called)
 *	    -ENOENT if module for callback is not alive
 */
int add_random_ready_callback(struct random_ready_callback *rdy)
{
	struct module *owner;
	unsigned long flags;
	int err = -EALREADY;

1535
	if (crng_ready())
1536 1537 1538 1539 1540 1541 1542
		return err;

	owner = rdy->owner;
	if (!try_module_get(owner))
		return -ENOENT;

	spin_lock_irqsave(&random_ready_list_lock, flags);
1543
	if (crng_ready())
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
		goto out;

	owner = NULL;

	list_add(&rdy->list, &random_ready_list);
	err = 0;

out:
	spin_unlock_irqrestore(&random_ready_list_lock, flags);

	module_put(owner);

	return err;
}
EXPORT_SYMBOL(add_random_ready_callback);

/*
 * Delete a previously registered readiness callback function.
 */
void del_random_ready_callback(struct random_ready_callback *rdy)
{
	unsigned long flags;
	struct module *owner = NULL;

	spin_lock_irqsave(&random_ready_list_lock, flags);
	if (!list_empty(&rdy->list)) {
		list_del_init(&rdy->list);
		owner = rdy->owner;
	}
	spin_unlock_irqrestore(&random_ready_list_lock, flags);

	module_put(owner);
}
EXPORT_SYMBOL(del_random_ready_callback);

1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
/*
 * This function will use the architecture-specific hardware random
 * number generator if it is available.  The arch-specific hw RNG will
 * almost certainly be faster than what we can do in software, but it
 * is impossible to verify that it is implemented securely (as
 * opposed, to, say, the AES encryption of a sequence number using a
 * key known by the NSA).  So it's useful if we need the speed, but
 * only if we're willing to trust the hardware manufacturer not to
 * have put in a back door.
 */
void get_random_bytes_arch(void *buf, int nbytes)
L
Linus Torvalds 已提交
1590
{
1591 1592
	char *p = buf;

1593
	trace_get_random_bytes_arch(nbytes, _RET_IP_);
1594 1595 1596
	while (nbytes) {
		unsigned long v;
		int chunk = min(nbytes, (int)sizeof(unsigned long));
1597

1598 1599 1600
		if (!arch_get_random_long(&v))
			break;
		
L
Luck, Tony 已提交
1601
		memcpy(p, &v, chunk);
1602 1603 1604 1605
		p += chunk;
		nbytes -= chunk;
	}

1606
	if (nbytes)
1607
		get_random_bytes(p, nbytes);
L
Linus Torvalds 已提交
1608
}
1609 1610
EXPORT_SYMBOL(get_random_bytes_arch);

L
Linus Torvalds 已提交
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622

/*
 * init_std_data - initialize pool with system data
 *
 * @r: pool to initialize
 *
 * This function clears the pool's entropy count and mixes some system
 * data into the pool to prepare it for use. The pool is not cleared
 * as that can only decrease the entropy in the pool.
 */
static void init_std_data(struct entropy_store *r)
{
1623
	int i;
1624 1625
	ktime_t now = ktime_get_real();
	unsigned long rv;
L
Linus Torvalds 已提交
1626

1627
	r->last_pulled = jiffies;
1628
	mix_pool_bytes(r, &now, sizeof(now));
1629
	for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1630 1631
		if (!arch_get_random_seed_long(&rv) &&
		    !arch_get_random_long(&rv))
1632
			rv = random_get_entropy();
1633
		mix_pool_bytes(r, &rv, sizeof(rv));
1634
	}
1635
	mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
L
Linus Torvalds 已提交
1636 1637
}

1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
/*
 * Note that setup_arch() may call add_device_randomness()
 * long before we get here. This allows seeding of the pools
 * with some platform dependent data very early in the boot
 * process. But it limits our options here. We must use
 * statically allocated structures that already have all
 * initializations complete at compile time. We should also
 * take care not to overwrite the precious per platform data
 * we were given.
 */
M
Matt Mackall 已提交
1648
static int rand_initialize(void)
L
Linus Torvalds 已提交
1649
{
1650 1651 1652 1653 1654 1655
#ifdef CONFIG_NUMA
	int i;
	struct crng_state *crng;
	struct crng_state **pool;
#endif

L
Linus Torvalds 已提交
1656 1657
	init_std_data(&input_pool);
	init_std_data(&blocking_pool);
1658
	crng_initialize(&primary_crng);
1659 1660

#ifdef CONFIG_NUMA
1661
	pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
1662
	for_each_online_node(i) {
1663 1664 1665 1666 1667 1668 1669 1670 1671
		crng = kmalloc_node(sizeof(struct crng_state),
				    GFP_KERNEL | __GFP_NOFAIL, i);
		spin_lock_init(&crng->lock);
		crng_initialize(crng);
		pool[i] = crng;
	}
	mb();
	crng_node_pool = pool;
#endif
L
Linus Torvalds 已提交
1672 1673
	return 0;
}
1674
early_initcall(rand_initialize);
L
Linus Torvalds 已提交
1675

1676
#ifdef CONFIG_BLOCK
L
Linus Torvalds 已提交
1677 1678 1679 1680 1681
void rand_initialize_disk(struct gendisk *disk)
{
	struct timer_rand_state *state;

	/*
1682
	 * If kzalloc returns null, we just won't use that entropy
L
Linus Torvalds 已提交
1683 1684
	 * source.
	 */
1685
	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1686 1687
	if (state) {
		state->last_time = INITIAL_JIFFIES;
L
Linus Torvalds 已提交
1688
		disk->random = state;
1689
	}
L
Linus Torvalds 已提交
1690
}
1691
#endif
L
Linus Torvalds 已提交
1692 1693

static ssize_t
1694
_random_read(int nonblock, char __user *buf, size_t nbytes)
L
Linus Torvalds 已提交
1695
{
1696
	ssize_t n;
L
Linus Torvalds 已提交
1697 1698 1699 1700

	if (nbytes == 0)
		return 0;

1701 1702 1703 1704 1705
	nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
	while (1) {
		n = extract_entropy_user(&blocking_pool, buf, nbytes);
		if (n < 0)
			return n;
1706 1707 1708
		trace_random_read(n*8, (nbytes-n)*8,
				  ENTROPY_BITS(&blocking_pool),
				  ENTROPY_BITS(&input_pool));
1709 1710
		if (n > 0)
			return n;
1711

1712
		/* Pool is (near) empty.  Maybe wait and retry. */
1713
		if (nonblock)
1714 1715 1716 1717
			return -EAGAIN;

		wait_event_interruptible(random_read_wait,
			ENTROPY_BITS(&input_pool) >=
1718
			random_read_wakeup_bits);
1719 1720
		if (signal_pending(current))
			return -ERESTARTSYS;
L
Linus Torvalds 已提交
1721 1722 1723
	}
}

1724 1725 1726 1727 1728 1729
static ssize_t
random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
{
	return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
}

L
Linus Torvalds 已提交
1730
static ssize_t
1731
urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
L
Linus Torvalds 已提交
1732
{
1733
	unsigned long flags;
1734
	static int maxwarn = 10;
1735 1736
	int ret;

1737
	if (!crng_ready() && maxwarn > 0) {
1738 1739
		maxwarn--;
		printk(KERN_NOTICE "random: %s: uninitialized urandom read "
1740 1741 1742 1743 1744
		       "(%zd bytes read)\n",
		       current->comm, nbytes);
		spin_lock_irqsave(&primary_crng.lock, flags);
		crng_init_cnt = 0;
		spin_unlock_irqrestore(&primary_crng.lock, flags);
1745
	}
1746
	nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
1747 1748
	ret = extract_crng_user(buf, nbytes);
	trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
1749
	return ret;
L
Linus Torvalds 已提交
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
}

static unsigned int
random_poll(struct file *file, poll_table * wait)
{
	unsigned int mask;

	poll_wait(file, &random_read_wait, wait);
	poll_wait(file, &random_write_wait, wait);
	mask = 0;
1760
	if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
L
Linus Torvalds 已提交
1761
		mask |= POLLIN | POLLRDNORM;
1762
	if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
L
Linus Torvalds 已提交
1763 1764 1765 1766
		mask |= POLLOUT | POLLWRNORM;
	return mask;
}

1767 1768
static int
write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
L
Linus Torvalds 已提交
1769 1770 1771 1772 1773
{
	size_t bytes;
	__u32 buf[16];
	const char __user *p = buffer;

1774 1775 1776 1777
	while (count > 0) {
		bytes = min(count, sizeof(buf));
		if (copy_from_user(&buf, p, bytes))
			return -EFAULT;
L
Linus Torvalds 已提交
1778

1779
		count -= bytes;
L
Linus Torvalds 已提交
1780 1781
		p += bytes;

1782
		mix_pool_bytes(r, buf, bytes);
1783
		cond_resched();
L
Linus Torvalds 已提交
1784
	}
1785 1786 1787 1788

	return 0;
}

1789 1790
static ssize_t random_write(struct file *file, const char __user *buffer,
			    size_t count, loff_t *ppos)
1791 1792 1793
{
	size_t ret;

1794
	ret = write_pool(&input_pool, buffer, count);
1795 1796 1797 1798
	if (ret)
		return ret;

	return (ssize_t)count;
L
Linus Torvalds 已提交
1799 1800
}

M
Matt Mackall 已提交
1801
static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
L
Linus Torvalds 已提交
1802 1803 1804 1805 1806 1807 1808
{
	int size, ent_count;
	int __user *p = (int __user *)arg;
	int retval;

	switch (cmd) {
	case RNDGETENTCNT:
M
Matt Mackall 已提交
1809
		/* inherently racy, no point locking */
1810 1811
		ent_count = ENTROPY_BITS(&input_pool);
		if (put_user(ent_count, p))
L
Linus Torvalds 已提交
1812 1813 1814 1815 1816 1817 1818
			return -EFAULT;
		return 0;
	case RNDADDTOENTCNT:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p))
			return -EFAULT;
1819
		return credit_entropy_bits_safe(&input_pool, ent_count);
L
Linus Torvalds 已提交
1820 1821 1822 1823 1824 1825 1826 1827 1828
	case RNDADDENTROPY:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p++))
			return -EFAULT;
		if (ent_count < 0)
			return -EINVAL;
		if (get_user(size, p++))
			return -EFAULT;
1829 1830
		retval = write_pool(&input_pool, (const char __user *)p,
				    size);
L
Linus Torvalds 已提交
1831 1832
		if (retval < 0)
			return retval;
1833
		return credit_entropy_bits_safe(&input_pool, ent_count);
L
Linus Torvalds 已提交
1834 1835
	case RNDZAPENTCNT:
	case RNDCLEARPOOL:
1836 1837 1838 1839
		/*
		 * Clear the entropy pool counters. We no longer clear
		 * the entropy pool, as that's silly.
		 */
L
Linus Torvalds 已提交
1840 1841
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
1842 1843
		input_pool.entropy_count = 0;
		blocking_pool.entropy_count = 0;
L
Linus Torvalds 已提交
1844 1845 1846 1847 1848 1849
		return 0;
	default:
		return -EINVAL;
	}
}

1850 1851 1852 1853 1854
static int random_fasync(int fd, struct file *filp, int on)
{
	return fasync_helper(fd, filp, on, &fasync);
}

1855
const struct file_operations random_fops = {
L
Linus Torvalds 已提交
1856 1857 1858
	.read  = random_read,
	.write = random_write,
	.poll  = random_poll,
M
Matt Mackall 已提交
1859
	.unlocked_ioctl = random_ioctl,
1860
	.fasync = random_fasync,
1861
	.llseek = noop_llseek,
L
Linus Torvalds 已提交
1862 1863
};

1864
const struct file_operations urandom_fops = {
L
Linus Torvalds 已提交
1865 1866
	.read  = urandom_read,
	.write = random_write,
M
Matt Mackall 已提交
1867
	.unlocked_ioctl = random_ioctl,
1868
	.fasync = random_fasync,
1869
	.llseek = noop_llseek,
L
Linus Torvalds 已提交
1870 1871
};

1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
		unsigned int, flags)
{
	if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
		return -EINVAL;

	if (count > INT_MAX)
		count = INT_MAX;

	if (flags & GRND_RANDOM)
		return _random_read(flags & GRND_NONBLOCK, buf, count);

1884
	if (!crng_ready()) {
1885 1886
		if (flags & GRND_NONBLOCK)
			return -EAGAIN;
1887
		crng_wait_ready();
1888 1889 1890 1891 1892 1893
		if (signal_pending(current))
			return -ERESTARTSYS;
	}
	return urandom_read(NULL, buf, count, NULL);
}

L
Linus Torvalds 已提交
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
/********************************************************************
 *
 * Sysctl interface
 *
 ********************************************************************/

#ifdef CONFIG_SYSCTL

#include <linux/sysctl.h>

static int min_read_thresh = 8, min_write_thresh;
1905
static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
L
Linus Torvalds 已提交
1906 1907 1908 1909
static int max_write_thresh = INPUT_POOL_WORDS * 32;
static char sysctl_bootid[16];

/*
G
Greg Price 已提交
1910
 * This function is used to return both the bootid UUID, and random
L
Linus Torvalds 已提交
1911 1912 1913
 * UUID.  The difference is in whether table->data is NULL; if it is,
 * then a new UUID is generated and returned to the user.
 *
G
Greg Price 已提交
1914 1915 1916
 * If the user accesses this via the proc interface, the UUID will be
 * returned as an ASCII string in the standard UUID format; if via the
 * sysctl system call, as 16 bytes of binary data.
L
Linus Torvalds 已提交
1917
 */
1918
static int proc_do_uuid(struct ctl_table *table, int write,
L
Linus Torvalds 已提交
1919 1920
			void __user *buffer, size_t *lenp, loff_t *ppos)
{
1921
	struct ctl_table fake_table;
L
Linus Torvalds 已提交
1922 1923 1924 1925 1926 1927
	unsigned char buf[64], tmp_uuid[16], *uuid;

	uuid = table->data;
	if (!uuid) {
		uuid = tmp_uuid;
		generate_random_uuid(uuid);
1928 1929 1930 1931 1932 1933 1934 1935
	} else {
		static DEFINE_SPINLOCK(bootid_spinlock);

		spin_lock(&bootid_spinlock);
		if (!uuid[8])
			generate_random_uuid(uuid);
		spin_unlock(&bootid_spinlock);
	}
L
Linus Torvalds 已提交
1936

J
Joe Perches 已提交
1937 1938
	sprintf(buf, "%pU", uuid);

L
Linus Torvalds 已提交
1939 1940 1941
	fake_table.data = buf;
	fake_table.maxlen = sizeof(buf);

1942
	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
L
Linus Torvalds 已提交
1943 1944
}

1945 1946 1947
/*
 * Return entropy available scaled to integral bits
 */
1948
static int proc_do_entropy(struct ctl_table *table, int write,
1949 1950
			   void __user *buffer, size_t *lenp, loff_t *ppos)
{
1951
	struct ctl_table fake_table;
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
	int entropy_count;

	entropy_count = *(int *)table->data >> ENTROPY_SHIFT;

	fake_table.data = &entropy_count;
	fake_table.maxlen = sizeof(entropy_count);

	return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
}

L
Linus Torvalds 已提交
1962
static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1963 1964
extern struct ctl_table random_table[];
struct ctl_table random_table[] = {
L
Linus Torvalds 已提交
1965 1966 1967 1968 1969
	{
		.procname	= "poolsize",
		.data		= &sysctl_poolsize,
		.maxlen		= sizeof(int),
		.mode		= 0444,
1970
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1971 1972 1973 1974 1975
	},
	{
		.procname	= "entropy_avail",
		.maxlen		= sizeof(int),
		.mode		= 0444,
1976
		.proc_handler	= proc_do_entropy,
L
Linus Torvalds 已提交
1977 1978 1979 1980
		.data		= &input_pool.entropy_count,
	},
	{
		.procname	= "read_wakeup_threshold",
1981
		.data		= &random_read_wakeup_bits,
L
Linus Torvalds 已提交
1982 1983
		.maxlen		= sizeof(int),
		.mode		= 0644,
1984
		.proc_handler	= proc_dointvec_minmax,
L
Linus Torvalds 已提交
1985 1986 1987 1988 1989
		.extra1		= &min_read_thresh,
		.extra2		= &max_read_thresh,
	},
	{
		.procname	= "write_wakeup_threshold",
1990
		.data		= &random_write_wakeup_bits,
L
Linus Torvalds 已提交
1991 1992
		.maxlen		= sizeof(int),
		.mode		= 0644,
1993
		.proc_handler	= proc_dointvec_minmax,
L
Linus Torvalds 已提交
1994 1995 1996
		.extra1		= &min_write_thresh,
		.extra2		= &max_write_thresh,
	},
1997 1998 1999 2000 2001 2002 2003
	{
		.procname	= "urandom_min_reseed_secs",
		.data		= &random_min_urandom_seed,
		.maxlen		= sizeof(int),
		.mode		= 0644,
		.proc_handler	= proc_dointvec,
	},
L
Linus Torvalds 已提交
2004 2005 2006 2007 2008
	{
		.procname	= "boot_id",
		.data		= &sysctl_bootid,
		.maxlen		= 16,
		.mode		= 0444,
2009
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
2010 2011 2012 2013 2014
	},
	{
		.procname	= "uuid",
		.maxlen		= 16,
		.mode		= 0444,
2015
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
2016
	},
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
#ifdef ADD_INTERRUPT_BENCH
	{
		.procname	= "add_interrupt_avg_cycles",
		.data		= &avg_cycles,
		.maxlen		= sizeof(avg_cycles),
		.mode		= 0444,
		.proc_handler	= proc_doulongvec_minmax,
	},
	{
		.procname	= "add_interrupt_avg_deviation",
		.data		= &avg_deviation,
		.maxlen		= sizeof(avg_deviation),
		.mode		= 0444,
		.proc_handler	= proc_doulongvec_minmax,
	},
#endif
2033
	{ }
L
Linus Torvalds 已提交
2034 2035 2036
};
#endif 	/* CONFIG_SYSCTL */

2037
static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
L
Linus Torvalds 已提交
2038

2039
int random_int_secret_init(void)
L
Linus Torvalds 已提交
2040
{
2041
	get_random_bytes(random_int_secret, sizeof(random_int_secret));
L
Linus Torvalds 已提交
2042 2043 2044
	return 0;
}

2045 2046 2047
static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash)
		__aligned(sizeof(unsigned long));

L
Linus Torvalds 已提交
2048 2049 2050 2051 2052 2053 2054 2055
/*
 * Get a random word for internal kernel use only. Similar to urandom but
 * with the goal of minimal entropy pool depletion. As a result, the random
 * value is not cryptographically secure but for several uses the cost of
 * depleting entropy is too high
 */
unsigned int get_random_int(void)
{
2056
	__u32 *hash;
2057
	unsigned int ret;
2058

2059 2060 2061 2062
	if (arch_get_random_int(&ret))
		return ret;

	hash = get_cpu_var(get_random_int_hash);
2063

2064
	hash[0] += current->pid + jiffies + random_get_entropy();
2065 2066
	md5_transform(hash, random_int_secret);
	ret = hash[0];
2067 2068 2069
	put_cpu_var(get_random_int_hash);

	return ret;
L
Linus Torvalds 已提交
2070
}
2071
EXPORT_SYMBOL(get_random_int);
L
Linus Torvalds 已提交
2072

2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
/*
 * Same as get_random_int(), but returns unsigned long.
 */
unsigned long get_random_long(void)
{
	__u32 *hash;
	unsigned long ret;

	if (arch_get_random_long(&ret))
		return ret;

	hash = get_cpu_var(get_random_int_hash);

	hash[0] += current->pid + jiffies + random_get_entropy();
	md5_transform(hash, random_int_secret);
	ret = *(unsigned long *)hash;
	put_cpu_var(get_random_int_hash);

	return ret;
}
EXPORT_SYMBOL(get_random_long);

2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
/**
 * randomize_page - Generate a random, page aligned address
 * @start:	The smallest acceptable address the caller will take.
 * @range:	The size of the area, starting at @start, within which the
 *		random address must fall.
 *
 * If @start + @range would overflow, @range is capped.
 *
 * NOTE: Historical use of randomize_range, which this replaces, presumed that
 * @start was already page aligned.  We now align it regardless.
 *
 * Return: A page aligned address within [start, start + range).  On error,
 * @start is returned.
 */
unsigned long
randomize_page(unsigned long start, unsigned long range)
{
	if (!PAGE_ALIGNED(start)) {
		range -= PAGE_ALIGN(start) - start;
		start = PAGE_ALIGN(start);
	}

	if (start > ULONG_MAX - range)
		range = ULONG_MAX - start;

	range >>= PAGE_SHIFT;

	if (range == 0)
		return start;

	return start + (get_random_long() % range << PAGE_SHIFT);
}

2128 2129 2130 2131 2132 2133 2134 2135 2136
/* Interface for in-kernel drivers of true hardware RNGs.
 * Those devices may produce endless random bits and will be throttled
 * when our pool is full.
 */
void add_hwgenerator_randomness(const char *buffer, size_t count,
				size_t entropy)
{
	struct entropy_store *poolp = &input_pool;

2137 2138 2139
	if (!crng_ready()) {
		crng_fast_load(buffer, count);
		return;
2140
	}
2141 2142 2143 2144 2145 2146 2147

	/* Suspend writing if we're above the trickle threshold.
	 * We'll be woken up again once below random_write_wakeup_thresh,
	 * or when the calling thread is about to terminate.
	 */
	wait_event_interruptible(random_write_wait, kthread_should_stop() ||
			ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
2148 2149 2150 2151
	mix_pool_bytes(poolp, buffer, count);
	credit_entropy_bits(poolp, entropy);
}
EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);