random.c 50.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3
/*
 * random.c -- A strong random number generator
 *
4
 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
L
Linus Torvalds 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
 *
 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
 * rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, and the entire permission notice in its entirety,
 *    including the disclaimer of warranties.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. The name of the author may not be used to endorse or promote
 *    products derived from this software without specific prior
 *    written permission.
 *
 * ALTERNATIVELY, this product may be distributed under the terms of
 * the GNU General Public License, in which case the provisions of the GPL are
 * required INSTEAD OF the above restrictions.  (This clause is
 * necessary due to a potential bad interaction between the GPL and
 * the restrictions contained in a BSD-style copyright.)
 *
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
 * DAMAGE.
 */

/*
 * (now, with legal B.S. out of the way.....)
 *
 * This routine gathers environmental noise from device drivers, etc.,
 * and returns good random numbers, suitable for cryptographic use.
 * Besides the obvious cryptographic uses, these numbers are also good
 * for seeding TCP sequence numbers, and other places where it is
 * desirable to have numbers which are not only random, but hard to
 * predict by an attacker.
 *
 * Theory of operation
 * ===================
 *
 * Computers are very predictable devices.  Hence it is extremely hard
 * to produce truly random numbers on a computer --- as opposed to
 * pseudo-random numbers, which can easily generated by using a
 * algorithm.  Unfortunately, it is very easy for attackers to guess
 * the sequence of pseudo-random number generators, and for some
 * applications this is not acceptable.  So instead, we must try to
 * gather "environmental noise" from the computer's environment, which
 * must be hard for outside attackers to observe, and use that to
 * generate random numbers.  In a Unix environment, this is best done
 * from inside the kernel.
 *
 * Sources of randomness from the environment include inter-keyboard
 * timings, inter-interrupt timings from some interrupts, and other
 * events which are both (a) non-deterministic and (b) hard for an
 * outside observer to measure.  Randomness from these sources are
 * added to an "entropy pool", which is mixed using a CRC-like function.
 * This is not cryptographically strong, but it is adequate assuming
 * the randomness is not chosen maliciously, and it is fast enough that
 * the overhead of doing it on every interrupt is very reasonable.
 * As random bytes are mixed into the entropy pool, the routines keep
 * an *estimate* of how many bits of randomness have been stored into
 * the random number generator's internal state.
 *
 * When random bytes are desired, they are obtained by taking the SHA
 * hash of the contents of the "entropy pool".  The SHA hash avoids
 * exposing the internal state of the entropy pool.  It is believed to
 * be computationally infeasible to derive any useful information
 * about the input of SHA from its output.  Even if it is possible to
 * analyze SHA in some clever way, as long as the amount of data
 * returned from the generator is less than the inherent entropy in
 * the pool, the output data is totally unpredictable.  For this
 * reason, the routine decreases its internal estimate of how many
 * bits of "true randomness" are contained in the entropy pool as it
 * outputs random numbers.
 *
 * If this estimate goes to zero, the routine can still generate
 * random numbers; however, an attacker may (at least in theory) be
 * able to infer the future output of the generator from prior
 * outputs.  This requires successful cryptanalysis of SHA, which is
 * not believed to be feasible, but there is a remote possibility.
 * Nonetheless, these numbers should be useful for the vast majority
 * of purposes.
 *
 * Exported interfaces ---- output
 * ===============================
 *
 * There are three exported interfaces; the first is one designed to
 * be used from within the kernel:
 *
 * 	void get_random_bytes(void *buf, int nbytes);
 *
 * This interface will return the requested number of random bytes,
 * and place it in the requested buffer.
 *
 * The two other interfaces are two character devices /dev/random and
 * /dev/urandom.  /dev/random is suitable for use when very high
 * quality randomness is desired (for example, for key generation or
 * one-time pads), as it will only return a maximum of the number of
 * bits of randomness (as estimated by the random number generator)
 * contained in the entropy pool.
 *
 * The /dev/urandom device does not have this limit, and will return
 * as many bytes as are requested.  As more and more random bytes are
 * requested without giving time for the entropy pool to recharge,
 * this will result in random numbers that are merely cryptographically
 * strong.  For many applications, however, this is acceptable.
 *
 * Exported interfaces ---- input
 * ==============================
 *
 * The current exported interfaces for gathering environmental noise
 * from the devices are:
 *
128
 *	void add_device_randomness(const void *buf, unsigned int size);
L
Linus Torvalds 已提交
129 130
 * 	void add_input_randomness(unsigned int type, unsigned int code,
 *                                unsigned int value);
131
 *	void add_interrupt_randomness(int irq, int irq_flags);
132
 * 	void add_disk_randomness(struct gendisk *disk);
L
Linus Torvalds 已提交
133
 *
134 135 136 137 138 139 140 141
 * add_device_randomness() is for adding data to the random pool that
 * is likely to differ between two devices (or possibly even per boot).
 * This would be things like MAC addresses or serial numbers, or the
 * read-out of the RTC. This does *not* add any actual entropy to the
 * pool, but it initializes the pool to different values for devices
 * that might otherwise be identical and have very little entropy
 * available to them (particularly common in the embedded world).
 *
L
Linus Torvalds 已提交
142 143 144
 * add_input_randomness() uses the input layer interrupt timing, as well as
 * the event type information from the hardware.
 *
145 146 147
 * add_interrupt_randomness() uses the interrupt timing as random
 * inputs to the entropy pool. Using the cycle counters and the irq source
 * as inputs, it feeds the randomness roughly once a second.
148 149 150 151 152 153
 *
 * add_disk_randomness() uses what amounts to the seek time of block
 * layer request events, on a per-disk_devt basis, as input to the
 * entropy pool. Note that high-speed solid state drives with very low
 * seek times do not make for good sources of entropy, as their seek
 * times are usually fairly consistent.
L
Linus Torvalds 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
 *
 * All of these routines try to estimate how many bits of randomness a
 * particular randomness source.  They do this by keeping track of the
 * first and second order deltas of the event timings.
 *
 * Ensuring unpredictability at system startup
 * ============================================
 *
 * When any operating system starts up, it will go through a sequence
 * of actions that are fairly predictable by an adversary, especially
 * if the start-up does not involve interaction with a human operator.
 * This reduces the actual number of bits of unpredictability in the
 * entropy pool below the value in entropy_count.  In order to
 * counteract this effect, it helps to carry information in the
 * entropy pool across shut-downs and start-ups.  To do this, put the
 * following lines an appropriate script which is run during the boot
 * sequence:
 *
 *	echo "Initializing random number generator..."
 *	random_seed=/var/run/random-seed
 *	# Carry a random seed from start-up to start-up
 *	# Load and then save the whole entropy pool
 *	if [ -f $random_seed ]; then
 *		cat $random_seed >/dev/urandom
 *	else
 *		touch $random_seed
 *	fi
 *	chmod 600 $random_seed
 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 *
 * and the following lines in an appropriate script which is run as
 * the system is shutdown:
 *
 *	# Carry a random seed from shut-down to start-up
 *	# Save the whole entropy pool
 *	echo "Saving random seed..."
 *	random_seed=/var/run/random-seed
 *	touch $random_seed
 *	chmod 600 $random_seed
 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 *
 * For example, on most modern systems using the System V init
 * scripts, such code fragments would be found in
 * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
 *
 * Effectively, these commands cause the contents of the entropy pool
 * to be saved at shut-down time and reloaded into the entropy pool at
 * start-up.  (The 'dd' in the addition to the bootup script is to
 * make sure that /etc/random-seed is different for every start-up,
 * even if the system crashes without executing rc.0.)  Even with
 * complete knowledge of the start-up activities, predicting the state
 * of the entropy pool requires knowledge of the previous history of
 * the system.
 *
 * Configuring the /dev/random driver under Linux
 * ==============================================
 *
 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
 * the /dev/mem major number (#1).  So if your system does not have
 * /dev/random and /dev/urandom created already, they can be created
 * by using the commands:
 *
 * 	mknod /dev/random c 1 8
 * 	mknod /dev/urandom c 1 9
 *
 * Acknowledgements:
 * =================
 *
 * Ideas for constructing this random number generator were derived
 * from Pretty Good Privacy's random number generator, and from private
 * discussions with Phil Karn.  Colin Plumb provided a faster random
 * number generator, which speed up the mixing function of the entropy
 * pool, taken from PGPfone.  Dale Worley has also contributed many
 * useful ideas and suggestions to improve this driver.
 *
 * Any flaws in the design are solely my responsibility, and should
 * not be attributed to the Phil, Colin, or any of authors of PGP.
 *
 * Further background information on this topic may be obtained from
 * RFC 1750, "Randomness Recommendations for Security", by Donald
 * Eastlake, Steve Crocker, and Jeff Schiller.
 */

#include <linux/utsname.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/genhd.h>
#include <linux/interrupt.h>
251
#include <linux/mm.h>
L
Linus Torvalds 已提交
252 253 254
#include <linux/spinlock.h>
#include <linux/percpu.h>
#include <linux/cryptohash.h>
255
#include <linux/fips.h>
256
#include <linux/ptrace.h>
257
#include <linux/kmemcheck.h>
258
#include <linux/workqueue.h>
L
Linus Torvalds 已提交
259

260 261 262 263
#ifdef CONFIG_GENERIC_HARDIRQS
# include <linux/irq.h>
#endif

L
Linus Torvalds 已提交
264 265 266
#include <asm/processor.h>
#include <asm/uaccess.h>
#include <asm/irq.h>
267
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
268 269
#include <asm/io.h>

270 271 272
#define CREATE_TRACE_POINTS
#include <trace/events/random.h>

L
Linus Torvalds 已提交
273 274 275
/*
 * Configuration information
 */
276 277 278 279 280 281
#define INPUT_POOL_SHIFT	12
#define INPUT_POOL_WORDS	(1 << (INPUT_POOL_SHIFT-5))
#define OUTPUT_POOL_SHIFT	10
#define OUTPUT_POOL_WORDS	(1 << (OUTPUT_POOL_SHIFT-5))
#define SEC_XFER_SIZE		512
#define EXTRACT_SIZE		10
L
Linus Torvalds 已提交
282

283 284
#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))

285
/*
T
Theodore Ts'o 已提交
286 287
 * To allow fractional bits to be tracked, the entropy_count field is
 * denominated in units of 1/8th bits.
288 289 290
 *
 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
 * credit_entropy_bits() needs to be 64 bits wide.
291 292 293 294
 */
#define ENTROPY_SHIFT 3
#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)

L
Linus Torvalds 已提交
295 296 297 298 299 300 301 302 303 304 305
/*
 * The minimum number of bits of entropy before we wake up a read on
 * /dev/random.  Should be enough to do a significant reseed.
 */
static int random_read_wakeup_thresh = 64;

/*
 * If the entropy count falls under this number of bits, then we
 * should wake up processes which are selecting or polling on write
 * access to /dev/random.
 */
306
static int random_write_wakeup_thresh = 28 * OUTPUT_POOL_WORDS;
L
Linus Torvalds 已提交
307

308 309 310 311 312 313 314
/*
 * The minimum number of seconds between urandom pool resending.  We
 * do this to limit the amount of entropy that can be drained from the
 * input pool even if there are heavy demands on /dev/urandom.
 */
static int random_min_urandom_seed = 60;

L
Linus Torvalds 已提交
315
/*
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
 * Originally, we used a primitive polynomial of degree .poolwords
 * over GF(2).  The taps for various sizes are defined below.  They
 * were chosen to be evenly spaced except for the last tap, which is 1
 * to get the twisting happening as fast as possible.
 *
 * For the purposes of better mixing, we use the CRC-32 polynomial as
 * well to make a (modified) twisted Generalized Feedback Shift
 * Register.  (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR
 * generators.  ACM Transactions on Modeling and Computer Simulation
 * 2(3):179-194.  Also see M. Matsumoto & Y. Kurita, 1994.  Twisted
 * GFSR generators II.  ACM Transactions on Mdeling and Computer
 * Simulation 4:254-266)
 *
 * Thanks to Colin Plumb for suggesting this.
 *
 * The mixing operation is much less sensitive than the output hash,
 * where we use SHA-1.  All that we want of mixing operation is that
 * it be a good non-cryptographic hash; i.e. it not produce collisions
 * when fed "random" data of the sort we expect to see.  As long as
 * the pool state differs for different inputs, we have preserved the
 * input entropy and done a good job.  The fact that an intelligent
 * attacker can construct inputs that will produce controlled
 * alterations to the pool's state is not important because we don't
 * consider such inputs to contribute any randomness.  The only
 * property we need with respect to them is that the attacker can't
 * increase his/her knowledge of the pool's state.  Since all
 * additions are reversible (knowing the final state and the input,
 * you can reconstruct the initial state), if an attacker has any
 * uncertainty about the initial state, he/she can only shuffle that
 * uncertainty about, but never cause any collisions (which would
 * decrease the uncertainty).
 *
 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
 * Videau in their paper, "The Linux Pseudorandom Number Generator
 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf).  In their
 * paper, they point out that we are not using a true Twisted GFSR,
 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
 * is, with only three taps, instead of the six that we are using).
 * As a result, the resulting polynomial is neither primitive nor
 * irreducible, and hence does not have a maximal period over
 * GF(2**32).  They suggest a slight change to the generator
 * polynomial which improves the resulting TGFSR polynomial to be
 * irreducible, which we have made here.
L
Linus Torvalds 已提交
359 360
 */
static struct poolinfo {
361 362
	int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
#define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
L
Linus Torvalds 已提交
363 364
	int tap1, tap2, tap3, tap4, tap5;
} poolinfo_table[] = {
365 366 367 368 369 370
	/* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
	/* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
	{ S(128),	104,	76,	51,	25,	1 },
	/* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
	/* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
	{ S(32),	26,	19,	14,	7,	1 },
L
Linus Torvalds 已提交
371 372
#if 0
	/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
373
	{ S(2048),	1638,	1231,	819,	411,	1 },
L
Linus Torvalds 已提交
374 375

	/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
376
	{ S(1024),	817,	615,	412,	204,	1 },
L
Linus Torvalds 已提交
377 378

	/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
379
	{ S(1024),	819,	616,	410,	207,	2 },
L
Linus Torvalds 已提交
380 381

	/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
382
	{ S(512),	411,	308,	208,	104,	1 },
L
Linus Torvalds 已提交
383 384

	/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
385
	{ S(512),	409,	307,	206,	102,	2 },
L
Linus Torvalds 已提交
386
	/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
387
	{ S(512),	409,	309,	205,	103,	2 },
L
Linus Torvalds 已提交
388 389

	/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
390
	{ S(256),	205,	155,	101,	52,	1 },
L
Linus Torvalds 已提交
391 392

	/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
393
	{ S(128),	103,	78,	51,	27,	2 },
L
Linus Torvalds 已提交
394 395

	/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
396
	{ S(64),	52,	39,	26,	14,	1 },
L
Linus Torvalds 已提交
397 398 399 400 401 402 403 404
#endif
};

/*
 * Static global variables
 */
static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
405
static struct fasync_struct *fasync;
L
Linus Torvalds 已提交
406 407 408 409 410 411 412 413 414 415

/**********************************************************************
 *
 * OS independent entropy store.   Here are the functions which handle
 * storing entropy in an entropy pool.
 *
 **********************************************************************/

struct entropy_store;
struct entropy_store {
416
	/* read-only data: */
417
	const struct poolinfo *poolinfo;
L
Linus Torvalds 已提交
418 419 420
	__u32 *pool;
	const char *name;
	struct entropy_store *pull;
421
	struct work_struct push_work;
L
Linus Torvalds 已提交
422 423

	/* read-write data: */
424
	unsigned long last_pulled;
425
	spinlock_t lock;
426 427
	unsigned short add_ptr;
	unsigned short input_rotate;
428
	int entropy_count;
429 430
	int entropy_total;
	unsigned int initialized:1;
431 432
	unsigned int limit:1;
	unsigned int last_data_init:1;
M
Matt Mackall 已提交
433
	__u8 last_data[EXTRACT_SIZE];
L
Linus Torvalds 已提交
434 435
};

436
static void push_to_pool(struct work_struct *work);
L
Linus Torvalds 已提交
437 438 439 440 441 442 443 444
static __u32 input_pool_data[INPUT_POOL_WORDS];
static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];

static struct entropy_store input_pool = {
	.poolinfo = &poolinfo_table[0],
	.name = "input",
	.limit = 1,
445
	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
L
Linus Torvalds 已提交
446 447 448 449 450 451 452 453
	.pool = input_pool_data
};

static struct entropy_store blocking_pool = {
	.poolinfo = &poolinfo_table[1],
	.name = "blocking",
	.limit = 1,
	.pull = &input_pool,
454
	.lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
455 456 457
	.pool = blocking_pool_data,
	.push_work = __WORK_INITIALIZER(blocking_pool.push_work,
					push_to_pool),
L
Linus Torvalds 已提交
458 459 460 461 462 463
};

static struct entropy_store nonblocking_pool = {
	.poolinfo = &poolinfo_table[1],
	.name = "nonblocking",
	.pull = &input_pool,
464
	.lock = __SPIN_LOCK_UNLOCKED(nonblocking_pool.lock),
465 466 467
	.pool = nonblocking_pool_data,
	.push_work = __WORK_INITIALIZER(nonblocking_pool.push_work,
					push_to_pool),
L
Linus Torvalds 已提交
468 469
};

470 471 472 473
static __u32 const twist_table[8] = {
	0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
	0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };

L
Linus Torvalds 已提交
474
/*
475
 * This function adds bytes into the entropy "pool".  It does not
L
Linus Torvalds 已提交
476
 * update the entropy estimate.  The caller should call
477
 * credit_entropy_bits if this is appropriate.
L
Linus Torvalds 已提交
478 479 480 481 482 483
 *
 * The pool is stirred with a primitive polynomial of the appropriate
 * degree, and then twisted.  We twist by three bits at a time because
 * it's cheap to do so and helps slightly in the expected case where
 * the entropy is concentrated in the low-order bits.
 */
484 485
static void _mix_pool_bytes(struct entropy_store *r, const void *in,
			    int nbytes, __u8 out[64])
L
Linus Torvalds 已提交
486
{
M
Matt Mackall 已提交
487
	unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
488
	int input_rotate;
L
Linus Torvalds 已提交
489
	int wordmask = r->poolinfo->poolwords - 1;
490
	const char *bytes = in;
491
	__u32 w;
L
Linus Torvalds 已提交
492 493 494 495 496 497 498

	tap1 = r->poolinfo->tap1;
	tap2 = r->poolinfo->tap2;
	tap3 = r->poolinfo->tap3;
	tap4 = r->poolinfo->tap4;
	tap5 = r->poolinfo->tap5;

499 500 501
	smp_rmb();
	input_rotate = ACCESS_ONCE(r->input_rotate);
	i = ACCESS_ONCE(r->add_ptr);
L
Linus Torvalds 已提交
502

503 504
	/* mix one byte at a time to simplify size handling and churn faster */
	while (nbytes--) {
505
		w = rol32(*bytes++, input_rotate);
M
Matt Mackall 已提交
506
		i = (i - 1) & wordmask;
L
Linus Torvalds 已提交
507 508

		/* XOR in the various taps */
M
Matt Mackall 已提交
509
		w ^= r->pool[i];
L
Linus Torvalds 已提交
510 511 512 513 514
		w ^= r->pool[(i + tap1) & wordmask];
		w ^= r->pool[(i + tap2) & wordmask];
		w ^= r->pool[(i + tap3) & wordmask];
		w ^= r->pool[(i + tap4) & wordmask];
		w ^= r->pool[(i + tap5) & wordmask];
M
Matt Mackall 已提交
515 516

		/* Mix the result back in with a twist */
L
Linus Torvalds 已提交
517
		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
518 519 520 521 522 523 524

		/*
		 * Normally, we add 7 bits of rotation to the pool.
		 * At the beginning of the pool, add an extra 7 bits
		 * rotation, so that successive passes spread the
		 * input bits across the pool evenly.
		 */
525
		input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
L
Linus Torvalds 已提交
526 527
	}

528 529 530
	ACCESS_ONCE(r->input_rotate) = input_rotate;
	ACCESS_ONCE(r->add_ptr) = i;
	smp_wmb();
L
Linus Torvalds 已提交
531

M
Matt Mackall 已提交
532 533
	if (out)
		for (j = 0; j < 16; j++)
534
			((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
L
Linus Torvalds 已提交
535 536
}

537
static void __mix_pool_bytes(struct entropy_store *r, const void *in,
538
			     int nbytes, __u8 out[64])
539 540 541 542 543 544 545
{
	trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
	_mix_pool_bytes(r, in, nbytes, out);
}

static void mix_pool_bytes(struct entropy_store *r, const void *in,
			   int nbytes, __u8 out[64])
L
Linus Torvalds 已提交
546
{
547 548
	unsigned long flags;

549
	trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
550
	spin_lock_irqsave(&r->lock, flags);
551
	_mix_pool_bytes(r, in, nbytes, out);
552
	spin_unlock_irqrestore(&r->lock, flags);
L
Linus Torvalds 已提交
553 554
}

555 556 557 558 559 560 561 562 563 564 565 566 567
struct fast_pool {
	__u32		pool[4];
	unsigned long	last;
	unsigned short	count;
	unsigned char	rotate;
	unsigned char	last_timer_intr;
};

/*
 * This is a fast mixing routine used by the interrupt randomness
 * collector.  It's hardcoded for an 128 bit pool and assumes that any
 * locks that might be needed are taken by the caller.
 */
568
static void fast_mix(struct fast_pool *f, __u32 input[4])
569 570 571 572
{
	__u32		w;
	unsigned	input_rotate = f->rotate;

573 574 575 576 577 578 579 580 581 582 583 584 585
	w = rol32(input[0], input_rotate) ^ f->pool[0] ^ f->pool[3];
	f->pool[0] = (w >> 3) ^ twist_table[w & 7];
	input_rotate = (input_rotate + 14) & 31;
	w = rol32(input[1], input_rotate) ^ f->pool[1] ^ f->pool[0];
	f->pool[1] = (w >> 3) ^ twist_table[w & 7];
	input_rotate = (input_rotate + 7) & 31;
	w = rol32(input[2], input_rotate) ^ f->pool[2] ^ f->pool[1];
	f->pool[2] = (w >> 3) ^ twist_table[w & 7];
	input_rotate = (input_rotate + 7) & 31;
	w = rol32(input[3], input_rotate) ^ f->pool[3] ^ f->pool[2];
	f->pool[3] = (w >> 3) ^ twist_table[w & 7];
	input_rotate = (input_rotate + 7) & 31;

586
	f->rotate = input_rotate;
587
	f->count++;
588 589
}

L
Linus Torvalds 已提交
590
/*
591 592 593
 * Credit (or debit) the entropy store with n bits of entropy.
 * Use credit_entropy_bits_safe() if the value comes from userspace
 * or otherwise should be checked for extreme values.
L
Linus Torvalds 已提交
594
 */
595
static void credit_entropy_bits(struct entropy_store *r, int nbits)
L
Linus Torvalds 已提交
596
{
597
	int entropy_count, orig;
598 599
	const int pool_size = r->poolinfo->poolfracbits;
	int nfrac = nbits << ENTROPY_SHIFT;
L
Linus Torvalds 已提交
600

601 602 603
	if (!nbits)
		return;

604 605
retry:
	entropy_count = orig = ACCESS_ONCE(r->entropy_count);
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
	if (nfrac < 0) {
		/* Debit */
		entropy_count += nfrac;
	} else {
		/*
		 * Credit: we have to account for the possibility of
		 * overwriting already present entropy.	 Even in the
		 * ideal case of pure Shannon entropy, new contributions
		 * approach the full value asymptotically:
		 *
		 * entropy <- entropy + (pool_size - entropy) *
		 *	(1 - exp(-add_entropy/pool_size))
		 *
		 * For add_entropy <= pool_size/2 then
		 * (1 - exp(-add_entropy/pool_size)) >=
		 *    (add_entropy/pool_size)*0.7869...
		 * so we can approximate the exponential with
		 * 3/4*add_entropy/pool_size and still be on the
		 * safe side by adding at most pool_size/2 at a time.
		 *
		 * The use of pool_size-2 in the while statement is to
		 * prevent rounding artifacts from making the loop
		 * arbitrarily long; this limits the loop to log2(pool_size)*2
		 * turns no matter how large nbits is.
		 */
		int pnfrac = nfrac;
		const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
		/* The +2 corresponds to the /4 in the denominator */

		do {
			unsigned int anfrac = min(pnfrac, pool_size/2);
			unsigned int add =
				((pool_size - entropy_count)*anfrac*3) >> s;

			entropy_count += add;
			pnfrac -= anfrac;
		} while (unlikely(entropy_count < pool_size-2 && pnfrac));
	}
644

645
	if (entropy_count < 0) {
646 647 648
		pr_warn("random: negative entropy/overflow: pool %s count %d\n",
			r->name, entropy_count);
		WARN_ON(1);
649
		entropy_count = 0;
650 651
	} else if (entropy_count > pool_size)
		entropy_count = pool_size;
652 653
	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
		goto retry;
L
Linus Torvalds 已提交
654

655
	r->entropy_total += nbits;
656
	if (!r->initialized && nbits > 0) {
657
		if (r->entropy_total > 128) {
658 659 660
			if (r == &nonblocking_pool)
				pr_notice("random: %s pool is initialized\n",
					  r->name);
661
			r->initialized = 1;
662 663
			r->entropy_total = 0;
		}
664 665
	}

666 667
	trace_credit_entropy_bits(r->name, nbits,
				  entropy_count >> ENTROPY_SHIFT,
668 669
				  r->entropy_total, _RET_IP_);

670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
	if (r == &input_pool) {
		int entropy_bytes = entropy_count >> ENTROPY_SHIFT;

		/* should we wake readers? */
		if (entropy_bytes >= random_read_wakeup_thresh) {
			wake_up_interruptible(&random_read_wait);
			kill_fasync(&fasync, SIGIO, POLL_IN);
		}
		/* If the input pool is getting full, send some
		 * entropy to the two output pools, flipping back and
		 * forth between them, until the output pools are 75%
		 * full.
		 */
		if (entropy_bytes > random_write_wakeup_thresh &&
		    r->initialized &&
		    r->entropy_total >= 2*random_read_wakeup_thresh) {
			static struct entropy_store *last = &blocking_pool;
			struct entropy_store *other = &blocking_pool;

			if (last == &blocking_pool)
				other = &nonblocking_pool;
			if (other->entropy_count <=
			    3 * other->poolinfo->poolfracbits / 4)
				last = other;
			if (last->entropy_count <=
			    3 * last->poolinfo->poolfracbits / 4) {
				schedule_work(&last->push_work);
				r->entropy_total = 0;
			}
		}
700
	}
L
Linus Torvalds 已提交
701 702
}

703 704 705 706 707 708 709 710 711 712 713
static void credit_entropy_bits_safe(struct entropy_store *r, int nbits)
{
	const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));

	/* Cap the value to avoid overflows */
	nbits = min(nbits,  nbits_max);
	nbits = max(nbits, -nbits_max);

	credit_entropy_bits(r, nbits);
}

L
Linus Torvalds 已提交
714 715 716 717 718 719 720 721 722
/*********************************************************************
 *
 * Entropy input management
 *
 *********************************************************************/

/* There is one of these per entropy source */
struct timer_rand_state {
	cycles_t last_time;
723
	long last_delta, last_delta2;
L
Linus Torvalds 已提交
724 725 726
	unsigned dont_count_entropy:1;
};

727 728 729 730 731 732 733 734 735 736
/*
 * Add device- or boot-specific data to the input and nonblocking
 * pools to help initialize them to unique values.
 *
 * None of this adds any entropy, it is meant to avoid the
 * problem of the nonblocking pool having similar initial state
 * across largely identical devices.
 */
void add_device_randomness(const void *buf, unsigned int size)
{
737
	unsigned long time = random_get_entropy() ^ jiffies;
738
	unsigned long flags;
739

740
	trace_add_device_randomness(size, _RET_IP_);
741 742 743 744 745 746 747 748 749
	spin_lock_irqsave(&input_pool.lock, flags);
	_mix_pool_bytes(&input_pool, buf, size, NULL);
	_mix_pool_bytes(&input_pool, &time, sizeof(time), NULL);
	spin_unlock_irqrestore(&input_pool.lock, flags);

	spin_lock_irqsave(&nonblocking_pool.lock, flags);
	_mix_pool_bytes(&nonblocking_pool, buf, size, NULL);
	_mix_pool_bytes(&nonblocking_pool, &time, sizeof(time), NULL);
	spin_unlock_irqrestore(&nonblocking_pool.lock, flags);
750 751 752
}
EXPORT_SYMBOL(add_device_randomness);

753 754
static struct timer_rand_state input_timer_state;

L
Linus Torvalds 已提交
755 756 757 758 759 760 761 762 763 764 765 766
/*
 * This function adds entropy to the entropy "pool" by using timing
 * delays.  It uses the timer_rand_state structure to make an estimate
 * of how many bits of entropy this call has added to the pool.
 *
 * The number "num" is also added to the pool - it should somehow describe
 * the type of event which just happened.  This is currently 0-255 for
 * keyboard scan codes, and 256 upwards for interrupts.
 *
 */
static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
{
767
	struct entropy_store	*r;
L
Linus Torvalds 已提交
768 769
	struct {
		long jiffies;
770
		unsigned cycles;
L
Linus Torvalds 已提交
771 772 773 774 775 776 777
		unsigned num;
	} sample;
	long delta, delta2, delta3;

	preempt_disable();

	sample.jiffies = jiffies;
778
	sample.cycles = random_get_entropy();
L
Linus Torvalds 已提交
779
	sample.num = num;
780 781
	r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
	mix_pool_bytes(r, &sample, sizeof(sample), NULL);
L
Linus Torvalds 已提交
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814

	/*
	 * Calculate number of bits of randomness we probably added.
	 * We take into account the first, second and third-order deltas
	 * in order to make our estimate.
	 */

	if (!state->dont_count_entropy) {
		delta = sample.jiffies - state->last_time;
		state->last_time = sample.jiffies;

		delta2 = delta - state->last_delta;
		state->last_delta = delta;

		delta3 = delta2 - state->last_delta2;
		state->last_delta2 = delta2;

		if (delta < 0)
			delta = -delta;
		if (delta2 < 0)
			delta2 = -delta2;
		if (delta3 < 0)
			delta3 = -delta3;
		if (delta > delta2)
			delta = delta2;
		if (delta > delta3)
			delta = delta3;

		/*
		 * delta is now minimum absolute delta.
		 * Round down by 1 bit on general principles,
		 * and limit entropy entimate to 12 bits.
		 */
815
		credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
L
Linus Torvalds 已提交
816 817 818 819
	}
	preempt_enable();
}

820
void add_input_randomness(unsigned int type, unsigned int code,
L
Linus Torvalds 已提交
821 822 823 824 825 826 827 828 829 830 831
				 unsigned int value)
{
	static unsigned char last_value;

	/* ignore autorepeat and the like */
	if (value == last_value)
		return;

	last_value = value;
	add_timer_randomness(&input_timer_state,
			     (type << 4) ^ code ^ (code >> 4) ^ value);
832
	trace_add_input_randomness(ENTROPY_BITS(&input_pool));
L
Linus Torvalds 已提交
833
}
834
EXPORT_SYMBOL_GPL(add_input_randomness);
L
Linus Torvalds 已提交
835

836 837 838
static DEFINE_PER_CPU(struct fast_pool, irq_randomness);

void add_interrupt_randomness(int irq, int irq_flags)
L
Linus Torvalds 已提交
839
{
840 841 842 843
	struct entropy_store	*r;
	struct fast_pool	*fast_pool = &__get_cpu_var(irq_randomness);
	struct pt_regs		*regs = get_irq_regs();
	unsigned long		now = jiffies;
844 845 846 847 848 849 850 851 852 853 854
	cycles_t		cycles = random_get_entropy();
	__u32			input[4], c_high, j_high;
	__u64			ip;

	c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
	j_high = (sizeof(now) > 4) ? now >> 32 : 0;
	input[0] = cycles ^ j_high ^ irq;
	input[1] = now ^ c_high;
	ip = regs ? instruction_pointer(regs) : _RET_IP_;
	input[2] = ip;
	input[3] = ip >> 32;
855

856
	fast_mix(fast_pool, input);
857

858
	if ((fast_pool->count & 63) && !time_after(now, fast_pool->last + HZ))
L
Linus Torvalds 已提交
859 860
		return;

861 862 863
	fast_pool->last = now;

	r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
864
	__mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool), NULL);
865 866 867 868 869 870 871 872 873 874 875 876 877 878
	/*
	 * If we don't have a valid cycle counter, and we see
	 * back-to-back timer interrupts, then skip giving credit for
	 * any entropy.
	 */
	if (cycles == 0) {
		if (irq_flags & __IRQF_TIMER) {
			if (fast_pool->last_timer_intr)
				return;
			fast_pool->last_timer_intr = 1;
		} else
			fast_pool->last_timer_intr = 0;
	}
	credit_entropy_bits(r, 1);
L
Linus Torvalds 已提交
879 880
}

881
#ifdef CONFIG_BLOCK
L
Linus Torvalds 已提交
882 883 884 885 886
void add_disk_randomness(struct gendisk *disk)
{
	if (!disk || !disk->random)
		return;
	/* first major is 1, so we get >= 0x200 here */
887
	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
888
	trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
L
Linus Torvalds 已提交
889
}
890
#endif
L
Linus Torvalds 已提交
891 892 893 894 895 896 897

/*********************************************************************
 *
 * Entropy extraction routines
 *
 *********************************************************************/

898
static ssize_t extract_entropy(struct entropy_store *r, void *buf,
L
Linus Torvalds 已提交
899 900 901
			       size_t nbytes, int min, int rsvd);

/*
L
Lucas De Marchi 已提交
902
 * This utility inline function is responsible for transferring entropy
L
Linus Torvalds 已提交
903 904 905
 * from the primary pool to the secondary extraction pool. We make
 * sure we pull enough for a 'catastrophic reseed'.
 */
906
static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
L
Linus Torvalds 已提交
907 908
static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
{
909 910 911 912 913 914 915 916
	if (r->limit == 0 && random_min_urandom_seed) {
		unsigned long now = jiffies;

		if (time_before(now,
				r->last_pulled + random_min_urandom_seed * HZ))
			return;
		r->last_pulled = now;
	}
917 918
	if (r->pull &&
	    r->entropy_count < (nbytes << (ENTROPY_SHIFT + 3)) &&
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
	    r->entropy_count < r->poolinfo->poolfracbits)
		_xfer_secondary_pool(r, nbytes);
}

static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
{
	__u32	tmp[OUTPUT_POOL_WORDS];

	/* For /dev/random's pool, always leave two wakeup worth's BITS */
	int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
	int bytes = nbytes;

	/* pull at least as many as BYTES as wakeup BITS */
	bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
	/* but never more than the buffer size */
	bytes = min_t(int, bytes, sizeof(tmp));

936 937
	trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
				  ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
	bytes = extract_entropy(r->pull, tmp, bytes,
				random_read_wakeup_thresh / 8, rsvd);
	mix_pool_bytes(r, tmp, bytes, NULL);
	credit_entropy_bits(r, bytes*8);
}

/*
 * Used as a workqueue function so that when the input pool is getting
 * full, we can "spill over" some entropy to the output pools.  That
 * way the output pools can store some of the excess entropy instead
 * of letting it go to waste.
 */
static void push_to_pool(struct work_struct *work)
{
	struct entropy_store *r = container_of(work, struct entropy_store,
					      push_work);
	BUG_ON(!r);
	_xfer_secondary_pool(r, random_read_wakeup_thresh/8);
	trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
			   r->pull->entropy_count >> ENTROPY_SHIFT);
L
Linus Torvalds 已提交
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
}

/*
 * These functions extracts randomness from the "entropy pool", and
 * returns it in a buffer.
 *
 * The min parameter specifies the minimum amount we can pull before
 * failing to avoid races that defeat catastrophic reseeding while the
 * reserved parameter indicates how much entropy we must leave in the
 * pool after each pull to avoid starving other readers.
 *
 * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
 */

static size_t account(struct entropy_store *r, size_t nbytes, int min,
		      int reserved)
{
	unsigned long flags;
976
	int wakeup_write = 0;
977 978 979
	int have_bytes;
	int entropy_count, orig;
	size_t ibytes;
L
Linus Torvalds 已提交
980 981 982 983

	/* Hold lock while accounting */
	spin_lock_irqsave(&r->lock, flags);

984
	BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
L
Linus Torvalds 已提交
985 986

	/* Can we pull enough? */
987
retry:
988 989 990 991 992 993
	entropy_count = orig = ACCESS_ONCE(r->entropy_count);
	have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
	ibytes = nbytes;
	if (have_bytes < min + reserved) {
		ibytes = 0;
	} else {
L
Linus Torvalds 已提交
994
		/* If limited, never pull more than available */
995 996 997 998 999 1000 1001
		if (r->limit && ibytes + reserved >= have_bytes)
			ibytes = have_bytes - reserved;

		if (have_bytes >= ibytes + reserved)
			entropy_count -= ibytes << (ENTROPY_SHIFT + 3);
		else
			entropy_count = reserved << (ENTROPY_SHIFT + 3);
1002

1003 1004 1005 1006 1007
		if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
			goto retry;

		if ((r->entropy_count >> ENTROPY_SHIFT)
		    < random_write_wakeup_thresh)
1008
			wakeup_write = 1;
L
Linus Torvalds 已提交
1009 1010 1011
	}
	spin_unlock_irqrestore(&r->lock, flags);

1012
	trace_debit_entropy(r->name, 8 * ibytes);
1013 1014 1015 1016 1017
	if (wakeup_write) {
		wake_up_interruptible(&random_write_wait);
		kill_fasync(&fasync, SIGIO, POLL_OUT);
	}

1018
	return ibytes;
L
Linus Torvalds 已提交
1019 1020 1021 1022
}

static void extract_buf(struct entropy_store *r, __u8 *out)
{
1023
	int i;
1024 1025
	union {
		__u32 w[5];
1026
		unsigned long l[LONGS(20)];
1027 1028
	} hash;
	__u32 workspace[SHA_WORKSPACE_WORDS];
1029
	__u8 extract[64];
1030
	unsigned long flags;
L
Linus Torvalds 已提交
1031

1032
	/* Generate a hash across the pool, 16 words (512 bits) at a time */
1033
	sha_init(hash.w);
1034
	spin_lock_irqsave(&r->lock, flags);
1035
	for (i = 0; i < r->poolinfo->poolwords; i += 16)
1036
		sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1037

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
	/*
	 * If we have a architectural hardware random number
	 * generator, mix that in, too.
	 */
	for (i = 0; i < LONGS(20); i++) {
		unsigned long v;
		if (!arch_get_random_long(&v))
			break;
		hash.l[i] ^= v;
	}

L
Linus Torvalds 已提交
1049
	/*
1050 1051 1052 1053 1054 1055 1056
	 * We mix the hash back into the pool to prevent backtracking
	 * attacks (where the attacker knows the state of the pool
	 * plus the current outputs, and attempts to find previous
	 * ouputs), unless the hash function can be inverted. By
	 * mixing at least a SHA1 worth of hash data back, we make
	 * brute-forcing the feedback as hard as brute-forcing the
	 * hash.
L
Linus Torvalds 已提交
1057
	 */
1058
	__mix_pool_bytes(r, hash.w, sizeof(hash.w), extract);
1059
	spin_unlock_irqrestore(&r->lock, flags);
L
Linus Torvalds 已提交
1060 1061

	/*
1062 1063
	 * To avoid duplicates, we atomically extract a portion of the
	 * pool while mixing, and hash one final time.
L
Linus Torvalds 已提交
1064
	 */
1065
	sha_transform(hash.w, extract, workspace);
1066 1067
	memset(extract, 0, sizeof(extract));
	memset(workspace, 0, sizeof(workspace));
L
Linus Torvalds 已提交
1068 1069

	/*
1070 1071 1072
	 * In case the hash function has some recognizable output
	 * pattern, we fold it in half. Thus, we always feed back
	 * twice as much data as we output.
L
Linus Torvalds 已提交
1073
	 */
1074 1075 1076 1077 1078 1079
	hash.w[0] ^= hash.w[3];
	hash.w[1] ^= hash.w[4];
	hash.w[2] ^= rol32(hash.w[2], 16);

	memcpy(out, &hash, EXTRACT_SIZE);
	memset(&hash, 0, sizeof(hash));
L
Linus Torvalds 已提交
1080 1081
}

1082
static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1083
				 size_t nbytes, int min, int reserved)
L
Linus Torvalds 已提交
1084 1085 1086
{
	ssize_t ret = 0, i;
	__u8 tmp[EXTRACT_SIZE];
1087
	unsigned long flags;
L
Linus Torvalds 已提交
1088

1089
	/* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1090 1091 1092
	if (fips_enabled) {
		spin_lock_irqsave(&r->lock, flags);
		if (!r->last_data_init) {
1093
			r->last_data_init = 1;
1094 1095
			spin_unlock_irqrestore(&r->lock, flags);
			trace_extract_entropy(r->name, EXTRACT_SIZE,
1096
					      ENTROPY_BITS(r), _RET_IP_);
1097 1098 1099 1100 1101 1102 1103
			xfer_secondary_pool(r, EXTRACT_SIZE);
			extract_buf(r, tmp);
			spin_lock_irqsave(&r->lock, flags);
			memcpy(r->last_data, tmp, EXTRACT_SIZE);
		}
		spin_unlock_irqrestore(&r->lock, flags);
	}
1104

1105
	trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
L
Linus Torvalds 已提交
1106 1107 1108 1109 1110
	xfer_secondary_pool(r, nbytes);
	nbytes = account(r, nbytes, min, reserved);

	while (nbytes) {
		extract_buf(r, tmp);
1111

M
Matt Mackall 已提交
1112
		if (fips_enabled) {
1113 1114 1115 1116 1117 1118
			spin_lock_irqsave(&r->lock, flags);
			if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
				panic("Hardware RNG duplicated output!\n");
			memcpy(r->last_data, tmp, EXTRACT_SIZE);
			spin_unlock_irqrestore(&r->lock, flags);
		}
L
Linus Torvalds 已提交
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
		i = min_t(int, nbytes, EXTRACT_SIZE);
		memcpy(buf, tmp, i);
		nbytes -= i;
		buf += i;
		ret += i;
	}

	/* Wipe data just returned from memory */
	memset(tmp, 0, sizeof(tmp));

	return ret;
}

static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
				    size_t nbytes)
{
	ssize_t ret = 0, i;
	__u8 tmp[EXTRACT_SIZE];

1138
	trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
L
Linus Torvalds 已提交
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
	xfer_secondary_pool(r, nbytes);
	nbytes = account(r, nbytes, 0, 0);

	while (nbytes) {
		if (need_resched()) {
			if (signal_pending(current)) {
				if (ret == 0)
					ret = -ERESTARTSYS;
				break;
			}
			schedule();
		}

		extract_buf(r, tmp);
		i = min_t(int, nbytes, EXTRACT_SIZE);
		if (copy_to_user(buf, tmp, i)) {
			ret = -EFAULT;
			break;
		}

		nbytes -= i;
		buf += i;
		ret += i;
	}

	/* Wipe data just returned from memory */
	memset(tmp, 0, sizeof(tmp));

	return ret;
}

/*
 * This function is the exported kernel interface.  It returns some
1172 1173 1174
 * number of good random numbers, suitable for key generation, seeding
 * TCP sequence numbers, etc.  It does not use the hw random number
 * generator, if available; use get_random_bytes_arch() for that.
L
Linus Torvalds 已提交
1175 1176
 */
void get_random_bytes(void *buf, int nbytes)
1177
{
1178
	trace_get_random_bytes(nbytes, _RET_IP_);
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
	extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
}
EXPORT_SYMBOL(get_random_bytes);

/*
 * This function will use the architecture-specific hardware random
 * number generator if it is available.  The arch-specific hw RNG will
 * almost certainly be faster than what we can do in software, but it
 * is impossible to verify that it is implemented securely (as
 * opposed, to, say, the AES encryption of a sequence number using a
 * key known by the NSA).  So it's useful if we need the speed, but
 * only if we're willing to trust the hardware manufacturer not to
 * have put in a back door.
 */
void get_random_bytes_arch(void *buf, int nbytes)
L
Linus Torvalds 已提交
1194
{
1195 1196
	char *p = buf;

1197
	trace_get_random_bytes_arch(nbytes, _RET_IP_);
1198 1199 1200
	while (nbytes) {
		unsigned long v;
		int chunk = min(nbytes, (int)sizeof(unsigned long));
1201

1202 1203 1204
		if (!arch_get_random_long(&v))
			break;
		
L
Luck, Tony 已提交
1205
		memcpy(p, &v, chunk);
1206 1207 1208 1209
		p += chunk;
		nbytes -= chunk;
	}

1210 1211
	if (nbytes)
		extract_entropy(&nonblocking_pool, p, nbytes, 0, 0);
L
Linus Torvalds 已提交
1212
}
1213 1214
EXPORT_SYMBOL(get_random_bytes_arch);

L
Linus Torvalds 已提交
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226

/*
 * init_std_data - initialize pool with system data
 *
 * @r: pool to initialize
 *
 * This function clears the pool's entropy count and mixes some system
 * data into the pool to prepare it for use. The pool is not cleared
 * as that can only decrease the entropy in the pool.
 */
static void init_std_data(struct entropy_store *r)
{
1227
	int i;
1228 1229
	ktime_t now = ktime_get_real();
	unsigned long rv;
L
Linus Torvalds 已提交
1230 1231

	r->entropy_count = 0;
1232
	r->entropy_total = 0;
1233
	r->last_data_init = 0;
1234
	r->last_pulled = jiffies;
1235
	mix_pool_bytes(r, &now, sizeof(now), NULL);
1236
	for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1237
		if (!arch_get_random_long(&rv))
1238
			break;
1239
		mix_pool_bytes(r, &rv, sizeof(rv), NULL);
1240
	}
1241
	mix_pool_bytes(r, utsname(), sizeof(*(utsname())), NULL);
L
Linus Torvalds 已提交
1242 1243
}

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
/*
 * Note that setup_arch() may call add_device_randomness()
 * long before we get here. This allows seeding of the pools
 * with some platform dependent data very early in the boot
 * process. But it limits our options here. We must use
 * statically allocated structures that already have all
 * initializations complete at compile time. We should also
 * take care not to overwrite the precious per platform data
 * we were given.
 */
M
Matt Mackall 已提交
1254
static int rand_initialize(void)
L
Linus Torvalds 已提交
1255 1256 1257 1258 1259 1260 1261 1262
{
	init_std_data(&input_pool);
	init_std_data(&blocking_pool);
	init_std_data(&nonblocking_pool);
	return 0;
}
module_init(rand_initialize);

1263
#ifdef CONFIG_BLOCK
L
Linus Torvalds 已提交
1264 1265 1266 1267 1268
void rand_initialize_disk(struct gendisk *disk)
{
	struct timer_rand_state *state;

	/*
1269
	 * If kzalloc returns null, we just won't use that entropy
L
Linus Torvalds 已提交
1270 1271
	 * source.
	 */
1272 1273
	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
	if (state)
L
Linus Torvalds 已提交
1274 1275
		disk->random = state;
}
1276
#endif
L
Linus Torvalds 已提交
1277 1278

static ssize_t
1279
random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
L
Linus Torvalds 已提交
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
{
	ssize_t n, retval = 0, count = 0;

	if (nbytes == 0)
		return 0;

	while (nbytes > 0) {
		n = nbytes;
		if (n > SEC_XFER_SIZE)
			n = SEC_XFER_SIZE;

		n = extract_entropy_user(&blocking_pool, buf, n);

J
Jiri Kosina 已提交
1293 1294 1295 1296 1297
		if (n < 0) {
			retval = n;
			break;
		}

1298 1299 1300
		trace_random_read(n*8, (nbytes-n)*8,
				  ENTROPY_BITS(&blocking_pool),
				  ENTROPY_BITS(&input_pool));
L
Linus Torvalds 已提交
1301 1302 1303 1304 1305 1306 1307 1308

		if (n == 0) {
			if (file->f_flags & O_NONBLOCK) {
				retval = -EAGAIN;
				break;
			}

			wait_event_interruptible(random_read_wait,
1309 1310
				ENTROPY_BITS(&input_pool) >=
				random_read_wakeup_thresh);
L
Linus Torvalds 已提交
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330

			if (signal_pending(current)) {
				retval = -ERESTARTSYS;
				break;
			}

			continue;
		}

		count += n;
		buf += n;
		nbytes -= n;
		break;		/* This break makes the device work */
				/* like a named pipe */
	}

	return (count ? count : retval);
}

static ssize_t
1331
urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
L
Linus Torvalds 已提交
1332
{
1333 1334 1335 1336 1337 1338 1339 1340
	int ret;

	if (unlikely(nonblocking_pool.initialized == 0))
		printk_once(KERN_NOTICE "random: %s urandom read "
			    "with %d bits of entropy available\n",
			    current->comm, nonblocking_pool.entropy_total);

	ret = extract_entropy_user(&nonblocking_pool, buf, nbytes);
1341 1342 1343 1344

	trace_urandom_read(8 * nbytes, ENTROPY_BITS(&nonblocking_pool),
			   ENTROPY_BITS(&input_pool));
	return ret;
L
Linus Torvalds 已提交
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
}

static unsigned int
random_poll(struct file *file, poll_table * wait)
{
	unsigned int mask;

	poll_wait(file, &random_read_wait, wait);
	poll_wait(file, &random_write_wait, wait);
	mask = 0;
1355
	if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_thresh)
L
Linus Torvalds 已提交
1356
		mask |= POLLIN | POLLRDNORM;
1357
	if (ENTROPY_BITS(&input_pool) < random_write_wakeup_thresh)
L
Linus Torvalds 已提交
1358 1359 1360 1361
		mask |= POLLOUT | POLLWRNORM;
	return mask;
}

1362 1363
static int
write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
L
Linus Torvalds 已提交
1364 1365 1366 1367 1368
{
	size_t bytes;
	__u32 buf[16];
	const char __user *p = buffer;

1369 1370 1371 1372
	while (count > 0) {
		bytes = min(count, sizeof(buf));
		if (copy_from_user(&buf, p, bytes))
			return -EFAULT;
L
Linus Torvalds 已提交
1373

1374
		count -= bytes;
L
Linus Torvalds 已提交
1375 1376
		p += bytes;

1377
		mix_pool_bytes(r, buf, bytes, NULL);
1378
		cond_resched();
L
Linus Torvalds 已提交
1379
	}
1380 1381 1382 1383

	return 0;
}

1384 1385
static ssize_t random_write(struct file *file, const char __user *buffer,
			    size_t count, loff_t *ppos)
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
{
	size_t ret;

	ret = write_pool(&blocking_pool, buffer, count);
	if (ret)
		return ret;
	ret = write_pool(&nonblocking_pool, buffer, count);
	if (ret)
		return ret;

	return (ssize_t)count;
L
Linus Torvalds 已提交
1397 1398
}

M
Matt Mackall 已提交
1399
static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
L
Linus Torvalds 已提交
1400 1401 1402 1403 1404 1405 1406
{
	int size, ent_count;
	int __user *p = (int __user *)arg;
	int retval;

	switch (cmd) {
	case RNDGETENTCNT:
M
Matt Mackall 已提交
1407
		/* inherently racy, no point locking */
1408 1409
		ent_count = ENTROPY_BITS(&input_pool);
		if (put_user(ent_count, p))
L
Linus Torvalds 已提交
1410 1411 1412 1413 1414 1415 1416
			return -EFAULT;
		return 0;
	case RNDADDTOENTCNT:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p))
			return -EFAULT;
1417
		credit_entropy_bits_safe(&input_pool, ent_count);
L
Linus Torvalds 已提交
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
		return 0;
	case RNDADDENTROPY:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p++))
			return -EFAULT;
		if (ent_count < 0)
			return -EINVAL;
		if (get_user(size, p++))
			return -EFAULT;
1428 1429
		retval = write_pool(&input_pool, (const char __user *)p,
				    size);
L
Linus Torvalds 已提交
1430 1431
		if (retval < 0)
			return retval;
1432
		credit_entropy_bits_safe(&input_pool, ent_count);
L
Linus Torvalds 已提交
1433 1434 1435 1436 1437 1438
		return 0;
	case RNDZAPENTCNT:
	case RNDCLEARPOOL:
		/* Clear the entropy pool counters. */
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
M
Matt Mackall 已提交
1439
		rand_initialize();
L
Linus Torvalds 已提交
1440 1441 1442 1443 1444 1445
		return 0;
	default:
		return -EINVAL;
	}
}

1446 1447 1448 1449 1450
static int random_fasync(int fd, struct file *filp, int on)
{
	return fasync_helper(fd, filp, on, &fasync);
}

1451
const struct file_operations random_fops = {
L
Linus Torvalds 已提交
1452 1453 1454
	.read  = random_read,
	.write = random_write,
	.poll  = random_poll,
M
Matt Mackall 已提交
1455
	.unlocked_ioctl = random_ioctl,
1456
	.fasync = random_fasync,
1457
	.llseek = noop_llseek,
L
Linus Torvalds 已提交
1458 1459
};

1460
const struct file_operations urandom_fops = {
L
Linus Torvalds 已提交
1461 1462
	.read  = urandom_read,
	.write = random_write,
M
Matt Mackall 已提交
1463
	.unlocked_ioctl = random_ioctl,
1464
	.fasync = random_fasync,
1465
	.llseek = noop_llseek,
L
Linus Torvalds 已提交
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
};

/***************************************************************
 * Random UUID interface
 *
 * Used here for a Boot ID, but can be useful for other kernel
 * drivers.
 ***************************************************************/

/*
 * Generate random UUID
 */
void generate_random_uuid(unsigned char uuid_out[16])
{
	get_random_bytes(uuid_out, 16);
1481
	/* Set UUID version to 4 --- truly random generation */
L
Linus Torvalds 已提交
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
	uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
	/* Set the UUID variant to DCE */
	uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
}
EXPORT_SYMBOL(generate_random_uuid);

/********************************************************************
 *
 * Sysctl interface
 *
 ********************************************************************/

#ifdef CONFIG_SYSCTL

#include <linux/sysctl.h>

static int min_read_thresh = 8, min_write_thresh;
static int max_read_thresh = INPUT_POOL_WORDS * 32;
static int max_write_thresh = INPUT_POOL_WORDS * 32;
static char sysctl_bootid[16];

/*
 * These functions is used to return both the bootid UUID, and random
 * UUID.  The difference is in whether table->data is NULL; if it is,
 * then a new UUID is generated and returned to the user.
 *
 * If the user accesses this via the proc interface, it will be returned
 * as an ASCII string in the standard UUID format.  If accesses via the
 * sysctl system call, it is returned as 16 bytes of binary data.
 */
1512
static int proc_do_uuid(struct ctl_table *table, int write,
L
Linus Torvalds 已提交
1513 1514
			void __user *buffer, size_t *lenp, loff_t *ppos)
{
1515
	struct ctl_table fake_table;
L
Linus Torvalds 已提交
1516 1517 1518 1519 1520 1521
	unsigned char buf[64], tmp_uuid[16], *uuid;

	uuid = table->data;
	if (!uuid) {
		uuid = tmp_uuid;
		generate_random_uuid(uuid);
1522 1523 1524 1525 1526 1527 1528 1529
	} else {
		static DEFINE_SPINLOCK(bootid_spinlock);

		spin_lock(&bootid_spinlock);
		if (!uuid[8])
			generate_random_uuid(uuid);
		spin_unlock(&bootid_spinlock);
	}
L
Linus Torvalds 已提交
1530

J
Joe Perches 已提交
1531 1532
	sprintf(buf, "%pU", uuid);

L
Linus Torvalds 已提交
1533 1534 1535
	fake_table.data = buf;
	fake_table.maxlen = sizeof(buf);

1536
	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
L
Linus Torvalds 已提交
1537 1538
}

1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
/*
 * Return entropy available scaled to integral bits
 */
static int proc_do_entropy(ctl_table *table, int write,
			   void __user *buffer, size_t *lenp, loff_t *ppos)
{
	ctl_table fake_table;
	int entropy_count;

	entropy_count = *(int *)table->data >> ENTROPY_SHIFT;

	fake_table.data = &entropy_count;
	fake_table.maxlen = sizeof(entropy_count);

	return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
}

L
Linus Torvalds 已提交
1556
static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1557 1558
extern struct ctl_table random_table[];
struct ctl_table random_table[] = {
L
Linus Torvalds 已提交
1559 1560 1561 1562 1563
	{
		.procname	= "poolsize",
		.data		= &sysctl_poolsize,
		.maxlen		= sizeof(int),
		.mode		= 0444,
1564
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1565 1566 1567 1568 1569
	},
	{
		.procname	= "entropy_avail",
		.maxlen		= sizeof(int),
		.mode		= 0444,
1570
		.proc_handler	= proc_do_entropy,
L
Linus Torvalds 已提交
1571 1572 1573 1574 1575 1576 1577
		.data		= &input_pool.entropy_count,
	},
	{
		.procname	= "read_wakeup_threshold",
		.data		= &random_read_wakeup_thresh,
		.maxlen		= sizeof(int),
		.mode		= 0644,
1578
		.proc_handler	= proc_dointvec_minmax,
L
Linus Torvalds 已提交
1579 1580 1581 1582 1583 1584 1585 1586
		.extra1		= &min_read_thresh,
		.extra2		= &max_read_thresh,
	},
	{
		.procname	= "write_wakeup_threshold",
		.data		= &random_write_wakeup_thresh,
		.maxlen		= sizeof(int),
		.mode		= 0644,
1587
		.proc_handler	= proc_dointvec_minmax,
L
Linus Torvalds 已提交
1588 1589 1590
		.extra1		= &min_write_thresh,
		.extra2		= &max_write_thresh,
	},
1591 1592 1593 1594 1595 1596 1597
	{
		.procname	= "urandom_min_reseed_secs",
		.data		= &random_min_urandom_seed,
		.maxlen		= sizeof(int),
		.mode		= 0644,
		.proc_handler	= proc_dointvec,
	},
L
Linus Torvalds 已提交
1598 1599 1600 1601 1602
	{
		.procname	= "boot_id",
		.data		= &sysctl_bootid,
		.maxlen		= 16,
		.mode		= 0444,
1603
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1604 1605 1606 1607 1608
	},
	{
		.procname	= "uuid",
		.maxlen		= 16,
		.mode		= 0444,
1609
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1610
	},
1611
	{ }
L
Linus Torvalds 已提交
1612 1613 1614
};
#endif 	/* CONFIG_SYSCTL */

1615
static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
L
Linus Torvalds 已提交
1616

1617
int random_int_secret_init(void)
L
Linus Torvalds 已提交
1618
{
1619
	get_random_bytes(random_int_secret, sizeof(random_int_secret));
L
Linus Torvalds 已提交
1620 1621 1622 1623 1624 1625 1626 1627 1628
	return 0;
}

/*
 * Get a random word for internal kernel use only. Similar to urandom but
 * with the goal of minimal entropy pool depletion. As a result, the random
 * value is not cryptographically secure but for several uses the cost of
 * depleting entropy is too high
 */
T
Theodore Ts'o 已提交
1629
static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
L
Linus Torvalds 已提交
1630 1631
unsigned int get_random_int(void)
{
1632
	__u32 *hash;
1633
	unsigned int ret;
1634

1635 1636 1637 1638
	if (arch_get_random_int(&ret))
		return ret;

	hash = get_cpu_var(get_random_int_hash);
1639

1640
	hash[0] += current->pid + jiffies + random_get_entropy();
1641 1642
	md5_transform(hash, random_int_secret);
	ret = hash[0];
1643 1644 1645
	put_cpu_var(get_random_int_hash);

	return ret;
L
Linus Torvalds 已提交
1646
}
1647
EXPORT_SYMBOL(get_random_int);
L
Linus Torvalds 已提交
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666

/*
 * randomize_range() returns a start address such that
 *
 *    [...... <range> .....]
 *  start                  end
 *
 * a <range> with size "len" starting at the return value is inside in the
 * area defined by [start, end], but is otherwise randomized.
 */
unsigned long
randomize_range(unsigned long start, unsigned long end, unsigned long len)
{
	unsigned long range = end - len - start;

	if (end <= start + len)
		return 0;
	return PAGE_ALIGN(get_random_int() % range + start);
}