skbuff.h 94.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 *	Definitions for the 'struct sk_buff' memory handlers.
 *
 *	Authors:
 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 *		Florian La Roche, <rzsfl@rz.uni-sb.de>
 *
 *	This program is free software; you can redistribute it and/or
 *	modify it under the terms of the GNU General Public License
 *	as published by the Free Software Foundation; either version
 *	2 of the License, or (at your option) any later version.
 */

#ifndef _LINUX_SKBUFF_H
#define _LINUX_SKBUFF_H

#include <linux/kernel.h>
18
#include <linux/kmemcheck.h>
L
Linus Torvalds 已提交
19 20
#include <linux/compiler.h>
#include <linux/time.h>
21
#include <linux/bug.h>
L
Linus Torvalds 已提交
22
#include <linux/cache.h>
E
Eric Dumazet 已提交
23
#include <linux/rbtree.h>
24
#include <linux/socket.h>
L
Linus Torvalds 已提交
25

A
Arun Sharma 已提交
26
#include <linux/atomic.h>
L
Linus Torvalds 已提交
27 28 29
#include <asm/types.h>
#include <linux/spinlock.h>
#include <linux/net.h>
30
#include <linux/textsearch.h>
L
Linus Torvalds 已提交
31
#include <net/checksum.h>
32
#include <linux/rcupdate.h>
33
#include <linux/hrtimer.h>
34
#include <linux/dma-mapping.h>
35
#include <linux/netdev_features.h>
36
#include <linux/sched.h>
37
#include <net/flow_keys.h>
L
Linus Torvalds 已提交
38

39 40 41 42 43 44 45 46 47 48 49 50
/* A. Checksumming of received packets by device.
 *
 * CHECKSUM_NONE:
 *
 *   Device failed to checksum this packet e.g. due to lack of capabilities.
 *   The packet contains full (though not verified) checksum in packet but
 *   not in skb->csum. Thus, skb->csum is undefined in this case.
 *
 * CHECKSUM_UNNECESSARY:
 *
 *   The hardware you're dealing with doesn't calculate the full checksum
 *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
 *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
 *   if their checksums are okay. skb->csum is still undefined in this case
 *   though. It is a bad option, but, unfortunately, nowadays most vendors do
 *   this. Apparently with the secret goal to sell you new devices, when you
 *   will add new protocol to your host, f.e. IPv6 8)
 *
 *   CHECKSUM_UNNECESSARY is applicable to following protocols:
 *     TCP: IPv6 and IPv4.
 *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
 *       zero UDP checksum for either IPv4 or IPv6, the networking stack
 *       may perform further validation in this case.
 *     GRE: only if the checksum is present in the header.
 *     SCTP: indicates the CRC in SCTP header has been validated.
 *
 *   skb->csum_level indicates the number of consecutive checksums found in
 *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
 *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
 *   and a device is able to verify the checksums for UDP (possibly zero),
 *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
 *   two. If the device were only able to verify the UDP checksum and not
 *   GRE, either because it doesn't support GRE checksum of because GRE
 *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
 *   not considered in this case).
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
 *
 * CHECKSUM_COMPLETE:
 *
 *   This is the most generic way. The device supplied checksum of the _whole_
 *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
 *   hardware doesn't need to parse L3/L4 headers to implement this.
 *
 *   Note: Even if device supports only some protocols, but is able to produce
 *   skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
 *
 * CHECKSUM_PARTIAL:
 *
 *   This is identical to the case for output below. This may occur on a packet
 *   received directly from another Linux OS, e.g., a virtualized Linux kernel
 *   on the same host. The packet can be treated in the same way as
 *   CHECKSUM_UNNECESSARY, except that on output (i.e., forwarding) the
 *   checksum must be filled in by the OS or the hardware.
 *
 * B. Checksumming on output.
 *
 * CHECKSUM_NONE:
 *
 *   The skb was already checksummed by the protocol, or a checksum is not
 *   required.
 *
 * CHECKSUM_PARTIAL:
 *
 *   The device is required to checksum the packet as seen by hard_start_xmit()
 *   from skb->csum_start up to the end, and to record/write the checksum at
 *   offset skb->csum_start + skb->csum_offset.
 *
 *   The device must show its capabilities in dev->features, set up at device
 *   setup time, e.g. netdev_features.h:
 *
 *	NETIF_F_HW_CSUM	- It's a clever device, it's able to checksum everything.
 *	NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over
 *			  IPv4. Sigh. Vendors like this way for an unknown reason.
 *			  Though, see comment above about CHECKSUM_UNNECESSARY. 8)
 *	NETIF_F_IPV6_CSUM - About as dumb as the last one but does IPv6 instead.
 *	NETIF_F_...     - Well, you get the picture.
 *
 * CHECKSUM_UNNECESSARY:
 *
 *   Normally, the device will do per protocol specific checksumming. Protocol
 *   implementations that do not want the NIC to perform the checksum
 *   calculation should use this flag in their outgoing skbs.
 *
 *	NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC
 *			   offload. Correspondingly, the FCoE protocol driver
 *			   stack should use CHECKSUM_UNNECESSARY.
 *
 * Any questions? No questions, good.		--ANK
 */

128
/* Don't change this without changing skb_csum_unnecessary! */
129 130 131 132
#define CHECKSUM_NONE		0
#define CHECKSUM_UNNECESSARY	1
#define CHECKSUM_COMPLETE	2
#define CHECKSUM_PARTIAL	3
L
Linus Torvalds 已提交
133

134 135 136
/* Maximum value in skb->csum_level */
#define SKB_MAX_CSUM_LEVEL	3

137
#define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
138
#define SKB_WITH_OVERHEAD(X)	\
139
	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
140 141
#define SKB_MAX_ORDER(X, ORDER) \
	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
L
Linus Torvalds 已提交
142 143 144
#define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
#define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))

E
Eric Dumazet 已提交
145 146 147 148 149
/* return minimum truesize of one skb containing X bytes of data */
#define SKB_TRUESIZE(X) ((X) +						\
			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))

L
Linus Torvalds 已提交
150
struct net_device;
151
struct scatterlist;
J
Jens Axboe 已提交
152
struct pipe_inode_info;
H
Herbert Xu 已提交
153
struct iov_iter;
L
Linus Torvalds 已提交
154

155
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
L
Linus Torvalds 已提交
156 157 158
struct nf_conntrack {
	atomic_t use;
};
159
#endif
L
Linus Torvalds 已提交
160

161
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
L
Linus Torvalds 已提交
162
struct nf_bridge_info {
163 164 165 166 167
	atomic_t		use;
	unsigned int		mask;
	struct net_device	*physindev;
	struct net_device	*physoutdev;
	unsigned long		data[32 / sizeof(unsigned long)];
L
Linus Torvalds 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181
};
#endif

struct sk_buff_head {
	/* These two members must be first. */
	struct sk_buff	*next;
	struct sk_buff	*prev;

	__u32		qlen;
	spinlock_t	lock;
};

struct sk_buff;

182 183 184 185 186 187
/* To allow 64K frame to be packed as single skb without frag_list we
 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
 * buffers which do not start on a page boundary.
 *
 * Since GRO uses frags we allocate at least 16 regardless of page
 * size.
188
 */
189
#if (65536/PAGE_SIZE + 1) < 16
190
#define MAX_SKB_FRAGS 16UL
191
#else
192
#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
193
#endif
L
Linus Torvalds 已提交
194 195 196 197

typedef struct skb_frag_struct skb_frag_t;

struct skb_frag_struct {
198 199 200
	struct {
		struct page *p;
	} page;
201
#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
202 203
	__u32 page_offset;
	__u32 size;
204 205 206 207
#else
	__u16 page_offset;
	__u16 size;
#endif
L
Linus Torvalds 已提交
208 209
};

E
Eric Dumazet 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
static inline unsigned int skb_frag_size(const skb_frag_t *frag)
{
	return frag->size;
}

static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
{
	frag->size = size;
}

static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
{
	frag->size += delta;
}

static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
{
	frag->size -= delta;
}

230 231 232
#define HAVE_HW_TIME_STAMP

/**
233
 * struct skb_shared_hwtstamps - hardware time stamps
234 235 236 237
 * @hwtstamp:	hardware time stamp transformed into duration
 *		since arbitrary point in time
 *
 * Software time stamps generated by ktime_get_real() are stored in
238
 * skb->tstamp.
239 240 241 242 243 244 245 246 247 248 249
 *
 * hwtstamps can only be compared against other hwtstamps from
 * the same device.
 *
 * This structure is attached to packets as part of the
 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
 */
struct skb_shared_hwtstamps {
	ktime_t	hwtstamp;
};

250 251 252 253 254
/* Definitions for tx_flags in struct skb_shared_info */
enum {
	/* generate hardware time stamp */
	SKBTX_HW_TSTAMP = 1 << 0,

255
	/* generate software time stamp when queueing packet to NIC */
256 257 258 259 260
	SKBTX_SW_TSTAMP = 1 << 1,

	/* device driver is going to provide hardware time stamp */
	SKBTX_IN_PROGRESS = 1 << 2,

261
	/* device driver supports TX zero-copy buffers */
E
Eric Dumazet 已提交
262
	SKBTX_DEV_ZEROCOPY = 1 << 3,
263 264

	/* generate wifi status information (where possible) */
E
Eric Dumazet 已提交
265
	SKBTX_WIFI_STATUS = 1 << 4,
266 267 268 269 270 271 272

	/* This indicates at least one fragment might be overwritten
	 * (as in vmsplice(), sendfile() ...)
	 * If we need to compute a TX checksum, we'll need to copy
	 * all frags to avoid possible bad checksum
	 */
	SKBTX_SHARED_FRAG = 1 << 5,
273 274 275

	/* generate software time stamp when entering packet scheduling */
	SKBTX_SCHED_TSTAMP = 1 << 6,
276 277 278

	/* generate software timestamp on peer data acknowledgment */
	SKBTX_ACK_TSTAMP = 1 << 7,
279 280
};

281 282 283
#define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
				 SKBTX_SCHED_TSTAMP | \
				 SKBTX_ACK_TSTAMP)
284 285
#define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)

286 287 288
/*
 * The callback notifies userspace to release buffers when skb DMA is done in
 * lower device, the skb last reference should be 0 when calling this.
289 290
 * The zerocopy_success argument is true if zero copy transmit occurred,
 * false on data copy or out of memory error caused by data copy attempt.
291 292
 * The ctx field is used to track device context.
 * The desc field is used to track userspace buffer index.
293 294
 */
struct ubuf_info {
295
	void (*callback)(struct ubuf_info *, bool zerocopy_success);
296
	void *ctx;
297
	unsigned long desc;
298 299
};

L
Linus Torvalds 已提交
300 301 302 303
/* This data is invariant across clones and lives at
 * the end of the header data, ie. at skb->end.
 */
struct skb_shared_info {
304 305
	unsigned char	nr_frags;
	__u8		tx_flags;
306 307 308 309
	unsigned short	gso_size;
	/* Warning: this field is not always filled in (UFO)! */
	unsigned short	gso_segs;
	unsigned short  gso_type;
L
Linus Torvalds 已提交
310
	struct sk_buff	*frag_list;
311
	struct skb_shared_hwtstamps hwtstamps;
312
	u32		tskey;
313
	__be32          ip6_frag_id;
E
Eric Dumazet 已提交
314 315 316 317 318 319

	/*
	 * Warning : all fields before dataref are cleared in __alloc_skb()
	 */
	atomic_t	dataref;

J
Johann Baudy 已提交
320 321 322
	/* Intermediate layers must ensure that destructor_arg
	 * remains valid until skb destructor */
	void *		destructor_arg;
323

324 325
	/* must be last field, see pskb_expand_head() */
	skb_frag_t	frags[MAX_SKB_FRAGS];
L
Linus Torvalds 已提交
326 327 328 329
};

/* We divide dataref into two halves.  The higher 16 bits hold references
 * to the payload part of skb->data.  The lower 16 bits hold references to
330 331
 * the entire skb->data.  A clone of a headerless skb holds the length of
 * the header in skb->hdr_len.
L
Linus Torvalds 已提交
332 333 334 335 336 337 338 339 340 341
 *
 * All users must obey the rule that the skb->data reference count must be
 * greater than or equal to the payload reference count.
 *
 * Holding a reference to the payload part means that the user does not
 * care about modifications to the header part of skb->data.
 */
#define SKB_DATAREF_SHIFT 16
#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)

342 343

enum {
344 345 346
	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
347 348
};

349 350
enum {
	SKB_GSO_TCPV4 = 1 << 0,
H
Herbert Xu 已提交
351
	SKB_GSO_UDP = 1 << 1,
352 353 354

	/* This indicates the skb is from an untrusted source. */
	SKB_GSO_DODGY = 1 << 2,
M
Michael Chan 已提交
355 356

	/* This indicates the tcp segment has CWR set. */
H
Herbert Xu 已提交
357 358 359
	SKB_GSO_TCP_ECN = 1 << 3,

	SKB_GSO_TCPV6 = 1 << 4,
360 361

	SKB_GSO_FCOE = 1 << 5,
362 363

	SKB_GSO_GRE = 1 << 6,
364

365
	SKB_GSO_GRE_CSUM = 1 << 7,
S
Simon Horman 已提交
366

367
	SKB_GSO_IPIP = 1 << 8,
E
Eric Dumazet 已提交
368

369
	SKB_GSO_SIT = 1 << 9,
E
Eric Dumazet 已提交
370

371
	SKB_GSO_UDP_TUNNEL = 1 << 10,
372 373

	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
T
Tom Herbert 已提交
374

P
Pravin B Shelar 已提交
375
	SKB_GSO_TUNNEL_REMCSUM = 1 << 12,
376 377
};

378 379 380 381 382 383 384 385 386 387
#if BITS_PER_LONG > 32
#define NET_SKBUFF_DATA_USES_OFFSET 1
#endif

#ifdef NET_SKBUFF_DATA_USES_OFFSET
typedef unsigned int sk_buff_data_t;
#else
typedef unsigned char *sk_buff_data_t;
#endif

388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
/**
 * struct skb_mstamp - multi resolution time stamps
 * @stamp_us: timestamp in us resolution
 * @stamp_jiffies: timestamp in jiffies
 */
struct skb_mstamp {
	union {
		u64		v64;
		struct {
			u32	stamp_us;
			u32	stamp_jiffies;
		};
	};
};

/**
 * skb_mstamp_get - get current timestamp
 * @cl: place to store timestamps
 */
static inline void skb_mstamp_get(struct skb_mstamp *cl)
{
	u64 val = local_clock();

	do_div(val, NSEC_PER_USEC);
	cl->stamp_us = (u32)val;
	cl->stamp_jiffies = (u32)jiffies;
}

/**
 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
 * @t1: pointer to newest sample
 * @t0: pointer to oldest sample
 */
static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
				      const struct skb_mstamp *t0)
{
	s32 delta_us = t1->stamp_us - t0->stamp_us;
	u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;

	/* If delta_us is negative, this might be because interval is too big,
	 * or local_clock() drift is too big : fallback using jiffies.
	 */
	if (delta_us <= 0 ||
	    delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))

		delta_us = jiffies_to_usecs(delta_jiffies);

	return delta_us;
}


L
Linus Torvalds 已提交
439 440 441 442
/** 
 *	struct sk_buff - socket buffer
 *	@next: Next buffer in list
 *	@prev: Previous buffer in list
443
 *	@tstamp: Time we arrived/left
E
Eric Dumazet 已提交
444
 *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
445
 *	@sk: Socket we are owned by
L
Linus Torvalds 已提交
446
 *	@dev: Device we arrived on/are leaving by
447
 *	@cb: Control buffer. Free for use by every layer. Put private vars here
E
Eric Dumazet 已提交
448
 *	@_skb_refdst: destination entry (with norefcount bit)
449
 *	@sp: the security path, used for xfrm
L
Linus Torvalds 已提交
450 451 452
 *	@len: Length of actual data
 *	@data_len: Data length
 *	@mac_len: Length of link layer header
453
 *	@hdr_len: writable header length of cloned skb
454 455 456
 *	@csum: Checksum (must include start/offset pair)
 *	@csum_start: Offset from skb->head where checksumming should start
 *	@csum_offset: Offset from csum_start where checksum should be stored
457
 *	@priority: Packet queueing priority
W
WANG Cong 已提交
458
 *	@ignore_df: allow local fragmentation
L
Linus Torvalds 已提交
459
 *	@cloned: Head may be cloned (check refcnt to be sure)
460
 *	@ip_summed: Driver fed us an IP checksum
L
Linus Torvalds 已提交
461
 *	@nohdr: Payload reference only, must not modify header
462
 *	@nfctinfo: Relationship of this skb to the connection
L
Linus Torvalds 已提交
463
 *	@pkt_type: Packet class
464 465
 *	@fclone: skbuff clone status
 *	@ipvs_property: skbuff is owned by ipvs
466 467
 *	@peeked: this packet has been seen already, so stats have been
 *		done for it, don't do them again
468
 *	@nf_trace: netfilter packet trace flag
469 470 471
 *	@protocol: Packet protocol from driver
 *	@destructor: Destruct function
 *	@nfct: Associated connection, if any
L
Linus Torvalds 已提交
472
 *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
473
 *	@skb_iif: ifindex of device we arrived on
L
Linus Torvalds 已提交
474 475
 *	@tc_index: Traffic control index
 *	@tc_verd: traffic control verdict
476
 *	@hash: the packet hash
477
 *	@queue_mapping: Queue mapping for multiqueue devices
478
 *	@xmit_more: More SKBs are pending for this queue
479
 *	@ndisc_nodetype: router type (from link layer)
480
 *	@ooo_okay: allow the mapping of a socket to a queue to be changed
481
 *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
482
 *		ports.
483
 *	@sw_hash: indicates hash was computed in software stack
484 485
 *	@wifi_acked_valid: wifi_acked was set
 *	@wifi_acked: whether frame was acked on wifi or not
486
 *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
E
Eliezer Tamir 已提交
487
  *	@napi_id: id of the NAPI struct this skb came from
488
 *	@secmark: security marking
489 490
 *	@mark: Generic packet mark
 *	@dropcount: total number of sk_receive_queue overflows
491
 *	@vlan_proto: vlan encapsulation protocol
492
 *	@vlan_tci: vlan tag control information
S
Simon Horman 已提交
493
 *	@inner_protocol: Protocol (encapsulation)
494 495
 *	@inner_transport_header: Inner transport layer header (encapsulation)
 *	@inner_network_header: Network layer header (encapsulation)
496
 *	@inner_mac_header: Link layer header (encapsulation)
497 498 499 500 501 502 503 504 505
 *	@transport_header: Transport layer header
 *	@network_header: Network layer header
 *	@mac_header: Link layer header
 *	@tail: Tail pointer
 *	@end: End pointer
 *	@head: Head of buffer
 *	@data: Data head pointer
 *	@truesize: Buffer size
 *	@users: User count - see {datagram,tcp}.c
L
Linus Torvalds 已提交
506 507 508
 */

struct sk_buff {
509
	union {
E
Eric Dumazet 已提交
510 511 512 513 514 515 516 517 518 519 520
		struct {
			/* These two members must be first. */
			struct sk_buff		*next;
			struct sk_buff		*prev;

			union {
				ktime_t		tstamp;
				struct skb_mstamp skb_mstamp;
			};
		};
		struct rb_node	rbnode; /* used in netem & tcp stack */
521
	};
522
	struct sock		*sk;
L
Linus Torvalds 已提交
523 524 525 526 527 528 529 530
	struct net_device	*dev;

	/*
	 * This is the control buffer. It is free to use for every
	 * layer. Please put your private variables there. If you
	 * want to keep them across layers you have to do a skb_clone()
	 * first. This is owned by whoever has the skb queued ATM.
	 */
531
	char			cb[48] __aligned(8);
L
Linus Torvalds 已提交
532

E
Eric Dumazet 已提交
533
	unsigned long		_skb_refdst;
534
	void			(*destructor)(struct sk_buff *skb);
535 536
#ifdef CONFIG_XFRM
	struct	sec_path	*sp;
537 538 539 540
#endif
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
	struct nf_conntrack	*nfct;
#endif
541
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
542
	struct nf_bridge_info	*nf_bridge;
543
#endif
L
Linus Torvalds 已提交
544
	unsigned int		len,
545 546 547
				data_len;
	__u16			mac_len,
				hdr_len;
548 549 550 551

	/* Following fields are _not_ copied in __copy_skb_header()
	 * Note that queue_mapping is here mostly to fill a hole.
	 */
552
	kmemcheck_bitfield_begin(flags1);
553 554
	__u16			queue_mapping;
	__u8			cloned:1,
555
				nohdr:1,
556
				fclone:2,
557
				peeked:1,
558 559 560
				head_frag:1,
				xmit_more:1;
	/* one bit hole */
561
	kmemcheck_bitfield_end(flags1);
562

563 564 565
	/* fields enclosed in headers_start/headers_end are copied
	 * using a single memcpy() in __copy_skb_header()
	 */
566
	/* private: */
567
	__u32			headers_start[0];
568
	/* public: */
569

570 571 572 573 574
/* if you move pkt_type around you also must adapt those constants */
#ifdef __BIG_ENDIAN_BITFIELD
#define PKT_TYPE_MAX	(7 << 5)
#else
#define PKT_TYPE_MAX	7
L
Linus Torvalds 已提交
575
#endif
576
#define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
577

578
	__u8			__pkt_type_offset[0];
579
	__u8			pkt_type:3;
580
	__u8			pfmemalloc:1;
581 582 583 584 585
	__u8			ignore_df:1;
	__u8			nfctinfo:3;

	__u8			nf_trace:1;
	__u8			ip_summed:2;
586
	__u8			ooo_okay:1;
587
	__u8			l4_hash:1;
588
	__u8			sw_hash:1;
589 590
	__u8			wifi_acked_valid:1;
	__u8			wifi_acked:1;
591

592
	__u8			no_fcs:1;
593
	/* Indicates the inner headers are valid in the skbuff. */
594
	__u8			encapsulation:1;
595
	__u8			encap_hdr_csum:1;
596
	__u8			csum_valid:1;
597
	__u8			csum_complete_sw:1;
598 599
	__u8			csum_level:2;
	__u8			csum_bad:1;
600

601 602 603 604
#ifdef CONFIG_IPV6_NDISC_NODETYPE
	__u8			ndisc_nodetype:2;
#endif
	__u8			ipvs_property:1;
T
Tom Herbert 已提交
605
	__u8			inner_protocol_type:1;
606 607
	__u8			remcsum_offload:1;
	/* 3 or 5 bit hole */
608 609 610 611 612 613 614

#ifdef CONFIG_NET_SCHED
	__u16			tc_index;	/* traffic control index */
#ifdef CONFIG_NET_CLS_ACT
	__u16			tc_verd;	/* traffic control verdict */
#endif
#endif
615

616 617 618 619 620 621 622 623 624 625 626 627
	union {
		__wsum		csum;
		struct {
			__u16	csum_start;
			__u16	csum_offset;
		};
	};
	__u32			priority;
	int			skb_iif;
	__u32			hash;
	__be16			vlan_proto;
	__u16			vlan_tci;
D
Dan Williams 已提交
628 629
#ifdef CONFIG_NET_RX_BUSY_POLL
	unsigned int	napi_id;
630
#endif
631 632 633
#ifdef CONFIG_NETWORK_SECMARK
	__u32			secmark;
#endif
634 635 636
	union {
		__u32		mark;
		__u32		dropcount;
E
Eric Dumazet 已提交
637
		__u32		reserved_tailroom;
638
	};
L
Linus Torvalds 已提交
639

T
Tom Herbert 已提交
640 641 642 643 644
	union {
		__be16		inner_protocol;
		__u8		inner_ipproto;
	};

645 646 647
	__u16			inner_transport_header;
	__u16			inner_network_header;
	__u16			inner_mac_header;
648 649

	__be16			protocol;
650 651 652
	__u16			transport_header;
	__u16			network_header;
	__u16			mac_header;
653

654
	/* private: */
655
	__u32			headers_end[0];
656
	/* public: */
657

L
Linus Torvalds 已提交
658
	/* These elements must be at the end, see alloc_skb() for details.  */
659
	sk_buff_data_t		tail;
660
	sk_buff_data_t		end;
L
Linus Torvalds 已提交
661
	unsigned char		*head,
662
				*data;
663 664
	unsigned int		truesize;
	atomic_t		users;
L
Linus Torvalds 已提交
665 666 667 668 669 670 671 672 673
};

#ifdef __KERNEL__
/*
 *	Handling routines are only of interest to the kernel
 */
#include <linux/slab.h>


674 675 676 677 678 679 680 681 682
#define SKB_ALLOC_FCLONE	0x01
#define SKB_ALLOC_RX		0x02

/* Returns true if the skb was allocated from PFMEMALLOC reserves */
static inline bool skb_pfmemalloc(const struct sk_buff *skb)
{
	return unlikely(skb->pfmemalloc);
}

E
Eric Dumazet 已提交
683 684 685 686 687 688 689 690 691 692 693 694 695
/*
 * skb might have a dst pointer attached, refcounted or not.
 * _skb_refdst low order bit is set if refcount was _not_ taken
 */
#define SKB_DST_NOREF	1UL
#define SKB_DST_PTRMASK	~(SKB_DST_NOREF)

/**
 * skb_dst - returns skb dst_entry
 * @skb: buffer
 *
 * Returns skb dst_entry, regardless of reference taken or not.
 */
E
Eric Dumazet 已提交
696 697
static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
{
E
Eric Dumazet 已提交
698 699 700 701 702 703 704
	/* If refdst was not refcounted, check we still are in a 
	 * rcu_read_lock section
	 */
	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
		!rcu_read_lock_held() &&
		!rcu_read_lock_bh_held());
	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
E
Eric Dumazet 已提交
705 706
}

E
Eric Dumazet 已提交
707 708 709 710 711 712 713 714
/**
 * skb_dst_set - sets skb dst
 * @skb: buffer
 * @dst: dst entry
 *
 * Sets skb dst, assuming a reference was taken on dst and should
 * be released by skb_dst_drop()
 */
E
Eric Dumazet 已提交
715 716
static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
{
E
Eric Dumazet 已提交
717 718 719
	skb->_skb_refdst = (unsigned long)dst;
}

720 721 722 723 724 725 726 727 728 729 730 731
/**
 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
 * @skb: buffer
 * @dst: dst entry
 *
 * Sets skb dst, assuming a reference was not taken on dst.
 * If dst entry is cached, we do not take reference and dst_release
 * will be avoided by refdst_drop. If dst entry is not cached, we take
 * reference, so that last dst_release can destroy the dst immediately.
 */
static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
{
732 733
	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
734
}
E
Eric Dumazet 已提交
735 736

/**
L
Lucas De Marchi 已提交
737
 * skb_dst_is_noref - Test if skb dst isn't refcounted
E
Eric Dumazet 已提交
738 739 740 741 742
 * @skb: buffer
 */
static inline bool skb_dst_is_noref(const struct sk_buff *skb)
{
	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
E
Eric Dumazet 已提交
743 744
}

E
Eric Dumazet 已提交
745 746
static inline struct rtable *skb_rtable(const struct sk_buff *skb)
{
E
Eric Dumazet 已提交
747
	return (struct rtable *)skb_dst(skb);
E
Eric Dumazet 已提交
748 749
}

750 751 752 753 754
void kfree_skb(struct sk_buff *skb);
void kfree_skb_list(struct sk_buff *segs);
void skb_tx_error(struct sk_buff *skb);
void consume_skb(struct sk_buff *skb);
void  __kfree_skb(struct sk_buff *skb);
755
extern struct kmem_cache *skbuff_head_cache;
E
Eric Dumazet 已提交
756

757 758 759
void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
		      bool *fragstolen, int *delta_truesize);
E
Eric Dumazet 已提交
760

761 762 763
struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
			    int node);
struct sk_buff *build_skb(void *data, unsigned int frag_size);
764
static inline struct sk_buff *alloc_skb(unsigned int size,
A
Al Viro 已提交
765
					gfp_t priority)
766
{
E
Eric Dumazet 已提交
767
	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
768 769
}

770 771 772 773 774 775
struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
				     unsigned long data_len,
				     int max_page_order,
				     int *errcode,
				     gfp_t gfp_mask);

776 777 778 779 780 781 782 783 784 785 786 787 788 789
/* Layout of fast clones : [skb1][skb2][fclone_ref] */
struct sk_buff_fclones {
	struct sk_buff	skb1;

	struct sk_buff	skb2;

	atomic_t	fclone_ref;
};

/**
 *	skb_fclone_busy - check if fclone is busy
 *	@skb: buffer
 *
 * Returns true is skb is a fast clone, and its clone is not freed.
790 791
 * Some drivers call skb_orphan() in their ndo_start_xmit(),
 * so we also check that this didnt happen.
792
 */
793 794
static inline bool skb_fclone_busy(const struct sock *sk,
				   const struct sk_buff *skb)
795 796 797 798 799 800
{
	const struct sk_buff_fclones *fclones;

	fclones = container_of(skb, struct sk_buff_fclones, skb1);

	return skb->fclone == SKB_FCLONE_ORIG &&
801
	       atomic_read(&fclones->fclone_ref) > 1 &&
802
	       fclones->skb2.sk == sk;
803 804
}

805
static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
A
Al Viro 已提交
806
					       gfp_t priority)
807
{
808
	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
809 810
}

811
struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
812 813 814 815 816
static inline struct sk_buff *alloc_skb_head(gfp_t priority)
{
	return __alloc_skb_head(priority, -1);
}

817 818 819 820
struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
821 822 823 824 825 826 827
struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
				   gfp_t gfp_mask, bool fclone);
static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
					  gfp_t gfp_mask)
{
	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
}
828 829 830 831 832 833

int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
				     unsigned int headroom);
struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
				int newtailroom, gfp_t priority);
834 835
int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
			int offset, int len);
836 837 838 839
int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
		 int len);
int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
int skb_pad(struct sk_buff *skb, int pad);
840
#define dev_kfree_skb(a)	consume_skb(a)
L
Linus Torvalds 已提交
841

842 843 844 845
int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
			    int getfrag(void *from, char *to, int offset,
					int len, int odd, struct sk_buff *skb),
			    void *from, int length);
846

E
Eric Dumazet 已提交
847
struct skb_seq_state {
848 849 850 851 852 853 854 855 856
	__u32		lower_offset;
	__u32		upper_offset;
	__u32		frag_idx;
	__u32		stepped_offset;
	struct sk_buff	*root_skb;
	struct sk_buff	*cur_skb;
	__u8		*frag_data;
};

857 858 859 860 861
void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
			  unsigned int to, struct skb_seq_state *st);
unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
			  struct skb_seq_state *st);
void skb_abort_seq_read(struct skb_seq_state *st);
862

863 864 865
unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
			   unsigned int to, struct ts_config *config,
			   struct ts_state *state);
866

T
Tom Herbert 已提交
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
/*
 * Packet hash types specify the type of hash in skb_set_hash.
 *
 * Hash types refer to the protocol layer addresses which are used to
 * construct a packet's hash. The hashes are used to differentiate or identify
 * flows of the protocol layer for the hash type. Hash types are either
 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
 *
 * Properties of hashes:
 *
 * 1) Two packets in different flows have different hash values
 * 2) Two packets in the same flow should have the same hash value
 *
 * A hash at a higher layer is considered to be more specific. A driver should
 * set the most specific hash possible.
 *
 * A driver cannot indicate a more specific hash than the layer at which a hash
 * was computed. For instance an L3 hash cannot be set as an L4 hash.
 *
 * A driver may indicate a hash level which is less specific than the
 * actual layer the hash was computed on. For instance, a hash computed
 * at L4 may be considered an L3 hash. This should only be done if the
 * driver can't unambiguously determine that the HW computed the hash at
 * the higher layer. Note that the "should" in the second property above
 * permits this.
 */
enum pkt_hash_types {
	PKT_HASH_TYPE_NONE,	/* Undefined type */
	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
};

static inline void
skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
{
903
	skb->l4_hash = (type == PKT_HASH_TYPE_L4);
904
	skb->sw_hash = 0;
905
	skb->hash = hash;
T
Tom Herbert 已提交
906 907
}

908 909
void __skb_get_hash(struct sk_buff *skb);
static inline __u32 skb_get_hash(struct sk_buff *skb)
910
{
911
	if (!skb->l4_hash && !skb->sw_hash)
912
		__skb_get_hash(skb);
913

914
	return skb->hash;
915 916
}

T
Tom Herbert 已提交
917 918
static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
{
919
	return skb->hash;
T
Tom Herbert 已提交
920 921
}

922 923
static inline void skb_clear_hash(struct sk_buff *skb)
{
924
	skb->hash = 0;
925
	skb->sw_hash = 0;
926
	skb->l4_hash = 0;
927 928 929 930
}

static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
{
931
	if (!skb->l4_hash)
932 933 934
		skb_clear_hash(skb);
}

935 936
static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
{
937
	to->hash = from->hash;
938
	to->sw_hash = from->sw_hash;
939
	to->l4_hash = from->l4_hash;
940 941
};

942 943 944 945 946
#ifdef NET_SKBUFF_DATA_USES_OFFSET
static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
{
	return skb->head + skb->end;
}
947 948 949 950 951

static inline unsigned int skb_end_offset(const struct sk_buff *skb)
{
	return skb->end;
}
952 953 954 955 956
#else
static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
{
	return skb->end;
}
957 958 959 960 961

static inline unsigned int skb_end_offset(const struct sk_buff *skb)
{
	return skb->end - skb->head;
}
962 963
#endif

L
Linus Torvalds 已提交
964
/* Internal */
965
#define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
L
Linus Torvalds 已提交
966

967 968 969 970 971
static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
{
	return &skb_shinfo(skb)->hwtstamps;
}

L
Linus Torvalds 已提交
972 973 974 975 976 977 978 979
/**
 *	skb_queue_empty - check if a queue is empty
 *	@list: queue head
 *
 *	Returns true if the queue is empty, false otherwise.
 */
static inline int skb_queue_empty(const struct sk_buff_head *list)
{
980
	return list->next == (const struct sk_buff *) list;
L
Linus Torvalds 已提交
981 982
}

D
David S. Miller 已提交
983 984 985 986 987 988 989 990 991 992
/**
 *	skb_queue_is_last - check if skb is the last entry in the queue
 *	@list: queue head
 *	@skb: buffer
 *
 *	Returns true if @skb is the last buffer on the list.
 */
static inline bool skb_queue_is_last(const struct sk_buff_head *list,
				     const struct sk_buff *skb)
{
993
	return skb->next == (const struct sk_buff *) list;
D
David S. Miller 已提交
994 995
}

996 997 998 999 1000 1001 1002 1003 1004 1005
/**
 *	skb_queue_is_first - check if skb is the first entry in the queue
 *	@list: queue head
 *	@skb: buffer
 *
 *	Returns true if @skb is the first buffer on the list.
 */
static inline bool skb_queue_is_first(const struct sk_buff_head *list,
				      const struct sk_buff *skb)
{
1006
	return skb->prev == (const struct sk_buff *) list;
1007 1008
}

D
David S. Miller 已提交
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
/**
 *	skb_queue_next - return the next packet in the queue
 *	@list: queue head
 *	@skb: current buffer
 *
 *	Return the next packet in @list after @skb.  It is only valid to
 *	call this if skb_queue_is_last() evaluates to false.
 */
static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
					     const struct sk_buff *skb)
{
	/* This BUG_ON may seem severe, but if we just return then we
	 * are going to dereference garbage.
	 */
	BUG_ON(skb_queue_is_last(list, skb));
	return skb->next;
}

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
/**
 *	skb_queue_prev - return the prev packet in the queue
 *	@list: queue head
 *	@skb: current buffer
 *
 *	Return the prev packet in @list before @skb.  It is only valid to
 *	call this if skb_queue_is_first() evaluates to false.
 */
static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
					     const struct sk_buff *skb)
{
	/* This BUG_ON may seem severe, but if we just return then we
	 * are going to dereference garbage.
	 */
	BUG_ON(skb_queue_is_first(list, skb));
	return skb->prev;
}

L
Linus Torvalds 已提交
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
/**
 *	skb_get - reference buffer
 *	@skb: buffer to reference
 *
 *	Makes another reference to a socket buffer and returns a pointer
 *	to the buffer.
 */
static inline struct sk_buff *skb_get(struct sk_buff *skb)
{
	atomic_inc(&skb->users);
	return skb;
}

/*
 * If users == 1, we are the only owner and are can avoid redundant
 * atomic change.
 */

/**
 *	skb_cloned - is the buffer a clone
 *	@skb: buffer to check
 *
 *	Returns true if the buffer was generated with skb_clone() and is
 *	one of multiple shared copies of the buffer. Cloned buffers are
 *	shared data so must not be written to under normal circumstances.
 */
static inline int skb_cloned(const struct sk_buff *skb)
{
	return skb->cloned &&
	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
}

1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
{
	might_sleep_if(pri & __GFP_WAIT);

	if (skb_cloned(skb))
		return pskb_expand_head(skb, 0, 0, pri);

	return 0;
}

L
Linus Torvalds 已提交
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
/**
 *	skb_header_cloned - is the header a clone
 *	@skb: buffer to check
 *
 *	Returns true if modifying the header part of the buffer requires
 *	the data to be copied.
 */
static inline int skb_header_cloned(const struct sk_buff *skb)
{
	int dataref;

	if (!skb->cloned)
		return 0;

	dataref = atomic_read(&skb_shinfo(skb)->dataref);
	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
	return dataref != 1;
}

/**
 *	skb_header_release - release reference to header
 *	@skb: buffer to operate on
 *
 *	Drop a reference to the header part of the buffer.  This is done
 *	by acquiring a payload reference.  You must not read from the header
 *	part of skb->data after this.
1113
 *	Note : Check if you can use __skb_header_release() instead.
L
Linus Torvalds 已提交
1114 1115 1116 1117 1118 1119 1120 1121
 */
static inline void skb_header_release(struct sk_buff *skb)
{
	BUG_ON(skb->nohdr);
	skb->nohdr = 1;
	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
}

1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
/**
 *	__skb_header_release - release reference to header
 *	@skb: buffer to operate on
 *
 *	Variant of skb_header_release() assuming skb is private to caller.
 *	We can avoid one atomic operation.
 */
static inline void __skb_header_release(struct sk_buff *skb)
{
	skb->nohdr = 1;
	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
}


L
Linus Torvalds 已提交
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
/**
 *	skb_shared - is the buffer shared
 *	@skb: buffer to check
 *
 *	Returns true if more than one person has a reference to this
 *	buffer.
 */
static inline int skb_shared(const struct sk_buff *skb)
{
	return atomic_read(&skb->users) != 1;
}

/**
 *	skb_share_check - check if buffer is shared and if so clone it
 *	@skb: buffer to check
 *	@pri: priority for memory allocation
 *
 *	If the buffer is shared the buffer is cloned and the old copy
 *	drops a reference. A new clone with a single reference is returned.
 *	If the buffer is not shared the original buffer is returned. When
 *	being called from interrupt status or with spinlocks held pri must
 *	be GFP_ATOMIC.
 *
 *	NULL is returned on a memory allocation failure.
 */
1161
static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
L
Linus Torvalds 已提交
1162 1163 1164 1165
{
	might_sleep_if(pri & __GFP_WAIT);
	if (skb_shared(skb)) {
		struct sk_buff *nskb = skb_clone(skb, pri);
1166 1167 1168 1169 1170

		if (likely(nskb))
			consume_skb(skb);
		else
			kfree_skb(skb);
L
Linus Torvalds 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
		skb = nskb;
	}
	return skb;
}

/*
 *	Copy shared buffers into a new sk_buff. We effectively do COW on
 *	packets to handle cases where we have a local reader and forward
 *	and a couple of other messy ones. The normal one is tcpdumping
 *	a packet thats being forwarded.
 */

/**
 *	skb_unshare - make a copy of a shared buffer
 *	@skb: buffer to check
 *	@pri: priority for memory allocation
 *
 *	If the socket buffer is a clone then this function creates a new
 *	copy of the data, drops a reference count on the old copy and returns
 *	the new copy with the reference count at 1. If the buffer is not a clone
 *	the original buffer is returned. When called with a spinlock held or
 *	from interrupt state @pri must be %GFP_ATOMIC
 *
 *	%NULL is returned on a memory allocation failure.
 */
1196
static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
A
Al Viro 已提交
1197
					  gfp_t pri)
L
Linus Torvalds 已提交
1198 1199 1200 1201
{
	might_sleep_if(pri & __GFP_WAIT);
	if (skb_cloned(skb)) {
		struct sk_buff *nskb = skb_copy(skb, pri);
1202 1203 1204 1205 1206 1207

		/* Free our shared copy */
		if (likely(nskb))
			consume_skb(skb);
		else
			kfree_skb(skb);
L
Linus Torvalds 已提交
1208 1209 1210 1211 1212 1213
		skb = nskb;
	}
	return skb;
}

/**
1214
 *	skb_peek - peek at the head of an &sk_buff_head
L
Linus Torvalds 已提交
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
 *	@list_: list to peek at
 *
 *	Peek an &sk_buff. Unlike most other operations you _MUST_
 *	be careful with this one. A peek leaves the buffer on the
 *	list and someone else may run off with it. You must hold
 *	the appropriate locks or have a private queue to do this.
 *
 *	Returns %NULL for an empty list or a pointer to the head element.
 *	The reference count is not incremented and the reference is therefore
 *	volatile. Use with caution.
 */
1226
static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
L
Linus Torvalds 已提交
1227
{
1228 1229 1230 1231 1232
	struct sk_buff *skb = list_->next;

	if (skb == (struct sk_buff *)list_)
		skb = NULL;
	return skb;
L
Linus Torvalds 已提交
1233 1234
}

P
Pavel Emelyanov 已提交
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
/**
 *	skb_peek_next - peek skb following the given one from a queue
 *	@skb: skb to start from
 *	@list_: list to peek at
 *
 *	Returns %NULL when the end of the list is met or a pointer to the
 *	next element. The reference count is not incremented and the
 *	reference is therefore volatile. Use with caution.
 */
static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
		const struct sk_buff_head *list_)
{
	struct sk_buff *next = skb->next;
1248

P
Pavel Emelyanov 已提交
1249 1250 1251 1252 1253
	if (next == (struct sk_buff *)list_)
		next = NULL;
	return next;
}

L
Linus Torvalds 已提交
1254
/**
1255
 *	skb_peek_tail - peek at the tail of an &sk_buff_head
L
Linus Torvalds 已提交
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
 *	@list_: list to peek at
 *
 *	Peek an &sk_buff. Unlike most other operations you _MUST_
 *	be careful with this one. A peek leaves the buffer on the
 *	list and someone else may run off with it. You must hold
 *	the appropriate locks or have a private queue to do this.
 *
 *	Returns %NULL for an empty list or a pointer to the tail element.
 *	The reference count is not incremented and the reference is therefore
 *	volatile. Use with caution.
 */
1267
static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
L
Linus Torvalds 已提交
1268
{
1269 1270 1271 1272 1273 1274
	struct sk_buff *skb = list_->prev;

	if (skb == (struct sk_buff *)list_)
		skb = NULL;
	return skb;

L
Linus Torvalds 已提交
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
}

/**
 *	skb_queue_len	- get queue length
 *	@list_: list to measure
 *
 *	Return the length of an &sk_buff queue.
 */
static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
{
	return list_->qlen;
}

1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
/**
 *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
 *	@list: queue to initialize
 *
 *	This initializes only the list and queue length aspects of
 *	an sk_buff_head object.  This allows to initialize the list
 *	aspects of an sk_buff_head without reinitializing things like
 *	the spinlock.  It can also be used for on-stack sk_buff_head
 *	objects where the spinlock is known to not be used.
 */
static inline void __skb_queue_head_init(struct sk_buff_head *list)
{
	list->prev = list->next = (struct sk_buff *)list;
	list->qlen = 0;
}

1304 1305 1306 1307 1308 1309 1310 1311
/*
 * This function creates a split out lock class for each invocation;
 * this is needed for now since a whole lot of users of the skb-queue
 * infrastructure in drivers have different locking usage (in hardirq)
 * than the networking core (in softirq only). In the long run either the
 * network layer or drivers should need annotation to consolidate the
 * main types of usage into 3 classes.
 */
L
Linus Torvalds 已提交
1312 1313 1314
static inline void skb_queue_head_init(struct sk_buff_head *list)
{
	spin_lock_init(&list->lock);
1315
	__skb_queue_head_init(list);
L
Linus Torvalds 已提交
1316 1317
}

1318 1319 1320 1321 1322 1323 1324
static inline void skb_queue_head_init_class(struct sk_buff_head *list,
		struct lock_class_key *class)
{
	skb_queue_head_init(list);
	lockdep_set_class(&list->lock, class);
}

L
Linus Torvalds 已提交
1325
/*
1326
 *	Insert an sk_buff on a list.
L
Linus Torvalds 已提交
1327 1328 1329 1330
 *
 *	The "__skb_xxxx()" functions are the non-atomic ones that
 *	can only be called with interrupts disabled.
 */
1331 1332
void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
		struct sk_buff_head *list);
1333 1334 1335 1336 1337 1338 1339 1340 1341
static inline void __skb_insert(struct sk_buff *newsk,
				struct sk_buff *prev, struct sk_buff *next,
				struct sk_buff_head *list)
{
	newsk->next = next;
	newsk->prev = prev;
	next->prev  = prev->next = newsk;
	list->qlen++;
}
L
Linus Torvalds 已提交
1342

1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
static inline void __skb_queue_splice(const struct sk_buff_head *list,
				      struct sk_buff *prev,
				      struct sk_buff *next)
{
	struct sk_buff *first = list->next;
	struct sk_buff *last = list->prev;

	first->prev = prev;
	prev->next = first;

	last->next = next;
	next->prev = last;
}

/**
 *	skb_queue_splice - join two skb lists, this is designed for stacks
 *	@list: the new list to add
 *	@head: the place to add it in the first list
 */
static inline void skb_queue_splice(const struct sk_buff_head *list,
				    struct sk_buff_head *head)
{
	if (!skb_queue_empty(list)) {
		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1367
		head->qlen += list->qlen;
1368 1369 1370 1371
	}
}

/**
E
Eric Dumazet 已提交
1372
 *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
 *	@list: the new list to add
 *	@head: the place to add it in the first list
 *
 *	The list at @list is reinitialised
 */
static inline void skb_queue_splice_init(struct sk_buff_head *list,
					 struct sk_buff_head *head)
{
	if (!skb_queue_empty(list)) {
		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1383
		head->qlen += list->qlen;
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
		__skb_queue_head_init(list);
	}
}

/**
 *	skb_queue_splice_tail - join two skb lists, each list being a queue
 *	@list: the new list to add
 *	@head: the place to add it in the first list
 */
static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
					 struct sk_buff_head *head)
{
	if (!skb_queue_empty(list)) {
		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1398
		head->qlen += list->qlen;
1399 1400 1401 1402
	}
}

/**
E
Eric Dumazet 已提交
1403
 *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
 *	@list: the new list to add
 *	@head: the place to add it in the first list
 *
 *	Each of the lists is a queue.
 *	The list at @list is reinitialised
 */
static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
					      struct sk_buff_head *head)
{
	if (!skb_queue_empty(list)) {
		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1415
		head->qlen += list->qlen;
1416 1417 1418 1419
		__skb_queue_head_init(list);
	}
}

L
Linus Torvalds 已提交
1420
/**
1421
 *	__skb_queue_after - queue a buffer at the list head
L
Linus Torvalds 已提交
1422
 *	@list: list to use
1423
 *	@prev: place after this buffer
L
Linus Torvalds 已提交
1424 1425
 *	@newsk: buffer to queue
 *
1426
 *	Queue a buffer int the middle of a list. This function takes no locks
L
Linus Torvalds 已提交
1427 1428 1429 1430
 *	and you must therefore hold required locks before calling it.
 *
 *	A buffer cannot be placed on two lists at the same time.
 */
1431 1432 1433
static inline void __skb_queue_after(struct sk_buff_head *list,
				     struct sk_buff *prev,
				     struct sk_buff *newsk)
L
Linus Torvalds 已提交
1434
{
1435
	__skb_insert(newsk, prev, prev->next, list);
L
Linus Torvalds 已提交
1436 1437
}

1438 1439
void skb_append(struct sk_buff *old, struct sk_buff *newsk,
		struct sk_buff_head *list);
1440

1441 1442 1443 1444 1445 1446 1447
static inline void __skb_queue_before(struct sk_buff_head *list,
				      struct sk_buff *next,
				      struct sk_buff *newsk)
{
	__skb_insert(newsk, next->prev, next, list);
}

1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
/**
 *	__skb_queue_head - queue a buffer at the list head
 *	@list: list to use
 *	@newsk: buffer to queue
 *
 *	Queue a buffer at the start of a list. This function takes no locks
 *	and you must therefore hold required locks before calling it.
 *
 *	A buffer cannot be placed on two lists at the same time.
 */
1458
void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1459 1460 1461 1462 1463 1464
static inline void __skb_queue_head(struct sk_buff_head *list,
				    struct sk_buff *newsk)
{
	__skb_queue_after(list, (struct sk_buff *)list, newsk);
}

L
Linus Torvalds 已提交
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
/**
 *	__skb_queue_tail - queue a buffer at the list tail
 *	@list: list to use
 *	@newsk: buffer to queue
 *
 *	Queue a buffer at the end of a list. This function takes no locks
 *	and you must therefore hold required locks before calling it.
 *
 *	A buffer cannot be placed on two lists at the same time.
 */
1475
void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
L
Linus Torvalds 已提交
1476 1477 1478
static inline void __skb_queue_tail(struct sk_buff_head *list,
				   struct sk_buff *newsk)
{
1479
	__skb_queue_before(list, (struct sk_buff *)list, newsk);
L
Linus Torvalds 已提交
1480 1481 1482 1483 1484 1485
}

/*
 * remove sk_buff from list. _Must_ be called atomically, and with
 * the list known..
 */
1486
void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
L
Linus Torvalds 已提交
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
{
	struct sk_buff *next, *prev;

	list->qlen--;
	next	   = skb->next;
	prev	   = skb->prev;
	skb->next  = skb->prev = NULL;
	next->prev = prev;
	prev->next = next;
}

1499 1500 1501 1502 1503 1504 1505 1506
/**
 *	__skb_dequeue - remove from the head of the queue
 *	@list: list to dequeue from
 *
 *	Remove the head of the list. This function does not take any locks
 *	so must be used with appropriate locks held only. The head item is
 *	returned or %NULL if the list is empty.
 */
1507
struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1508 1509 1510 1511 1512 1513 1514
static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
{
	struct sk_buff *skb = skb_peek(list);
	if (skb)
		__skb_unlink(skb, list);
	return skb;
}
L
Linus Torvalds 已提交
1515 1516 1517 1518 1519 1520 1521 1522 1523

/**
 *	__skb_dequeue_tail - remove from the tail of the queue
 *	@list: list to dequeue from
 *
 *	Remove the tail of the list. This function does not take any locks
 *	so must be used with appropriate locks held only. The tail item is
 *	returned or %NULL if the list is empty.
 */
1524
struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
L
Linus Torvalds 已提交
1525 1526 1527 1528 1529 1530 1531 1532 1533
static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
{
	struct sk_buff *skb = skb_peek_tail(list);
	if (skb)
		__skb_unlink(skb, list);
	return skb;
}


1534
static inline bool skb_is_nonlinear(const struct sk_buff *skb)
L
Linus Torvalds 已提交
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
{
	return skb->data_len;
}

static inline unsigned int skb_headlen(const struct sk_buff *skb)
{
	return skb->len - skb->data_len;
}

static inline int skb_pagelen(const struct sk_buff *skb)
{
	int i, len = 0;

	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
E
Eric Dumazet 已提交
1549
		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
L
Linus Torvalds 已提交
1550 1551 1552
	return len + skb_headlen(skb);
}

1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
/**
 * __skb_fill_page_desc - initialise a paged fragment in an skb
 * @skb: buffer containing fragment to be initialised
 * @i: paged fragment index to initialise
 * @page: the page to use for this fragment
 * @off: the offset to the data with @page
 * @size: the length of the data
 *
 * Initialises the @i'th fragment of @skb to point to &size bytes at
 * offset @off within @page.
 *
 * Does not take any additional reference on the fragment.
 */
static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
					struct page *page, int off, int size)
L
Linus Torvalds 已提交
1568 1569 1570
{
	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];

1571 1572 1573 1574 1575 1576 1577 1578 1579
	/*
	 * Propagate page->pfmemalloc to the skb if we can. The problem is
	 * that not all callers have unique ownership of the page. If
	 * pfmemalloc is set, we check the mapping as a mapping implies
	 * page->index is set (index and pfmemalloc share space).
	 * If it's a valid mapping, we cannot use page->pfmemalloc but we
	 * do not lose pfmemalloc information as the pages would not be
	 * allocated using __GFP_MEMALLOC.
	 */
1580
	frag->page.p		  = page;
L
Linus Torvalds 已提交
1581
	frag->page_offset	  = off;
E
Eric Dumazet 已提交
1582
	skb_frag_size_set(frag, size);
1583 1584 1585 1586

	page = compound_head(page);
	if (page->pfmemalloc && !page->mapping)
		skb->pfmemalloc	= true;
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
}

/**
 * skb_fill_page_desc - initialise a paged fragment in an skb
 * @skb: buffer containing fragment to be initialised
 * @i: paged fragment index to initialise
 * @page: the page to use for this fragment
 * @off: the offset to the data with @page
 * @size: the length of the data
 *
 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
M
Mathias Krause 已提交
1598
 * @skb to point to @size bytes at offset @off within @page. In
1599 1600 1601 1602 1603 1604 1605 1606
 * addition updates @skb such that @i is the last fragment.
 *
 * Does not take any additional reference on the fragment.
 */
static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
				      struct page *page, int off, int size)
{
	__skb_fill_page_desc(skb, i, page, off, size);
L
Linus Torvalds 已提交
1607 1608 1609
	skb_shinfo(skb)->nr_frags = i + 1;
}

1610 1611
void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
		     int size, unsigned int truesize);
P
Peter Zijlstra 已提交
1612

J
Jason Wang 已提交
1613 1614 1615
void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
			  unsigned int truesize);

L
Linus Torvalds 已提交
1616
#define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1617
#define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
L
Linus Torvalds 已提交
1618 1619
#define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))

1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
#ifdef NET_SKBUFF_DATA_USES_OFFSET
static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
{
	return skb->head + skb->tail;
}

static inline void skb_reset_tail_pointer(struct sk_buff *skb)
{
	skb->tail = skb->data - skb->head;
}

static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
{
	skb_reset_tail_pointer(skb);
	skb->tail += offset;
}
1636

1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
#else /* NET_SKBUFF_DATA_USES_OFFSET */
static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
{
	return skb->tail;
}

static inline void skb_reset_tail_pointer(struct sk_buff *skb)
{
	skb->tail = skb->data;
}

static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
{
	skb->tail = skb->data + offset;
}
1652

1653 1654
#endif /* NET_SKBUFF_DATA_USES_OFFSET */

L
Linus Torvalds 已提交
1655 1656 1657
/*
 *	Add data to an sk_buff
 */
M
Mathias Krause 已提交
1658
unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
1659
unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
L
Linus Torvalds 已提交
1660 1661
static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
{
1662
	unsigned char *tmp = skb_tail_pointer(skb);
L
Linus Torvalds 已提交
1663 1664 1665 1666 1667 1668
	SKB_LINEAR_ASSERT(skb);
	skb->tail += len;
	skb->len  += len;
	return tmp;
}

1669
unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
L
Linus Torvalds 已提交
1670 1671 1672 1673 1674 1675 1676
static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
{
	skb->data -= len;
	skb->len  += len;
	return skb->data;
}

1677
unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
L
Linus Torvalds 已提交
1678 1679 1680 1681 1682 1683 1684
static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
{
	skb->len -= len;
	BUG_ON(skb->len < skb->data_len);
	return skb->data += len;
}

1685 1686 1687 1688 1689
static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
{
	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
}

1690
unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
L
Linus Torvalds 已提交
1691 1692 1693 1694

static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
{
	if (len > skb_headlen(skb) &&
G
Gerrit Renker 已提交
1695
	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
L
Linus Torvalds 已提交
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
		return NULL;
	skb->len -= len;
	return skb->data += len;
}

static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
{
	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
}

static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
{
	if (likely(len <= skb_headlen(skb)))
		return 1;
	if (unlikely(len > skb->len))
		return 0;
G
Gerrit Renker 已提交
1712
	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
L
Linus Torvalds 已提交
1713 1714 1715 1716 1717 1718 1719 1720
}

/**
 *	skb_headroom - bytes at buffer head
 *	@skb: buffer to check
 *
 *	Return the number of bytes of free space at the head of an &sk_buff.
 */
1721
static inline unsigned int skb_headroom(const struct sk_buff *skb)
L
Linus Torvalds 已提交
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
{
	return skb->data - skb->head;
}

/**
 *	skb_tailroom - bytes at buffer end
 *	@skb: buffer to check
 *
 *	Return the number of bytes of free space at the tail of an sk_buff
 */
static inline int skb_tailroom(const struct sk_buff *skb)
{
1734
	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
L
Linus Torvalds 已提交
1735 1736
}

1737 1738 1739 1740 1741 1742 1743 1744 1745
/**
 *	skb_availroom - bytes at buffer end
 *	@skb: buffer to check
 *
 *	Return the number of bytes of free space at the tail of an sk_buff
 *	allocated by sk_stream_alloc()
 */
static inline int skb_availroom(const struct sk_buff *skb)
{
E
Eric Dumazet 已提交
1746 1747 1748 1749
	if (skb_is_nonlinear(skb))
		return 0;

	return skb->end - skb->tail - skb->reserved_tailroom;
1750 1751
}

L
Linus Torvalds 已提交
1752 1753 1754 1755 1756 1757 1758 1759
/**
 *	skb_reserve - adjust headroom
 *	@skb: buffer to alter
 *	@len: bytes to move
 *
 *	Increase the headroom of an empty &sk_buff by reducing the tail
 *	room. This is only allowed for an empty buffer.
 */
1760
static inline void skb_reserve(struct sk_buff *skb, int len)
L
Linus Torvalds 已提交
1761 1762 1763 1764 1765
{
	skb->data += len;
	skb->tail += len;
}

T
Tom Herbert 已提交
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
#define ENCAP_TYPE_ETHER	0
#define ENCAP_TYPE_IPPROTO	1

static inline void skb_set_inner_protocol(struct sk_buff *skb,
					  __be16 protocol)
{
	skb->inner_protocol = protocol;
	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
}

static inline void skb_set_inner_ipproto(struct sk_buff *skb,
					 __u8 ipproto)
{
	skb->inner_ipproto = ipproto;
	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
}

1783 1784
static inline void skb_reset_inner_headers(struct sk_buff *skb)
{
1785
	skb->inner_mac_header = skb->mac_header;
1786 1787 1788 1789
	skb->inner_network_header = skb->network_header;
	skb->inner_transport_header = skb->transport_header;
}

1790 1791 1792 1793 1794
static inline void skb_reset_mac_len(struct sk_buff *skb)
{
	skb->mac_len = skb->network_header - skb->mac_header;
}

1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
static inline unsigned char *skb_inner_transport_header(const struct sk_buff
							*skb)
{
	return skb->head + skb->inner_transport_header;
}

static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
{
	skb->inner_transport_header = skb->data - skb->head;
}

static inline void skb_set_inner_transport_header(struct sk_buff *skb,
						   const int offset)
{
	skb_reset_inner_transport_header(skb);
	skb->inner_transport_header += offset;
}

static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
{
	return skb->head + skb->inner_network_header;
}

static inline void skb_reset_inner_network_header(struct sk_buff *skb)
{
	skb->inner_network_header = skb->data - skb->head;
}

static inline void skb_set_inner_network_header(struct sk_buff *skb,
						const int offset)
{
	skb_reset_inner_network_header(skb);
	skb->inner_network_header += offset;
}

1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
{
	return skb->head + skb->inner_mac_header;
}

static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
{
	skb->inner_mac_header = skb->data - skb->head;
}

static inline void skb_set_inner_mac_header(struct sk_buff *skb,
					    const int offset)
{
	skb_reset_inner_mac_header(skb);
	skb->inner_mac_header += offset;
}
1846 1847
static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
{
C
Cong Wang 已提交
1848
	return skb->transport_header != (typeof(skb->transport_header))~0U;
1849 1850
}

1851 1852
static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
{
1853
	return skb->head + skb->transport_header;
1854 1855
}

1856 1857
static inline void skb_reset_transport_header(struct sk_buff *skb)
{
1858
	skb->transport_header = skb->data - skb->head;
1859 1860
}

1861 1862 1863
static inline void skb_set_transport_header(struct sk_buff *skb,
					    const int offset)
{
1864 1865
	skb_reset_transport_header(skb);
	skb->transport_header += offset;
1866 1867
}

1868 1869
static inline unsigned char *skb_network_header(const struct sk_buff *skb)
{
1870
	return skb->head + skb->network_header;
1871 1872
}

1873 1874
static inline void skb_reset_network_header(struct sk_buff *skb)
{
1875
	skb->network_header = skb->data - skb->head;
1876 1877
}

1878 1879
static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
{
1880 1881
	skb_reset_network_header(skb);
	skb->network_header += offset;
1882 1883
}

1884
static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1885
{
1886
	return skb->head + skb->mac_header;
1887 1888
}

1889
static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1890
{
C
Cong Wang 已提交
1891
	return skb->mac_header != (typeof(skb->mac_header))~0U;
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
}

static inline void skb_reset_mac_header(struct sk_buff *skb)
{
	skb->mac_header = skb->data - skb->head;
}

static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
{
	skb_reset_mac_header(skb);
	skb->mac_header += offset;
}

1905 1906 1907 1908 1909
static inline void skb_pop_mac_header(struct sk_buff *skb)
{
	skb->mac_header = skb->network_header;
}

1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
static inline void skb_probe_transport_header(struct sk_buff *skb,
					      const int offset_hint)
{
	struct flow_keys keys;

	if (skb_transport_header_was_set(skb))
		return;
	else if (skb_flow_dissect(skb, &keys))
		skb_set_transport_header(skb, keys.thoff);
	else
		skb_set_transport_header(skb, offset_hint);
}

1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
static inline void skb_mac_header_rebuild(struct sk_buff *skb)
{
	if (skb_mac_header_was_set(skb)) {
		const unsigned char *old_mac = skb_mac_header(skb);

		skb_set_mac_header(skb, -skb->mac_len);
		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
	}
}

1933 1934 1935 1936 1937
static inline int skb_checksum_start_offset(const struct sk_buff *skb)
{
	return skb->csum_start - skb_headroom(skb);
}

1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
static inline int skb_transport_offset(const struct sk_buff *skb)
{
	return skb_transport_header(skb) - skb->data;
}

static inline u32 skb_network_header_len(const struct sk_buff *skb)
{
	return skb->transport_header - skb->network_header;
}

1948 1949 1950 1951 1952
static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
{
	return skb->inner_transport_header - skb->inner_network_header;
}

1953 1954 1955 1956
static inline int skb_network_offset(const struct sk_buff *skb)
{
	return skb_network_header(skb) - skb->data;
}
1957

1958 1959 1960 1961 1962
static inline int skb_inner_network_offset(const struct sk_buff *skb)
{
	return skb_inner_network_header(skb) - skb->data;
}

1963 1964 1965 1966 1967
static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
{
	return pskb_may_pull(skb, skb_network_offset(skb) + len);
}

L
Linus Torvalds 已提交
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
/*
 * CPUs often take a performance hit when accessing unaligned memory
 * locations. The actual performance hit varies, it can be small if the
 * hardware handles it or large if we have to take an exception and fix it
 * in software.
 *
 * Since an ethernet header is 14 bytes network drivers often end up with
 * the IP header at an unaligned offset. The IP header can be aligned by
 * shifting the start of the packet by 2 bytes. Drivers should do this
 * with:
 *
1979
 * skb_reserve(skb, NET_IP_ALIGN);
L
Linus Torvalds 已提交
1980 1981 1982 1983
 *
 * The downside to this alignment of the IP header is that the DMA is now
 * unaligned. On some architectures the cost of an unaligned DMA is high
 * and this cost outweighs the gains made by aligning the IP header.
1984
 *
L
Linus Torvalds 已提交
1985 1986 1987 1988 1989 1990 1991
 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
 * to be overridden.
 */
#ifndef NET_IP_ALIGN
#define NET_IP_ALIGN	2
#endif

1992 1993 1994 1995
/*
 * The networking layer reserves some headroom in skb data (via
 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
 * the header has to grow. In the default case, if the header has to grow
1996
 * 32 bytes or less we avoid the reallocation.
1997 1998 1999 2000 2001 2002 2003
 *
 * Unfortunately this headroom changes the DMA alignment of the resulting
 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
 * on some architectures. An architecture can override this value,
 * perhaps setting it to a cacheline in size (since that will maintain
 * cacheline alignment of the DMA). It must be a power of 2.
 *
2004
 * Various parts of the networking layer expect at least 32 bytes of
2005
 * headroom, you should not reduce this.
2006 2007 2008 2009
 *
 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
 * to reduce average number of cache lines per packet.
 * get_rps_cpus() for example only access one 64 bytes aligned block :
2010
 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2011 2012
 */
#ifndef NET_SKB_PAD
2013
#define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2014 2015
#endif

2016
int ___pskb_trim(struct sk_buff *skb, unsigned int len);
L
Linus Torvalds 已提交
2017 2018 2019

static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
{
2020
	if (unlikely(skb_is_nonlinear(skb))) {
2021 2022 2023
		WARN_ON(1);
		return;
	}
2024 2025
	skb->len = len;
	skb_set_tail_pointer(skb, len);
L
Linus Torvalds 已提交
2026 2027
}

2028
void skb_trim(struct sk_buff *skb, unsigned int len);
L
Linus Torvalds 已提交
2029 2030 2031

static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
{
2032 2033 2034 2035
	if (skb->data_len)
		return ___pskb_trim(skb, len);
	__skb_trim(skb, len);
	return 0;
L
Linus Torvalds 已提交
2036 2037 2038 2039 2040 2041 2042
}

static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
{
	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
}

2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
/**
 *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
 *	@skb: buffer to alter
 *	@len: new length
 *
 *	This is identical to pskb_trim except that the caller knows that
 *	the skb is not cloned so we should never get an error due to out-
 *	of-memory.
 */
static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
{
	int err = pskb_trim(skb, len);
	BUG_ON(err);
}

L
Linus Torvalds 已提交
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
/**
 *	skb_orphan - orphan a buffer
 *	@skb: buffer to orphan
 *
 *	If a buffer currently has an owner then we call the owner's
 *	destructor function and make the @skb unowned. The buffer continues
 *	to exist but is no longer charged to its former owner.
 */
static inline void skb_orphan(struct sk_buff *skb)
{
E
Eric Dumazet 已提交
2068
	if (skb->destructor) {
L
Linus Torvalds 已提交
2069
		skb->destructor(skb);
E
Eric Dumazet 已提交
2070 2071
		skb->destructor = NULL;
		skb->sk		= NULL;
2072 2073
	} else {
		BUG_ON(skb->sk);
E
Eric Dumazet 已提交
2074
	}
L
Linus Torvalds 已提交
2075 2076
}

2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
/**
 *	skb_orphan_frags - orphan the frags contained in a buffer
 *	@skb: buffer to orphan frags from
 *	@gfp_mask: allocation mask for replacement pages
 *
 *	For each frag in the SKB which needs a destructor (i.e. has an
 *	owner) create a copy of that frag and release the original
 *	page by calling the destructor.
 */
static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
{
	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
		return 0;
	return skb_copy_ubufs(skb, gfp_mask);
}

L
Linus Torvalds 已提交
2093 2094 2095 2096 2097 2098 2099 2100
/**
 *	__skb_queue_purge - empty a list
 *	@list: list to empty
 *
 *	Delete all buffers on an &sk_buff list. Each buffer is removed from
 *	the list and one reference dropped. This function does not take the
 *	list lock and the caller must hold the relevant locks to use it.
 */
2101
void skb_queue_purge(struct sk_buff_head *list);
L
Linus Torvalds 已提交
2102 2103 2104 2105 2106 2107 2108
static inline void __skb_queue_purge(struct sk_buff_head *list)
{
	struct sk_buff *skb;
	while ((skb = __skb_dequeue(list)) != NULL)
		kfree_skb(skb);
}

2109 2110 2111 2112
#define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768)
#define NETDEV_FRAG_PAGE_MAX_SIZE  (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER)
#define NETDEV_PAGECNT_MAX_BIAS	   NETDEV_FRAG_PAGE_MAX_SIZE

2113
void *netdev_alloc_frag(unsigned int fragsz);
L
Linus Torvalds 已提交
2114

2115 2116
struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
				   gfp_t gfp_mask);
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131

/**
 *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
 *	@dev: network device to receive on
 *	@length: length to allocate
 *
 *	Allocate a new &sk_buff and assign it a usage count of one. The
 *	buffer has unspecified headroom built in. Users should allocate
 *	the headroom they think they need without accounting for the
 *	built in space. The built in space is used for optimisations.
 *
 *	%NULL is returned if there is no free memory. Although this function
 *	allocates memory it can be called from an interrupt.
 */
static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2132
					       unsigned int length)
2133 2134 2135 2136
{
	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
}

2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
/* legacy helper around __netdev_alloc_skb() */
static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
					      gfp_t gfp_mask)
{
	return __netdev_alloc_skb(NULL, length, gfp_mask);
}

/* legacy helper around netdev_alloc_skb() */
static inline struct sk_buff *dev_alloc_skb(unsigned int length)
{
	return netdev_alloc_skb(NULL, length);
}


2151 2152
static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
		unsigned int length, gfp_t gfp)
2153
{
2154
	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2155 2156 2157 2158 2159 2160

	if (NET_IP_ALIGN && skb)
		skb_reserve(skb, NET_IP_ALIGN);
	return skb;
}

2161 2162 2163 2164 2165 2166
static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
		unsigned int length)
{
	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
}

2167 2168
void *napi_alloc_frag(unsigned int fragsz);

2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
/**
 * __dev_alloc_pages - allocate page for network Rx
 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
 * @order: size of the allocation
 *
 * Allocate a new page.
 *
 * %NULL is returned if there is no free memory.
*/
static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
					     unsigned int order)
{
	/* This piece of code contains several assumptions.
	 * 1.  This is for device Rx, therefor a cold page is preferred.
	 * 2.  The expectation is the user wants a compound page.
	 * 3.  If requesting a order 0 page it will not be compound
	 *     due to the check to see if order has a value in prep_new_page
	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
	 *     code in gfp_to_alloc_flags that should be enforcing this.
	 */
	gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;

	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
}

static inline struct page *dev_alloc_pages(unsigned int order)
{
	return __dev_alloc_pages(GFP_ATOMIC, order);
}

/**
 * __dev_alloc_page - allocate a page for network Rx
 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
 *
 * Allocate a new page.
 *
 * %NULL is returned if there is no free memory.
 */
static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
{
	return __dev_alloc_pages(gfp_mask, 0);
}

static inline struct page *dev_alloc_page(void)
{
	return __dev_alloc_page(GFP_ATOMIC);
}

2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
/**
 *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
 *	@page: The page that was allocated from skb_alloc_page
 *	@skb: The skb that may need pfmemalloc set
 */
static inline void skb_propagate_pfmemalloc(struct page *page,
					     struct sk_buff *skb)
{
	if (page && page->pfmemalloc)
		skb->pfmemalloc = true;
}

2229
/**
2230
 * skb_frag_page - retrieve the page referred to by a paged fragment
2231 2232 2233 2234 2235 2236
 * @frag: the paged fragment
 *
 * Returns the &struct page associated with @frag.
 */
static inline struct page *skb_frag_page(const skb_frag_t *frag)
{
2237
	return frag->page.p;
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
}

/**
 * __skb_frag_ref - take an addition reference on a paged fragment.
 * @frag: the paged fragment
 *
 * Takes an additional reference on the paged fragment @frag.
 */
static inline void __skb_frag_ref(skb_frag_t *frag)
{
	get_page(skb_frag_page(frag));
}

/**
 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
 * @skb: the buffer
 * @f: the fragment offset.
 *
 * Takes an additional reference on the @f'th paged fragment of @skb.
 */
static inline void skb_frag_ref(struct sk_buff *skb, int f)
{
	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
}

/**
 * __skb_frag_unref - release a reference on a paged fragment.
 * @frag: the paged fragment
 *
 * Releases a reference on the paged fragment @frag.
 */
static inline void __skb_frag_unref(skb_frag_t *frag)
{
	put_page(skb_frag_page(frag));
}

/**
 * skb_frag_unref - release a reference on a paged fragment of an skb.
 * @skb: the buffer
 * @f: the fragment offset
 *
 * Releases a reference on the @f'th paged fragment of @skb.
 */
static inline void skb_frag_unref(struct sk_buff *skb, int f)
{
	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
}

/**
 * skb_frag_address - gets the address of the data contained in a paged fragment
 * @frag: the paged fragment buffer
 *
 * Returns the address of the data within @frag. The page must already
 * be mapped.
 */
static inline void *skb_frag_address(const skb_frag_t *frag)
{
	return page_address(skb_frag_page(frag)) + frag->page_offset;
}

/**
 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
 * @frag: the paged fragment buffer
 *
 * Returns the address of the data within @frag. Checks that the page
 * is mapped and returns %NULL otherwise.
 */
static inline void *skb_frag_address_safe(const skb_frag_t *frag)
{
	void *ptr = page_address(skb_frag_page(frag));
	if (unlikely(!ptr))
		return NULL;

	return ptr + frag->page_offset;
}

/**
 * __skb_frag_set_page - sets the page contained in a paged fragment
 * @frag: the paged fragment
 * @page: the page to set
 *
 * Sets the fragment @frag to contain @page.
 */
static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
{
2323
	frag->page.p = page;
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
}

/**
 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
 * @skb: the buffer
 * @f: the fragment offset
 * @page: the page to set
 *
 * Sets the @f'th fragment of @skb to contain @page.
 */
static inline void skb_frag_set_page(struct sk_buff *skb, int f,
				     struct page *page)
{
	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
}

E
Eric Dumazet 已提交
2340 2341
bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);

2342 2343
/**
 * skb_frag_dma_map - maps a paged fragment via the DMA API
2344
 * @dev: the device to map the fragment to
2345 2346 2347 2348
 * @frag: the paged fragment to map
 * @offset: the offset within the fragment (starting at the
 *          fragment's own offset)
 * @size: the number of bytes to map
2349
 * @dir: the direction of the mapping (%PCI_DMA_*)
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
 *
 * Maps the page associated with @frag to @device.
 */
static inline dma_addr_t skb_frag_dma_map(struct device *dev,
					  const skb_frag_t *frag,
					  size_t offset, size_t size,
					  enum dma_data_direction dir)
{
	return dma_map_page(dev, skb_frag_page(frag),
			    frag->page_offset + offset, size, dir);
}

E
Eric Dumazet 已提交
2362 2363 2364 2365 2366 2367
static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
					gfp_t gfp_mask)
{
	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
}

2368 2369 2370 2371 2372 2373 2374 2375

static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
						  gfp_t gfp_mask)
{
	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
}


2376 2377 2378 2379 2380 2381 2382 2383
/**
 *	skb_clone_writable - is the header of a clone writable
 *	@skb: buffer to check
 *	@len: length up to which to write
 *
 *	Returns true if modifying the header part of the cloned buffer
 *	does not requires the data to be copied.
 */
2384
static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2385 2386 2387 2388 2389
{
	return !skb_header_cloned(skb) &&
	       skb_headroom(skb) + len <= skb->hdr_len;
}

H
Herbert Xu 已提交
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
			    int cloned)
{
	int delta = 0;

	if (headroom > skb_headroom(skb))
		delta = headroom - skb_headroom(skb);

	if (delta || cloned)
		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
					GFP_ATOMIC);
	return 0;
}

L
Linus Torvalds 已提交
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
/**
 *	skb_cow - copy header of skb when it is required
 *	@skb: buffer to cow
 *	@headroom: needed headroom
 *
 *	If the skb passed lacks sufficient headroom or its data part
 *	is shared, data is reallocated. If reallocation fails, an error
 *	is returned and original skb is not changed.
 *
 *	The result is skb with writable area skb->head...skb->tail
 *	and at least @headroom of space at head.
 */
static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
{
H
Herbert Xu 已提交
2418 2419
	return __skb_cow(skb, headroom, skb_cloned(skb));
}
L
Linus Torvalds 已提交
2420

H
Herbert Xu 已提交
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
/**
 *	skb_cow_head - skb_cow but only making the head writable
 *	@skb: buffer to cow
 *	@headroom: needed headroom
 *
 *	This function is identical to skb_cow except that we replace the
 *	skb_cloned check by skb_header_cloned.  It should be used when
 *	you only need to push on some header and do not need to modify
 *	the data.
 */
static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
{
	return __skb_cow(skb, headroom, skb_header_cloned(skb));
L
Linus Torvalds 已提交
2434 2435 2436 2437 2438 2439 2440 2441 2442
}

/**
 *	skb_padto	- pad an skbuff up to a minimal size
 *	@skb: buffer to pad
 *	@len: minimal length
 *
 *	Pads up a buffer to ensure the trailing bytes exist and are
 *	blanked. If the buffer already contains sufficient data it
2443 2444
 *	is untouched. Otherwise it is extended. Returns zero on
 *	success. The skb is freed on error.
L
Linus Torvalds 已提交
2445
 */
2446
static inline int skb_padto(struct sk_buff *skb, unsigned int len)
L
Linus Torvalds 已提交
2447 2448 2449
{
	unsigned int size = skb->len;
	if (likely(size >= len))
2450
		return 0;
G
Gerrit Renker 已提交
2451
	return skb_pad(skb, len - size);
L
Linus Torvalds 已提交
2452 2453
}

2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
/**
 *	skb_put_padto - increase size and pad an skbuff up to a minimal size
 *	@skb: buffer to pad
 *	@len: minimal length
 *
 *	Pads up a buffer to ensure the trailing bytes exist and are
 *	blanked. If the buffer already contains sufficient data it
 *	is untouched. Otherwise it is extended. Returns zero on
 *	success. The skb is freed on error.
 */
static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
{
	unsigned int size = skb->len;

	if (unlikely(size < len)) {
		len -= size;
		if (skb_pad(skb, len))
			return -ENOMEM;
		__skb_put(skb, len);
	}
	return 0;
}

L
Linus Torvalds 已提交
2477 2478 2479 2480 2481 2482 2483
static inline int skb_add_data(struct sk_buff *skb,
			       char __user *from, int copy)
{
	const int off = skb->len;

	if (skb->ip_summed == CHECKSUM_NONE) {
		int err = 0;
2484
		__wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
L
Linus Torvalds 已提交
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
							    copy, 0, &err);
		if (!err) {
			skb->csum = csum_block_add(skb->csum, csum, off);
			return 0;
		}
	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
		return 0;

	__skb_trim(skb, off);
	return -EFAULT;
}

2497 2498
static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
				    const struct page *page, int off)
L
Linus Torvalds 已提交
2499 2500
{
	if (i) {
E
Eric Dumazet 已提交
2501
		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
L
Linus Torvalds 已提交
2502

2503
		return page == skb_frag_page(frag) &&
E
Eric Dumazet 已提交
2504
		       off == frag->page_offset + skb_frag_size(frag);
L
Linus Torvalds 已提交
2505
	}
2506
	return false;
L
Linus Torvalds 已提交
2507 2508
}

H
Herbert Xu 已提交
2509 2510 2511 2512 2513
static inline int __skb_linearize(struct sk_buff *skb)
{
	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
}

L
Linus Torvalds 已提交
2514 2515 2516 2517 2518 2519 2520
/**
 *	skb_linearize - convert paged skb to linear one
 *	@skb: buffer to linarize
 *
 *	If there is no free memory -ENOMEM is returned, otherwise zero
 *	is returned and the old skb data released.
 */
H
Herbert Xu 已提交
2521 2522 2523 2524 2525
static inline int skb_linearize(struct sk_buff *skb)
{
	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
}

2526 2527 2528 2529 2530 2531 2532 2533 2534
/**
 * skb_has_shared_frag - can any frag be overwritten
 * @skb: buffer to test
 *
 * Return true if the skb has at least one frag that might be modified
 * by an external entity (as in vmsplice()/sendfile())
 */
static inline bool skb_has_shared_frag(const struct sk_buff *skb)
{
2535 2536
	return skb_is_nonlinear(skb) &&
	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2537 2538
}

H
Herbert Xu 已提交
2539 2540 2541 2542 2543 2544 2545 2546
/**
 *	skb_linearize_cow - make sure skb is linear and writable
 *	@skb: buffer to process
 *
 *	If there is no free memory -ENOMEM is returned, otherwise zero
 *	is returned and the old skb data released.
 */
static inline int skb_linearize_cow(struct sk_buff *skb)
L
Linus Torvalds 已提交
2547
{
H
Herbert Xu 已提交
2548 2549
	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
	       __skb_linearize(skb) : 0;
L
Linus Torvalds 已提交
2550 2551 2552 2553 2554 2555 2556 2557 2558
}

/**
 *	skb_postpull_rcsum - update checksum for received skb after pull
 *	@skb: buffer to update
 *	@start: start of data before pull
 *	@len: length of data pulled
 *
 *	After doing a pull on a received packet, you need to call this to
2559 2560
 *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
 *	CHECKSUM_NONE so that it can be recomputed from scratch.
L
Linus Torvalds 已提交
2561 2562 2563
 */

static inline void skb_postpull_rcsum(struct sk_buff *skb,
2564
				      const void *start, unsigned int len)
L
Linus Torvalds 已提交
2565
{
2566
	if (skb->ip_summed == CHECKSUM_COMPLETE)
L
Linus Torvalds 已提交
2567 2568 2569
		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
}

2570 2571
unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);

2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
/**
 *	pskb_trim_rcsum - trim received skb and update checksum
 *	@skb: buffer to trim
 *	@len: new length
 *
 *	This is exactly the same as pskb_trim except that it ensures the
 *	checksum of received packets are still valid after the operation.
 */

static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
{
	if (likely(len >= skb->len))
		return 0;
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		skb->ip_summed = CHECKSUM_NONE;
	return __pskb_trim(skb, len);
}

L
Linus Torvalds 已提交
2590 2591
#define skb_queue_walk(queue, skb) \
		for (skb = (queue)->next;					\
2592
		     skb != (struct sk_buff *)(queue);				\
L
Linus Torvalds 已提交
2593 2594
		     skb = skb->next)

2595 2596 2597 2598 2599
#define skb_queue_walk_safe(queue, skb, tmp)					\
		for (skb = (queue)->next, tmp = skb->next;			\
		     skb != (struct sk_buff *)(queue);				\
		     skb = tmp, tmp = skb->next)

2600
#define skb_queue_walk_from(queue, skb)						\
2601
		for (; skb != (struct sk_buff *)(queue);			\
2602 2603 2604 2605 2606 2607 2608
		     skb = skb->next)

#define skb_queue_walk_from_safe(queue, skb, tmp)				\
		for (tmp = skb->next;						\
		     skb != (struct sk_buff *)(queue);				\
		     skb = tmp, tmp = skb->next)

2609 2610
#define skb_queue_reverse_walk(queue, skb) \
		for (skb = (queue)->prev;					\
2611
		     skb != (struct sk_buff *)(queue);				\
2612 2613
		     skb = skb->prev)

2614 2615 2616 2617 2618 2619 2620 2621 2622
#define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
		for (skb = (queue)->prev, tmp = skb->prev;			\
		     skb != (struct sk_buff *)(queue);				\
		     skb = tmp, tmp = skb->prev)

#define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
		for (tmp = skb->prev;						\
		     skb != (struct sk_buff *)(queue);				\
		     skb = tmp, tmp = skb->prev)
L
Linus Torvalds 已提交
2623

2624
static inline bool skb_has_frag_list(const struct sk_buff *skb)
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
{
	return skb_shinfo(skb)->frag_list != NULL;
}

static inline void skb_frag_list_init(struct sk_buff *skb)
{
	skb_shinfo(skb)->frag_list = NULL;
}

static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
{
	frag->next = skb_shinfo(skb)->frag_list;
	skb_shinfo(skb)->frag_list = frag;
}

#define skb_walk_frags(skb, iter)	\
	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)

2643 2644 2645 2646 2647 2648
struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
				    int *peeked, int *off, int *err);
struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
				  int *err);
unsigned int datagram_poll(struct file *file, struct socket *sock,
			   struct poll_table_struct *wait);
A
Al Viro 已提交
2649 2650
int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
			   struct iov_iter *to, int size);
2651 2652 2653
static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
					struct msghdr *msg, int size)
{
2654
	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
2655
}
2656 2657
int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
				   struct msghdr *msg);
2658 2659 2660
int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
				 struct iov_iter *from, int len);
int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb);
int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
			      int len, __wsum csum);
int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
		    struct pipe_inode_info *pipe, unsigned int len,
		    unsigned int flags);
void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2672
unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
2673 2674
int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
		 int len, int hlen);
2675 2676 2677
void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
void skb_scrub_packet(struct sk_buff *skb, bool xnet);
2678
unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
2679
struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
2680
struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
2681
int skb_ensure_writable(struct sk_buff *skb, int write_len);
2682 2683
int skb_vlan_pop(struct sk_buff *skb);
int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
2684

A
Al Viro 已提交
2685 2686
static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
{
A
Al Viro 已提交
2687 2688
	/* XXX: stripping const */
	return memcpy_fromiovec(data, (struct iovec *)msg->msg_iter.iov, len);
A
Al Viro 已提交
2689 2690
}

A
Al Viro 已提交
2691 2692
static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
{
2693
	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
A
Al Viro 已提交
2694 2695
}

2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
struct skb_checksum_ops {
	__wsum (*update)(const void *mem, int len, __wsum wsum);
	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
};

__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
		      __wsum csum, const struct skb_checksum_ops *ops);
__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
		    __wsum csum);

2706 2707
static inline void *__skb_header_pointer(const struct sk_buff *skb, int offset,
					 int len, void *data, int hlen, void *buffer)
L
Linus Torvalds 已提交
2708
{
2709
	if (hlen - offset >= len)
2710
		return data + offset;
L
Linus Torvalds 已提交
2711

2712 2713
	if (!skb ||
	    skb_copy_bits(skb, offset, buffer, len) < 0)
L
Linus Torvalds 已提交
2714 2715 2716 2717 2718
		return NULL;

	return buffer;
}

2719 2720 2721 2722 2723 2724 2725
static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
				       int len, void *buffer)
{
	return __skb_header_pointer(skb, offset, len, skb->data,
				    skb_headlen(skb), buffer);
}

2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
/**
 *	skb_needs_linearize - check if we need to linearize a given skb
 *			      depending on the given device features.
 *	@skb: socket buffer to check
 *	@features: net device features
 *
 *	Returns true if either:
 *	1. skb has frag_list and the device doesn't support FRAGLIST, or
 *	2. skb is fragmented and the device does not support SG.
 */
static inline bool skb_needs_linearize(struct sk_buff *skb,
				       netdev_features_t features)
{
	return skb_is_nonlinear(skb) &&
	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
}

2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
					     void *to,
					     const unsigned int len)
{
	memcpy(to, skb->data, len);
}

static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
						    const int offset, void *to,
						    const unsigned int len)
{
	memcpy(to, skb->data + offset, len);
}

2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
static inline void skb_copy_to_linear_data(struct sk_buff *skb,
					   const void *from,
					   const unsigned int len)
{
	memcpy(skb->data, from, len);
}

static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
						  const int offset,
						  const void *from,
						  const unsigned int len)
{
	memcpy(skb->data + offset, from, len);
}

2773
void skb_init(void);
L
Linus Torvalds 已提交
2774

2775 2776 2777 2778 2779
static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
{
	return skb->tstamp;
}

2780 2781 2782 2783 2784 2785 2786 2787 2788
/**
 *	skb_get_timestamp - get timestamp from a skb
 *	@skb: skb to get stamp from
 *	@stamp: pointer to struct timeval to store stamp in
 *
 *	Timestamps are stored in the skb as offsets to a base timestamp.
 *	This function converts the offset back to a struct timeval and stores
 *	it in stamp.
 */
2789 2790
static inline void skb_get_timestamp(const struct sk_buff *skb,
				     struct timeval *stamp)
2791
{
2792
	*stamp = ktime_to_timeval(skb->tstamp);
2793 2794
}

2795 2796 2797 2798 2799 2800
static inline void skb_get_timestampns(const struct sk_buff *skb,
				       struct timespec *stamp)
{
	*stamp = ktime_to_timespec(skb->tstamp);
}

2801
static inline void __net_timestamp(struct sk_buff *skb)
2802
{
2803
	skb->tstamp = ktime_get_real();
2804 2805
}

2806 2807 2808 2809 2810
static inline ktime_t net_timedelta(ktime_t t)
{
	return ktime_sub(ktime_get_real(), t);
}

2811 2812 2813 2814
static inline ktime_t net_invalid_timestamp(void)
{
	return ktime_set(0, 0);
}
2815

2816 2817
struct sk_buff *skb_clone_sk(struct sk_buff *skb);

2818 2819
#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING

2820 2821
void skb_clone_tx_timestamp(struct sk_buff *skb);
bool skb_defer_rx_timestamp(struct sk_buff *skb);
2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838

#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */

static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
{
}

static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
{
	return false;
}

#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */

/**
 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
 *
2839 2840 2841 2842 2843
 * PHY drivers may accept clones of transmitted packets for
 * timestamping via their phy_driver.txtstamp method. These drivers
 * must call this function to return the skb back to the stack, with
 * or without a timestamp.
 *
2844
 * @skb: clone of the the original outgoing packet
2845
 * @hwtstamps: hardware time stamps, may be NULL if not available
2846 2847 2848 2849 2850
 *
 */
void skb_complete_tx_timestamp(struct sk_buff *skb,
			       struct skb_shared_hwtstamps *hwtstamps);

2851 2852 2853 2854
void __skb_tstamp_tx(struct sk_buff *orig_skb,
		     struct skb_shared_hwtstamps *hwtstamps,
		     struct sock *sk, int tstype);

2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
/**
 * skb_tstamp_tx - queue clone of skb with send time stamps
 * @orig_skb:	the original outgoing packet
 * @hwtstamps:	hardware time stamps, may be NULL if not available
 *
 * If the skb has a socket associated, then this function clones the
 * skb (thus sharing the actual data and optional structures), stores
 * the optional hardware time stamping information (if non NULL) or
 * generates a software time stamp (otherwise), then queues the clone
 * to the error queue of the socket.  Errors are silently ignored.
 */
2866 2867
void skb_tstamp_tx(struct sk_buff *orig_skb,
		   struct skb_shared_hwtstamps *hwtstamps);
2868

2869 2870
static inline void sw_tx_timestamp(struct sk_buff *skb)
{
2871 2872
	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
	    !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2873 2874 2875 2876 2877 2878 2879
		skb_tstamp_tx(skb, NULL);
}

/**
 * skb_tx_timestamp() - Driver hook for transmit timestamping
 *
 * Ethernet MAC Drivers should call this function in their hard_xmit()
2880
 * function immediately before giving the sk_buff to the MAC hardware.
2881
 *
2882 2883 2884 2885
 * Specifically, one should make absolutely sure that this function is
 * called before TX completion of this packet can trigger.  Otherwise
 * the packet could potentially already be freed.
 *
2886 2887 2888 2889
 * @skb: A socket buffer.
 */
static inline void skb_tx_timestamp(struct sk_buff *skb)
{
2890
	skb_clone_tx_timestamp(skb);
2891 2892 2893
	sw_tx_timestamp(skb);
}

2894 2895 2896 2897 2898 2899 2900 2901 2902
/**
 * skb_complete_wifi_ack - deliver skb with wifi status
 *
 * @skb: the original outgoing packet
 * @acked: ack status
 *
 */
void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);

2903 2904
__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
__sum16 __skb_checksum_complete(struct sk_buff *skb);
2905

2906 2907
static inline int skb_csum_unnecessary(const struct sk_buff *skb)
{
2908
	return ((skb->ip_summed & CHECKSUM_UNNECESSARY) || skb->csum_valid);
2909 2910
}

2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
/**
 *	skb_checksum_complete - Calculate checksum of an entire packet
 *	@skb: packet to process
 *
 *	This function calculates the checksum over the entire packet plus
 *	the value of skb->csum.  The latter can be used to supply the
 *	checksum of a pseudo header as used by TCP/UDP.  It returns the
 *	checksum.
 *
 *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
 *	this function can be used to verify that checksum on received
 *	packets.  In that case the function should return zero if the
 *	checksum is correct.  In particular, this function will return zero
 *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
 *	hardware has already verified the correctness of the checksum.
 */
2927
static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2928
{
2929 2930
	return skb_csum_unnecessary(skb) ?
	       0 : __skb_checksum_complete(skb);
2931 2932
}

2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
{
	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
		if (skb->csum_level == 0)
			skb->ip_summed = CHECKSUM_NONE;
		else
			skb->csum_level--;
	}
}

static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
{
	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
			skb->csum_level++;
	} else if (skb->ip_summed == CHECKSUM_NONE) {
		skb->ip_summed = CHECKSUM_UNNECESSARY;
		skb->csum_level = 0;
	}
}

2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
static inline void __skb_mark_checksum_bad(struct sk_buff *skb)
{
	/* Mark current checksum as bad (typically called from GRO
	 * path). In the case that ip_summed is CHECKSUM_NONE
	 * this must be the first checksum encountered in the packet.
	 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first
	 * checksum after the last one validated. For UDP, a zero
	 * checksum can not be marked as bad.
	 */

	if (skb->ip_summed == CHECKSUM_NONE ||
	    skb->ip_summed == CHECKSUM_UNNECESSARY)
		skb->csum_bad = 1;
}

2969 2970 2971 2972 2973 2974 2975 2976 2977
/* Check if we need to perform checksum complete validation.
 *
 * Returns true if checksum complete is needed, false otherwise
 * (either checksum is unnecessary or zero checksum is allowed).
 */
static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
						  bool zero_okay,
						  __sum16 check)
{
2978 2979
	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
		skb->csum_valid = 1;
2980
		__skb_decr_checksum_unnecessary(skb);
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006
		return false;
	}

	return true;
}

/* For small packets <= CHECKSUM_BREAK peform checksum complete directly
 * in checksum_init.
 */
#define CHECKSUM_BREAK 76

/* Validate (init) checksum based on checksum complete.
 *
 * Return values:
 *   0: checksum is validated or try to in skb_checksum_complete. In the latter
 *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
 *	checksum is stored in skb->csum for use in __skb_checksum_complete
 *   non-zero: value of invalid checksum
 *
 */
static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
						       bool complete,
						       __wsum psum)
{
	if (skb->ip_summed == CHECKSUM_COMPLETE) {
		if (!csum_fold(csum_add(psum, skb->csum))) {
3007
			skb->csum_valid = 1;
3008 3009
			return 0;
		}
3010 3011 3012
	} else if (skb->csum_bad) {
		/* ip_summed == CHECKSUM_NONE in this case */
		return 1;
3013 3014 3015 3016
	}

	skb->csum = psum;

3017 3018 3019 3020 3021 3022 3023
	if (complete || skb->len <= CHECKSUM_BREAK) {
		__sum16 csum;

		csum = __skb_checksum_complete(skb);
		skb->csum_valid = !csum;
		return csum;
	}
3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046

	return 0;
}

static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
{
	return 0;
}

/* Perform checksum validate (init). Note that this is a macro since we only
 * want to calculate the pseudo header which is an input function if necessary.
 * First we try to validate without any computation (checksum unnecessary) and
 * then calculate based on checksum complete calling the function to compute
 * pseudo header.
 *
 * Return values:
 *   0: checksum is validated or try to in skb_checksum_complete
 *   non-zero: value of invalid checksum
 */
#define __skb_checksum_validate(skb, proto, complete,			\
				zero_okay, check, compute_pseudo)	\
({									\
	__sum16 __ret = 0;						\
3047
	skb->csum_valid = 0;						\
3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
		__ret = __skb_checksum_validate_complete(skb,		\
				complete, compute_pseudo(skb, proto));	\
	__ret;								\
})

#define skb_checksum_init(skb, proto, compute_pseudo)			\
	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)

#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)

#define skb_checksum_validate(skb, proto, compute_pseudo)		\
	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)

#define skb_checksum_validate_zero_check(skb, proto, check,		\
					 compute_pseudo)		\
	__skb_checksum_validate_(skb, proto, true, true, check, compute_pseudo)

#define skb_checksum_simple_validate(skb)				\
	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)

3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
{
	return (skb->ip_summed == CHECKSUM_NONE &&
		skb->csum_valid && !skb->csum_bad);
}

static inline void __skb_checksum_convert(struct sk_buff *skb,
					  __sum16 check, __wsum pseudo)
{
	skb->csum = ~pseudo;
	skb->ip_summed = CHECKSUM_COMPLETE;
}

#define skb_checksum_try_convert(skb, proto, check, compute_pseudo)	\
do {									\
	if (__skb_checksum_convert_check(skb))				\
		__skb_checksum_convert(skb, check,			\
				       compute_pseudo(skb, proto));	\
} while (0)

3090
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3091
void nf_conntrack_destroy(struct nf_conntrack *nfct);
L
Linus Torvalds 已提交
3092 3093 3094
static inline void nf_conntrack_put(struct nf_conntrack *nfct)
{
	if (nfct && atomic_dec_and_test(&nfct->use))
3095
		nf_conntrack_destroy(nfct);
L
Linus Torvalds 已提交
3096 3097 3098 3099 3100 3101
}
static inline void nf_conntrack_get(struct nf_conntrack *nfct)
{
	if (nfct)
		atomic_inc(&nfct->use);
}
3102
#endif
3103
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
L
Linus Torvalds 已提交
3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
{
	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
		kfree(nf_bridge);
}
static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
{
	if (nf_bridge)
		atomic_inc(&nf_bridge->use);
}
#endif /* CONFIG_BRIDGE_NETFILTER */
3115 3116
static inline void nf_reset(struct sk_buff *skb)
{
3117
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3118 3119
	nf_conntrack_put(skb->nfct);
	skb->nfct = NULL;
3120
#endif
3121
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3122 3123 3124 3125 3126
	nf_bridge_put(skb->nf_bridge);
	skb->nf_bridge = NULL;
#endif
}

3127 3128
static inline void nf_reset_trace(struct sk_buff *skb)
{
3129
#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
G
Gao feng 已提交
3130 3131
	skb->nf_trace = 0;
#endif
3132 3133
}

3134
/* Note: This doesn't put any conntrack and bridge info in dst. */
3135 3136
static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
			     bool copy)
3137
{
3138
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3139 3140
	dst->nfct = src->nfct;
	nf_conntrack_get(src->nfct);
3141 3142
	if (copy)
		dst->nfctinfo = src->nfctinfo;
3143
#endif
3144
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3145 3146 3147
	dst->nf_bridge  = src->nf_bridge;
	nf_bridge_get(src->nf_bridge);
#endif
3148
#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3149 3150
	if (copy)
		dst->nf_trace = src->nf_trace;
3151
#endif
3152 3153
}

3154 3155 3156
static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
{
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3157
	nf_conntrack_put(dst->nfct);
3158
#endif
3159
#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3160 3161
	nf_bridge_put(dst->nf_bridge);
#endif
3162
	__nf_copy(dst, src, true);
3163 3164
}

3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182
#ifdef CONFIG_NETWORK_SECMARK
static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
{
	to->secmark = from->secmark;
}

static inline void skb_init_secmark(struct sk_buff *skb)
{
	skb->secmark = 0;
}
#else
static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
{ }

static inline void skb_init_secmark(struct sk_buff *skb)
{ }
#endif

3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
static inline bool skb_irq_freeable(const struct sk_buff *skb)
{
	return !skb->destructor &&
#if IS_ENABLED(CONFIG_XFRM)
		!skb->sp &&
#endif
#if IS_ENABLED(CONFIG_NF_CONNTRACK)
		!skb->nfct &&
#endif
		!skb->_skb_refdst &&
		!skb_has_frag_list(skb);
}

3196 3197 3198 3199 3200
static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
{
	skb->queue_mapping = queue_mapping;
}

3201
static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3202 3203 3204 3205
{
	return skb->queue_mapping;
}

3206 3207 3208 3209 3210
static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
{
	to->queue_mapping = from->queue_mapping;
}

3211 3212 3213 3214 3215
static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
{
	skb->queue_mapping = rx_queue + 1;
}

3216
static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3217 3218 3219 3220
{
	return skb->queue_mapping - 1;
}

3221
static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3222
{
E
Eric Dumazet 已提交
3223
	return skb->queue_mapping != 0;
3224 3225
}

3226
u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3227
		  unsigned int num_tx_queues);
3228

3229 3230
static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
{
3231
#ifdef CONFIG_XFRM
3232 3233 3234 3235
	return skb->sp;
#else
	return NULL;
#endif
3236
}
3237

3238 3239 3240
/* Keeps track of mac header offset relative to skb->head.
 * It is useful for TSO of Tunneling protocol. e.g. GRE.
 * For non-tunnel skb it points to skb_mac_header() and for
3241 3242 3243
 * tunnel skb it points to outer mac header.
 * Keeps track of level of encapsulation of network headers.
 */
3244
struct skb_gso_cb {
3245 3246
	int	mac_offset;
	int	encap_level;
3247
	__u16	csum_start;
3248 3249 3250 3251 3252 3253 3254 3255 3256
};
#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb)

static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
{
	return (skb_mac_header(inner_skb) - inner_skb->head) -
		SKB_GSO_CB(inner_skb)->mac_offset;
}

3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
{
	int new_headroom, headroom;
	int ret;

	headroom = skb_headroom(skb);
	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
	if (ret)
		return ret;

	new_headroom = skb_headroom(skb);
	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
	return 0;
}

3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
/* Compute the checksum for a gso segment. First compute the checksum value
 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
 * then add in skb->csum (checksum from csum_start to end of packet).
 * skb->csum and csum_start are then updated to reflect the checksum of the
 * resultant packet starting from the transport header-- the resultant checksum
 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
 * header.
 */
static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
{
	int plen = SKB_GSO_CB(skb)->csum_start - skb_headroom(skb) -
	    skb_transport_offset(skb);
	__u16 csum;

	csum = csum_fold(csum_partial(skb_transport_header(skb),
				      plen, skb->csum));
	skb->csum = res;
	SKB_GSO_CB(skb)->csum_start -= plen;

	return csum;
}

3294
static inline bool skb_is_gso(const struct sk_buff *skb)
H
Herbert Xu 已提交
3295 3296 3297 3298
{
	return skb_shinfo(skb)->gso_size;
}

3299
/* Note: Should be called only if skb_is_gso(skb) is true */
3300
static inline bool skb_is_gso_v6(const struct sk_buff *skb)
B
Brice Goglin 已提交
3301 3302 3303 3304
{
	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
}

3305
void __skb_warn_lro_forwarding(const struct sk_buff *skb);
3306 3307 3308 3309 3310

static inline bool skb_warn_if_lro(const struct sk_buff *skb)
{
	/* LRO sets gso_size but not gso_type, whereas if GSO is really
	 * wanted then gso_type will be set. */
3311 3312
	const struct skb_shared_info *shinfo = skb_shinfo(skb);

3313 3314
	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
	    unlikely(shinfo->gso_type == 0)) {
3315 3316 3317 3318 3319 3320
		__skb_warn_lro_forwarding(skb);
		return true;
	}
	return false;
}

3321 3322 3323 3324 3325 3326 3327
static inline void skb_forward_csum(struct sk_buff *skb)
{
	/* Unfortunately we don't support this one.  Any brave souls? */
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		skb->ip_summed = CHECKSUM_NONE;
}

3328 3329 3330 3331 3332 3333 3334 3335
/**
 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
 * @skb: skb to check
 *
 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
 * use this helper, to document places where we make this assertion.
 */
3336
static inline void skb_checksum_none_assert(const struct sk_buff *skb)
3337 3338 3339 3340 3341 3342
{
#ifdef DEBUG
	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
#endif
}

3343
bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
3344

P
Paul Durrant 已提交
3345 3346
int skb_checksum_setup(struct sk_buff *skb, bool recalculate);

3347 3348 3349
u32 skb_get_poff(const struct sk_buff *skb);
u32 __skb_get_poff(const struct sk_buff *skb, void *data,
		   const struct flow_keys *keys, int hlen);
3350

3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
/**
 * skb_head_is_locked - Determine if the skb->head is locked down
 * @skb: skb to check
 *
 * The head on skbs build around a head frag can be removed if they are
 * not cloned.  This function returns true if the skb head is locked down
 * due to either being allocated via kmalloc, or by being a clone with
 * multiple references to the head.
 */
static inline bool skb_head_is_locked(const struct sk_buff *skb)
{
	return !skb->head_frag || skb_cloned(skb);
}
3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380

/**
 * skb_gso_network_seglen - Return length of individual segments of a gso packet
 *
 * @skb: GSO skb
 *
 * skb_gso_network_seglen is used to determine the real size of the
 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
 *
 * The MAC/L2 header is not accounted for.
 */
static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
{
	unsigned int hdr_len = skb_transport_header(skb) -
			       skb_network_header(skb);
	return hdr_len + skb_gso_transport_seglen(skb);
}
L
Linus Torvalds 已提交
3381 3382
#endif	/* __KERNEL__ */
#endif	/* _LINUX_SKBUFF_H */