skbuff.h 118.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 *	Definitions for the 'struct sk_buff' memory handlers.
 *
 *	Authors:
 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 *		Florian La Roche, <rzsfl@rz.uni-sb.de>
 *
 *	This program is free software; you can redistribute it and/or
 *	modify it under the terms of the GNU General Public License
 *	as published by the Free Software Foundation; either version
 *	2 of the License, or (at your option) any later version.
 */

#ifndef _LINUX_SKBUFF_H
#define _LINUX_SKBUFF_H

#include <linux/kernel.h>
#include <linux/compiler.h>
#include <linux/time.h>
20
#include <linux/bug.h>
L
Linus Torvalds 已提交
21
#include <linux/cache.h>
E
Eric Dumazet 已提交
22
#include <linux/rbtree.h>
23
#include <linux/socket.h>
24
#include <linux/refcount.h>
L
Linus Torvalds 已提交
25

A
Arun Sharma 已提交
26
#include <linux/atomic.h>
L
Linus Torvalds 已提交
27 28 29
#include <asm/types.h>
#include <linux/spinlock.h>
#include <linux/net.h>
30
#include <linux/textsearch.h>
L
Linus Torvalds 已提交
31
#include <net/checksum.h>
32
#include <linux/rcupdate.h>
33
#include <linux/hrtimer.h>
34
#include <linux/dma-mapping.h>
35
#include <linux/netdev_features.h>
36
#include <linux/sched.h>
37
#include <linux/sched/clock.h>
38
#include <net/flow_dissector.h>
39
#include <linux/splice.h>
40
#include <linux/in6.h>
41
#include <linux/if_packet.h>
42
#include <net/flow.h>
L
Linus Torvalds 已提交
43

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
/* The interface for checksum offload between the stack and networking drivers
 * is as follows...
 *
 * A. IP checksum related features
 *
 * Drivers advertise checksum offload capabilities in the features of a device.
 * From the stack's point of view these are capabilities offered by the driver,
 * a driver typically only advertises features that it is capable of offloading
 * to its device.
 *
 * The checksum related features are:
 *
 *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
 *			  IP (one's complement) checksum for any combination
 *			  of protocols or protocol layering. The checksum is
 *			  computed and set in a packet per the CHECKSUM_PARTIAL
 *			  interface (see below).
 *
 *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
 *			  TCP or UDP packets over IPv4. These are specifically
 *			  unencapsulated packets of the form IPv4|TCP or
 *			  IPv4|UDP where the Protocol field in the IPv4 header
 *			  is TCP or UDP. The IPv4 header may contain IP options
 *			  This feature cannot be set in features for a device
 *			  with NETIF_F_HW_CSUM also set. This feature is being
 *			  DEPRECATED (see below).
 *
 *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
 *			  TCP or UDP packets over IPv6. These are specifically
 *			  unencapsulated packets of the form IPv6|TCP or
 *			  IPv4|UDP where the Next Header field in the IPv6
 *			  header is either TCP or UDP. IPv6 extension headers
 *			  are not supported with this feature. This feature
 *			  cannot be set in features for a device with
 *			  NETIF_F_HW_CSUM also set. This feature is being
 *			  DEPRECATED (see below).
 *
 *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
 *			 This flag is used only used to disable the RX checksum
 *			 feature for a device. The stack will accept receive
 *			 checksum indication in packets received on a device
 *			 regardless of whether NETIF_F_RXCSUM is set.
 *
 * B. Checksumming of received packets by device. Indication of checksum
 *    verification is in set skb->ip_summed. Possible values are:
89 90 91
 *
 * CHECKSUM_NONE:
 *
92
 *   Device did not checksum this packet e.g. due to lack of capabilities.
93 94 95 96 97 98 99
 *   The packet contains full (though not verified) checksum in packet but
 *   not in skb->csum. Thus, skb->csum is undefined in this case.
 *
 * CHECKSUM_UNNECESSARY:
 *
 *   The hardware you're dealing with doesn't calculate the full checksum
 *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
100 101
 *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
 *   if their checksums are okay. skb->csum is still undefined in this case
102 103
 *   though. A driver or device must never modify the checksum field in the
 *   packet even if checksum is verified.
104 105 106 107 108 109 110 111
 *
 *   CHECKSUM_UNNECESSARY is applicable to following protocols:
 *     TCP: IPv6 and IPv4.
 *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
 *       zero UDP checksum for either IPv4 or IPv6, the networking stack
 *       may perform further validation in this case.
 *     GRE: only if the checksum is present in the header.
 *     SCTP: indicates the CRC in SCTP header has been validated.
112
 *     FCOE: indicates the CRC in FC frame has been validated.
113 114 115 116 117 118 119 120 121 122
 *
 *   skb->csum_level indicates the number of consecutive checksums found in
 *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
 *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
 *   and a device is able to verify the checksums for UDP (possibly zero),
 *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
 *   two. If the device were only able to verify the UDP checksum and not
 *   GRE, either because it doesn't support GRE checksum of because GRE
 *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
 *   not considered in this case).
123 124 125 126 127 128 129
 *
 * CHECKSUM_COMPLETE:
 *
 *   This is the most generic way. The device supplied checksum of the _whole_
 *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
 *   hardware doesn't need to parse L3/L4 headers to implement this.
 *
130 131 132 133
 *   Notes:
 *   - Even if device supports only some protocols, but is able to produce
 *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
 *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
134 135 136
 *
 * CHECKSUM_PARTIAL:
 *
137 138
 *   A checksum is set up to be offloaded to a device as described in the
 *   output description for CHECKSUM_PARTIAL. This may occur on a packet
139
 *   received directly from another Linux OS, e.g., a virtualized Linux kernel
140 141 142 143 144 145
 *   on the same host, or it may be set in the input path in GRO or remote
 *   checksum offload. For the purposes of checksum verification, the checksum
 *   referred to by skb->csum_start + skb->csum_offset and any preceding
 *   checksums in the packet are considered verified. Any checksums in the
 *   packet that are after the checksum being offloaded are not considered to
 *   be verified.
146
 *
147 148
 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
 *    in the skb->ip_summed for a packet. Values are:
149 150 151
 *
 * CHECKSUM_PARTIAL:
 *
152
 *   The driver is required to checksum the packet as seen by hard_start_xmit()
153
 *   from skb->csum_start up to the end, and to record/write the checksum at
154 155 156 157 158 159 160 161 162 163 164 165 166 167
 *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
 *   csum_start and csum_offset values are valid values given the length and
 *   offset of the packet, however they should not attempt to validate that the
 *   checksum refers to a legitimate transport layer checksum-- it is the
 *   purview of the stack to validate that csum_start and csum_offset are set
 *   correctly.
 *
 *   When the stack requests checksum offload for a packet, the driver MUST
 *   ensure that the checksum is set correctly. A driver can either offload the
 *   checksum calculation to the device, or call skb_checksum_help (in the case
 *   that the device does not support offload for a particular checksum).
 *
 *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
 *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
168 169 170 171 172
 *   checksum offload capability.
 *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
 *   on network device checksumming capabilities: if a packet does not match
 *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
 *   csum_not_inet, see item D.) is called to resolve the checksum.
173
 *
174
 * CHECKSUM_NONE:
175
 *
176 177
 *   The skb was already checksummed by the protocol, or a checksum is not
 *   required.
178 179 180
 *
 * CHECKSUM_UNNECESSARY:
 *
181 182
 *   This has the same meaning on as CHECKSUM_NONE for checksum offload on
 *   output.
183
 *
184 185 186 187 188 189 190 191
 * CHECKSUM_COMPLETE:
 *   Not used in checksum output. If a driver observes a packet with this value
 *   set in skbuff, if should treat as CHECKSUM_NONE being set.
 *
 * D. Non-IP checksum (CRC) offloads
 *
 *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
 *     offloading the SCTP CRC in a packet. To perform this offload the stack
192 193 194 195 196 197 198
 *     will set set csum_start and csum_offset accordingly, set ip_summed to
 *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
 *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
 *     A driver that supports both IP checksum offload and SCTP CRC32c offload
 *     must verify which offload is configured for a packet by testing the
 *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
 *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
 *
 *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
 *     offloading the FCOE CRC in a packet. To perform this offload the stack
 *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
 *     accordingly. Note the there is no indication in the skbuff that the
 *     CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
 *     both IP checksum offload and FCOE CRC offload must verify which offload
 *     is configured for a packet presumably by inspecting packet headers.
 *
 * E. Checksumming on output with GSO.
 *
 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
 * part of the GSO operation is implied. If a checksum is being offloaded
 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
 * are set to refer to the outermost checksum being offload (two offloaded
 * checksums are possible with UDP encapsulation).
217 218
 */

219
/* Don't change this without changing skb_csum_unnecessary! */
220 221 222 223
#define CHECKSUM_NONE		0
#define CHECKSUM_UNNECESSARY	1
#define CHECKSUM_COMPLETE	2
#define CHECKSUM_PARTIAL	3
L
Linus Torvalds 已提交
224

225 226 227
/* Maximum value in skb->csum_level */
#define SKB_MAX_CSUM_LEVEL	3

228
#define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
229
#define SKB_WITH_OVERHEAD(X)	\
230
	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
231 232
#define SKB_MAX_ORDER(X, ORDER) \
	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
L
Linus Torvalds 已提交
233 234 235
#define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
#define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))

E
Eric Dumazet 已提交
236 237 238 239 240
/* return minimum truesize of one skb containing X bytes of data */
#define SKB_TRUESIZE(X) ((X) +						\
			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))

L
Linus Torvalds 已提交
241
struct net_device;
242
struct scatterlist;
J
Jens Axboe 已提交
243
struct pipe_inode_info;
H
Herbert Xu 已提交
244
struct iov_iter;
245
struct napi_struct;
L
Linus Torvalds 已提交
246

247
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
L
Linus Torvalds 已提交
248 249 250
struct nf_conntrack {
	atomic_t use;
};
251
#endif
L
Linus Torvalds 已提交
252

253
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
L
Linus Torvalds 已提交
254
struct nf_bridge_info {
255
	refcount_t		use;
256 257 258 259
	enum {
		BRNF_PROTO_UNCHANGED,
		BRNF_PROTO_8021Q,
		BRNF_PROTO_PPPOE
260
	} orig_proto:8;
261 262 263
	u8			pkt_otherhost:1;
	u8			in_prerouting:1;
	u8			bridged_dnat:1;
264
	__u16			frag_max_size;
265
	struct net_device	*physindev;
266 267 268

	/* always valid & non-NULL from FORWARD on, for physdev match */
	struct net_device	*physoutdev;
269
	union {
270
		/* prerouting: detect dnat in orig/reply direction */
271 272
		__be32          ipv4_daddr;
		struct in6_addr ipv6_daddr;
273 274 275 276 277 278

		/* after prerouting + nat detected: store original source
		 * mac since neigh resolution overwrites it, only used while
		 * skb is out in neigh layer.
		 */
		char neigh_header[8];
279
	};
L
Linus Torvalds 已提交
280 281 282 283 284 285 286 287 288 289 290 291 292 293
};
#endif

struct sk_buff_head {
	/* These two members must be first. */
	struct sk_buff	*next;
	struct sk_buff	*prev;

	__u32		qlen;
	spinlock_t	lock;
};

struct sk_buff;

294 295 296 297 298 299
/* To allow 64K frame to be packed as single skb without frag_list we
 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
 * buffers which do not start on a page boundary.
 *
 * Since GRO uses frags we allocate at least 16 regardless of page
 * size.
300
 */
301
#if (65536/PAGE_SIZE + 1) < 16
302
#define MAX_SKB_FRAGS 16UL
303
#else
304
#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
305
#endif
H
Hans Westgaard Ry 已提交
306
extern int sysctl_max_skb_frags;
L
Linus Torvalds 已提交
307

308 309 310 311 312
/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
 * segment using its current segmentation instead.
 */
#define GSO_BY_FRAGS	0xFFFF

L
Linus Torvalds 已提交
313 314 315
typedef struct skb_frag_struct skb_frag_t;

struct skb_frag_struct {
316 317 318
	struct {
		struct page *p;
	} page;
319
#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
320 321
	__u32 page_offset;
	__u32 size;
322 323 324 325
#else
	__u16 page_offset;
	__u16 size;
#endif
L
Linus Torvalds 已提交
326 327
};

E
Eric Dumazet 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
static inline unsigned int skb_frag_size(const skb_frag_t *frag)
{
	return frag->size;
}

static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
{
	frag->size = size;
}

static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
{
	frag->size += delta;
}

static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
{
	frag->size -= delta;
}

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
static inline bool skb_frag_must_loop(struct page *p)
{
#if defined(CONFIG_HIGHMEM)
	if (PageHighMem(p))
		return true;
#endif
	return false;
}

/**
 *	skb_frag_foreach_page - loop over pages in a fragment
 *
 *	@f:		skb frag to operate on
 *	@f_off:		offset from start of f->page.p
 *	@f_len:		length from f_off to loop over
 *	@p:		(temp var) current page
 *	@p_off:		(temp var) offset from start of current page,
 *	                           non-zero only on first page.
 *	@p_len:		(temp var) length in current page,
 *				   < PAGE_SIZE only on first and last page.
 *	@copied:	(temp var) length so far, excluding current p_len.
 *
 *	A fragment can hold a compound page, in which case per-page
 *	operations, notably kmap_atomic, must be called for each
 *	regular page.
 */
#define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
	     p_off = (f_off) & (PAGE_SIZE - 1),				\
	     p_len = skb_frag_must_loop(p) ?				\
	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
	     copied = 0;						\
	     copied < f_len;						\
	     copied += p_len, p++, p_off = 0,				\
	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\

384 385 386
#define HAVE_HW_TIME_STAMP

/**
387
 * struct skb_shared_hwtstamps - hardware time stamps
388 389 390 391
 * @hwtstamp:	hardware time stamp transformed into duration
 *		since arbitrary point in time
 *
 * Software time stamps generated by ktime_get_real() are stored in
392
 * skb->tstamp.
393 394 395 396 397 398 399 400 401 402 403
 *
 * hwtstamps can only be compared against other hwtstamps from
 * the same device.
 *
 * This structure is attached to packets as part of the
 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
 */
struct skb_shared_hwtstamps {
	ktime_t	hwtstamp;
};

404 405 406 407 408
/* Definitions for tx_flags in struct skb_shared_info */
enum {
	/* generate hardware time stamp */
	SKBTX_HW_TSTAMP = 1 << 0,

409
	/* generate software time stamp when queueing packet to NIC */
410 411 412 413 414
	SKBTX_SW_TSTAMP = 1 << 1,

	/* device driver is going to provide hardware time stamp */
	SKBTX_IN_PROGRESS = 1 << 2,

415
	/* device driver supports TX zero-copy buffers */
E
Eric Dumazet 已提交
416
	SKBTX_DEV_ZEROCOPY = 1 << 3,
417 418

	/* generate wifi status information (where possible) */
E
Eric Dumazet 已提交
419
	SKBTX_WIFI_STATUS = 1 << 4,
420 421 422 423 424 425 426

	/* This indicates at least one fragment might be overwritten
	 * (as in vmsplice(), sendfile() ...)
	 * If we need to compute a TX checksum, we'll need to copy
	 * all frags to avoid possible bad checksum
	 */
	SKBTX_SHARED_FRAG = 1 << 5,
427 428 429

	/* generate software time stamp when entering packet scheduling */
	SKBTX_SCHED_TSTAMP = 1 << 6,
430 431
};

W
Willem de Bruijn 已提交
432
#define SKBTX_ZEROCOPY_FRAG	(SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
433
#define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
434
				 SKBTX_SCHED_TSTAMP)
435 436
#define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)

437 438 439
/*
 * The callback notifies userspace to release buffers when skb DMA is done in
 * lower device, the skb last reference should be 0 when calling this.
440 441
 * The zerocopy_success argument is true if zero copy transmit occurred,
 * false on data copy or out of memory error caused by data copy attempt.
442 443
 * The ctx field is used to track device context.
 * The desc field is used to track userspace buffer index.
444 445
 */
struct ubuf_info {
446
	void (*callback)(struct ubuf_info *, bool zerocopy_success);
447 448 449 450 451 452 453 454 455 456 457 458
	union {
		struct {
			unsigned long desc;
			void *ctx;
		};
		struct {
			u32 id;
			u16 len;
			u16 zerocopy:1;
			u32 bytelen;
		};
	};
459
	refcount_t refcnt;
460 461 462 463 464

	struct mmpin {
		struct user_struct *user;
		unsigned int num_pg;
	} mmp;
465 466
};

W
Willem de Bruijn 已提交
467 468 469
#define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))

struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
470 471
struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
					struct ubuf_info *uarg);
W
Willem de Bruijn 已提交
472 473 474

static inline void sock_zerocopy_get(struct ubuf_info *uarg)
{
475
	refcount_inc(&uarg->refcnt);
W
Willem de Bruijn 已提交
476 477 478 479 480 481 482 483 484 485 486
}

void sock_zerocopy_put(struct ubuf_info *uarg);
void sock_zerocopy_put_abort(struct ubuf_info *uarg);

void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);

int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
			     struct msghdr *msg, int len,
			     struct ubuf_info *uarg);

L
Linus Torvalds 已提交
487 488 489 490
/* This data is invariant across clones and lives at
 * the end of the header data, ie. at skb->end.
 */
struct skb_shared_info {
491 492 493
	__u8		__unused;
	__u8		meta_len;
	__u8		nr_frags;
494
	__u8		tx_flags;
495 496 497
	unsigned short	gso_size;
	/* Warning: this field is not always filled in (UFO)! */
	unsigned short	gso_segs;
L
Linus Torvalds 已提交
498
	struct sk_buff	*frag_list;
499
	struct skb_shared_hwtstamps hwtstamps;
500
	unsigned int	gso_type;
501
	u32		tskey;
E
Eric Dumazet 已提交
502 503 504 505 506 507

	/*
	 * Warning : all fields before dataref are cleared in __alloc_skb()
	 */
	atomic_t	dataref;

J
Johann Baudy 已提交
508 509 510
	/* Intermediate layers must ensure that destructor_arg
	 * remains valid until skb destructor */
	void *		destructor_arg;
511

512 513
	/* must be last field, see pskb_expand_head() */
	skb_frag_t	frags[MAX_SKB_FRAGS];
L
Linus Torvalds 已提交
514 515 516 517
};

/* We divide dataref into two halves.  The higher 16 bits hold references
 * to the payload part of skb->data.  The lower 16 bits hold references to
518 519
 * the entire skb->data.  A clone of a headerless skb holds the length of
 * the header in skb->hdr_len.
L
Linus Torvalds 已提交
520 521 522 523 524 525 526 527 528 529
 *
 * All users must obey the rule that the skb->data reference count must be
 * greater than or equal to the payload reference count.
 *
 * Holding a reference to the payload part means that the user does not
 * care about modifications to the header part of skb->data.
 */
#define SKB_DATAREF_SHIFT 16
#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)

530 531

enum {
532 533 534
	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
535 536
};

537 538
enum {
	SKB_GSO_TCPV4 = 1 << 0,
539 540

	/* This indicates the skb is from an untrusted source. */
541
	SKB_GSO_DODGY = 1 << 1,
M
Michael Chan 已提交
542 543

	/* This indicates the tcp segment has CWR set. */
544
	SKB_GSO_TCP_ECN = 1 << 2,
H
Herbert Xu 已提交
545

546
	SKB_GSO_TCP_FIXEDID = 1 << 3,
547

548
	SKB_GSO_TCPV6 = 1 << 4,
549

550
	SKB_GSO_FCOE = 1 << 5,
551

552
	SKB_GSO_GRE = 1 << 6,
S
Simon Horman 已提交
553

554
	SKB_GSO_GRE_CSUM = 1 << 7,
E
Eric Dumazet 已提交
555

556
	SKB_GSO_IPXIP4 = 1 << 8,
E
Eric Dumazet 已提交
557

558
	SKB_GSO_IPXIP6 = 1 << 9,
559

560
	SKB_GSO_UDP_TUNNEL = 1 << 10,
T
Tom Herbert 已提交
561

562
	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
563

564
	SKB_GSO_PARTIAL = 1 << 12,
565

566
	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
M
Marcelo Ricardo Leitner 已提交
567

568
	SKB_GSO_SCTP = 1 << 14,
S
Steffen Klassert 已提交
569

570
	SKB_GSO_ESP = 1 << 15,
571 572

	SKB_GSO_UDP = 1 << 16,
573 574
};

575 576 577 578 579 580 581 582 583 584
#if BITS_PER_LONG > 32
#define NET_SKBUFF_DATA_USES_OFFSET 1
#endif

#ifdef NET_SKBUFF_DATA_USES_OFFSET
typedef unsigned int sk_buff_data_t;
#else
typedef unsigned char *sk_buff_data_t;
#endif

L
Linus Torvalds 已提交
585 586 587 588
/** 
 *	struct sk_buff - socket buffer
 *	@next: Next buffer in list
 *	@prev: Previous buffer in list
589
 *	@tstamp: Time we arrived/left
E
Eric Dumazet 已提交
590
 *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
591
 *	@sk: Socket we are owned by
L
Linus Torvalds 已提交
592
 *	@dev: Device we arrived on/are leaving by
593
 *	@cb: Control buffer. Free for use by every layer. Put private vars here
E
Eric Dumazet 已提交
594
 *	@_skb_refdst: destination entry (with norefcount bit)
595
 *	@sp: the security path, used for xfrm
L
Linus Torvalds 已提交
596 597 598
 *	@len: Length of actual data
 *	@data_len: Data length
 *	@mac_len: Length of link layer header
599
 *	@hdr_len: writable header length of cloned skb
600 601 602
 *	@csum: Checksum (must include start/offset pair)
 *	@csum_start: Offset from skb->head where checksumming should start
 *	@csum_offset: Offset from csum_start where checksum should be stored
603
 *	@priority: Packet queueing priority
W
WANG Cong 已提交
604
 *	@ignore_df: allow local fragmentation
L
Linus Torvalds 已提交
605
 *	@cloned: Head may be cloned (check refcnt to be sure)
606
 *	@ip_summed: Driver fed us an IP checksum
L
Linus Torvalds 已提交
607 608
 *	@nohdr: Payload reference only, must not modify header
 *	@pkt_type: Packet class
609 610
 *	@fclone: skbuff clone status
 *	@ipvs_property: skbuff is owned by ipvs
611
 *	@tc_skip_classify: do not classify packet. set by IFB device
612
 *	@tc_at_ingress: used within tc_classify to distinguish in/egress
613 614
 *	@tc_redirected: packet was redirected by a tc action
 *	@tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
615 616
 *	@peeked: this packet has been seen already, so stats have been
 *		done for it, don't do them again
617
 *	@nf_trace: netfilter packet trace flag
618 619
 *	@protocol: Packet protocol from driver
 *	@destructor: Destruct function
620
 *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
621
 *	@_nfct: Associated connection, if any (with nfctinfo bits)
L
Linus Torvalds 已提交
622
 *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
623
 *	@skb_iif: ifindex of device we arrived on
L
Linus Torvalds 已提交
624
 *	@tc_index: Traffic control index
625
 *	@hash: the packet hash
626
 *	@queue_mapping: Queue mapping for multiqueue devices
627
 *	@xmit_more: More SKBs are pending for this queue
628
 *	@ndisc_nodetype: router type (from link layer)
629
 *	@ooo_okay: allow the mapping of a socket to a queue to be changed
630
 *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
631
 *		ports.
632
 *	@sw_hash: indicates hash was computed in software stack
633 634
 *	@wifi_acked_valid: wifi_acked was set
 *	@wifi_acked: whether frame was acked on wifi or not
635
 *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
636
 *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
637
 *	@dst_pending_confirm: need to confirm neighbour
E
Eliezer Tamir 已提交
638
  *	@napi_id: id of the NAPI struct this skb came from
639
 *	@secmark: security marking
640
 *	@mark: Generic packet mark
641
 *	@vlan_proto: vlan encapsulation protocol
642
 *	@vlan_tci: vlan tag control information
S
Simon Horman 已提交
643
 *	@inner_protocol: Protocol (encapsulation)
644 645
 *	@inner_transport_header: Inner transport layer header (encapsulation)
 *	@inner_network_header: Network layer header (encapsulation)
646
 *	@inner_mac_header: Link layer header (encapsulation)
647 648 649 650 651 652 653 654 655
 *	@transport_header: Transport layer header
 *	@network_header: Network layer header
 *	@mac_header: Link layer header
 *	@tail: Tail pointer
 *	@end: End pointer
 *	@head: Head of buffer
 *	@data: Data head pointer
 *	@truesize: Buffer size
 *	@users: User count - see {datagram,tcp}.c
L
Linus Torvalds 已提交
656 657 658
 */

struct sk_buff {
659
	union {
E
Eric Dumazet 已提交
660 661 662 663 664 665
		struct {
			/* These two members must be first. */
			struct sk_buff		*next;
			struct sk_buff		*prev;

			union {
E
Eric Dumazet 已提交
666 667 668 669 670 671
				struct net_device	*dev;
				/* Some protocols might use this space to store information,
				 * while device pointer would be NULL.
				 * UDP receive path is one user.
				 */
				unsigned long		dev_scratch;
E
Eric Dumazet 已提交
672 673 674
			};
		};
		struct rb_node	rbnode; /* used in netem & tcp stack */
675
	};
676
	struct sock		*sk;
L
Linus Torvalds 已提交
677

678
	union {
E
Eric Dumazet 已提交
679 680
		ktime_t		tstamp;
		u64		skb_mstamp;
681
	};
L
Linus Torvalds 已提交
682 683 684 685 686 687
	/*
	 * This is the control buffer. It is free to use for every
	 * layer. Please put your private variables there. If you
	 * want to keep them across layers you have to do a skb_clone()
	 * first. This is owned by whoever has the skb queued ATM.
	 */
688
	char			cb[48] __aligned(8);
L
Linus Torvalds 已提交
689

690 691 692 693 694 695 696 697
	union {
		struct {
			unsigned long	_skb_refdst;
			void		(*destructor)(struct sk_buff *skb);
		};
		struct list_head	tcp_tsorted_anchor;
	};

698 699
#ifdef CONFIG_XFRM
	struct	sec_path	*sp;
700 701
#endif
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
702
	unsigned long		 _nfct;
703
#endif
704
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
705
	struct nf_bridge_info	*nf_bridge;
706
#endif
L
Linus Torvalds 已提交
707
	unsigned int		len,
708 709 710
				data_len;
	__u16			mac_len,
				hdr_len;
711 712 713 714 715

	/* Following fields are _not_ copied in __copy_skb_header()
	 * Note that queue_mapping is here mostly to fill a hole.
	 */
	__u16			queue_mapping;
716 717 718 719 720 721 722 723 724 725

/* if you move cloned around you also must adapt those constants */
#ifdef __BIG_ENDIAN_BITFIELD
#define CLONED_MASK	(1 << 7)
#else
#define CLONED_MASK	1
#endif
#define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)

	__u8			__cloned_offset[0];
726
	__u8			cloned:1,
727
				nohdr:1,
728
				fclone:2,
729
				peeked:1,
730
				head_frag:1,
731 732
				xmit_more:1,
				__unused:1; /* one bit hole */
733

734 735 736
	/* fields enclosed in headers_start/headers_end are copied
	 * using a single memcpy() in __copy_skb_header()
	 */
737
	/* private: */
738
	__u32			headers_start[0];
739
	/* public: */
740

741 742 743 744 745
/* if you move pkt_type around you also must adapt those constants */
#ifdef __BIG_ENDIAN_BITFIELD
#define PKT_TYPE_MAX	(7 << 5)
#else
#define PKT_TYPE_MAX	7
L
Linus Torvalds 已提交
746
#endif
747
#define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
748

749
	__u8			__pkt_type_offset[0];
750
	__u8			pkt_type:3;
751
	__u8			pfmemalloc:1;
752 753 754 755
	__u8			ignore_df:1;

	__u8			nf_trace:1;
	__u8			ip_summed:2;
756
	__u8			ooo_okay:1;
757
	__u8			l4_hash:1;
758
	__u8			sw_hash:1;
759 760
	__u8			wifi_acked_valid:1;
	__u8			wifi_acked:1;
761

762
	__u8			no_fcs:1;
763
	/* Indicates the inner headers are valid in the skbuff. */
764
	__u8			encapsulation:1;
765
	__u8			encap_hdr_csum:1;
766
	__u8			csum_valid:1;
767
	__u8			csum_complete_sw:1;
768
	__u8			csum_level:2;
769
	__u8			csum_not_inet:1;
770

771
	__u8			dst_pending_confirm:1;
772 773 774 775
#ifdef CONFIG_IPV6_NDISC_NODETYPE
	__u8			ndisc_nodetype:2;
#endif
	__u8			ipvs_property:1;
T
Tom Herbert 已提交
776
	__u8			inner_protocol_type:1;
777
	__u8			remcsum_offload:1;
778 779
#ifdef CONFIG_NET_SWITCHDEV
	__u8			offload_fwd_mark:1;
780
	__u8			offload_mr_fwd_mark:1;
781
#endif
782 783
#ifdef CONFIG_NET_CLS_ACT
	__u8			tc_skip_classify:1;
784
	__u8			tc_at_ingress:1;
785 786
	__u8			tc_redirected:1;
	__u8			tc_from_ingress:1;
787
#endif
788 789 790 791

#ifdef CONFIG_NET_SCHED
	__u16			tc_index;	/* traffic control index */
#endif
792

793 794 795 796 797 798 799 800 801 802 803 804
	union {
		__wsum		csum;
		struct {
			__u16	csum_start;
			__u16	csum_offset;
		};
	};
	__u32			priority;
	int			skb_iif;
	__u32			hash;
	__be16			vlan_proto;
	__u16			vlan_tci;
E
Eric Dumazet 已提交
805 806 807 808 809
#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
	union {
		unsigned int	napi_id;
		unsigned int	sender_cpu;
	};
810
#endif
811
#ifdef CONFIG_NETWORK_SECMARK
812
	__u32		secmark;
813 814
#endif

815 816
	union {
		__u32		mark;
E
Eric Dumazet 已提交
817
		__u32		reserved_tailroom;
818
	};
L
Linus Torvalds 已提交
819

T
Tom Herbert 已提交
820 821 822 823 824
	union {
		__be16		inner_protocol;
		__u8		inner_ipproto;
	};

825 826 827
	__u16			inner_transport_header;
	__u16			inner_network_header;
	__u16			inner_mac_header;
828 829

	__be16			protocol;
830 831 832
	__u16			transport_header;
	__u16			network_header;
	__u16			mac_header;
833

834
	/* private: */
835
	__u32			headers_end[0];
836
	/* public: */
837

L
Linus Torvalds 已提交
838
	/* These elements must be at the end, see alloc_skb() for details.  */
839
	sk_buff_data_t		tail;
840
	sk_buff_data_t		end;
L
Linus Torvalds 已提交
841
	unsigned char		*head,
842
				*data;
843
	unsigned int		truesize;
844
	refcount_t		users;
L
Linus Torvalds 已提交
845 846 847 848 849 850 851 852 853
};

#ifdef __KERNEL__
/*
 *	Handling routines are only of interest to the kernel
 */
#include <linux/slab.h>


854 855
#define SKB_ALLOC_FCLONE	0x01
#define SKB_ALLOC_RX		0x02
856
#define SKB_ALLOC_NAPI		0x04
857 858 859 860 861 862 863

/* Returns true if the skb was allocated from PFMEMALLOC reserves */
static inline bool skb_pfmemalloc(const struct sk_buff *skb)
{
	return unlikely(skb->pfmemalloc);
}

E
Eric Dumazet 已提交
864 865 866 867 868 869 870
/*
 * skb might have a dst pointer attached, refcounted or not.
 * _skb_refdst low order bit is set if refcount was _not_ taken
 */
#define SKB_DST_NOREF	1UL
#define SKB_DST_PTRMASK	~(SKB_DST_NOREF)

871
#define SKB_NFCT_PTRMASK	~(7UL)
E
Eric Dumazet 已提交
872 873 874 875 876 877
/**
 * skb_dst - returns skb dst_entry
 * @skb: buffer
 *
 * Returns skb dst_entry, regardless of reference taken or not.
 */
E
Eric Dumazet 已提交
878 879
static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
{
E
Eric Dumazet 已提交
880 881 882 883 884 885 886
	/* If refdst was not refcounted, check we still are in a 
	 * rcu_read_lock section
	 */
	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
		!rcu_read_lock_held() &&
		!rcu_read_lock_bh_held());
	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
E
Eric Dumazet 已提交
887 888
}

E
Eric Dumazet 已提交
889 890 891 892 893 894 895 896
/**
 * skb_dst_set - sets skb dst
 * @skb: buffer
 * @dst: dst entry
 *
 * Sets skb dst, assuming a reference was taken on dst and should
 * be released by skb_dst_drop()
 */
E
Eric Dumazet 已提交
897 898
static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
{
E
Eric Dumazet 已提交
899 900 901
	skb->_skb_refdst = (unsigned long)dst;
}

902 903 904 905 906 907 908 909 910 911 912 913
/**
 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
 * @skb: buffer
 * @dst: dst entry
 *
 * Sets skb dst, assuming a reference was not taken on dst.
 * If dst entry is cached, we do not take reference and dst_release
 * will be avoided by refdst_drop. If dst entry is not cached, we take
 * reference, so that last dst_release can destroy the dst immediately.
 */
static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
{
914 915
	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
916
}
E
Eric Dumazet 已提交
917 918

/**
L
Lucas De Marchi 已提交
919
 * skb_dst_is_noref - Test if skb dst isn't refcounted
E
Eric Dumazet 已提交
920 921 922 923 924
 * @skb: buffer
 */
static inline bool skb_dst_is_noref(const struct sk_buff *skb)
{
	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
E
Eric Dumazet 已提交
925 926
}

E
Eric Dumazet 已提交
927 928
static inline struct rtable *skb_rtable(const struct sk_buff *skb)
{
E
Eric Dumazet 已提交
929
	return (struct rtable *)skb_dst(skb);
E
Eric Dumazet 已提交
930 931
}

932 933 934 935 936 937 938 939 940
/* For mangling skb->pkt_type from user space side from applications
 * such as nft, tc, etc, we only allow a conservative subset of
 * possible pkt_types to be set.
*/
static inline bool skb_pkt_type_ok(u32 ptype)
{
	return ptype <= PACKET_OTHERHOST;
}

941 942 943 944 945 946 947 948 949
static inline unsigned int skb_napi_id(const struct sk_buff *skb)
{
#ifdef CONFIG_NET_RX_BUSY_POLL
	return skb->napi_id;
#else
	return 0;
#endif
}

950 951 952 953 954
/* decrement the reference count and return true if we can free the skb */
static inline bool skb_unref(struct sk_buff *skb)
{
	if (unlikely(!skb))
		return false;
955
	if (likely(refcount_read(&skb->users) == 1))
956
		smp_rmb();
957
	else if (likely(!refcount_dec_and_test(&skb->users)))
958 959 960 961 962
		return false;

	return true;
}

P
Paolo Abeni 已提交
963
void skb_release_head_state(struct sk_buff *skb);
964 965 966 967
void kfree_skb(struct sk_buff *skb);
void kfree_skb_list(struct sk_buff *segs);
void skb_tx_error(struct sk_buff *skb);
void consume_skb(struct sk_buff *skb);
968
void __consume_stateless_skb(struct sk_buff *skb);
969
void  __kfree_skb(struct sk_buff *skb);
970
extern struct kmem_cache *skbuff_head_cache;
E
Eric Dumazet 已提交
971

972 973 974
void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
		      bool *fragstolen, int *delta_truesize);
E
Eric Dumazet 已提交
975

976 977
struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
			    int node);
E
Eric Dumazet 已提交
978
struct sk_buff *__build_skb(void *data, unsigned int frag_size);
979
struct sk_buff *build_skb(void *data, unsigned int frag_size);
980
static inline struct sk_buff *alloc_skb(unsigned int size,
A
Al Viro 已提交
981
					gfp_t priority)
982
{
E
Eric Dumazet 已提交
983
	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
984 985
}

986 987 988 989 990 991
struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
				     unsigned long data_len,
				     int max_page_order,
				     int *errcode,
				     gfp_t gfp_mask);

992 993 994 995 996 997
/* Layout of fast clones : [skb1][skb2][fclone_ref] */
struct sk_buff_fclones {
	struct sk_buff	skb1;

	struct sk_buff	skb2;

998
	refcount_t	fclone_ref;
999 1000 1001 1002
};

/**
 *	skb_fclone_busy - check if fclone is busy
1003
 *	@sk: socket
1004 1005
 *	@skb: buffer
 *
M
Masanari Iida 已提交
1006
 * Returns true if skb is a fast clone, and its clone is not freed.
1007 1008
 * Some drivers call skb_orphan() in their ndo_start_xmit(),
 * so we also check that this didnt happen.
1009
 */
1010 1011
static inline bool skb_fclone_busy(const struct sock *sk,
				   const struct sk_buff *skb)
1012 1013 1014 1015 1016 1017
{
	const struct sk_buff_fclones *fclones;

	fclones = container_of(skb, struct sk_buff_fclones, skb1);

	return skb->fclone == SKB_FCLONE_ORIG &&
1018
	       refcount_read(&fclones->fclone_ref) > 1 &&
1019
	       fclones->skb2.sk == sk;
1020 1021
}

1022
static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
A
Al Viro 已提交
1023
					       gfp_t priority)
1024
{
1025
	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1026 1027
}

1028 1029 1030 1031
struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1032 1033 1034 1035 1036 1037 1038
struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
				   gfp_t gfp_mask, bool fclone);
static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
					  gfp_t gfp_mask)
{
	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
}
1039 1040 1041 1042 1043 1044

int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
				     unsigned int headroom);
struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
				int newtailroom, gfp_t priority);
1045 1046 1047 1048
int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
				     int offset, int len);
int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
			      int offset, int len);
1049
int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);

/**
 *	skb_pad			-	zero pad the tail of an skb
 *	@skb: buffer to pad
 *	@pad: space to pad
 *
 *	Ensure that a buffer is followed by a padding area that is zero
 *	filled. Used by network drivers which may DMA or transfer data
 *	beyond the buffer end onto the wire.
 *
 *	May return error in out of memory cases. The skb is freed on error.
 */
static inline int skb_pad(struct sk_buff *skb, int pad)
{
	return __skb_pad(skb, pad, true);
}
1067
#define dev_kfree_skb(a)	consume_skb(a)
L
Linus Torvalds 已提交
1068

1069 1070 1071 1072
int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
			    int getfrag(void *from, char *to, int offset,
					int len, int odd, struct sk_buff *skb),
			    void *from, int length);
1073

1074 1075 1076
int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
			 int offset, size_t size);

E
Eric Dumazet 已提交
1077
struct skb_seq_state {
1078 1079 1080 1081 1082 1083 1084 1085 1086
	__u32		lower_offset;
	__u32		upper_offset;
	__u32		frag_idx;
	__u32		stepped_offset;
	struct sk_buff	*root_skb;
	struct sk_buff	*cur_skb;
	__u8		*frag_data;
};

1087 1088 1089 1090 1091
void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
			  unsigned int to, struct skb_seq_state *st);
unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
			  struct skb_seq_state *st);
void skb_abort_seq_read(struct skb_seq_state *st);
1092

1093
unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1094
			   unsigned int to, struct ts_config *config);
1095

T
Tom Herbert 已提交
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
/*
 * Packet hash types specify the type of hash in skb_set_hash.
 *
 * Hash types refer to the protocol layer addresses which are used to
 * construct a packet's hash. The hashes are used to differentiate or identify
 * flows of the protocol layer for the hash type. Hash types are either
 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
 *
 * Properties of hashes:
 *
 * 1) Two packets in different flows have different hash values
 * 2) Two packets in the same flow should have the same hash value
 *
 * A hash at a higher layer is considered to be more specific. A driver should
 * set the most specific hash possible.
 *
 * A driver cannot indicate a more specific hash than the layer at which a hash
 * was computed. For instance an L3 hash cannot be set as an L4 hash.
 *
 * A driver may indicate a hash level which is less specific than the
 * actual layer the hash was computed on. For instance, a hash computed
 * at L4 may be considered an L3 hash. This should only be done if the
 * driver can't unambiguously determine that the HW computed the hash at
 * the higher layer. Note that the "should" in the second property above
 * permits this.
 */
enum pkt_hash_types {
	PKT_HASH_TYPE_NONE,	/* Undefined type */
	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
};

1129
static inline void skb_clear_hash(struct sk_buff *skb)
T
Tom Herbert 已提交
1130
{
1131
	skb->hash = 0;
1132
	skb->sw_hash = 0;
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
	skb->l4_hash = 0;
}

static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
{
	if (!skb->l4_hash)
		skb_clear_hash(skb);
}

static inline void
__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
{
	skb->l4_hash = is_l4;
	skb->sw_hash = is_sw;
1147
	skb->hash = hash;
T
Tom Herbert 已提交
1148 1149
}

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
static inline void
skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
{
	/* Used by drivers to set hash from HW */
	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
}

static inline void
__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
{
	__skb_set_hash(skb, hash, true, is_l4);
}

1163
void __skb_get_hash(struct sk_buff *skb);
1164
u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
u32 skb_get_poff(const struct sk_buff *skb);
u32 __skb_get_poff(const struct sk_buff *skb, void *data,
		   const struct flow_keys *keys, int hlen);
__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
			    void *data, int hlen_proto);

static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
					int thoff, u8 ip_proto)
{
	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
}

void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
			     const struct flow_dissector_key *key,
			     unsigned int key_count);

bool __skb_flow_dissect(const struct sk_buff *skb,
			struct flow_dissector *flow_dissector,
			void *target_container,
1184 1185
			void *data, __be16 proto, int nhoff, int hlen,
			unsigned int flags);
1186 1187 1188

static inline bool skb_flow_dissect(const struct sk_buff *skb,
				    struct flow_dissector *flow_dissector,
1189
				    void *target_container, unsigned int flags)
1190 1191
{
	return __skb_flow_dissect(skb, flow_dissector, target_container,
1192
				  NULL, 0, 0, 0, flags);
1193 1194 1195
}

static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1196 1197
					      struct flow_keys *flow,
					      unsigned int flags)
1198 1199 1200
{
	memset(flow, 0, sizeof(*flow));
	return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1201
				  NULL, 0, 0, 0, flags);
1202 1203 1204 1205
}

static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
						  void *data, __be16 proto,
1206 1207
						  int nhoff, int hlen,
						  unsigned int flags)
1208 1209 1210
{
	memset(flow, 0, sizeof(*flow));
	return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
1211
				  data, proto, nhoff, hlen, flags);
1212 1213
}

1214 1215 1216 1217 1218
void
skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
			     struct flow_dissector *flow_dissector,
			     void *target_container);

1219
static inline __u32 skb_get_hash(struct sk_buff *skb)
1220
{
1221
	if (!skb->l4_hash && !skb->sw_hash)
1222
		__skb_get_hash(skb);
1223

1224
	return skb->hash;
1225 1226
}

1227
static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1228
{
1229 1230
	if (!skb->l4_hash && !skb->sw_hash) {
		struct flow_keys keys;
1231
		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1232

1233
		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1234
	}
1235 1236 1237 1238

	return skb->hash;
}

T
Tom Herbert 已提交
1239 1240
__u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);

T
Tom Herbert 已提交
1241 1242
static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
{
1243
	return skb->hash;
T
Tom Herbert 已提交
1244 1245
}

1246 1247
static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
{
1248
	to->hash = from->hash;
1249
	to->sw_hash = from->sw_hash;
1250
	to->l4_hash = from->l4_hash;
1251 1252
};

1253 1254 1255 1256 1257
#ifdef NET_SKBUFF_DATA_USES_OFFSET
static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
{
	return skb->head + skb->end;
}
1258 1259 1260 1261 1262

static inline unsigned int skb_end_offset(const struct sk_buff *skb)
{
	return skb->end;
}
1263 1264 1265 1266 1267
#else
static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
{
	return skb->end;
}
1268 1269 1270 1271 1272

static inline unsigned int skb_end_offset(const struct sk_buff *skb)
{
	return skb->end - skb->head;
}
1273 1274
#endif

L
Linus Torvalds 已提交
1275
/* Internal */
1276
#define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
L
Linus Torvalds 已提交
1277

1278 1279 1280 1281 1282
static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
{
	return &skb_shinfo(skb)->hwtstamps;
}

W
Willem de Bruijn 已提交
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
{
	bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;

	return is_zcopy ? skb_uarg(skb) : NULL;
}

static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg)
{
	if (skb && uarg && !skb_zcopy(skb)) {
		sock_zerocopy_get(uarg);
		skb_shinfo(skb)->destructor_arg = uarg;
		skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
	}
}

/* Release a reference on a zerocopy structure */
static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
{
	struct ubuf_info *uarg = skb_zcopy(skb);

	if (uarg) {
1305 1306 1307 1308 1309 1310 1311
		if (uarg->callback == sock_zerocopy_callback) {
			uarg->zerocopy = uarg->zerocopy && zerocopy;
			sock_zerocopy_put(uarg);
		} else {
			uarg->callback(uarg, zerocopy);
		}

W
Willem de Bruijn 已提交
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
	}
}

/* Abort a zerocopy operation and revert zckey on error in send syscall */
static inline void skb_zcopy_abort(struct sk_buff *skb)
{
	struct ubuf_info *uarg = skb_zcopy(skb);

	if (uarg) {
		sock_zerocopy_put_abort(uarg);
		skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
	}
}

L
Linus Torvalds 已提交
1327 1328 1329 1330 1331 1332 1333 1334
/**
 *	skb_queue_empty - check if a queue is empty
 *	@list: queue head
 *
 *	Returns true if the queue is empty, false otherwise.
 */
static inline int skb_queue_empty(const struct sk_buff_head *list)
{
1335
	return list->next == (const struct sk_buff *) list;
L
Linus Torvalds 已提交
1336 1337
}

D
David S. Miller 已提交
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
/**
 *	skb_queue_is_last - check if skb is the last entry in the queue
 *	@list: queue head
 *	@skb: buffer
 *
 *	Returns true if @skb is the last buffer on the list.
 */
static inline bool skb_queue_is_last(const struct sk_buff_head *list,
				     const struct sk_buff *skb)
{
1348
	return skb->next == (const struct sk_buff *) list;
D
David S. Miller 已提交
1349 1350
}

1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
/**
 *	skb_queue_is_first - check if skb is the first entry in the queue
 *	@list: queue head
 *	@skb: buffer
 *
 *	Returns true if @skb is the first buffer on the list.
 */
static inline bool skb_queue_is_first(const struct sk_buff_head *list,
				      const struct sk_buff *skb)
{
1361
	return skb->prev == (const struct sk_buff *) list;
1362 1363
}

D
David S. Miller 已提交
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
/**
 *	skb_queue_next - return the next packet in the queue
 *	@list: queue head
 *	@skb: current buffer
 *
 *	Return the next packet in @list after @skb.  It is only valid to
 *	call this if skb_queue_is_last() evaluates to false.
 */
static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
					     const struct sk_buff *skb)
{
	/* This BUG_ON may seem severe, but if we just return then we
	 * are going to dereference garbage.
	 */
	BUG_ON(skb_queue_is_last(list, skb));
	return skb->next;
}

1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
/**
 *	skb_queue_prev - return the prev packet in the queue
 *	@list: queue head
 *	@skb: current buffer
 *
 *	Return the prev packet in @list before @skb.  It is only valid to
 *	call this if skb_queue_is_first() evaluates to false.
 */
static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
					     const struct sk_buff *skb)
{
	/* This BUG_ON may seem severe, but if we just return then we
	 * are going to dereference garbage.
	 */
	BUG_ON(skb_queue_is_first(list, skb));
	return skb->prev;
}

L
Linus Torvalds 已提交
1400 1401 1402 1403 1404 1405 1406 1407 1408
/**
 *	skb_get - reference buffer
 *	@skb: buffer to reference
 *
 *	Makes another reference to a socket buffer and returns a pointer
 *	to the buffer.
 */
static inline struct sk_buff *skb_get(struct sk_buff *skb)
{
1409
	refcount_inc(&skb->users);
L
Linus Torvalds 已提交
1410 1411 1412 1413
	return skb;
}

/*
1414
 * If users == 1, we are the only owner and can avoid redundant atomic changes.
L
Linus Torvalds 已提交
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
 */

/**
 *	skb_cloned - is the buffer a clone
 *	@skb: buffer to check
 *
 *	Returns true if the buffer was generated with skb_clone() and is
 *	one of multiple shared copies of the buffer. Cloned buffers are
 *	shared data so must not be written to under normal circumstances.
 */
static inline int skb_cloned(const struct sk_buff *skb)
{
	return skb->cloned &&
	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
}

1431 1432
static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
{
1433
	might_sleep_if(gfpflags_allow_blocking(pri));
1434 1435 1436 1437 1438 1439 1440

	if (skb_cloned(skb))
		return pskb_expand_head(skb, 0, 0, pri);

	return 0;
}

L
Linus Torvalds 已提交
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
/**
 *	skb_header_cloned - is the header a clone
 *	@skb: buffer to check
 *
 *	Returns true if modifying the header part of the buffer requires
 *	the data to be copied.
 */
static inline int skb_header_cloned(const struct sk_buff *skb)
{
	int dataref;

	if (!skb->cloned)
		return 0;

	dataref = atomic_read(&skb_shinfo(skb)->dataref);
	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
	return dataref != 1;
}

1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
{
	might_sleep_if(gfpflags_allow_blocking(pri));

	if (skb_header_cloned(skb))
		return pskb_expand_head(skb, 0, 0, pri);

	return 0;
}

1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
/**
 *	__skb_header_release - release reference to header
 *	@skb: buffer to operate on
 */
static inline void __skb_header_release(struct sk_buff *skb)
{
	skb->nohdr = 1;
	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
}


L
Linus Torvalds 已提交
1481 1482 1483 1484 1485 1486 1487 1488 1489
/**
 *	skb_shared - is the buffer shared
 *	@skb: buffer to check
 *
 *	Returns true if more than one person has a reference to this
 *	buffer.
 */
static inline int skb_shared(const struct sk_buff *skb)
{
1490
	return refcount_read(&skb->users) != 1;
L
Linus Torvalds 已提交
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
}

/**
 *	skb_share_check - check if buffer is shared and if so clone it
 *	@skb: buffer to check
 *	@pri: priority for memory allocation
 *
 *	If the buffer is shared the buffer is cloned and the old copy
 *	drops a reference. A new clone with a single reference is returned.
 *	If the buffer is not shared the original buffer is returned. When
 *	being called from interrupt status or with spinlocks held pri must
 *	be GFP_ATOMIC.
 *
 *	NULL is returned on a memory allocation failure.
 */
1506
static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
L
Linus Torvalds 已提交
1507
{
1508
	might_sleep_if(gfpflags_allow_blocking(pri));
L
Linus Torvalds 已提交
1509 1510
	if (skb_shared(skb)) {
		struct sk_buff *nskb = skb_clone(skb, pri);
1511 1512 1513 1514 1515

		if (likely(nskb))
			consume_skb(skb);
		else
			kfree_skb(skb);
L
Linus Torvalds 已提交
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
		skb = nskb;
	}
	return skb;
}

/*
 *	Copy shared buffers into a new sk_buff. We effectively do COW on
 *	packets to handle cases where we have a local reader and forward
 *	and a couple of other messy ones. The normal one is tcpdumping
 *	a packet thats being forwarded.
 */

/**
 *	skb_unshare - make a copy of a shared buffer
 *	@skb: buffer to check
 *	@pri: priority for memory allocation
 *
 *	If the socket buffer is a clone then this function creates a new
 *	copy of the data, drops a reference count on the old copy and returns
 *	the new copy with the reference count at 1. If the buffer is not a clone
 *	the original buffer is returned. When called with a spinlock held or
 *	from interrupt state @pri must be %GFP_ATOMIC
 *
 *	%NULL is returned on a memory allocation failure.
 */
1541
static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
A
Al Viro 已提交
1542
					  gfp_t pri)
L
Linus Torvalds 已提交
1543
{
1544
	might_sleep_if(gfpflags_allow_blocking(pri));
L
Linus Torvalds 已提交
1545 1546
	if (skb_cloned(skb)) {
		struct sk_buff *nskb = skb_copy(skb, pri);
1547 1548 1549 1550 1551 1552

		/* Free our shared copy */
		if (likely(nskb))
			consume_skb(skb);
		else
			kfree_skb(skb);
L
Linus Torvalds 已提交
1553 1554 1555 1556 1557 1558
		skb = nskb;
	}
	return skb;
}

/**
1559
 *	skb_peek - peek at the head of an &sk_buff_head
L
Linus Torvalds 已提交
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
 *	@list_: list to peek at
 *
 *	Peek an &sk_buff. Unlike most other operations you _MUST_
 *	be careful with this one. A peek leaves the buffer on the
 *	list and someone else may run off with it. You must hold
 *	the appropriate locks or have a private queue to do this.
 *
 *	Returns %NULL for an empty list or a pointer to the head element.
 *	The reference count is not incremented and the reference is therefore
 *	volatile. Use with caution.
 */
1571
static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
L
Linus Torvalds 已提交
1572
{
1573 1574 1575 1576 1577
	struct sk_buff *skb = list_->next;

	if (skb == (struct sk_buff *)list_)
		skb = NULL;
	return skb;
L
Linus Torvalds 已提交
1578 1579
}

P
Pavel Emelyanov 已提交
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
/**
 *	skb_peek_next - peek skb following the given one from a queue
 *	@skb: skb to start from
 *	@list_: list to peek at
 *
 *	Returns %NULL when the end of the list is met or a pointer to the
 *	next element. The reference count is not incremented and the
 *	reference is therefore volatile. Use with caution.
 */
static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
		const struct sk_buff_head *list_)
{
	struct sk_buff *next = skb->next;
1593

P
Pavel Emelyanov 已提交
1594 1595 1596 1597 1598
	if (next == (struct sk_buff *)list_)
		next = NULL;
	return next;
}

L
Linus Torvalds 已提交
1599
/**
1600
 *	skb_peek_tail - peek at the tail of an &sk_buff_head
L
Linus Torvalds 已提交
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
 *	@list_: list to peek at
 *
 *	Peek an &sk_buff. Unlike most other operations you _MUST_
 *	be careful with this one. A peek leaves the buffer on the
 *	list and someone else may run off with it. You must hold
 *	the appropriate locks or have a private queue to do this.
 *
 *	Returns %NULL for an empty list or a pointer to the tail element.
 *	The reference count is not incremented and the reference is therefore
 *	volatile. Use with caution.
 */
1612
static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
L
Linus Torvalds 已提交
1613
{
1614 1615 1616 1617 1618 1619
	struct sk_buff *skb = list_->prev;

	if (skb == (struct sk_buff *)list_)
		skb = NULL;
	return skb;

L
Linus Torvalds 已提交
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
}

/**
 *	skb_queue_len	- get queue length
 *	@list_: list to measure
 *
 *	Return the length of an &sk_buff queue.
 */
static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
{
	return list_->qlen;
}

1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
/**
 *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
 *	@list: queue to initialize
 *
 *	This initializes only the list and queue length aspects of
 *	an sk_buff_head object.  This allows to initialize the list
 *	aspects of an sk_buff_head without reinitializing things like
 *	the spinlock.  It can also be used for on-stack sk_buff_head
 *	objects where the spinlock is known to not be used.
 */
static inline void __skb_queue_head_init(struct sk_buff_head *list)
{
	list->prev = list->next = (struct sk_buff *)list;
	list->qlen = 0;
}

1649 1650 1651 1652 1653 1654 1655 1656
/*
 * This function creates a split out lock class for each invocation;
 * this is needed for now since a whole lot of users of the skb-queue
 * infrastructure in drivers have different locking usage (in hardirq)
 * than the networking core (in softirq only). In the long run either the
 * network layer or drivers should need annotation to consolidate the
 * main types of usage into 3 classes.
 */
L
Linus Torvalds 已提交
1657 1658 1659
static inline void skb_queue_head_init(struct sk_buff_head *list)
{
	spin_lock_init(&list->lock);
1660
	__skb_queue_head_init(list);
L
Linus Torvalds 已提交
1661 1662
}

1663 1664 1665 1666 1667 1668 1669
static inline void skb_queue_head_init_class(struct sk_buff_head *list,
		struct lock_class_key *class)
{
	skb_queue_head_init(list);
	lockdep_set_class(&list->lock, class);
}

L
Linus Torvalds 已提交
1670
/*
1671
 *	Insert an sk_buff on a list.
L
Linus Torvalds 已提交
1672 1673 1674 1675
 *
 *	The "__skb_xxxx()" functions are the non-atomic ones that
 *	can only be called with interrupts disabled.
 */
1676 1677
void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
		struct sk_buff_head *list);
1678 1679 1680 1681 1682 1683 1684 1685 1686
static inline void __skb_insert(struct sk_buff *newsk,
				struct sk_buff *prev, struct sk_buff *next,
				struct sk_buff_head *list)
{
	newsk->next = next;
	newsk->prev = prev;
	next->prev  = prev->next = newsk;
	list->qlen++;
}
L
Linus Torvalds 已提交
1687

1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
static inline void __skb_queue_splice(const struct sk_buff_head *list,
				      struct sk_buff *prev,
				      struct sk_buff *next)
{
	struct sk_buff *first = list->next;
	struct sk_buff *last = list->prev;

	first->prev = prev;
	prev->next = first;

	last->next = next;
	next->prev = last;
}

/**
 *	skb_queue_splice - join two skb lists, this is designed for stacks
 *	@list: the new list to add
 *	@head: the place to add it in the first list
 */
static inline void skb_queue_splice(const struct sk_buff_head *list,
				    struct sk_buff_head *head)
{
	if (!skb_queue_empty(list)) {
		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1712
		head->qlen += list->qlen;
1713 1714 1715 1716
	}
}

/**
E
Eric Dumazet 已提交
1717
 *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
 *	@list: the new list to add
 *	@head: the place to add it in the first list
 *
 *	The list at @list is reinitialised
 */
static inline void skb_queue_splice_init(struct sk_buff_head *list,
					 struct sk_buff_head *head)
{
	if (!skb_queue_empty(list)) {
		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1728
		head->qlen += list->qlen;
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
		__skb_queue_head_init(list);
	}
}

/**
 *	skb_queue_splice_tail - join two skb lists, each list being a queue
 *	@list: the new list to add
 *	@head: the place to add it in the first list
 */
static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
					 struct sk_buff_head *head)
{
	if (!skb_queue_empty(list)) {
		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1743
		head->qlen += list->qlen;
1744 1745 1746 1747
	}
}

/**
E
Eric Dumazet 已提交
1748
 *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
 *	@list: the new list to add
 *	@head: the place to add it in the first list
 *
 *	Each of the lists is a queue.
 *	The list at @list is reinitialised
 */
static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
					      struct sk_buff_head *head)
{
	if (!skb_queue_empty(list)) {
		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1760
		head->qlen += list->qlen;
1761 1762 1763 1764
		__skb_queue_head_init(list);
	}
}

L
Linus Torvalds 已提交
1765
/**
1766
 *	__skb_queue_after - queue a buffer at the list head
L
Linus Torvalds 已提交
1767
 *	@list: list to use
1768
 *	@prev: place after this buffer
L
Linus Torvalds 已提交
1769 1770
 *	@newsk: buffer to queue
 *
1771
 *	Queue a buffer int the middle of a list. This function takes no locks
L
Linus Torvalds 已提交
1772 1773 1774 1775
 *	and you must therefore hold required locks before calling it.
 *
 *	A buffer cannot be placed on two lists at the same time.
 */
1776 1777 1778
static inline void __skb_queue_after(struct sk_buff_head *list,
				     struct sk_buff *prev,
				     struct sk_buff *newsk)
L
Linus Torvalds 已提交
1779
{
1780
	__skb_insert(newsk, prev, prev->next, list);
L
Linus Torvalds 已提交
1781 1782
}

1783 1784
void skb_append(struct sk_buff *old, struct sk_buff *newsk,
		struct sk_buff_head *list);
1785

1786 1787 1788 1789 1790 1791 1792
static inline void __skb_queue_before(struct sk_buff_head *list,
				      struct sk_buff *next,
				      struct sk_buff *newsk)
{
	__skb_insert(newsk, next->prev, next, list);
}

1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
/**
 *	__skb_queue_head - queue a buffer at the list head
 *	@list: list to use
 *	@newsk: buffer to queue
 *
 *	Queue a buffer at the start of a list. This function takes no locks
 *	and you must therefore hold required locks before calling it.
 *
 *	A buffer cannot be placed on two lists at the same time.
 */
1803
void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1804 1805 1806 1807 1808 1809
static inline void __skb_queue_head(struct sk_buff_head *list,
				    struct sk_buff *newsk)
{
	__skb_queue_after(list, (struct sk_buff *)list, newsk);
}

L
Linus Torvalds 已提交
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
/**
 *	__skb_queue_tail - queue a buffer at the list tail
 *	@list: list to use
 *	@newsk: buffer to queue
 *
 *	Queue a buffer at the end of a list. This function takes no locks
 *	and you must therefore hold required locks before calling it.
 *
 *	A buffer cannot be placed on two lists at the same time.
 */
1820
void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
L
Linus Torvalds 已提交
1821 1822 1823
static inline void __skb_queue_tail(struct sk_buff_head *list,
				   struct sk_buff *newsk)
{
1824
	__skb_queue_before(list, (struct sk_buff *)list, newsk);
L
Linus Torvalds 已提交
1825 1826 1827 1828 1829 1830
}

/*
 * remove sk_buff from list. _Must_ be called atomically, and with
 * the list known..
 */
1831
void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
L
Linus Torvalds 已提交
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
{
	struct sk_buff *next, *prev;

	list->qlen--;
	next	   = skb->next;
	prev	   = skb->prev;
	skb->next  = skb->prev = NULL;
	next->prev = prev;
	prev->next = next;
}

1844 1845 1846 1847 1848 1849 1850 1851
/**
 *	__skb_dequeue - remove from the head of the queue
 *	@list: list to dequeue from
 *
 *	Remove the head of the list. This function does not take any locks
 *	so must be used with appropriate locks held only. The head item is
 *	returned or %NULL if the list is empty.
 */
1852
struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1853 1854 1855 1856 1857 1858 1859
static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
{
	struct sk_buff *skb = skb_peek(list);
	if (skb)
		__skb_unlink(skb, list);
	return skb;
}
L
Linus Torvalds 已提交
1860 1861 1862 1863 1864 1865 1866 1867 1868

/**
 *	__skb_dequeue_tail - remove from the tail of the queue
 *	@list: list to dequeue from
 *
 *	Remove the tail of the list. This function does not take any locks
 *	so must be used with appropriate locks held only. The tail item is
 *	returned or %NULL if the list is empty.
 */
1869
struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
L
Linus Torvalds 已提交
1870 1871 1872 1873 1874 1875 1876 1877 1878
static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
{
	struct sk_buff *skb = skb_peek_tail(list);
	if (skb)
		__skb_unlink(skb, list);
	return skb;
}


1879
static inline bool skb_is_nonlinear(const struct sk_buff *skb)
L
Linus Torvalds 已提交
1880 1881 1882 1883 1884 1885 1886 1887 1888
{
	return skb->data_len;
}

static inline unsigned int skb_headlen(const struct sk_buff *skb)
{
	return skb->len - skb->data_len;
}

1889
static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
L
Linus Torvalds 已提交
1890
{
1891
	unsigned int i, len = 0;
L
Linus Torvalds 已提交
1892

1893
	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
E
Eric Dumazet 已提交
1894
		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1895 1896 1897 1898 1899 1900
	return len;
}

static inline unsigned int skb_pagelen(const struct sk_buff *skb)
{
	return skb_headlen(skb) + __skb_pagelen(skb);
L
Linus Torvalds 已提交
1901 1902
}

1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
/**
 * __skb_fill_page_desc - initialise a paged fragment in an skb
 * @skb: buffer containing fragment to be initialised
 * @i: paged fragment index to initialise
 * @page: the page to use for this fragment
 * @off: the offset to the data with @page
 * @size: the length of the data
 *
 * Initialises the @i'th fragment of @skb to point to &size bytes at
 * offset @off within @page.
 *
 * Does not take any additional reference on the fragment.
 */
static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
					struct page *page, int off, int size)
L
Linus Torvalds 已提交
1918 1919 1920
{
	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];

1921
	/*
1922 1923 1924
	 * Propagate page pfmemalloc to the skb if we can. The problem is
	 * that not all callers have unique ownership of the page but rely
	 * on page_is_pfmemalloc doing the right thing(tm).
1925
	 */
1926
	frag->page.p		  = page;
L
Linus Torvalds 已提交
1927
	frag->page_offset	  = off;
E
Eric Dumazet 已提交
1928
	skb_frag_size_set(frag, size);
1929 1930

	page = compound_head(page);
1931
	if (page_is_pfmemalloc(page))
1932
		skb->pfmemalloc	= true;
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
}

/**
 * skb_fill_page_desc - initialise a paged fragment in an skb
 * @skb: buffer containing fragment to be initialised
 * @i: paged fragment index to initialise
 * @page: the page to use for this fragment
 * @off: the offset to the data with @page
 * @size: the length of the data
 *
 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
M
Mathias Krause 已提交
1944
 * @skb to point to @size bytes at offset @off within @page. In
1945 1946 1947 1948 1949 1950 1951 1952
 * addition updates @skb such that @i is the last fragment.
 *
 * Does not take any additional reference on the fragment.
 */
static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
				      struct page *page, int off, int size)
{
	__skb_fill_page_desc(skb, i, page, off, size);
L
Linus Torvalds 已提交
1953 1954 1955
	skb_shinfo(skb)->nr_frags = i + 1;
}

1956 1957
void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
		     int size, unsigned int truesize);
P
Peter Zijlstra 已提交
1958

J
Jason Wang 已提交
1959 1960 1961
void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
			  unsigned int truesize);

L
Linus Torvalds 已提交
1962
#define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1963
#define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
L
Linus Torvalds 已提交
1964 1965
#define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))

1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
#ifdef NET_SKBUFF_DATA_USES_OFFSET
static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
{
	return skb->head + skb->tail;
}

static inline void skb_reset_tail_pointer(struct sk_buff *skb)
{
	skb->tail = skb->data - skb->head;
}

static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
{
	skb_reset_tail_pointer(skb);
	skb->tail += offset;
}
1982

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
#else /* NET_SKBUFF_DATA_USES_OFFSET */
static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
{
	return skb->tail;
}

static inline void skb_reset_tail_pointer(struct sk_buff *skb)
{
	skb->tail = skb->data;
}

static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
{
	skb->tail = skb->data + offset;
}
1998

1999 2000
#endif /* NET_SKBUFF_DATA_USES_OFFSET */

L
Linus Torvalds 已提交
2001 2002 2003
/*
 *	Add data to an sk_buff
 */
2004 2005 2006
void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
void *skb_put(struct sk_buff *skb, unsigned int len);
static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
L
Linus Torvalds 已提交
2007
{
2008
	void *tmp = skb_tail_pointer(skb);
L
Linus Torvalds 已提交
2009 2010 2011 2012 2013 2014
	SKB_LINEAR_ASSERT(skb);
	skb->tail += len;
	skb->len  += len;
	return tmp;
}

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
{
	void *tmp = __skb_put(skb, len);

	memset(tmp, 0, len);
	return tmp;
}

static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
				   unsigned int len)
{
	void *tmp = __skb_put(skb, len);

	memcpy(tmp, data, len);
	return tmp;
}

static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
{
	*(u8 *)__skb_put(skb, 1) = val;
}

2037
static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2038
{
2039
	void *tmp = skb_put(skb, len);
2040 2041 2042 2043 2044 2045

	memset(tmp, 0, len);

	return tmp;
}

2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
static inline void *skb_put_data(struct sk_buff *skb, const void *data,
				 unsigned int len)
{
	void *tmp = skb_put(skb, len);

	memcpy(tmp, data, len);

	return tmp;
}

2056 2057 2058 2059 2060
static inline void skb_put_u8(struct sk_buff *skb, u8 val)
{
	*(u8 *)skb_put(skb, 1) = val;
}

2061 2062
void *skb_push(struct sk_buff *skb, unsigned int len);
static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
L
Linus Torvalds 已提交
2063 2064 2065 2066 2067 2068
{
	skb->data -= len;
	skb->len  += len;
	return skb->data;
}

2069 2070
void *skb_pull(struct sk_buff *skb, unsigned int len);
static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
L
Linus Torvalds 已提交
2071 2072 2073 2074 2075 2076
{
	skb->len -= len;
	BUG_ON(skb->len < skb->data_len);
	return skb->data += len;
}

2077
static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2078 2079 2080 2081
{
	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
}

2082
void *__pskb_pull_tail(struct sk_buff *skb, int delta);
L
Linus Torvalds 已提交
2083

2084
static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
L
Linus Torvalds 已提交
2085 2086
{
	if (len > skb_headlen(skb) &&
G
Gerrit Renker 已提交
2087
	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
L
Linus Torvalds 已提交
2088 2089 2090 2091 2092
		return NULL;
	skb->len -= len;
	return skb->data += len;
}

2093
static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
L
Linus Torvalds 已提交
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
{
	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
}

static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
{
	if (likely(len <= skb_headlen(skb)))
		return 1;
	if (unlikely(len > skb->len))
		return 0;
G
Gerrit Renker 已提交
2104
	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
L
Linus Torvalds 已提交
2105 2106
}

2107 2108
void skb_condense(struct sk_buff *skb);

L
Linus Torvalds 已提交
2109 2110 2111 2112 2113 2114
/**
 *	skb_headroom - bytes at buffer head
 *	@skb: buffer to check
 *
 *	Return the number of bytes of free space at the head of an &sk_buff.
 */
2115
static inline unsigned int skb_headroom(const struct sk_buff *skb)
L
Linus Torvalds 已提交
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
{
	return skb->data - skb->head;
}

/**
 *	skb_tailroom - bytes at buffer end
 *	@skb: buffer to check
 *
 *	Return the number of bytes of free space at the tail of an sk_buff
 */
static inline int skb_tailroom(const struct sk_buff *skb)
{
2128
	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
L
Linus Torvalds 已提交
2129 2130
}

2131 2132 2133 2134 2135 2136 2137 2138 2139
/**
 *	skb_availroom - bytes at buffer end
 *	@skb: buffer to check
 *
 *	Return the number of bytes of free space at the tail of an sk_buff
 *	allocated by sk_stream_alloc()
 */
static inline int skb_availroom(const struct sk_buff *skb)
{
E
Eric Dumazet 已提交
2140 2141 2142 2143
	if (skb_is_nonlinear(skb))
		return 0;

	return skb->end - skb->tail - skb->reserved_tailroom;
2144 2145
}

L
Linus Torvalds 已提交
2146 2147 2148 2149 2150 2151 2152 2153
/**
 *	skb_reserve - adjust headroom
 *	@skb: buffer to alter
 *	@len: bytes to move
 *
 *	Increase the headroom of an empty &sk_buff by reducing the tail
 *	room. This is only allowed for an empty buffer.
 */
2154
static inline void skb_reserve(struct sk_buff *skb, int len)
L
Linus Torvalds 已提交
2155 2156 2157 2158 2159
{
	skb->data += len;
	skb->tail += len;
}

2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
/**
 *	skb_tailroom_reserve - adjust reserved_tailroom
 *	@skb: buffer to alter
 *	@mtu: maximum amount of headlen permitted
 *	@needed_tailroom: minimum amount of reserved_tailroom
 *
 *	Set reserved_tailroom so that headlen can be as large as possible but
 *	not larger than mtu and tailroom cannot be smaller than
 *	needed_tailroom.
 *	The required headroom should already have been reserved before using
 *	this function.
 */
static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
					unsigned int needed_tailroom)
{
	SKB_LINEAR_ASSERT(skb);
	if (mtu < skb_tailroom(skb) - needed_tailroom)
		/* use at most mtu */
		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
	else
		/* use up to all available space */
		skb->reserved_tailroom = needed_tailroom;
}

T
Tom Herbert 已提交
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
#define ENCAP_TYPE_ETHER	0
#define ENCAP_TYPE_IPPROTO	1

static inline void skb_set_inner_protocol(struct sk_buff *skb,
					  __be16 protocol)
{
	skb->inner_protocol = protocol;
	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
}

static inline void skb_set_inner_ipproto(struct sk_buff *skb,
					 __u8 ipproto)
{
	skb->inner_ipproto = ipproto;
	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
}

2201 2202
static inline void skb_reset_inner_headers(struct sk_buff *skb)
{
2203
	skb->inner_mac_header = skb->mac_header;
2204 2205 2206 2207
	skb->inner_network_header = skb->network_header;
	skb->inner_transport_header = skb->transport_header;
}

2208 2209 2210 2211 2212
static inline void skb_reset_mac_len(struct sk_buff *skb)
{
	skb->mac_len = skb->network_header - skb->mac_header;
}

2213 2214 2215 2216 2217 2218
static inline unsigned char *skb_inner_transport_header(const struct sk_buff
							*skb)
{
	return skb->head + skb->inner_transport_header;
}

2219 2220 2221 2222 2223
static inline int skb_inner_transport_offset(const struct sk_buff *skb)
{
	return skb_inner_transport_header(skb) - skb->data;
}

2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
{
	skb->inner_transport_header = skb->data - skb->head;
}

static inline void skb_set_inner_transport_header(struct sk_buff *skb,
						   const int offset)
{
	skb_reset_inner_transport_header(skb);
	skb->inner_transport_header += offset;
}

static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
{
	return skb->head + skb->inner_network_header;
}

static inline void skb_reset_inner_network_header(struct sk_buff *skb)
{
	skb->inner_network_header = skb->data - skb->head;
}

static inline void skb_set_inner_network_header(struct sk_buff *skb,
						const int offset)
{
	skb_reset_inner_network_header(skb);
	skb->inner_network_header += offset;
}

2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
{
	return skb->head + skb->inner_mac_header;
}

static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
{
	skb->inner_mac_header = skb->data - skb->head;
}

static inline void skb_set_inner_mac_header(struct sk_buff *skb,
					    const int offset)
{
	skb_reset_inner_mac_header(skb);
	skb->inner_mac_header += offset;
}
2269 2270
static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
{
C
Cong Wang 已提交
2271
	return skb->transport_header != (typeof(skb->transport_header))~0U;
2272 2273
}

2274 2275
static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
{
2276
	return skb->head + skb->transport_header;
2277 2278
}

2279 2280
static inline void skb_reset_transport_header(struct sk_buff *skb)
{
2281
	skb->transport_header = skb->data - skb->head;
2282 2283
}

2284 2285 2286
static inline void skb_set_transport_header(struct sk_buff *skb,
					    const int offset)
{
2287 2288
	skb_reset_transport_header(skb);
	skb->transport_header += offset;
2289 2290
}

2291 2292
static inline unsigned char *skb_network_header(const struct sk_buff *skb)
{
2293
	return skb->head + skb->network_header;
2294 2295
}

2296 2297
static inline void skb_reset_network_header(struct sk_buff *skb)
{
2298
	skb->network_header = skb->data - skb->head;
2299 2300
}

2301 2302
static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
{
2303 2304
	skb_reset_network_header(skb);
	skb->network_header += offset;
2305 2306
}

2307
static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2308
{
2309
	return skb->head + skb->mac_header;
2310 2311
}

2312 2313 2314 2315 2316
static inline int skb_mac_offset(const struct sk_buff *skb)
{
	return skb_mac_header(skb) - skb->data;
}

2317 2318 2319 2320 2321
static inline u32 skb_mac_header_len(const struct sk_buff *skb)
{
	return skb->network_header - skb->mac_header;
}

2322
static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2323
{
C
Cong Wang 已提交
2324
	return skb->mac_header != (typeof(skb->mac_header))~0U;
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
}

static inline void skb_reset_mac_header(struct sk_buff *skb)
{
	skb->mac_header = skb->data - skb->head;
}

static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
{
	skb_reset_mac_header(skb);
	skb->mac_header += offset;
}

2338 2339 2340 2341 2342
static inline void skb_pop_mac_header(struct sk_buff *skb)
{
	skb->mac_header = skb->network_header;
}

2343 2344 2345 2346 2347 2348 2349
static inline void skb_probe_transport_header(struct sk_buff *skb,
					      const int offset_hint)
{
	struct flow_keys keys;

	if (skb_transport_header_was_set(skb))
		return;
2350
	else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
2351
		skb_set_transport_header(skb, keys.control.thoff);
2352 2353 2354 2355
	else
		skb_set_transport_header(skb, offset_hint);
}

2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
static inline void skb_mac_header_rebuild(struct sk_buff *skb)
{
	if (skb_mac_header_was_set(skb)) {
		const unsigned char *old_mac = skb_mac_header(skb);

		skb_set_mac_header(skb, -skb->mac_len);
		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
	}
}

2366 2367 2368 2369 2370
static inline int skb_checksum_start_offset(const struct sk_buff *skb)
{
	return skb->csum_start - skb_headroom(skb);
}

2371 2372 2373 2374 2375
static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
{
	return skb->head + skb->csum_start;
}

2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
static inline int skb_transport_offset(const struct sk_buff *skb)
{
	return skb_transport_header(skb) - skb->data;
}

static inline u32 skb_network_header_len(const struct sk_buff *skb)
{
	return skb->transport_header - skb->network_header;
}

2386 2387 2388 2389 2390
static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
{
	return skb->inner_transport_header - skb->inner_network_header;
}

2391 2392 2393 2394
static inline int skb_network_offset(const struct sk_buff *skb)
{
	return skb_network_header(skb) - skb->data;
}
2395

2396 2397 2398 2399 2400
static inline int skb_inner_network_offset(const struct sk_buff *skb)
{
	return skb_inner_network_header(skb) - skb->data;
}

2401 2402 2403 2404 2405
static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
{
	return pskb_may_pull(skb, skb_network_offset(skb) + len);
}

L
Linus Torvalds 已提交
2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
/*
 * CPUs often take a performance hit when accessing unaligned memory
 * locations. The actual performance hit varies, it can be small if the
 * hardware handles it or large if we have to take an exception and fix it
 * in software.
 *
 * Since an ethernet header is 14 bytes network drivers often end up with
 * the IP header at an unaligned offset. The IP header can be aligned by
 * shifting the start of the packet by 2 bytes. Drivers should do this
 * with:
 *
2417
 * skb_reserve(skb, NET_IP_ALIGN);
L
Linus Torvalds 已提交
2418 2419 2420 2421
 *
 * The downside to this alignment of the IP header is that the DMA is now
 * unaligned. On some architectures the cost of an unaligned DMA is high
 * and this cost outweighs the gains made by aligning the IP header.
2422
 *
L
Linus Torvalds 已提交
2423 2424 2425 2426 2427 2428 2429
 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
 * to be overridden.
 */
#ifndef NET_IP_ALIGN
#define NET_IP_ALIGN	2
#endif

2430 2431 2432 2433
/*
 * The networking layer reserves some headroom in skb data (via
 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
 * the header has to grow. In the default case, if the header has to grow
2434
 * 32 bytes or less we avoid the reallocation.
2435 2436 2437 2438 2439 2440 2441
 *
 * Unfortunately this headroom changes the DMA alignment of the resulting
 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
 * on some architectures. An architecture can override this value,
 * perhaps setting it to a cacheline in size (since that will maintain
 * cacheline alignment of the DMA). It must be a power of 2.
 *
2442
 * Various parts of the networking layer expect at least 32 bytes of
2443
 * headroom, you should not reduce this.
2444 2445 2446 2447
 *
 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
 * to reduce average number of cache lines per packet.
 * get_rps_cpus() for example only access one 64 bytes aligned block :
2448
 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2449 2450
 */
#ifndef NET_SKB_PAD
2451
#define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2452 2453
#endif

2454
int ___pskb_trim(struct sk_buff *skb, unsigned int len);
L
Linus Torvalds 已提交
2455

2456
static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
L
Linus Torvalds 已提交
2457
{
2458
	if (unlikely(skb_is_nonlinear(skb))) {
2459 2460 2461
		WARN_ON(1);
		return;
	}
2462 2463
	skb->len = len;
	skb_set_tail_pointer(skb, len);
L
Linus Torvalds 已提交
2464 2465
}

2466 2467 2468 2469 2470
static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
{
	__skb_set_length(skb, len);
}

2471
void skb_trim(struct sk_buff *skb, unsigned int len);
L
Linus Torvalds 已提交
2472 2473 2474

static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
{
2475 2476 2477 2478
	if (skb->data_len)
		return ___pskb_trim(skb, len);
	__skb_trim(skb, len);
	return 0;
L
Linus Torvalds 已提交
2479 2480 2481 2482 2483 2484 2485
}

static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
{
	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
}

2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
/**
 *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
 *	@skb: buffer to alter
 *	@len: new length
 *
 *	This is identical to pskb_trim except that the caller knows that
 *	the skb is not cloned so we should never get an error due to out-
 *	of-memory.
 */
static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
{
	int err = pskb_trim(skb, len);
	BUG_ON(err);
}

2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
{
	unsigned int diff = len - skb->len;

	if (skb_tailroom(skb) < diff) {
		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
					   GFP_ATOMIC);
		if (ret)
			return ret;
	}
	__skb_set_length(skb, len);
	return 0;
}

L
Linus Torvalds 已提交
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
/**
 *	skb_orphan - orphan a buffer
 *	@skb: buffer to orphan
 *
 *	If a buffer currently has an owner then we call the owner's
 *	destructor function and make the @skb unowned. The buffer continues
 *	to exist but is no longer charged to its former owner.
 */
static inline void skb_orphan(struct sk_buff *skb)
{
E
Eric Dumazet 已提交
2525
	if (skb->destructor) {
L
Linus Torvalds 已提交
2526
		skb->destructor(skb);
E
Eric Dumazet 已提交
2527 2528
		skb->destructor = NULL;
		skb->sk		= NULL;
2529 2530
	} else {
		BUG_ON(skb->sk);
E
Eric Dumazet 已提交
2531
	}
L
Linus Torvalds 已提交
2532 2533
}

2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
/**
 *	skb_orphan_frags - orphan the frags contained in a buffer
 *	@skb: buffer to orphan frags from
 *	@gfp_mask: allocation mask for replacement pages
 *
 *	For each frag in the SKB which needs a destructor (i.e. has an
 *	owner) create a copy of that frag and release the original
 *	page by calling the destructor.
 */
static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
{
W
Willem de Bruijn 已提交
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
	if (likely(!skb_zcopy(skb)))
		return 0;
	if (skb_uarg(skb)->callback == sock_zerocopy_callback)
		return 0;
	return skb_copy_ubufs(skb, gfp_mask);
}

/* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
{
	if (likely(!skb_zcopy(skb)))
2556 2557 2558 2559
		return 0;
	return skb_copy_ubufs(skb, gfp_mask);
}

L
Linus Torvalds 已提交
2560 2561 2562 2563 2564 2565 2566 2567
/**
 *	__skb_queue_purge - empty a list
 *	@list: list to empty
 *
 *	Delete all buffers on an &sk_buff list. Each buffer is removed from
 *	the list and one reference dropped. This function does not take the
 *	list lock and the caller must hold the relevant locks to use it.
 */
2568
void skb_queue_purge(struct sk_buff_head *list);
L
Linus Torvalds 已提交
2569 2570 2571 2572 2573 2574 2575
static inline void __skb_queue_purge(struct sk_buff_head *list)
{
	struct sk_buff *skb;
	while ((skb = __skb_dequeue(list)) != NULL)
		kfree_skb(skb);
}

2576 2577
void skb_rbtree_purge(struct rb_root *root);

2578
void *netdev_alloc_frag(unsigned int fragsz);
L
Linus Torvalds 已提交
2579

2580 2581
struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
				   gfp_t gfp_mask);
2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596

/**
 *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
 *	@dev: network device to receive on
 *	@length: length to allocate
 *
 *	Allocate a new &sk_buff and assign it a usage count of one. The
 *	buffer has unspecified headroom built in. Users should allocate
 *	the headroom they think they need without accounting for the
 *	built in space. The built in space is used for optimisations.
 *
 *	%NULL is returned if there is no free memory. Although this function
 *	allocates memory it can be called from an interrupt.
 */
static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2597
					       unsigned int length)
2598 2599 2600 2601
{
	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
}

2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
/* legacy helper around __netdev_alloc_skb() */
static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
					      gfp_t gfp_mask)
{
	return __netdev_alloc_skb(NULL, length, gfp_mask);
}

/* legacy helper around netdev_alloc_skb() */
static inline struct sk_buff *dev_alloc_skb(unsigned int length)
{
	return netdev_alloc_skb(NULL, length);
}


2616 2617
static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
		unsigned int length, gfp_t gfp)
2618
{
2619
	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2620 2621 2622 2623 2624 2625

	if (NET_IP_ALIGN && skb)
		skb_reserve(skb, NET_IP_ALIGN);
	return skb;
}

2626 2627 2628 2629 2630 2631
static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
		unsigned int length)
{
	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
}

2632 2633
static inline void skb_free_frag(void *addr)
{
2634
	page_frag_free(addr);
2635 2636
}

2637
void *napi_alloc_frag(unsigned int fragsz);
2638 2639 2640 2641 2642 2643 2644
struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
				 unsigned int length, gfp_t gfp_mask);
static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
					     unsigned int length)
{
	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
}
2645 2646 2647
void napi_consume_skb(struct sk_buff *skb, int budget);

void __kfree_skb_flush(void);
2648
void __kfree_skb_defer(struct sk_buff *skb);
2649

2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669
/**
 * __dev_alloc_pages - allocate page for network Rx
 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
 * @order: size of the allocation
 *
 * Allocate a new page.
 *
 * %NULL is returned if there is no free memory.
*/
static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
					     unsigned int order)
{
	/* This piece of code contains several assumptions.
	 * 1.  This is for device Rx, therefor a cold page is preferred.
	 * 2.  The expectation is the user wants a compound page.
	 * 3.  If requesting a order 0 page it will not be compound
	 *     due to the check to see if order has a value in prep_new_page
	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
	 *     code in gfp_to_alloc_flags that should be enforcing this.
	 */
M
Mel Gorman 已提交
2670
	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2671 2672 2673 2674 2675 2676

	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
}

static inline struct page *dev_alloc_pages(unsigned int order)
{
2677
	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
}

/**
 * __dev_alloc_page - allocate a page for network Rx
 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
 *
 * Allocate a new page.
 *
 * %NULL is returned if there is no free memory.
 */
static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
{
	return __dev_alloc_pages(gfp_mask, 0);
}

static inline struct page *dev_alloc_page(void)
{
2695
	return dev_alloc_pages(0);
2696 2697
}

2698 2699 2700 2701 2702 2703 2704 2705
/**
 *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
 *	@page: The page that was allocated from skb_alloc_page
 *	@skb: The skb that may need pfmemalloc set
 */
static inline void skb_propagate_pfmemalloc(struct page *page,
					     struct sk_buff *skb)
{
2706
	if (page_is_pfmemalloc(page))
2707 2708 2709
		skb->pfmemalloc = true;
}

2710
/**
2711
 * skb_frag_page - retrieve the page referred to by a paged fragment
2712 2713 2714 2715 2716 2717
 * @frag: the paged fragment
 *
 * Returns the &struct page associated with @frag.
 */
static inline struct page *skb_frag_page(const skb_frag_t *frag)
{
2718
	return frag->page.p;
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
}

/**
 * __skb_frag_ref - take an addition reference on a paged fragment.
 * @frag: the paged fragment
 *
 * Takes an additional reference on the paged fragment @frag.
 */
static inline void __skb_frag_ref(skb_frag_t *frag)
{
	get_page(skb_frag_page(frag));
}

/**
 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
 * @skb: the buffer
 * @f: the fragment offset.
 *
 * Takes an additional reference on the @f'th paged fragment of @skb.
 */
static inline void skb_frag_ref(struct sk_buff *skb, int f)
{
	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
}

/**
 * __skb_frag_unref - release a reference on a paged fragment.
 * @frag: the paged fragment
 *
 * Releases a reference on the paged fragment @frag.
 */
static inline void __skb_frag_unref(skb_frag_t *frag)
{
	put_page(skb_frag_page(frag));
}

/**
 * skb_frag_unref - release a reference on a paged fragment of an skb.
 * @skb: the buffer
 * @f: the fragment offset
 *
 * Releases a reference on the @f'th paged fragment of @skb.
 */
static inline void skb_frag_unref(struct sk_buff *skb, int f)
{
	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
}

/**
 * skb_frag_address - gets the address of the data contained in a paged fragment
 * @frag: the paged fragment buffer
 *
 * Returns the address of the data within @frag. The page must already
 * be mapped.
 */
static inline void *skb_frag_address(const skb_frag_t *frag)
{
	return page_address(skb_frag_page(frag)) + frag->page_offset;
}

/**
 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
 * @frag: the paged fragment buffer
 *
 * Returns the address of the data within @frag. Checks that the page
 * is mapped and returns %NULL otherwise.
 */
static inline void *skb_frag_address_safe(const skb_frag_t *frag)
{
	void *ptr = page_address(skb_frag_page(frag));
	if (unlikely(!ptr))
		return NULL;

	return ptr + frag->page_offset;
}

/**
 * __skb_frag_set_page - sets the page contained in a paged fragment
 * @frag: the paged fragment
 * @page: the page to set
 *
 * Sets the fragment @frag to contain @page.
 */
static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
{
2804
	frag->page.p = page;
2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
}

/**
 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
 * @skb: the buffer
 * @f: the fragment offset
 * @page: the page to set
 *
 * Sets the @f'th fragment of @skb to contain @page.
 */
static inline void skb_frag_set_page(struct sk_buff *skb, int f,
				     struct page *page)
{
	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
}

E
Eric Dumazet 已提交
2821 2822
bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);

2823 2824
/**
 * skb_frag_dma_map - maps a paged fragment via the DMA API
2825
 * @dev: the device to map the fragment to
2826 2827 2828 2829
 * @frag: the paged fragment to map
 * @offset: the offset within the fragment (starting at the
 *          fragment's own offset)
 * @size: the number of bytes to map
2830
 * @dir: the direction of the mapping (``PCI_DMA_*``)
2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
 *
 * Maps the page associated with @frag to @device.
 */
static inline dma_addr_t skb_frag_dma_map(struct device *dev,
					  const skb_frag_t *frag,
					  size_t offset, size_t size,
					  enum dma_data_direction dir)
{
	return dma_map_page(dev, skb_frag_page(frag),
			    frag->page_offset + offset, size, dir);
}

E
Eric Dumazet 已提交
2843 2844 2845 2846 2847 2848
static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
					gfp_t gfp_mask)
{
	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
}

2849 2850 2851 2852 2853 2854 2855 2856

static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
						  gfp_t gfp_mask)
{
	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
}


2857 2858 2859 2860 2861 2862 2863 2864
/**
 *	skb_clone_writable - is the header of a clone writable
 *	@skb: buffer to check
 *	@len: length up to which to write
 *
 *	Returns true if modifying the header part of the cloned buffer
 *	does not requires the data to be copied.
 */
2865
static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2866 2867 2868 2869 2870
{
	return !skb_header_cloned(skb) &&
	       skb_headroom(skb) + len <= skb->hdr_len;
}

2871 2872 2873 2874 2875 2876 2877
static inline int skb_try_make_writable(struct sk_buff *skb,
					unsigned int write_len)
{
	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
}

H
Herbert Xu 已提交
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
			    int cloned)
{
	int delta = 0;

	if (headroom > skb_headroom(skb))
		delta = headroom - skb_headroom(skb);

	if (delta || cloned)
		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
					GFP_ATOMIC);
	return 0;
}

L
Linus Torvalds 已提交
2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
/**
 *	skb_cow - copy header of skb when it is required
 *	@skb: buffer to cow
 *	@headroom: needed headroom
 *
 *	If the skb passed lacks sufficient headroom or its data part
 *	is shared, data is reallocated. If reallocation fails, an error
 *	is returned and original skb is not changed.
 *
 *	The result is skb with writable area skb->head...skb->tail
 *	and at least @headroom of space at head.
 */
static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
{
H
Herbert Xu 已提交
2906 2907
	return __skb_cow(skb, headroom, skb_cloned(skb));
}
L
Linus Torvalds 已提交
2908

H
Herbert Xu 已提交
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
/**
 *	skb_cow_head - skb_cow but only making the head writable
 *	@skb: buffer to cow
 *	@headroom: needed headroom
 *
 *	This function is identical to skb_cow except that we replace the
 *	skb_cloned check by skb_header_cloned.  It should be used when
 *	you only need to push on some header and do not need to modify
 *	the data.
 */
static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
{
	return __skb_cow(skb, headroom, skb_header_cloned(skb));
L
Linus Torvalds 已提交
2922 2923 2924 2925 2926 2927 2928 2929 2930
}

/**
 *	skb_padto	- pad an skbuff up to a minimal size
 *	@skb: buffer to pad
 *	@len: minimal length
 *
 *	Pads up a buffer to ensure the trailing bytes exist and are
 *	blanked. If the buffer already contains sufficient data it
2931 2932
 *	is untouched. Otherwise it is extended. Returns zero on
 *	success. The skb is freed on error.
L
Linus Torvalds 已提交
2933
 */
2934
static inline int skb_padto(struct sk_buff *skb, unsigned int len)
L
Linus Torvalds 已提交
2935 2936 2937
{
	unsigned int size = skb->len;
	if (likely(size >= len))
2938
		return 0;
G
Gerrit Renker 已提交
2939
	return skb_pad(skb, len - size);
L
Linus Torvalds 已提交
2940 2941
}

2942 2943 2944 2945
/**
 *	skb_put_padto - increase size and pad an skbuff up to a minimal size
 *	@skb: buffer to pad
 *	@len: minimal length
2946
 *	@free_on_error: free buffer on error
2947 2948 2949 2950
 *
 *	Pads up a buffer to ensure the trailing bytes exist and are
 *	blanked. If the buffer already contains sufficient data it
 *	is untouched. Otherwise it is extended. Returns zero on
2951
 *	success. The skb is freed on error if @free_on_error is true.
2952
 */
2953 2954
static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
				  bool free_on_error)
2955 2956 2957 2958 2959
{
	unsigned int size = skb->len;

	if (unlikely(size < len)) {
		len -= size;
2960
		if (__skb_pad(skb, len, free_on_error))
2961 2962 2963 2964 2965 2966
			return -ENOMEM;
		__skb_put(skb, len);
	}
	return 0;
}

2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
/**
 *	skb_put_padto - increase size and pad an skbuff up to a minimal size
 *	@skb: buffer to pad
 *	@len: minimal length
 *
 *	Pads up a buffer to ensure the trailing bytes exist and are
 *	blanked. If the buffer already contains sufficient data it
 *	is untouched. Otherwise it is extended. Returns zero on
 *	success. The skb is freed on error.
 */
static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
{
	return __skb_put_padto(skb, len, true);
}

L
Linus Torvalds 已提交
2982
static inline int skb_add_data(struct sk_buff *skb,
2983
			       struct iov_iter *from, int copy)
L
Linus Torvalds 已提交
2984 2985 2986 2987
{
	const int off = skb->len;

	if (skb->ip_summed == CHECKSUM_NONE) {
2988
		__wsum csum = 0;
2989 2990
		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
					         &csum, from)) {
L
Linus Torvalds 已提交
2991 2992 2993
			skb->csum = csum_block_add(skb->csum, csum, off);
			return 0;
		}
2994
	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
L
Linus Torvalds 已提交
2995 2996 2997 2998 2999 3000
		return 0;

	__skb_trim(skb, off);
	return -EFAULT;
}

3001 3002
static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
				    const struct page *page, int off)
L
Linus Torvalds 已提交
3003
{
W
Willem de Bruijn 已提交
3004 3005
	if (skb_zcopy(skb))
		return false;
L
Linus Torvalds 已提交
3006
	if (i) {
E
Eric Dumazet 已提交
3007
		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
L
Linus Torvalds 已提交
3008

3009
		return page == skb_frag_page(frag) &&
E
Eric Dumazet 已提交
3010
		       off == frag->page_offset + skb_frag_size(frag);
L
Linus Torvalds 已提交
3011
	}
3012
	return false;
L
Linus Torvalds 已提交
3013 3014
}

H
Herbert Xu 已提交
3015 3016 3017 3018 3019
static inline int __skb_linearize(struct sk_buff *skb)
{
	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
}

L
Linus Torvalds 已提交
3020 3021 3022 3023 3024 3025 3026
/**
 *	skb_linearize - convert paged skb to linear one
 *	@skb: buffer to linarize
 *
 *	If there is no free memory -ENOMEM is returned, otherwise zero
 *	is returned and the old skb data released.
 */
H
Herbert Xu 已提交
3027 3028 3029 3030 3031
static inline int skb_linearize(struct sk_buff *skb)
{
	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
}

3032 3033 3034 3035 3036 3037 3038 3039 3040
/**
 * skb_has_shared_frag - can any frag be overwritten
 * @skb: buffer to test
 *
 * Return true if the skb has at least one frag that might be modified
 * by an external entity (as in vmsplice()/sendfile())
 */
static inline bool skb_has_shared_frag(const struct sk_buff *skb)
{
3041 3042
	return skb_is_nonlinear(skb) &&
	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
3043 3044
}

H
Herbert Xu 已提交
3045 3046 3047 3048 3049 3050 3051 3052
/**
 *	skb_linearize_cow - make sure skb is linear and writable
 *	@skb: buffer to process
 *
 *	If there is no free memory -ENOMEM is returned, otherwise zero
 *	is returned and the old skb data released.
 */
static inline int skb_linearize_cow(struct sk_buff *skb)
L
Linus Torvalds 已提交
3053
{
H
Herbert Xu 已提交
3054 3055
	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
	       __skb_linearize(skb) : 0;
L
Linus Torvalds 已提交
3056 3057
}

3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
static __always_inline void
__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
		     unsigned int off)
{
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		skb->csum = csum_block_sub(skb->csum,
					   csum_partial(start, len, 0), off);
	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
		 skb_checksum_start_offset(skb) < 0)
		skb->ip_summed = CHECKSUM_NONE;
}

L
Linus Torvalds 已提交
3070 3071 3072 3073 3074 3075 3076
/**
 *	skb_postpull_rcsum - update checksum for received skb after pull
 *	@skb: buffer to update
 *	@start: start of data before pull
 *	@len: length of data pulled
 *
 *	After doing a pull on a received packet, you need to call this to
3077 3078
 *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
 *	CHECKSUM_NONE so that it can be recomputed from scratch.
L
Linus Torvalds 已提交
3079 3080
 */
static inline void skb_postpull_rcsum(struct sk_buff *skb,
3081
				      const void *start, unsigned int len)
L
Linus Torvalds 已提交
3082
{
3083
	__skb_postpull_rcsum(skb, start, len, 0);
L
Linus Torvalds 已提交
3084 3085
}

3086 3087 3088 3089 3090 3091 3092 3093
static __always_inline void
__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
		     unsigned int off)
{
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		skb->csum = csum_block_add(skb->csum,
					   csum_partial(start, len, 0), off);
}
3094

3095 3096 3097 3098 3099 3100 3101 3102 3103
/**
 *	skb_postpush_rcsum - update checksum for received skb after push
 *	@skb: buffer to update
 *	@start: start of data after push
 *	@len: length of data pushed
 *
 *	After doing a push on a received packet, you need to call this to
 *	update the CHECKSUM_COMPLETE checksum.
 */
3104 3105 3106
static inline void skb_postpush_rcsum(struct sk_buff *skb,
				      const void *start, unsigned int len)
{
3107
	__skb_postpush_rcsum(skb, start, len, 0);
3108 3109
}

3110
void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3111

3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
/**
 *	skb_push_rcsum - push skb and update receive checksum
 *	@skb: buffer to update
 *	@len: length of data pulled
 *
 *	This function performs an skb_push on the packet and updates
 *	the CHECKSUM_COMPLETE checksum.  It should be used on
 *	receive path processing instead of skb_push unless you know
 *	that the checksum difference is zero (e.g., a valid IP header)
 *	or you are setting ip_summed to CHECKSUM_NONE.
 */
3123
static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3124 3125 3126 3127 3128 3129
{
	skb_push(skb, len);
	skb_postpush_rcsum(skb, skb->data, len);
	return skb->data;
}

3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
/**
 *	pskb_trim_rcsum - trim received skb and update checksum
 *	@skb: buffer to trim
 *	@len: new length
 *
 *	This is exactly the same as pskb_trim except that it ensures the
 *	checksum of received packets are still valid after the operation.
 */

static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
{
	if (likely(len >= skb->len))
		return 0;
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		skb->ip_summed = CHECKSUM_NONE;
	return __pskb_trim(skb, len);
}

3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
{
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		skb->ip_summed = CHECKSUM_NONE;
	__skb_trim(skb, len);
	return 0;
}

static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
{
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		skb->ip_summed = CHECKSUM_NONE;
	return __skb_grow(skb, len);
}

3163 3164 3165 3166 3167 3168
#define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
#define skb_rb_first(root) rb_to_skb(rb_first(root))
#define skb_rb_last(root)  rb_to_skb(rb_last(root))
#define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
#define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))

L
Linus Torvalds 已提交
3169 3170
#define skb_queue_walk(queue, skb) \
		for (skb = (queue)->next;					\
3171
		     skb != (struct sk_buff *)(queue);				\
L
Linus Torvalds 已提交
3172 3173
		     skb = skb->next)

3174 3175 3176 3177 3178
#define skb_queue_walk_safe(queue, skb, tmp)					\
		for (skb = (queue)->next, tmp = skb->next;			\
		     skb != (struct sk_buff *)(queue);				\
		     skb = tmp, tmp = skb->next)

3179
#define skb_queue_walk_from(queue, skb)						\
3180
		for (; skb != (struct sk_buff *)(queue);			\
3181 3182
		     skb = skb->next)

3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
#define skb_rbtree_walk(skb, root)						\
		for (skb = skb_rb_first(root); skb != NULL;			\
		     skb = skb_rb_next(skb))

#define skb_rbtree_walk_from(skb)						\
		for (; skb != NULL;						\
		     skb = skb_rb_next(skb))

#define skb_rbtree_walk_from_safe(skb, tmp)					\
		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
		     skb = tmp)

3195 3196 3197 3198 3199
#define skb_queue_walk_from_safe(queue, skb, tmp)				\
		for (tmp = skb->next;						\
		     skb != (struct sk_buff *)(queue);				\
		     skb = tmp, tmp = skb->next)

3200 3201
#define skb_queue_reverse_walk(queue, skb) \
		for (skb = (queue)->prev;					\
3202
		     skb != (struct sk_buff *)(queue);				\
3203 3204
		     skb = skb->prev)

3205 3206 3207 3208 3209 3210 3211 3212 3213
#define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
		for (skb = (queue)->prev, tmp = skb->prev;			\
		     skb != (struct sk_buff *)(queue);				\
		     skb = tmp, tmp = skb->prev)

#define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
		for (tmp = skb->prev;						\
		     skb != (struct sk_buff *)(queue);				\
		     skb = tmp, tmp = skb->prev)
L
Linus Torvalds 已提交
3214

3215
static inline bool skb_has_frag_list(const struct sk_buff *skb)
3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
{
	return skb_shinfo(skb)->frag_list != NULL;
}

static inline void skb_frag_list_init(struct sk_buff *skb)
{
	skb_shinfo(skb)->frag_list = NULL;
}

#define skb_walk_frags(skb, iter)	\
	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)

3228 3229 3230

int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
				const struct sk_buff *skb);
3231 3232 3233 3234 3235 3236 3237
struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
					  struct sk_buff_head *queue,
					  unsigned int flags,
					  void (*destructor)(struct sock *sk,
							   struct sk_buff *skb),
					  int *peeked, int *off, int *err,
					  struct sk_buff **last);
3238
struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
3239 3240
					void (*destructor)(struct sock *sk,
							   struct sk_buff *skb),
3241 3242
					int *peeked, int *off, int *err,
					struct sk_buff **last);
3243
struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
3244 3245
				    void (*destructor)(struct sock *sk,
						       struct sk_buff *skb),
3246 3247 3248
				    int *peeked, int *off, int *err);
struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
				  int *err);
A
Al Viro 已提交
3249
__poll_t datagram_poll(struct file *file, struct socket *sock,
3250
			   struct poll_table_struct *wait);
A
Al Viro 已提交
3251 3252
int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
			   struct iov_iter *to, int size);
3253 3254 3255
static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
					struct msghdr *msg, int size)
{
3256
	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3257
}
3258 3259
int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
				   struct msghdr *msg);
3260 3261 3262
int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
				 struct iov_iter *from, int len);
int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3263
void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3264 3265 3266 3267 3268 3269
void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
static inline void skb_free_datagram_locked(struct sock *sk,
					    struct sk_buff *skb)
{
	__skb_free_datagram_locked(sk, skb, 0);
}
3270 3271 3272 3273 3274
int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
			      int len, __wsum csum);
3275
int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3276
		    struct pipe_inode_info *pipe, unsigned int len,
A
Al Viro 已提交
3277
		    unsigned int flags);
3278 3279 3280
int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
			 int len);
int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3281
void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3282
unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3283 3284
int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
		 int len, int hlen);
3285 3286 3287
void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3288
unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
3289
bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu);
3290
bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3291
struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3292
struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3293
int skb_ensure_writable(struct sk_buff *skb, int write_len);
3294
int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3295 3296
int skb_vlan_pop(struct sk_buff *skb);
int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3297 3298
struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
			     gfp_t gfp);
3299

A
Al Viro 已提交
3300 3301
static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
{
3302
	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
A
Al Viro 已提交
3303 3304
}

A
Al Viro 已提交
3305 3306
static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
{
3307
	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
A
Al Viro 已提交
3308 3309
}

3310 3311 3312 3313 3314
struct skb_checksum_ops {
	__wsum (*update)(const void *mem, int len, __wsum wsum);
	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
};

3315 3316
extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;

3317 3318 3319 3320 3321
__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
		      __wsum csum, const struct skb_checksum_ops *ops);
__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
		    __wsum csum);

3322 3323 3324
static inline void * __must_check
__skb_header_pointer(const struct sk_buff *skb, int offset,
		     int len, void *data, int hlen, void *buffer)
L
Linus Torvalds 已提交
3325
{
3326
	if (hlen - offset >= len)
3327
		return data + offset;
L
Linus Torvalds 已提交
3328

3329 3330
	if (!skb ||
	    skb_copy_bits(skb, offset, buffer, len) < 0)
L
Linus Torvalds 已提交
3331 3332 3333 3334 3335
		return NULL;

	return buffer;
}

3336 3337
static inline void * __must_check
skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3338 3339 3340 3341 3342
{
	return __skb_header_pointer(skb, offset, len, skb->data,
				    skb_headlen(skb), buffer);
}

3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360
/**
 *	skb_needs_linearize - check if we need to linearize a given skb
 *			      depending on the given device features.
 *	@skb: socket buffer to check
 *	@features: net device features
 *
 *	Returns true if either:
 *	1. skb has frag_list and the device doesn't support FRAGLIST, or
 *	2. skb is fragmented and the device does not support SG.
 */
static inline bool skb_needs_linearize(struct sk_buff *skb,
				       netdev_features_t features)
{
	return skb_is_nonlinear(skb) &&
	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
}

3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
					     void *to,
					     const unsigned int len)
{
	memcpy(to, skb->data, len);
}

static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
						    const int offset, void *to,
						    const unsigned int len)
{
	memcpy(to, skb->data + offset, len);
}

3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
static inline void skb_copy_to_linear_data(struct sk_buff *skb,
					   const void *from,
					   const unsigned int len)
{
	memcpy(skb->data, from, len);
}

static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
						  const int offset,
						  const void *from,
						  const unsigned int len)
{
	memcpy(skb->data + offset, from, len);
}

3390
void skb_init(void);
L
Linus Torvalds 已提交
3391

3392 3393 3394 3395 3396
static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
{
	return skb->tstamp;
}

3397 3398 3399 3400 3401 3402 3403 3404 3405
/**
 *	skb_get_timestamp - get timestamp from a skb
 *	@skb: skb to get stamp from
 *	@stamp: pointer to struct timeval to store stamp in
 *
 *	Timestamps are stored in the skb as offsets to a base timestamp.
 *	This function converts the offset back to a struct timeval and stores
 *	it in stamp.
 */
3406 3407
static inline void skb_get_timestamp(const struct sk_buff *skb,
				     struct timeval *stamp)
3408
{
3409
	*stamp = ktime_to_timeval(skb->tstamp);
3410 3411
}

3412 3413 3414 3415 3416 3417
static inline void skb_get_timestampns(const struct sk_buff *skb,
				       struct timespec *stamp)
{
	*stamp = ktime_to_timespec(skb->tstamp);
}

3418
static inline void __net_timestamp(struct sk_buff *skb)
3419
{
3420
	skb->tstamp = ktime_get_real();
3421 3422
}

3423 3424 3425 3426 3427
static inline ktime_t net_timedelta(ktime_t t)
{
	return ktime_sub(ktime_get_real(), t);
}

3428 3429
static inline ktime_t net_invalid_timestamp(void)
{
T
Thomas Gleixner 已提交
3430
	return 0;
3431
}
3432

3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495
static inline u8 skb_metadata_len(const struct sk_buff *skb)
{
	return skb_shinfo(skb)->meta_len;
}

static inline void *skb_metadata_end(const struct sk_buff *skb)
{
	return skb_mac_header(skb);
}

static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
					  const struct sk_buff *skb_b,
					  u8 meta_len)
{
	const void *a = skb_metadata_end(skb_a);
	const void *b = skb_metadata_end(skb_b);
	/* Using more efficient varaiant than plain call to memcmp(). */
#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
	u64 diffs = 0;

	switch (meta_len) {
#define __it(x, op) (x -= sizeof(u##op))
#define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
	case 32: diffs |= __it_diff(a, b, 64);
	case 24: diffs |= __it_diff(a, b, 64);
	case 16: diffs |= __it_diff(a, b, 64);
	case  8: diffs |= __it_diff(a, b, 64);
		break;
	case 28: diffs |= __it_diff(a, b, 64);
	case 20: diffs |= __it_diff(a, b, 64);
	case 12: diffs |= __it_diff(a, b, 64);
	case  4: diffs |= __it_diff(a, b, 32);
		break;
	}
	return diffs;
#else
	return memcmp(a - meta_len, b - meta_len, meta_len);
#endif
}

static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
					const struct sk_buff *skb_b)
{
	u8 len_a = skb_metadata_len(skb_a);
	u8 len_b = skb_metadata_len(skb_b);

	if (!(len_a | len_b))
		return false;

	return len_a != len_b ?
	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
}

static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
{
	skb_shinfo(skb)->meta_len = meta_len;
}

static inline void skb_metadata_clear(struct sk_buff *skb)
{
	skb_metadata_set(skb, 0);
}

3496 3497
struct sk_buff *skb_clone_sk(struct sk_buff *skb);

3498 3499
#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING

3500 3501
void skb_clone_tx_timestamp(struct sk_buff *skb);
bool skb_defer_rx_timestamp(struct sk_buff *skb);
3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518

#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */

static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
{
}

static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
{
	return false;
}

#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */

/**
 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
 *
3519 3520
 * PHY drivers may accept clones of transmitted packets for
 * timestamping via their phy_driver.txtstamp method. These drivers
3521 3522
 * must call this function to return the skb back to the stack with a
 * timestamp.
3523
 *
3524
 * @skb: clone of the the original outgoing packet
3525
 * @hwtstamps: hardware time stamps
3526 3527 3528 3529 3530
 *
 */
void skb_complete_tx_timestamp(struct sk_buff *skb,
			       struct skb_shared_hwtstamps *hwtstamps);

3531 3532 3533 3534
void __skb_tstamp_tx(struct sk_buff *orig_skb,
		     struct skb_shared_hwtstamps *hwtstamps,
		     struct sock *sk, int tstype);

3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
/**
 * skb_tstamp_tx - queue clone of skb with send time stamps
 * @orig_skb:	the original outgoing packet
 * @hwtstamps:	hardware time stamps, may be NULL if not available
 *
 * If the skb has a socket associated, then this function clones the
 * skb (thus sharing the actual data and optional structures), stores
 * the optional hardware time stamping information (if non NULL) or
 * generates a software time stamp (otherwise), then queues the clone
 * to the error queue of the socket.  Errors are silently ignored.
 */
3546 3547
void skb_tstamp_tx(struct sk_buff *orig_skb,
		   struct skb_shared_hwtstamps *hwtstamps);
3548

3549 3550 3551 3552
/**
 * skb_tx_timestamp() - Driver hook for transmit timestamping
 *
 * Ethernet MAC Drivers should call this function in their hard_xmit()
3553
 * function immediately before giving the sk_buff to the MAC hardware.
3554
 *
3555 3556 3557 3558
 * Specifically, one should make absolutely sure that this function is
 * called before TX completion of this packet can trigger.  Otherwise
 * the packet could potentially already be freed.
 *
3559 3560 3561 3562
 * @skb: A socket buffer.
 */
static inline void skb_tx_timestamp(struct sk_buff *skb)
{
3563
	skb_clone_tx_timestamp(skb);
3564 3565
	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
		skb_tstamp_tx(skb, NULL);
3566 3567
}

3568 3569 3570 3571 3572 3573 3574 3575 3576
/**
 * skb_complete_wifi_ack - deliver skb with wifi status
 *
 * @skb: the original outgoing packet
 * @acked: ack status
 *
 */
void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);

3577 3578
__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
__sum16 __skb_checksum_complete(struct sk_buff *skb);
3579

3580 3581
static inline int skb_csum_unnecessary(const struct sk_buff *skb)
{
3582 3583 3584 3585
	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
		skb->csum_valid ||
		(skb->ip_summed == CHECKSUM_PARTIAL &&
		 skb_checksum_start_offset(skb) >= 0));
3586 3587
}

3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603
/**
 *	skb_checksum_complete - Calculate checksum of an entire packet
 *	@skb: packet to process
 *
 *	This function calculates the checksum over the entire packet plus
 *	the value of skb->csum.  The latter can be used to supply the
 *	checksum of a pseudo header as used by TCP/UDP.  It returns the
 *	checksum.
 *
 *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
 *	this function can be used to verify that checksum on received
 *	packets.  In that case the function should return zero if the
 *	checksum is correct.  In particular, this function will return zero
 *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
 *	hardware has already verified the correctness of the checksum.
 */
3604
static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3605
{
3606 3607
	return skb_csum_unnecessary(skb) ?
	       0 : __skb_checksum_complete(skb);
3608 3609
}

3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630
static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
{
	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
		if (skb->csum_level == 0)
			skb->ip_summed = CHECKSUM_NONE;
		else
			skb->csum_level--;
	}
}

static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
{
	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
			skb->csum_level++;
	} else if (skb->ip_summed == CHECKSUM_NONE) {
		skb->ip_summed = CHECKSUM_UNNECESSARY;
		skb->csum_level = 0;
	}
}

3631 3632 3633 3634 3635 3636 3637 3638 3639
/* Check if we need to perform checksum complete validation.
 *
 * Returns true if checksum complete is needed, false otherwise
 * (either checksum is unnecessary or zero checksum is allowed).
 */
static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
						  bool zero_okay,
						  __sum16 check)
{
3640 3641
	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
		skb->csum_valid = 1;
3642
		__skb_decr_checksum_unnecessary(skb);
3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
		return false;
	}

	return true;
}

/* For small packets <= CHECKSUM_BREAK peform checksum complete directly
 * in checksum_init.
 */
#define CHECKSUM_BREAK 76

3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
/* Unset checksum-complete
 *
 * Unset checksum complete can be done when packet is being modified
 * (uncompressed for instance) and checksum-complete value is
 * invalidated.
 */
static inline void skb_checksum_complete_unset(struct sk_buff *skb)
{
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		skb->ip_summed = CHECKSUM_NONE;
}

3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680
/* Validate (init) checksum based on checksum complete.
 *
 * Return values:
 *   0: checksum is validated or try to in skb_checksum_complete. In the latter
 *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
 *	checksum is stored in skb->csum for use in __skb_checksum_complete
 *   non-zero: value of invalid checksum
 *
 */
static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
						       bool complete,
						       __wsum psum)
{
	if (skb->ip_summed == CHECKSUM_COMPLETE) {
		if (!csum_fold(csum_add(psum, skb->csum))) {
3681
			skb->csum_valid = 1;
3682 3683 3684 3685 3686 3687
			return 0;
		}
	}

	skb->csum = psum;

3688 3689 3690 3691 3692 3693 3694
	if (complete || skb->len <= CHECKSUM_BREAK) {
		__sum16 csum;

		csum = __skb_checksum_complete(skb);
		skb->csum_valid = !csum;
		return csum;
	}
3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717

	return 0;
}

static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
{
	return 0;
}

/* Perform checksum validate (init). Note that this is a macro since we only
 * want to calculate the pseudo header which is an input function if necessary.
 * First we try to validate without any computation (checksum unnecessary) and
 * then calculate based on checksum complete calling the function to compute
 * pseudo header.
 *
 * Return values:
 *   0: checksum is validated or try to in skb_checksum_complete
 *   non-zero: value of invalid checksum
 */
#define __skb_checksum_validate(skb, proto, complete,			\
				zero_okay, check, compute_pseudo)	\
({									\
	__sum16 __ret = 0;						\
3718
	skb->csum_valid = 0;						\
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735
	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
		__ret = __skb_checksum_validate_complete(skb,		\
				complete, compute_pseudo(skb, proto));	\
	__ret;								\
})

#define skb_checksum_init(skb, proto, compute_pseudo)			\
	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)

#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)

#define skb_checksum_validate(skb, proto, compute_pseudo)		\
	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)

#define skb_checksum_validate_zero_check(skb, proto, check,		\
					 compute_pseudo)		\
3736
	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3737 3738 3739 3740

#define skb_checksum_simple_validate(skb)				\
	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)

3741 3742
static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
{
3743
	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
}

static inline void __skb_checksum_convert(struct sk_buff *skb,
					  __sum16 check, __wsum pseudo)
{
	skb->csum = ~pseudo;
	skb->ip_summed = CHECKSUM_COMPLETE;
}

#define skb_checksum_try_convert(skb, proto, check, compute_pseudo)	\
do {									\
	if (__skb_checksum_convert_check(skb))				\
		__skb_checksum_convert(skb, check,			\
				       compute_pseudo(skb, proto));	\
} while (0)

3760 3761 3762 3763 3764 3765 3766 3767
static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
					      u16 start, u16 offset)
{
	skb->ip_summed = CHECKSUM_PARTIAL;
	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
	skb->csum_offset = offset - start;
}

3768 3769 3770 3771 3772 3773
/* Update skbuf and packet to reflect the remote checksum offload operation.
 * When called, ptr indicates the starting point for skb->csum when
 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
 */
static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3774
				       int start, int offset, bool nopartial)
3775 3776 3777
{
	__wsum delta;

3778 3779 3780 3781 3782
	if (!nopartial) {
		skb_remcsum_adjust_partial(skb, ptr, start, offset);
		return;
	}

3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793
	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
		__skb_checksum_complete(skb);
		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
	}

	delta = remcsum_adjust(ptr, skb->csum, start, offset);

	/* Adjust skb->csum since we changed the packet */
	skb->csum = csum_add(skb->csum, delta);
}

3794 3795 3796
static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
{
#if IS_ENABLED(CONFIG_NF_CONNTRACK)
3797
	return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
3798 3799 3800 3801 3802
#else
	return NULL;
#endif
}

3803
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3804
void nf_conntrack_destroy(struct nf_conntrack *nfct);
L
Linus Torvalds 已提交
3805 3806 3807
static inline void nf_conntrack_put(struct nf_conntrack *nfct)
{
	if (nfct && atomic_dec_and_test(&nfct->use))
3808
		nf_conntrack_destroy(nfct);
L
Linus Torvalds 已提交
3809 3810 3811 3812 3813 3814
}
static inline void nf_conntrack_get(struct nf_conntrack *nfct)
{
	if (nfct)
		atomic_inc(&nfct->use);
}
3815
#endif
3816
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
L
Linus Torvalds 已提交
3817 3818
static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
{
3819
	if (nf_bridge && refcount_dec_and_test(&nf_bridge->use))
L
Linus Torvalds 已提交
3820 3821 3822 3823 3824
		kfree(nf_bridge);
}
static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
{
	if (nf_bridge)
3825
		refcount_inc(&nf_bridge->use);
L
Linus Torvalds 已提交
3826 3827
}
#endif /* CONFIG_BRIDGE_NETFILTER */
3828 3829
static inline void nf_reset(struct sk_buff *skb)
{
3830
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3831 3832
	nf_conntrack_put(skb_nfct(skb));
	skb->_nfct = 0;
3833
#endif
3834
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3835 3836 3837 3838 3839
	nf_bridge_put(skb->nf_bridge);
	skb->nf_bridge = NULL;
#endif
}

3840 3841
static inline void nf_reset_trace(struct sk_buff *skb)
{
3842
#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
G
Gao feng 已提交
3843 3844
	skb->nf_trace = 0;
#endif
3845 3846
}

3847 3848 3849 3850 3851 3852 3853
static inline void ipvs_reset(struct sk_buff *skb)
{
#if IS_ENABLED(CONFIG_IP_VS)
	skb->ipvs_property = 0;
#endif
}

3854
/* Note: This doesn't put any conntrack and bridge info in dst. */
3855 3856
static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
			     bool copy)
3857
{
3858
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3859 3860
	dst->_nfct = src->_nfct;
	nf_conntrack_get(skb_nfct(src));
3861
#endif
3862
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3863 3864 3865
	dst->nf_bridge  = src->nf_bridge;
	nf_bridge_get(src->nf_bridge);
#endif
3866
#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3867 3868
	if (copy)
		dst->nf_trace = src->nf_trace;
3869
#endif
3870 3871
}

3872 3873 3874
static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
{
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3875
	nf_conntrack_put(skb_nfct(dst));
3876
#endif
3877
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3878 3879
	nf_bridge_put(dst->nf_bridge);
#endif
3880
	__nf_copy(dst, src, true);
3881 3882
}

3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
#ifdef CONFIG_NETWORK_SECMARK
static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
{
	to->secmark = from->secmark;
}

static inline void skb_init_secmark(struct sk_buff *skb)
{
	skb->secmark = 0;
}
#else
static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
{ }

static inline void skb_init_secmark(struct sk_buff *skb)
{ }
#endif

3901 3902 3903 3904 3905 3906
static inline bool skb_irq_freeable(const struct sk_buff *skb)
{
	return !skb->destructor &&
#if IS_ENABLED(CONFIG_XFRM)
		!skb->sp &&
#endif
3907
		!skb_nfct(skb) &&
3908 3909 3910 3911
		!skb->_skb_refdst &&
		!skb_has_frag_list(skb);
}

3912 3913 3914 3915 3916
static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
{
	skb->queue_mapping = queue_mapping;
}

3917
static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3918 3919 3920 3921
{
	return skb->queue_mapping;
}

3922 3923 3924 3925 3926
static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
{
	to->queue_mapping = from->queue_mapping;
}

3927 3928 3929 3930 3931
static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
{
	skb->queue_mapping = rx_queue + 1;
}

3932
static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3933 3934 3935 3936
{
	return skb->queue_mapping - 1;
}

3937
static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3938
{
E
Eric Dumazet 已提交
3939
	return skb->queue_mapping != 0;
3940 3941
}

3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
{
	skb->dst_pending_confirm = val;
}

static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
{
	return skb->dst_pending_confirm != 0;
}

3952 3953
static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
{
3954
#ifdef CONFIG_XFRM
3955 3956 3957 3958
	return skb->sp;
#else
	return NULL;
#endif
3959
}
3960

3961 3962 3963
/* Keeps track of mac header offset relative to skb->head.
 * It is useful for TSO of Tunneling protocol. e.g. GRE.
 * For non-tunnel skb it points to skb_mac_header() and for
3964 3965 3966
 * tunnel skb it points to outer mac header.
 * Keeps track of level of encapsulation of network headers.
 */
3967
struct skb_gso_cb {
3968 3969 3970 3971
	union {
		int	mac_offset;
		int	data_offset;
	};
3972
	int	encap_level;
3973
	__wsum	csum;
3974
	__u16	csum_start;
3975
};
3976 3977
#define SKB_SGO_CB_OFFSET	32
#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
3978 3979 3980 3981 3982 3983 3984

static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
{
	return (skb_mac_header(inner_skb) - inner_skb->head) -
		SKB_GSO_CB(inner_skb)->mac_offset;
}

3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
{
	int new_headroom, headroom;
	int ret;

	headroom = skb_headroom(skb);
	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
	if (ret)
		return ret;

	new_headroom = skb_headroom(skb);
	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
	return 0;
}

4000 4001 4002 4003 4004 4005 4006 4007 4008 4009
static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
{
	/* Do not update partial checksums if remote checksum is enabled. */
	if (skb->remcsum_offload)
		return;

	SKB_GSO_CB(skb)->csum = res;
	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
}

4010 4011 4012 4013 4014 4015 4016 4017 4018 4019
/* Compute the checksum for a gso segment. First compute the checksum value
 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
 * then add in skb->csum (checksum from csum_start to end of packet).
 * skb->csum and csum_start are then updated to reflect the checksum of the
 * resultant packet starting from the transport header-- the resultant checksum
 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
 * header.
 */
static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
{
4020 4021 4022
	unsigned char *csum_start = skb_transport_header(skb);
	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
	__wsum partial = SKB_GSO_CB(skb)->csum;
4023

4024 4025
	SKB_GSO_CB(skb)->csum = res;
	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4026

4027
	return csum_fold(csum_partial(csum_start, plen, partial));
4028 4029
}

4030
static inline bool skb_is_gso(const struct sk_buff *skb)
H
Herbert Xu 已提交
4031 4032 4033 4034
{
	return skb_shinfo(skb)->gso_size;
}

4035
/* Note: Should be called only if skb_is_gso(skb) is true */
4036
static inline bool skb_is_gso_v6(const struct sk_buff *skb)
B
Brice Goglin 已提交
4037 4038 4039 4040
{
	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
}

4041 4042 4043 4044 4045 4046 4047
static inline void skb_gso_reset(struct sk_buff *skb)
{
	skb_shinfo(skb)->gso_size = 0;
	skb_shinfo(skb)->gso_segs = 0;
	skb_shinfo(skb)->gso_type = 0;
}

4048
void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4049 4050 4051 4052 4053

static inline bool skb_warn_if_lro(const struct sk_buff *skb)
{
	/* LRO sets gso_size but not gso_type, whereas if GSO is really
	 * wanted then gso_type will be set. */
4054 4055
	const struct skb_shared_info *shinfo = skb_shinfo(skb);

4056 4057
	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
	    unlikely(shinfo->gso_type == 0)) {
4058 4059 4060 4061 4062 4063
		__skb_warn_lro_forwarding(skb);
		return true;
	}
	return false;
}

4064 4065 4066 4067 4068 4069 4070
static inline void skb_forward_csum(struct sk_buff *skb)
{
	/* Unfortunately we don't support this one.  Any brave souls? */
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		skb->ip_summed = CHECKSUM_NONE;
}

4071 4072 4073 4074 4075 4076 4077 4078
/**
 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
 * @skb: skb to check
 *
 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
 * use this helper, to document places where we make this assertion.
 */
4079
static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4080 4081 4082 4083 4084 4085
{
#ifdef DEBUG
	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
#endif
}

4086
bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4087

P
Paul Durrant 已提交
4088
int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4089 4090 4091
struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
				     unsigned int transport_len,
				     __sum16(*skb_chkf)(struct sk_buff *skb));
P
Paul Durrant 已提交
4092

4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105
/**
 * skb_head_is_locked - Determine if the skb->head is locked down
 * @skb: skb to check
 *
 * The head on skbs build around a head frag can be removed if they are
 * not cloned.  This function returns true if the skb head is locked down
 * due to either being allocated via kmalloc, or by being a clone with
 * multiple references to the head.
 */
static inline bool skb_head_is_locked(const struct sk_buff *skb)
{
	return !skb->head_frag || skb_cloned(skb);
}
4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122

/**
 * skb_gso_network_seglen - Return length of individual segments of a gso packet
 *
 * @skb: GSO skb
 *
 * skb_gso_network_seglen is used to determine the real size of the
 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
 *
 * The MAC/L2 header is not accounted for.
 */
static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
{
	unsigned int hdr_len = skb_transport_header(skb) -
			       skb_network_header(skb);
	return hdr_len + skb_gso_transport_seglen(skb);
}
T
Thomas Graf 已提交
4123

4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138
/**
 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
 *
 * @skb: GSO skb
 *
 * skb_gso_mac_seglen is used to determine the real size of the
 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
 * headers (TCP/UDP).
 */
static inline unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
{
	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
	return hdr_len + skb_gso_transport_seglen(skb);
}

4139 4140 4141
/* Local Checksum Offload.
 * Compute outer checksum based on the assumption that the
 * inner checksum will be offloaded later.
4142 4143
 * See Documentation/networking/checksum-offloads.txt for
 * explanation of how this works.
4144 4145 4146 4147 4148 4149
 * Fill in outer checksum adjustment (e.g. with sum of outer
 * pseudo-header) before calling.
 * Also ensure that inner checksum is in linear data area.
 */
static inline __wsum lco_csum(struct sk_buff *skb)
{
4150 4151 4152
	unsigned char *csum_start = skb_checksum_start(skb);
	unsigned char *l4_hdr = skb_transport_header(skb);
	__wsum partial;
4153 4154

	/* Start with complement of inner checksum adjustment */
4155 4156 4157
	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
						    skb->csum_offset));

4158
	/* Add in checksum of our headers (incl. outer checksum
4159
	 * adjustment filled in by caller) and return result.
4160
	 */
4161
	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4162 4163
}

L
Linus Torvalds 已提交
4164 4165
#endif	/* __KERNEL__ */
#endif	/* _LINUX_SKBUFF_H */