random.c 48.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3
/*
 * random.c -- A strong random number generator
 *
4
 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
L
Linus Torvalds 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
 *
 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
 * rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, and the entire permission notice in its entirety,
 *    including the disclaimer of warranties.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. The name of the author may not be used to endorse or promote
 *    products derived from this software without specific prior
 *    written permission.
 *
 * ALTERNATIVELY, this product may be distributed under the terms of
 * the GNU General Public License, in which case the provisions of the GPL are
 * required INSTEAD OF the above restrictions.  (This clause is
 * necessary due to a potential bad interaction between the GPL and
 * the restrictions contained in a BSD-style copyright.)
 *
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
 * DAMAGE.
 */

/*
 * (now, with legal B.S. out of the way.....)
 *
 * This routine gathers environmental noise from device drivers, etc.,
 * and returns good random numbers, suitable for cryptographic use.
 * Besides the obvious cryptographic uses, these numbers are also good
 * for seeding TCP sequence numbers, and other places where it is
 * desirable to have numbers which are not only random, but hard to
 * predict by an attacker.
 *
 * Theory of operation
 * ===================
 *
 * Computers are very predictable devices.  Hence it is extremely hard
 * to produce truly random numbers on a computer --- as opposed to
 * pseudo-random numbers, which can easily generated by using a
 * algorithm.  Unfortunately, it is very easy for attackers to guess
 * the sequence of pseudo-random number generators, and for some
 * applications this is not acceptable.  So instead, we must try to
 * gather "environmental noise" from the computer's environment, which
 * must be hard for outside attackers to observe, and use that to
 * generate random numbers.  In a Unix environment, this is best done
 * from inside the kernel.
 *
 * Sources of randomness from the environment include inter-keyboard
 * timings, inter-interrupt timings from some interrupts, and other
 * events which are both (a) non-deterministic and (b) hard for an
 * outside observer to measure.  Randomness from these sources are
 * added to an "entropy pool", which is mixed using a CRC-like function.
 * This is not cryptographically strong, but it is adequate assuming
 * the randomness is not chosen maliciously, and it is fast enough that
 * the overhead of doing it on every interrupt is very reasonable.
 * As random bytes are mixed into the entropy pool, the routines keep
 * an *estimate* of how many bits of randomness have been stored into
 * the random number generator's internal state.
 *
 * When random bytes are desired, they are obtained by taking the SHA
 * hash of the contents of the "entropy pool".  The SHA hash avoids
 * exposing the internal state of the entropy pool.  It is believed to
 * be computationally infeasible to derive any useful information
 * about the input of SHA from its output.  Even if it is possible to
 * analyze SHA in some clever way, as long as the amount of data
 * returned from the generator is less than the inherent entropy in
 * the pool, the output data is totally unpredictable.  For this
 * reason, the routine decreases its internal estimate of how many
 * bits of "true randomness" are contained in the entropy pool as it
 * outputs random numbers.
 *
 * If this estimate goes to zero, the routine can still generate
 * random numbers; however, an attacker may (at least in theory) be
 * able to infer the future output of the generator from prior
 * outputs.  This requires successful cryptanalysis of SHA, which is
 * not believed to be feasible, but there is a remote possibility.
 * Nonetheless, these numbers should be useful for the vast majority
 * of purposes.
 *
 * Exported interfaces ---- output
 * ===============================
 *
 * There are three exported interfaces; the first is one designed to
 * be used from within the kernel:
 *
 * 	void get_random_bytes(void *buf, int nbytes);
 *
 * This interface will return the requested number of random bytes,
 * and place it in the requested buffer.
 *
 * The two other interfaces are two character devices /dev/random and
 * /dev/urandom.  /dev/random is suitable for use when very high
 * quality randomness is desired (for example, for key generation or
 * one-time pads), as it will only return a maximum of the number of
 * bits of randomness (as estimated by the random number generator)
 * contained in the entropy pool.
 *
 * The /dev/urandom device does not have this limit, and will return
 * as many bytes as are requested.  As more and more random bytes are
 * requested without giving time for the entropy pool to recharge,
 * this will result in random numbers that are merely cryptographically
 * strong.  For many applications, however, this is acceptable.
 *
 * Exported interfaces ---- input
 * ==============================
 *
 * The current exported interfaces for gathering environmental noise
 * from the devices are:
 *
 * 	void add_input_randomness(unsigned int type, unsigned int code,
 *                                unsigned int value);
 * 	void add_interrupt_randomness(int irq);
 *
 * add_input_randomness() uses the input layer interrupt timing, as well as
 * the event type information from the hardware.
 *
 * add_interrupt_randomness() uses the inter-interrupt timing as random
 * inputs to the entropy pool.  Note that not all interrupts are good
 * sources of randomness!  For example, the timer interrupts is not a
 * good choice, because the periodicity of the interrupts is too
 * regular, and hence predictable to an attacker.  Disk interrupts are
 * a better measure, since the timing of the disk interrupts are more
 * unpredictable.
 *
 * All of these routines try to estimate how many bits of randomness a
 * particular randomness source.  They do this by keeping track of the
 * first and second order deltas of the event timings.
 *
 * Ensuring unpredictability at system startup
 * ============================================
 *
 * When any operating system starts up, it will go through a sequence
 * of actions that are fairly predictable by an adversary, especially
 * if the start-up does not involve interaction with a human operator.
 * This reduces the actual number of bits of unpredictability in the
 * entropy pool below the value in entropy_count.  In order to
 * counteract this effect, it helps to carry information in the
 * entropy pool across shut-downs and start-ups.  To do this, put the
 * following lines an appropriate script which is run during the boot
 * sequence:
 *
 *	echo "Initializing random number generator..."
 *	random_seed=/var/run/random-seed
 *	# Carry a random seed from start-up to start-up
 *	# Load and then save the whole entropy pool
 *	if [ -f $random_seed ]; then
 *		cat $random_seed >/dev/urandom
 *	else
 *		touch $random_seed
 *	fi
 *	chmod 600 $random_seed
 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 *
 * and the following lines in an appropriate script which is run as
 * the system is shutdown:
 *
 *	# Carry a random seed from shut-down to start-up
 *	# Save the whole entropy pool
 *	echo "Saving random seed..."
 *	random_seed=/var/run/random-seed
 *	touch $random_seed
 *	chmod 600 $random_seed
 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 *
 * For example, on most modern systems using the System V init
 * scripts, such code fragments would be found in
 * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
 *
 * Effectively, these commands cause the contents of the entropy pool
 * to be saved at shut-down time and reloaded into the entropy pool at
 * start-up.  (The 'dd' in the addition to the bootup script is to
 * make sure that /etc/random-seed is different for every start-up,
 * even if the system crashes without executing rc.0.)  Even with
 * complete knowledge of the start-up activities, predicting the state
 * of the entropy pool requires knowledge of the previous history of
 * the system.
 *
 * Configuring the /dev/random driver under Linux
 * ==============================================
 *
 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
 * the /dev/mem major number (#1).  So if your system does not have
 * /dev/random and /dev/urandom created already, they can be created
 * by using the commands:
 *
 * 	mknod /dev/random c 1 8
 * 	mknod /dev/urandom c 1 9
 *
 * Acknowledgements:
 * =================
 *
 * Ideas for constructing this random number generator were derived
 * from Pretty Good Privacy's random number generator, and from private
 * discussions with Phil Karn.  Colin Plumb provided a faster random
 * number generator, which speed up the mixing function of the entropy
 * pool, taken from PGPfone.  Dale Worley has also contributed many
 * useful ideas and suggestions to improve this driver.
 *
 * Any flaws in the design are solely my responsibility, and should
 * not be attributed to the Phil, Colin, or any of authors of PGP.
 *
 * Further background information on this topic may be obtained from
 * RFC 1750, "Randomness Recommendations for Security", by Donald
 * Eastlake, Steve Crocker, and Jeff Schiller.
 */

#include <linux/utsname.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/genhd.h>
#include <linux/interrupt.h>
239
#include <linux/mm.h>
L
Linus Torvalds 已提交
240 241 242
#include <linux/spinlock.h>
#include <linux/percpu.h>
#include <linux/cryptohash.h>
243
#include <linux/fips.h>
L
Linus Torvalds 已提交
244

245 246 247 248
#ifdef CONFIG_GENERIC_HARDIRQS
# include <linux/irq.h>
#endif

L
Linus Torvalds 已提交
249 250 251 252 253 254 255 256 257 258 259
#include <asm/processor.h>
#include <asm/uaccess.h>
#include <asm/irq.h>
#include <asm/io.h>

/*
 * Configuration information
 */
#define INPUT_POOL_WORDS 128
#define OUTPUT_POOL_WORDS 32
#define SEC_XFER_SIZE 512
M
Matt Mackall 已提交
260
#define EXTRACT_SIZE 10
L
Linus Torvalds 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279

/*
 * The minimum number of bits of entropy before we wake up a read on
 * /dev/random.  Should be enough to do a significant reseed.
 */
static int random_read_wakeup_thresh = 64;

/*
 * If the entropy count falls under this number of bits, then we
 * should wake up processes which are selecting or polling on write
 * access to /dev/random.
 */
static int random_write_wakeup_thresh = 128;

/*
 * When the input pool goes over trickle_thresh, start dropping most
 * samples to avoid wasting CPU time and reduce lock contention.
 */

280
static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
L
Linus Torvalds 已提交
281

282
static DEFINE_PER_CPU(int, trickle_count);
L
Linus Torvalds 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379

/*
 * A pool of size .poolwords is stirred with a primitive polynomial
 * of degree .poolwords over GF(2).  The taps for various sizes are
 * defined below.  They are chosen to be evenly spaced (minimum RMS
 * distance from evenly spaced; the numbers in the comments are a
 * scaled squared error sum) except for the last tap, which is 1 to
 * get the twisting happening as fast as possible.
 */
static struct poolinfo {
	int poolwords;
	int tap1, tap2, tap3, tap4, tap5;
} poolinfo_table[] = {
	/* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
	{ 128,	103,	76,	51,	25,	1 },
	/* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
	{ 32,	26,	20,	14,	7,	1 },
#if 0
	/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
	{ 2048,	1638,	1231,	819,	411,	1 },

	/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
	{ 1024,	817,	615,	412,	204,	1 },

	/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
	{ 1024,	819,	616,	410,	207,	2 },

	/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
	{ 512,	411,	308,	208,	104,	1 },

	/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
	{ 512,	409,	307,	206,	102,	2 },
	/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
	{ 512,	409,	309,	205,	103,	2 },

	/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
	{ 256,	205,	155,	101,	52,	1 },

	/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
	{ 128,	103,	78,	51,	27,	2 },

	/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
	{ 64,	52,	39,	26,	14,	1 },
#endif
};

#define POOLBITS	poolwords*32
#define POOLBYTES	poolwords*4

/*
 * For the purposes of better mixing, we use the CRC-32 polynomial as
 * well to make a twisted Generalized Feedback Shift Reigster
 *
 * (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR generators.  ACM
 * Transactions on Modeling and Computer Simulation 2(3):179-194.
 * Also see M. Matsumoto & Y. Kurita, 1994.  Twisted GFSR generators
 * II.  ACM Transactions on Mdeling and Computer Simulation 4:254-266)
 *
 * Thanks to Colin Plumb for suggesting this.
 *
 * We have not analyzed the resultant polynomial to prove it primitive;
 * in fact it almost certainly isn't.  Nonetheless, the irreducible factors
 * of a random large-degree polynomial over GF(2) are more than large enough
 * that periodicity is not a concern.
 *
 * The input hash is much less sensitive than the output hash.  All
 * that we want of it is that it be a good non-cryptographic hash;
 * i.e. it not produce collisions when fed "random" data of the sort
 * we expect to see.  As long as the pool state differs for different
 * inputs, we have preserved the input entropy and done a good job.
 * The fact that an intelligent attacker can construct inputs that
 * will produce controlled alterations to the pool's state is not
 * important because we don't consider such inputs to contribute any
 * randomness.  The only property we need with respect to them is that
 * the attacker can't increase his/her knowledge of the pool's state.
 * Since all additions are reversible (knowing the final state and the
 * input, you can reconstruct the initial state), if an attacker has
 * any uncertainty about the initial state, he/she can only shuffle
 * that uncertainty about, but never cause any collisions (which would
 * decrease the uncertainty).
 *
 * The chosen system lets the state of the pool be (essentially) the input
 * modulo the generator polymnomial.  Now, for random primitive polynomials,
 * this is a universal class of hash functions, meaning that the chance
 * of a collision is limited by the attacker's knowledge of the generator
 * polynomail, so if it is chosen at random, an attacker can never force
 * a collision.  Here, we use a fixed polynomial, but we *can* assume that
 * ###--> it is unknown to the processes generating the input entropy. <-###
 * Because of this important property, this is a good, collision-resistant
 * hash; hash collisions will occur no more often than chance.
 */

/*
 * Static global variables
 */
static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
380
static struct fasync_struct *fasync;
L
Linus Torvalds 已提交
381 382

#if 0
383
static int debug;
L
Linus Torvalds 已提交
384
module_param(debug, bool, 0644);
385 386 387 388 389 390 391 392
#define DEBUG_ENT(fmt, arg...) do { \
	if (debug) \
		printk(KERN_DEBUG "random %04d %04d %04d: " \
		fmt,\
		input_pool.entropy_count,\
		blocking_pool.entropy_count,\
		nonblocking_pool.entropy_count,\
		## arg); } while (0)
L
Linus Torvalds 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405
#else
#define DEBUG_ENT(fmt, arg...) do {} while (0)
#endif

/**********************************************************************
 *
 * OS independent entropy store.   Here are the functions which handle
 * storing entropy in an entropy pool.
 *
 **********************************************************************/

struct entropy_store;
struct entropy_store {
406
	/* read-only data: */
L
Linus Torvalds 已提交
407 408 409 410
	struct poolinfo *poolinfo;
	__u32 *pool;
	const char *name;
	struct entropy_store *pull;
411
	int limit;
L
Linus Torvalds 已提交
412 413

	/* read-write data: */
414
	spinlock_t lock;
L
Linus Torvalds 已提交
415
	unsigned add_ptr;
416
	int entropy_count;
L
Linus Torvalds 已提交
417
	int input_rotate;
M
Matt Mackall 已提交
418
	__u8 last_data[EXTRACT_SIZE];
L
Linus Torvalds 已提交
419 420 421 422 423 424 425 426 427 428
};

static __u32 input_pool_data[INPUT_POOL_WORDS];
static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];

static struct entropy_store input_pool = {
	.poolinfo = &poolinfo_table[0],
	.name = "input",
	.limit = 1,
429
	.lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock),
L
Linus Torvalds 已提交
430 431 432 433 434 435 436 437
	.pool = input_pool_data
};

static struct entropy_store blocking_pool = {
	.poolinfo = &poolinfo_table[1],
	.name = "blocking",
	.limit = 1,
	.pull = &input_pool,
438
	.lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock),
L
Linus Torvalds 已提交
439 440 441 442 443 444 445
	.pool = blocking_pool_data
};

static struct entropy_store nonblocking_pool = {
	.poolinfo = &poolinfo_table[1],
	.name = "nonblocking",
	.pull = &input_pool,
446
	.lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock),
L
Linus Torvalds 已提交
447 448 449 450
	.pool = nonblocking_pool_data
};

/*
451
 * This function adds bytes into the entropy "pool".  It does not
L
Linus Torvalds 已提交
452
 * update the entropy estimate.  The caller should call
453
 * credit_entropy_bits if this is appropriate.
L
Linus Torvalds 已提交
454 455 456 457 458 459
 *
 * The pool is stirred with a primitive polynomial of the appropriate
 * degree, and then twisted.  We twist by three bits at a time because
 * it's cheap to do so and helps slightly in the expected case where
 * the entropy is concentrated in the low-order bits.
 */
460 461
static void mix_pool_bytes_extract(struct entropy_store *r, const void *in,
				   int nbytes, __u8 out[64])
L
Linus Torvalds 已提交
462 463 464 465
{
	static __u32 const twist_table[8] = {
		0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
		0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
M
Matt Mackall 已提交
466
	unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
467
	int input_rotate;
L
Linus Torvalds 已提交
468
	int wordmask = r->poolinfo->poolwords - 1;
469
	const char *bytes = in;
470
	__u32 w;
L
Linus Torvalds 已提交
471 472 473 474 475 476 477 478 479 480 481
	unsigned long flags;

	/* Taps are constant, so we can load them without holding r->lock.  */
	tap1 = r->poolinfo->tap1;
	tap2 = r->poolinfo->tap2;
	tap3 = r->poolinfo->tap3;
	tap4 = r->poolinfo->tap4;
	tap5 = r->poolinfo->tap5;

	spin_lock_irqsave(&r->lock, flags);
	input_rotate = r->input_rotate;
M
Matt Mackall 已提交
482
	i = r->add_ptr;
L
Linus Torvalds 已提交
483

484 485 486
	/* mix one byte at a time to simplify size handling and churn faster */
	while (nbytes--) {
		w = rol32(*bytes++, input_rotate & 31);
M
Matt Mackall 已提交
487
		i = (i - 1) & wordmask;
L
Linus Torvalds 已提交
488 489

		/* XOR in the various taps */
M
Matt Mackall 已提交
490
		w ^= r->pool[i];
L
Linus Torvalds 已提交
491 492 493 494 495
		w ^= r->pool[(i + tap1) & wordmask];
		w ^= r->pool[(i + tap2) & wordmask];
		w ^= r->pool[(i + tap3) & wordmask];
		w ^= r->pool[(i + tap4) & wordmask];
		w ^= r->pool[(i + tap5) & wordmask];
M
Matt Mackall 已提交
496 497

		/* Mix the result back in with a twist */
L
Linus Torvalds 已提交
498
		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
499 500 501 502 503 504 505 506

		/*
		 * Normally, we add 7 bits of rotation to the pool.
		 * At the beginning of the pool, add an extra 7 bits
		 * rotation, so that successive passes spread the
		 * input bits across the pool evenly.
		 */
		input_rotate += i ? 7 : 14;
L
Linus Torvalds 已提交
507 508 509
	}

	r->input_rotate = input_rotate;
M
Matt Mackall 已提交
510
	r->add_ptr = i;
L
Linus Torvalds 已提交
511

M
Matt Mackall 已提交
512 513
	if (out)
		for (j = 0; j < 16; j++)
514
			((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
L
Linus Torvalds 已提交
515 516 517 518

	spin_unlock_irqrestore(&r->lock, flags);
}

519
static void mix_pool_bytes(struct entropy_store *r, const void *in, int bytes)
L
Linus Torvalds 已提交
520
{
521
       mix_pool_bytes_extract(r, in, bytes, NULL);
L
Linus Torvalds 已提交
522 523 524 525 526
}

/*
 * Credit (or debit) the entropy store with n bits of entropy
 */
527
static void credit_entropy_bits(struct entropy_store *r, int nbits)
L
Linus Torvalds 已提交
528 529
{
	unsigned long flags;
530
	int entropy_count;
L
Linus Torvalds 已提交
531

532 533 534
	if (!nbits)
		return;

L
Linus Torvalds 已提交
535 536
	spin_lock_irqsave(&r->lock, flags);

537
	DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name);
538 539 540
	entropy_count = r->entropy_count;
	entropy_count += nbits;
	if (entropy_count < 0) {
541
		DEBUG_ENT("negative entropy/overflow\n");
542 543 544 545
		entropy_count = 0;
	} else if (entropy_count > r->poolinfo->POOLBITS)
		entropy_count = r->poolinfo->POOLBITS;
	r->entropy_count = entropy_count;
L
Linus Torvalds 已提交
546

M
Matt Mackall 已提交
547
	/* should we wake readers? */
548
	if (r == &input_pool && entropy_count >= random_read_wakeup_thresh) {
M
Matt Mackall 已提交
549
		wake_up_interruptible(&random_read_wait);
550 551
		kill_fasync(&fasync, SIGIO, POLL_IN);
	}
L
Linus Torvalds 已提交
552 553 554 555 556 557 558 559 560 561 562 563
	spin_unlock_irqrestore(&r->lock, flags);
}

/*********************************************************************
 *
 * Entropy input management
 *
 *********************************************************************/

/* There is one of these per entropy source */
struct timer_rand_state {
	cycles_t last_time;
564
	long last_delta, last_delta2;
L
Linus Torvalds 已提交
565 566 567
	unsigned dont_count_entropy:1;
};

568
#ifndef CONFIG_GENERIC_HARDIRQS
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602

static struct timer_rand_state *irq_timer_state[NR_IRQS];

static struct timer_rand_state *get_timer_rand_state(unsigned int irq)
{
	return irq_timer_state[irq];
}

static void set_timer_rand_state(unsigned int irq,
				 struct timer_rand_state *state)
{
	irq_timer_state[irq] = state;
}

#else

static struct timer_rand_state *get_timer_rand_state(unsigned int irq)
{
	struct irq_desc *desc;

	desc = irq_to_desc(irq);

	return desc->timer_rand_state;
}

static void set_timer_rand_state(unsigned int irq,
				 struct timer_rand_state *state)
{
	struct irq_desc *desc;

	desc = irq_to_desc(irq);

	desc->timer_rand_state = state;
}
603
#endif
604 605 606

static struct timer_rand_state input_timer_state;

L
Linus Torvalds 已提交
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
/*
 * This function adds entropy to the entropy "pool" by using timing
 * delays.  It uses the timer_rand_state structure to make an estimate
 * of how many bits of entropy this call has added to the pool.
 *
 * The number "num" is also added to the pool - it should somehow describe
 * the type of event which just happened.  This is currently 0-255 for
 * keyboard scan codes, and 256 upwards for interrupts.
 *
 */
static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
{
	struct {
		cycles_t cycles;
		long jiffies;
		unsigned num;
	} sample;
	long delta, delta2, delta3;

	preempt_disable();
	/* if over the trickle threshold, use only 1 in 4096 samples */
	if (input_pool.entropy_count > trickle_thresh &&
629
	    ((__this_cpu_inc_return(trickle_count) - 1) & 0xfff))
L
Linus Torvalds 已提交
630 631 632 633 634
		goto out;

	sample.jiffies = jiffies;
	sample.cycles = get_cycles();
	sample.num = num;
635
	mix_pool_bytes(&input_pool, &sample, sizeof(sample));
L
Linus Torvalds 已提交
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668

	/*
	 * Calculate number of bits of randomness we probably added.
	 * We take into account the first, second and third-order deltas
	 * in order to make our estimate.
	 */

	if (!state->dont_count_entropy) {
		delta = sample.jiffies - state->last_time;
		state->last_time = sample.jiffies;

		delta2 = delta - state->last_delta;
		state->last_delta = delta;

		delta3 = delta2 - state->last_delta2;
		state->last_delta2 = delta2;

		if (delta < 0)
			delta = -delta;
		if (delta2 < 0)
			delta2 = -delta2;
		if (delta3 < 0)
			delta3 = -delta3;
		if (delta > delta2)
			delta = delta2;
		if (delta > delta3)
			delta = delta3;

		/*
		 * delta is now minimum absolute delta.
		 * Round down by 1 bit on general principles,
		 * and limit entropy entimate to 12 bits.
		 */
669 670
		credit_entropy_bits(&input_pool,
				    min_t(int, fls(delta>>1), 11));
L
Linus Torvalds 已提交
671 672 673 674 675
	}
out:
	preempt_enable();
}

676
void add_input_randomness(unsigned int type, unsigned int code,
L
Linus Torvalds 已提交
677 678 679 680 681 682 683 684 685 686 687 688 689
				 unsigned int value)
{
	static unsigned char last_value;

	/* ignore autorepeat and the like */
	if (value == last_value)
		return;

	DEBUG_ENT("input event\n");
	last_value = value;
	add_timer_randomness(&input_timer_state,
			     (type << 4) ^ code ^ (code >> 4) ^ value);
}
690
EXPORT_SYMBOL_GPL(add_input_randomness);
L
Linus Torvalds 已提交
691 692 693

void add_interrupt_randomness(int irq)
{
694 695 696 697 698
	struct timer_rand_state *state;

	state = get_timer_rand_state(irq);

	if (state == NULL)
L
Linus Torvalds 已提交
699 700 701
		return;

	DEBUG_ENT("irq event %d\n", irq);
702
	add_timer_randomness(state, 0x100 + irq);
L
Linus Torvalds 已提交
703 704
}

705
#ifdef CONFIG_BLOCK
L
Linus Torvalds 已提交
706 707 708 709 710
void add_disk_randomness(struct gendisk *disk)
{
	if (!disk || !disk->random)
		return;
	/* first major is 1, so we get >= 0x200 here */
711 712
	DEBUG_ENT("disk event %d:%d\n",
		  MAJOR(disk_devt(disk)), MINOR(disk_devt(disk)));
L
Linus Torvalds 已提交
713

714
	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
L
Linus Torvalds 已提交
715
}
716
#endif
L
Linus Torvalds 已提交
717 718 719 720 721 722 723

/*********************************************************************
 *
 * Entropy extraction routines
 *
 *********************************************************************/

724
static ssize_t extract_entropy(struct entropy_store *r, void *buf,
L
Linus Torvalds 已提交
725 726 727 728 729 730 731 732 733 734 735 736 737
			       size_t nbytes, int min, int rsvd);

/*
 * This utility inline function is responsible for transfering entropy
 * from the primary pool to the secondary extraction pool. We make
 * sure we pull enough for a 'catastrophic reseed'.
 */
static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
{
	__u32 tmp[OUTPUT_POOL_WORDS];

	if (r->pull && r->entropy_count < nbytes * 8 &&
	    r->entropy_count < r->poolinfo->POOLBITS) {
738
		/* If we're limited, always leave two wakeup worth's BITS */
L
Linus Torvalds 已提交
739
		int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
740 741 742 743 744 745
		int bytes = nbytes;

		/* pull at least as many as BYTES as wakeup BITS */
		bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
		/* but never more than the buffer size */
		bytes = min_t(int, bytes, sizeof(tmp));
L
Linus Torvalds 已提交
746 747 748 749 750

		DEBUG_ENT("going to reseed %s with %d bits "
			  "(%d of %d requested)\n",
			  r->name, bytes * 8, nbytes * 8, r->entropy_count);

751 752
		bytes = extract_entropy(r->pull, tmp, bytes,
					random_read_wakeup_thresh / 8, rsvd);
753
		mix_pool_bytes(r, tmp, bytes);
754
		credit_entropy_bits(r, bytes*8);
L
Linus Torvalds 已提交
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
	}
}

/*
 * These functions extracts randomness from the "entropy pool", and
 * returns it in a buffer.
 *
 * The min parameter specifies the minimum amount we can pull before
 * failing to avoid races that defeat catastrophic reseeding while the
 * reserved parameter indicates how much entropy we must leave in the
 * pool after each pull to avoid starving other readers.
 *
 * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
 */

static size_t account(struct entropy_store *r, size_t nbytes, int min,
		      int reserved)
{
	unsigned long flags;

	/* Hold lock while accounting */
	spin_lock_irqsave(&r->lock, flags);

778
	BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
L
Linus Torvalds 已提交
779 780 781 782 783 784 785 786 787 788 789
	DEBUG_ENT("trying to extract %d bits from %s\n",
		  nbytes * 8, r->name);

	/* Can we pull enough? */
	if (r->entropy_count / 8 < min + reserved) {
		nbytes = 0;
	} else {
		/* If limited, never pull more than available */
		if (r->limit && nbytes + reserved >= r->entropy_count / 8)
			nbytes = r->entropy_count/8 - reserved;

790
		if (r->entropy_count / 8 >= nbytes + reserved)
L
Linus Torvalds 已提交
791 792 793 794
			r->entropy_count -= nbytes*8;
		else
			r->entropy_count = reserved;

795
		if (r->entropy_count < random_write_wakeup_thresh) {
L
Linus Torvalds 已提交
796
			wake_up_interruptible(&random_write_wait);
797 798
			kill_fasync(&fasync, SIGIO, POLL_OUT);
		}
L
Linus Torvalds 已提交
799 800 801 802 803 804 805 806 807 808 809 810
	}

	DEBUG_ENT("debiting %d entropy credits from %s%s\n",
		  nbytes * 8, r->name, r->limit ? "" : " (unlimited)");

	spin_unlock_irqrestore(&r->lock, flags);

	return nbytes;
}

static void extract_buf(struct entropy_store *r, __u8 *out)
{
811
	int i;
812 813
	__u32 hash[5], workspace[SHA_WORKSPACE_WORDS];
	__u8 extract[64];
L
Linus Torvalds 已提交
814

815
	/* Generate a hash across the pool, 16 words (512 bits) at a time */
816
	sha_init(hash);
817 818 819
	for (i = 0; i < r->poolinfo->poolwords; i += 16)
		sha_transform(hash, (__u8 *)(r->pool + i), workspace);

L
Linus Torvalds 已提交
820
	/*
821 822 823 824 825 826 827
	 * We mix the hash back into the pool to prevent backtracking
	 * attacks (where the attacker knows the state of the pool
	 * plus the current outputs, and attempts to find previous
	 * ouputs), unless the hash function can be inverted. By
	 * mixing at least a SHA1 worth of hash data back, we make
	 * brute-forcing the feedback as hard as brute-forcing the
	 * hash.
L
Linus Torvalds 已提交
828
	 */
829
	mix_pool_bytes_extract(r, hash, sizeof(hash), extract);
L
Linus Torvalds 已提交
830 831

	/*
832 833
	 * To avoid duplicates, we atomically extract a portion of the
	 * pool while mixing, and hash one final time.
L
Linus Torvalds 已提交
834
	 */
835
	sha_transform(hash, extract, workspace);
836 837
	memset(extract, 0, sizeof(extract));
	memset(workspace, 0, sizeof(workspace));
L
Linus Torvalds 已提交
838 839

	/*
840 841 842
	 * In case the hash function has some recognizable output
	 * pattern, we fold it in half. Thus, we always feed back
	 * twice as much data as we output.
L
Linus Torvalds 已提交
843
	 */
844 845 846 847 848
	hash[0] ^= hash[3];
	hash[1] ^= hash[4];
	hash[2] ^= rol32(hash[2], 16);
	memcpy(out, hash, EXTRACT_SIZE);
	memset(hash, 0, sizeof(hash));
L
Linus Torvalds 已提交
849 850
}

851
static ssize_t extract_entropy(struct entropy_store *r, void *buf,
L
Linus Torvalds 已提交
852 853 854 855
			       size_t nbytes, int min, int reserved)
{
	ssize_t ret = 0, i;
	__u8 tmp[EXTRACT_SIZE];
856
	unsigned long flags;
L
Linus Torvalds 已提交
857 858 859 860 861 862

	xfer_secondary_pool(r, nbytes);
	nbytes = account(r, nbytes, min, reserved);

	while (nbytes) {
		extract_buf(r, tmp);
863

M
Matt Mackall 已提交
864
		if (fips_enabled) {
865 866 867 868 869 870
			spin_lock_irqsave(&r->lock, flags);
			if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
				panic("Hardware RNG duplicated output!\n");
			memcpy(r->last_data, tmp, EXTRACT_SIZE);
			spin_unlock_irqrestore(&r->lock, flags);
		}
L
Linus Torvalds 已提交
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
		i = min_t(int, nbytes, EXTRACT_SIZE);
		memcpy(buf, tmp, i);
		nbytes -= i;
		buf += i;
		ret += i;
	}

	/* Wipe data just returned from memory */
	memset(tmp, 0, sizeof(tmp));

	return ret;
}

static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
				    size_t nbytes)
{
	ssize_t ret = 0, i;
	__u8 tmp[EXTRACT_SIZE];

	xfer_secondary_pool(r, nbytes);
	nbytes = account(r, nbytes, 0, 0);

	while (nbytes) {
		if (need_resched()) {
			if (signal_pending(current)) {
				if (ret == 0)
					ret = -ERESTARTSYS;
				break;
			}
			schedule();
		}

		extract_buf(r, tmp);
		i = min_t(int, nbytes, EXTRACT_SIZE);
		if (copy_to_user(buf, tmp, i)) {
			ret = -EFAULT;
			break;
		}

		nbytes -= i;
		buf += i;
		ret += i;
	}

	/* Wipe data just returned from memory */
	memset(tmp, 0, sizeof(tmp));

	return ret;
}

/*
 * This function is the exported kernel interface.  It returns some
 * number of good random numbers, suitable for seeding TCP sequence
 * numbers, etc.
 */
void get_random_bytes(void *buf, int nbytes)
{
	extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
}
EXPORT_SYMBOL(get_random_bytes);

/*
 * init_std_data - initialize pool with system data
 *
 * @r: pool to initialize
 *
 * This function clears the pool's entropy count and mixes some system
 * data into the pool to prepare it for use. The pool is not cleared
 * as that can only decrease the entropy in the pool.
 */
static void init_std_data(struct entropy_store *r)
{
943
	ktime_t now;
L
Linus Torvalds 已提交
944 945 946 947 948 949
	unsigned long flags;

	spin_lock_irqsave(&r->lock, flags);
	r->entropy_count = 0;
	spin_unlock_irqrestore(&r->lock, flags);

950
	now = ktime_get_real();
951 952
	mix_pool_bytes(r, &now, sizeof(now));
	mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
L
Linus Torvalds 已提交
953 954
}

M
Matt Mackall 已提交
955
static int rand_initialize(void)
L
Linus Torvalds 已提交
956 957 958 959 960 961 962 963 964 965 966 967
{
	init_std_data(&input_pool);
	init_std_data(&blocking_pool);
	init_std_data(&nonblocking_pool);
	return 0;
}
module_init(rand_initialize);

void rand_initialize_irq(int irq)
{
	struct timer_rand_state *state;

968 969 970
	state = get_timer_rand_state(irq);

	if (state)
L
Linus Torvalds 已提交
971 972 973
		return;

	/*
974
	 * If kzalloc returns null, we just won't use that entropy
L
Linus Torvalds 已提交
975 976
	 * source.
	 */
977 978
	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
	if (state)
979
		set_timer_rand_state(irq, state);
L
Linus Torvalds 已提交
980 981
}

982
#ifdef CONFIG_BLOCK
L
Linus Torvalds 已提交
983 984 985 986 987
void rand_initialize_disk(struct gendisk *disk)
{
	struct timer_rand_state *state;

	/*
988
	 * If kzalloc returns null, we just won't use that entropy
L
Linus Torvalds 已提交
989 990
	 * source.
	 */
991 992
	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
	if (state)
L
Linus Torvalds 已提交
993 994
		disk->random = state;
}
995
#endif
L
Linus Torvalds 已提交
996 997

static ssize_t
998
random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
L
Linus Torvalds 已提交
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
{
	ssize_t n, retval = 0, count = 0;

	if (nbytes == 0)
		return 0;

	while (nbytes > 0) {
		n = nbytes;
		if (n > SEC_XFER_SIZE)
			n = SEC_XFER_SIZE;

		DEBUG_ENT("reading %d bits\n", n*8);

		n = extract_entropy_user(&blocking_pool, buf, n);

		DEBUG_ENT("read got %d bits (%d still needed)\n",
			  n*8, (nbytes-n)*8);

		if (n == 0) {
			if (file->f_flags & O_NONBLOCK) {
				retval = -EAGAIN;
				break;
			}

			DEBUG_ENT("sleeping?\n");

			wait_event_interruptible(random_read_wait,
				input_pool.entropy_count >=
						 random_read_wakeup_thresh);

			DEBUG_ENT("awake\n");

			if (signal_pending(current)) {
				retval = -ERESTARTSYS;
				break;
			}

			continue;
		}

		if (n < 0) {
			retval = n;
			break;
		}
		count += n;
		buf += n;
		nbytes -= n;
		break;		/* This break makes the device work */
				/* like a named pipe */
	}

	return (count ? count : retval);
}

static ssize_t
1054
urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
L
Linus Torvalds 已提交
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
{
	return extract_entropy_user(&nonblocking_pool, buf, nbytes);
}

static unsigned int
random_poll(struct file *file, poll_table * wait)
{
	unsigned int mask;

	poll_wait(file, &random_read_wait, wait);
	poll_wait(file, &random_write_wait, wait);
	mask = 0;
	if (input_pool.entropy_count >= random_read_wakeup_thresh)
		mask |= POLLIN | POLLRDNORM;
	if (input_pool.entropy_count < random_write_wakeup_thresh)
		mask |= POLLOUT | POLLWRNORM;
	return mask;
}

1074 1075
static int
write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
L
Linus Torvalds 已提交
1076 1077 1078 1079 1080
{
	size_t bytes;
	__u32 buf[16];
	const char __user *p = buffer;

1081 1082 1083 1084
	while (count > 0) {
		bytes = min(count, sizeof(buf));
		if (copy_from_user(&buf, p, bytes))
			return -EFAULT;
L
Linus Torvalds 已提交
1085

1086
		count -= bytes;
L
Linus Torvalds 已提交
1087 1088
		p += bytes;

1089
		mix_pool_bytes(r, buf, bytes);
1090
		cond_resched();
L
Linus Torvalds 已提交
1091
	}
1092 1093 1094 1095

	return 0;
}

1096 1097
static ssize_t random_write(struct file *file, const char __user *buffer,
			    size_t count, loff_t *ppos)
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
{
	size_t ret;

	ret = write_pool(&blocking_pool, buffer, count);
	if (ret)
		return ret;
	ret = write_pool(&nonblocking_pool, buffer, count);
	if (ret)
		return ret;

	return (ssize_t)count;
L
Linus Torvalds 已提交
1109 1110
}

M
Matt Mackall 已提交
1111
static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
L
Linus Torvalds 已提交
1112 1113 1114 1115 1116 1117 1118
{
	int size, ent_count;
	int __user *p = (int __user *)arg;
	int retval;

	switch (cmd) {
	case RNDGETENTCNT:
M
Matt Mackall 已提交
1119 1120
		/* inherently racy, no point locking */
		if (put_user(input_pool.entropy_count, p))
L
Linus Torvalds 已提交
1121 1122 1123 1124 1125 1126 1127
			return -EFAULT;
		return 0;
	case RNDADDTOENTCNT:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p))
			return -EFAULT;
1128
		credit_entropy_bits(&input_pool, ent_count);
L
Linus Torvalds 已提交
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
		return 0;
	case RNDADDENTROPY:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p++))
			return -EFAULT;
		if (ent_count < 0)
			return -EINVAL;
		if (get_user(size, p++))
			return -EFAULT;
1139 1140
		retval = write_pool(&input_pool, (const char __user *)p,
				    size);
L
Linus Torvalds 已提交
1141 1142
		if (retval < 0)
			return retval;
1143
		credit_entropy_bits(&input_pool, ent_count);
L
Linus Torvalds 已提交
1144 1145 1146 1147 1148 1149
		return 0;
	case RNDZAPENTCNT:
	case RNDCLEARPOOL:
		/* Clear the entropy pool counters. */
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
M
Matt Mackall 已提交
1150
		rand_initialize();
L
Linus Torvalds 已提交
1151 1152 1153 1154 1155 1156
		return 0;
	default:
		return -EINVAL;
	}
}

1157 1158 1159 1160 1161
static int random_fasync(int fd, struct file *filp, int on)
{
	return fasync_helper(fd, filp, on, &fasync);
}

1162
const struct file_operations random_fops = {
L
Linus Torvalds 已提交
1163 1164 1165
	.read  = random_read,
	.write = random_write,
	.poll  = random_poll,
M
Matt Mackall 已提交
1166
	.unlocked_ioctl = random_ioctl,
1167
	.fasync = random_fasync,
1168
	.llseek = noop_llseek,
L
Linus Torvalds 已提交
1169 1170
};

1171
const struct file_operations urandom_fops = {
L
Linus Torvalds 已提交
1172 1173
	.read  = urandom_read,
	.write = random_write,
M
Matt Mackall 已提交
1174
	.unlocked_ioctl = random_ioctl,
1175
	.fasync = random_fasync,
1176
	.llseek = noop_llseek,
L
Linus Torvalds 已提交
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
};

/***************************************************************
 * Random UUID interface
 *
 * Used here for a Boot ID, but can be useful for other kernel
 * drivers.
 ***************************************************************/

/*
 * Generate random UUID
 */
void generate_random_uuid(unsigned char uuid_out[16])
{
	get_random_bytes(uuid_out, 16);
1192
	/* Set UUID version to 4 --- truly random generation */
L
Linus Torvalds 已提交
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
	uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
	/* Set the UUID variant to DCE */
	uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
}
EXPORT_SYMBOL(generate_random_uuid);

/********************************************************************
 *
 * Sysctl interface
 *
 ********************************************************************/

#ifdef CONFIG_SYSCTL

#include <linux/sysctl.h>

static int min_read_thresh = 8, min_write_thresh;
static int max_read_thresh = INPUT_POOL_WORDS * 32;
static int max_write_thresh = INPUT_POOL_WORDS * 32;
static char sysctl_bootid[16];

/*
 * These functions is used to return both the bootid UUID, and random
 * UUID.  The difference is in whether table->data is NULL; if it is,
 * then a new UUID is generated and returned to the user.
 *
 * If the user accesses this via the proc interface, it will be returned
 * as an ASCII string in the standard UUID format.  If accesses via the
 * sysctl system call, it is returned as 16 bytes of binary data.
 */
1223
static int proc_do_uuid(ctl_table *table, int write,
L
Linus Torvalds 已提交
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
			void __user *buffer, size_t *lenp, loff_t *ppos)
{
	ctl_table fake_table;
	unsigned char buf[64], tmp_uuid[16], *uuid;

	uuid = table->data;
	if (!uuid) {
		uuid = tmp_uuid;
		uuid[8] = 0;
	}
	if (uuid[8] == 0)
		generate_random_uuid(uuid);

J
Joe Perches 已提交
1237 1238
	sprintf(buf, "%pU", uuid);

L
Linus Torvalds 已提交
1239 1240 1241
	fake_table.data = buf;
	fake_table.maxlen = sizeof(buf);

1242
	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
L
Linus Torvalds 已提交
1243 1244 1245 1246 1247 1248 1249 1250 1251
}

static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
ctl_table random_table[] = {
	{
		.procname	= "poolsize",
		.data		= &sysctl_poolsize,
		.maxlen		= sizeof(int),
		.mode		= 0444,
1252
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1253 1254 1255 1256 1257
	},
	{
		.procname	= "entropy_avail",
		.maxlen		= sizeof(int),
		.mode		= 0444,
1258
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1259 1260 1261 1262 1263 1264 1265
		.data		= &input_pool.entropy_count,
	},
	{
		.procname	= "read_wakeup_threshold",
		.data		= &random_read_wakeup_thresh,
		.maxlen		= sizeof(int),
		.mode		= 0644,
1266
		.proc_handler	= proc_dointvec_minmax,
L
Linus Torvalds 已提交
1267 1268 1269 1270 1271 1272 1273 1274
		.extra1		= &min_read_thresh,
		.extra2		= &max_read_thresh,
	},
	{
		.procname	= "write_wakeup_threshold",
		.data		= &random_write_wakeup_thresh,
		.maxlen		= sizeof(int),
		.mode		= 0644,
1275
		.proc_handler	= proc_dointvec_minmax,
L
Linus Torvalds 已提交
1276 1277 1278 1279 1280 1281 1282 1283
		.extra1		= &min_write_thresh,
		.extra2		= &max_write_thresh,
	},
	{
		.procname	= "boot_id",
		.data		= &sysctl_bootid,
		.maxlen		= 16,
		.mode		= 0444,
1284
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1285 1286 1287 1288 1289
	},
	{
		.procname	= "uuid",
		.maxlen		= 16,
		.mode		= 0444,
1290
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1291
	},
1292
	{ }
L
Linus Torvalds 已提交
1293 1294 1295 1296 1297
};
#endif 	/* CONFIG_SYSCTL */

/********************************************************************
 *
J
Joe Perches 已提交
1298
 * Random functions for networking
L
Linus Torvalds 已提交
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
 *
 ********************************************************************/

/*
 * TCP initial sequence number picking.  This uses the random number
 * generator to pick an initial secret value.  This value is hashed
 * along with the TCP endpoint information to provide a unique
 * starting point for each pair of TCP endpoints.  This defeats
 * attacks which rely on guessing the initial TCP sequence number.
 * This algorithm was suggested by Steve Bellovin.
 *
 * Using a very strong hash was taking an appreciable amount of the total
 * TCP connection establishment time, so this is a weaker hash,
 * compensated for by changing the secret periodically.
 */

/* F, G and H are basic MD4 functions: selection, majority, parity */
#define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
#define G(x, y, z) (((x) & (y)) + (((x) ^ (y)) & (z)))
#define H(x, y, z) ((x) ^ (y) ^ (z))

/*
 * The generic round function.  The application is so specific that
 * we don't bother protecting all the arguments with parens, as is generally
 * good macro practice, in favor of extra legibility.
 * Rotation is separate from addition to prevent recomputation
 */
#define ROUND(f, a, b, c, d, x, s)	\
	(a += f(b, c, d) + x, a = (a << s) | (a >> (32 - s)))
#define K1 0
#define K2 013240474631UL
#define K3 015666365641UL

#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)

1334
static __u32 twothirdsMD4Transform(__u32 const buf[4], __u32 const in[12])
L
Linus Torvalds 已提交
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
{
	__u32 a = buf[0], b = buf[1], c = buf[2], d = buf[3];

	/* Round 1 */
	ROUND(F, a, b, c, d, in[ 0] + K1,  3);
	ROUND(F, d, a, b, c, in[ 1] + K1,  7);
	ROUND(F, c, d, a, b, in[ 2] + K1, 11);
	ROUND(F, b, c, d, a, in[ 3] + K1, 19);
	ROUND(F, a, b, c, d, in[ 4] + K1,  3);
	ROUND(F, d, a, b, c, in[ 5] + K1,  7);
	ROUND(F, c, d, a, b, in[ 6] + K1, 11);
	ROUND(F, b, c, d, a, in[ 7] + K1, 19);
	ROUND(F, a, b, c, d, in[ 8] + K1,  3);
	ROUND(F, d, a, b, c, in[ 9] + K1,  7);
	ROUND(F, c, d, a, b, in[10] + K1, 11);
	ROUND(F, b, c, d, a, in[11] + K1, 19);

	/* Round 2 */
	ROUND(G, a, b, c, d, in[ 1] + K2,  3);
	ROUND(G, d, a, b, c, in[ 3] + K2,  5);
	ROUND(G, c, d, a, b, in[ 5] + K2,  9);
	ROUND(G, b, c, d, a, in[ 7] + K2, 13);
	ROUND(G, a, b, c, d, in[ 9] + K2,  3);
	ROUND(G, d, a, b, c, in[11] + K2,  5);
	ROUND(G, c, d, a, b, in[ 0] + K2,  9);
	ROUND(G, b, c, d, a, in[ 2] + K2, 13);
	ROUND(G, a, b, c, d, in[ 4] + K2,  3);
	ROUND(G, d, a, b, c, in[ 6] + K2,  5);
	ROUND(G, c, d, a, b, in[ 8] + K2,  9);
	ROUND(G, b, c, d, a, in[10] + K2, 13);

	/* Round 3 */
	ROUND(H, a, b, c, d, in[ 3] + K3,  3);
	ROUND(H, d, a, b, c, in[ 7] + K3,  9);
	ROUND(H, c, d, a, b, in[11] + K3, 11);
	ROUND(H, b, c, d, a, in[ 2] + K3, 15);
	ROUND(H, a, b, c, d, in[ 6] + K3,  3);
	ROUND(H, d, a, b, c, in[10] + K3,  9);
	ROUND(H, c, d, a, b, in[ 1] + K3, 11);
	ROUND(H, b, c, d, a, in[ 5] + K3, 15);
	ROUND(H, a, b, c, d, in[ 9] + K3,  3);
	ROUND(H, d, a, b, c, in[ 0] + K3,  9);
	ROUND(H, c, d, a, b, in[ 4] + K3, 11);
	ROUND(H, b, c, d, a, in[ 8] + K3, 15);

	return buf[1] + b; /* "most hashed" word */
	/* Alternative: return sum of all words? */
}
#endif

#undef ROUND
#undef F
#undef G
#undef H
#undef K1
#undef K2
#undef K3

/* This should not be decreased so low that ISNs wrap too fast. */
#define REKEY_INTERVAL (300 * HZ)
/*
 * Bit layout of the tcp sequence numbers (before adding current time):
 * bit 24-31: increased after every key exchange
 * bit 0-23: hash(source,dest)
 *
 * The implementation is similar to the algorithm described
 * in the Appendix of RFC 1185, except that
 * - it uses a 1 MHz clock instead of a 250 kHz clock
 * - it performs a rekey every 5 minutes, which is equivalent
 * 	to a (source,dest) tulple dependent forward jump of the
 * 	clock by 0..2^(HASH_BITS+1)
 *
 * Thus the average ISN wraparound time is 68 minutes instead of
 * 4.55 hours.
 *
 * SMP cleanup and lock avoidance with poor man's RCU.
 * 			Manfred Spraul <manfred@colorfullife.com>
 *
 */
#define COUNT_BITS 8
#define COUNT_MASK ((1 << COUNT_BITS) - 1)
#define HASH_BITS 24
#define HASH_MASK ((1 << HASH_BITS) - 1)

static struct keydata {
	__u32 count; /* already shifted to the final position */
	__u32 secret[12];
} ____cacheline_aligned ip_keydata[2];

static unsigned int ip_cnt;

1426
static void rekey_seq_generator(struct work_struct *work);
L
Linus Torvalds 已提交
1427

1428
static DECLARE_DELAYED_WORK(rekey_work, rekey_seq_generator);
L
Linus Torvalds 已提交
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441

/*
 * Lock avoidance:
 * The ISN generation runs lockless - it's just a hash over random data.
 * State changes happen every 5 minutes when the random key is replaced.
 * Synchronization is performed by having two copies of the hash function
 * state and rekey_seq_generator always updates the inactive copy.
 * The copy is then activated by updating ip_cnt.
 * The implementation breaks down if someone blocks the thread
 * that processes SYN requests for more than 5 minutes. Should never
 * happen, and even if that happens only a not perfectly compliant
 * ISN is generated, nothing fatal.
 */
1442
static void rekey_seq_generator(struct work_struct *work)
L
Linus Torvalds 已提交
1443 1444 1445 1446 1447 1448 1449
{
	struct keydata *keyptr = &ip_keydata[1 ^ (ip_cnt & 1)];

	get_random_bytes(keyptr->secret, sizeof(keyptr->secret));
	keyptr->count = (ip_cnt & COUNT_MASK) << HASH_BITS;
	smp_wmb();
	ip_cnt++;
1450 1451
	schedule_delayed_work(&rekey_work,
			      round_jiffies_relative(REKEY_INTERVAL));
L
Linus Torvalds 已提交
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
}

static inline struct keydata *get_keyptr(void)
{
	struct keydata *keyptr = &ip_keydata[ip_cnt & 1];

	smp_rmb();

	return keyptr;
}

static __init int seqgen_init(void)
{
	rekey_seq_generator(NULL);
	return 0;
}
late_initcall(seqgen_init);

#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
A
Al Viro 已提交
1471 1472
__u32 secure_tcpv6_sequence_number(__be32 *saddr, __be32 *daddr,
				   __be16 sport, __be16 dport)
L
Linus Torvalds 已提交
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
{
	__u32 seq;
	__u32 hash[12];
	struct keydata *keyptr = get_keyptr();

	/* The procedure is the same as for IPv4, but addresses are longer.
	 * Thus we must use twothirdsMD4Transform.
	 */

	memcpy(hash, saddr, 16);
1483 1484
	hash[4] = ((__force u16)sport << 16) + (__force u16)dport;
	memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7);
L
Linus Torvalds 已提交
1485

A
Al Viro 已提交
1486
	seq = twothirdsMD4Transform((const __u32 *)daddr, hash) & HASH_MASK;
L
Linus Torvalds 已提交
1487 1488
	seq += keyptr->count;

1489
	seq += ktime_to_ns(ktime_get_real());
L
Linus Torvalds 已提交
1490 1491 1492 1493 1494 1495 1496 1497 1498

	return seq;
}
EXPORT_SYMBOL(secure_tcpv6_sequence_number);
#endif

/*  The code below is shamelessly stolen from secure_tcp_sequence_number().
 *  All blames to Andrey V. Savochkin <saw@msu.ru>.
 */
A
Al Viro 已提交
1499
__u32 secure_ip_id(__be32 daddr)
L
Linus Torvalds 已提交
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
{
	struct keydata *keyptr;
	__u32 hash[4];

	keyptr = get_keyptr();

	/*
	 *  Pick a unique starting offset for each IP destination.
	 *  The dest ip address is placed in the starting vector,
	 *  which is then hashed with random data.
	 */
A
Al Viro 已提交
1511
	hash[0] = (__force __u32)daddr;
L
Linus Torvalds 已提交
1512 1513 1514 1515 1516 1517 1518 1519 1520
	hash[1] = keyptr->secret[9];
	hash[2] = keyptr->secret[10];
	hash[3] = keyptr->secret[11];

	return half_md4_transform(hash, keyptr->secret);
}

#ifdef CONFIG_INET

A
Al Viro 已提交
1521 1522
__u32 secure_tcp_sequence_number(__be32 saddr, __be32 daddr,
				 __be16 sport, __be16 dport)
L
Linus Torvalds 已提交
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
{
	__u32 seq;
	__u32 hash[4];
	struct keydata *keyptr = get_keyptr();

	/*
	 *  Pick a unique starting offset for each TCP connection endpoints
	 *  (saddr, daddr, sport, dport).
	 *  Note that the words are placed into the starting vector, which is
	 *  then mixed with a partial MD4 over random data.
	 */
1534 1535 1536 1537
	hash[0] = (__force u32)saddr;
	hash[1] = (__force u32)daddr;
	hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
	hash[3] = keyptr->secret[11];
L
Linus Torvalds 已提交
1538 1539 1540 1541 1542 1543 1544

	seq = half_md4_transform(hash, keyptr->secret) & HASH_MASK;
	seq += keyptr->count;
	/*
	 *	As close as possible to RFC 793, which
	 *	suggests using a 250 kHz clock.
	 *	Further reading shows this assumes 2 Mb/s networks.
1545 1546 1547 1548 1549
	 *	For 10 Mb/s Ethernet, a 1 MHz clock is appropriate.
	 *	For 10 Gb/s Ethernet, a 1 GHz clock should be ok, but
	 *	we also need to limit the resolution so that the u32 seq
	 *	overlaps less than one time per MSL (2 minutes).
	 *	Choosing a clock of 64 ns period is OK. (period of 274 s)
L
Linus Torvalds 已提交
1550
	 */
1551
	seq += ktime_to_ns(ktime_get_real()) >> 6;
1552

L
Linus Torvalds 已提交
1553 1554 1555
	return seq;
}

1556
/* Generate secure starting point for ephemeral IPV4 transport port search */
A
Al Viro 已提交
1557
u32 secure_ipv4_port_ephemeral(__be32 saddr, __be32 daddr, __be16 dport)
L
Linus Torvalds 已提交
1558 1559 1560 1561 1562 1563 1564 1565
{
	struct keydata *keyptr = get_keyptr();
	u32 hash[4];

	/*
	 *  Pick a unique starting offset for each ephemeral port search
	 *  (saddr, daddr, dport) and 48bits of random data.
	 */
A
Al Viro 已提交
1566 1567 1568
	hash[0] = (__force u32)saddr;
	hash[1] = (__force u32)daddr;
	hash[2] = (__force u32)dport ^ keyptr->secret[10];
L
Linus Torvalds 已提交
1569 1570 1571 1572
	hash[3] = keyptr->secret[11];

	return half_md4_transform(hash, keyptr->secret);
}
1573
EXPORT_SYMBOL_GPL(secure_ipv4_port_ephemeral);
L
Linus Torvalds 已提交
1574 1575

#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1576 1577
u32 secure_ipv6_port_ephemeral(const __be32 *saddr, const __be32 *daddr,
			       __be16 dport)
L
Linus Torvalds 已提交
1578 1579 1580 1581 1582
{
	struct keydata *keyptr = get_keyptr();
	u32 hash[12];

	memcpy(hash, saddr, 16);
A
Al Viro 已提交
1583
	hash[4] = (__force u32)dport;
1584
	memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7);
L
Linus Torvalds 已提交
1585

A
Al Viro 已提交
1586
	return twothirdsMD4Transform((const __u32 *)daddr, hash);
L
Linus Torvalds 已提交
1587 1588 1589
}
#endif

1590 1591 1592 1593 1594
#if defined(CONFIG_IP_DCCP) || defined(CONFIG_IP_DCCP_MODULE)
/* Similar to secure_tcp_sequence_number but generate a 48 bit value
 * bit's 32-47 increase every key exchange
 *       0-31  hash(source, dest)
 */
A
Al Viro 已提交
1595 1596
u64 secure_dccp_sequence_number(__be32 saddr, __be32 daddr,
				__be16 sport, __be16 dport)
1597 1598 1599 1600 1601
{
	u64 seq;
	__u32 hash[4];
	struct keydata *keyptr = get_keyptr();

A
Al Viro 已提交
1602 1603 1604
	hash[0] = (__force u32)saddr;
	hash[1] = (__force u32)daddr;
	hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
1605 1606 1607 1608 1609
	hash[3] = keyptr->secret[11];

	seq = half_md4_transform(hash, keyptr->secret);
	seq |= ((u64)keyptr->count) << (32 - HASH_BITS);

1610
	seq += ktime_to_ns(ktime_get_real());
1611
	seq &= (1ull << 48) - 1;
1612

1613 1614 1615 1616 1617
	return seq;
}
EXPORT_SYMBOL(secure_dccp_sequence_number);
#endif

L
Linus Torvalds 已提交
1618 1619 1620 1621 1622 1623 1624 1625 1626
#endif /* CONFIG_INET */


/*
 * Get a random word for internal kernel use only. Similar to urandom but
 * with the goal of minimal entropy pool depletion. As a result, the random
 * value is not cryptographically secure but for several uses the cost of
 * depleting entropy is too high
 */
1627
DEFINE_PER_CPU(__u32 [4], get_random_int_hash);
L
Linus Torvalds 已提交
1628 1629
unsigned int get_random_int(void)
{
1630 1631 1632 1633 1634
	struct keydata *keyptr;
	__u32 *hash = get_cpu_var(get_random_int_hash);
	int ret;

	keyptr = get_keyptr();
1635
	hash[0] += current->pid + jiffies + get_cycles();
1636 1637 1638 1639 1640

	ret = half_md4_transform(hash, keyptr->secret);
	put_cpu_var(get_random_int_hash);

	return ret;
L
Linus Torvalds 已提交
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
}

/*
 * randomize_range() returns a start address such that
 *
 *    [...... <range> .....]
 *  start                  end
 *
 * a <range> with size "len" starting at the return value is inside in the
 * area defined by [start, end], but is otherwise randomized.
 */
unsigned long
randomize_range(unsigned long start, unsigned long end, unsigned long len)
{
	unsigned long range = end - len - start;

	if (end <= start + len)
		return 0;
	return PAGE_ALIGN(get_random_int() % range + start);
}