skbuff.h 86.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 *	Definitions for the 'struct sk_buff' memory handlers.
 *
 *	Authors:
 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 *		Florian La Roche, <rzsfl@rz.uni-sb.de>
 *
 *	This program is free software; you can redistribute it and/or
 *	modify it under the terms of the GNU General Public License
 *	as published by the Free Software Foundation; either version
 *	2 of the License, or (at your option) any later version.
 */

#ifndef _LINUX_SKBUFF_H
#define _LINUX_SKBUFF_H

#include <linux/kernel.h>
18
#include <linux/kmemcheck.h>
L
Linus Torvalds 已提交
19 20
#include <linux/compiler.h>
#include <linux/time.h>
21
#include <linux/bug.h>
L
Linus Torvalds 已提交
22 23
#include <linux/cache.h>

A
Arun Sharma 已提交
24
#include <linux/atomic.h>
L
Linus Torvalds 已提交
25 26 27
#include <asm/types.h>
#include <linux/spinlock.h>
#include <linux/net.h>
28
#include <linux/textsearch.h>
L
Linus Torvalds 已提交
29
#include <net/checksum.h>
30
#include <linux/rcupdate.h>
31
#include <linux/dmaengine.h>
32
#include <linux/hrtimer.h>
33
#include <linux/dma-mapping.h>
34
#include <linux/netdev_features.h>
35
#include <linux/sched.h>
36
#include <net/flow_keys.h>
L
Linus Torvalds 已提交
37

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
/* A. Checksumming of received packets by device.
 *
 * CHECKSUM_NONE:
 *
 *   Device failed to checksum this packet e.g. due to lack of capabilities.
 *   The packet contains full (though not verified) checksum in packet but
 *   not in skb->csum. Thus, skb->csum is undefined in this case.
 *
 * CHECKSUM_UNNECESSARY:
 *
 *   The hardware you're dealing with doesn't calculate the full checksum
 *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
 *   for specific protocols e.g. TCP/UDP/SCTP, then, for such packets it will
 *   set CHECKSUM_UNNECESSARY if their checksums are okay. skb->csum is still
 *   undefined in this case though. It is a bad option, but, unfortunately,
 *   nowadays most vendors do this. Apparently with the secret goal to sell
 *   you new devices, when you will add new protocol to your host, f.e. IPv6 8)
 *
 * CHECKSUM_COMPLETE:
 *
 *   This is the most generic way. The device supplied checksum of the _whole_
 *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
 *   hardware doesn't need to parse L3/L4 headers to implement this.
 *
 *   Note: Even if device supports only some protocols, but is able to produce
 *   skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
 *
 * CHECKSUM_PARTIAL:
 *
 *   This is identical to the case for output below. This may occur on a packet
 *   received directly from another Linux OS, e.g., a virtualized Linux kernel
 *   on the same host. The packet can be treated in the same way as
 *   CHECKSUM_UNNECESSARY, except that on output (i.e., forwarding) the
 *   checksum must be filled in by the OS or the hardware.
 *
 * B. Checksumming on output.
 *
 * CHECKSUM_NONE:
 *
 *   The skb was already checksummed by the protocol, or a checksum is not
 *   required.
 *
 * CHECKSUM_PARTIAL:
 *
 *   The device is required to checksum the packet as seen by hard_start_xmit()
 *   from skb->csum_start up to the end, and to record/write the checksum at
 *   offset skb->csum_start + skb->csum_offset.
 *
 *   The device must show its capabilities in dev->features, set up at device
 *   setup time, e.g. netdev_features.h:
 *
 *	NETIF_F_HW_CSUM	- It's a clever device, it's able to checksum everything.
 *	NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over
 *			  IPv4. Sigh. Vendors like this way for an unknown reason.
 *			  Though, see comment above about CHECKSUM_UNNECESSARY. 8)
 *	NETIF_F_IPV6_CSUM - About as dumb as the last one but does IPv6 instead.
 *	NETIF_F_...     - Well, you get the picture.
 *
 * CHECKSUM_UNNECESSARY:
 *
 *   Normally, the device will do per protocol specific checksumming. Protocol
 *   implementations that do not want the NIC to perform the checksum
 *   calculation should use this flag in their outgoing skbs.
 *
 *	NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC
 *			   offload. Correspondingly, the FCoE protocol driver
 *			   stack should use CHECKSUM_UNNECESSARY.
 *
 * Any questions? No questions, good.		--ANK
 */

109
/* Don't change this without changing skb_csum_unnecessary! */
110 111 112 113
#define CHECKSUM_NONE		0
#define CHECKSUM_UNNECESSARY	1
#define CHECKSUM_COMPLETE	2
#define CHECKSUM_PARTIAL	3
L
Linus Torvalds 已提交
114 115 116

#define SKB_DATA_ALIGN(X)	(((X) + (SMP_CACHE_BYTES - 1)) & \
				 ~(SMP_CACHE_BYTES - 1))
117
#define SKB_WITH_OVERHEAD(X)	\
118
	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
119 120
#define SKB_MAX_ORDER(X, ORDER) \
	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
L
Linus Torvalds 已提交
121 122 123
#define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
#define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))

E
Eric Dumazet 已提交
124 125 126 127 128
/* return minimum truesize of one skb containing X bytes of data */
#define SKB_TRUESIZE(X) ((X) +						\
			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))

L
Linus Torvalds 已提交
129
struct net_device;
130
struct scatterlist;
J
Jens Axboe 已提交
131
struct pipe_inode_info;
L
Linus Torvalds 已提交
132

133
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
L
Linus Torvalds 已提交
134 135 136
struct nf_conntrack {
	atomic_t use;
};
137
#endif
L
Linus Torvalds 已提交
138 139 140

#ifdef CONFIG_BRIDGE_NETFILTER
struct nf_bridge_info {
141 142 143 144 145
	atomic_t		use;
	unsigned int		mask;
	struct net_device	*physindev;
	struct net_device	*physoutdev;
	unsigned long		data[32 / sizeof(unsigned long)];
L
Linus Torvalds 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159
};
#endif

struct sk_buff_head {
	/* These two members must be first. */
	struct sk_buff	*next;
	struct sk_buff	*prev;

	__u32		qlen;
	spinlock_t	lock;
};

struct sk_buff;

160 161 162 163 164 165
/* To allow 64K frame to be packed as single skb without frag_list we
 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
 * buffers which do not start on a page boundary.
 *
 * Since GRO uses frags we allocate at least 16 regardless of page
 * size.
166
 */
167
#if (65536/PAGE_SIZE + 1) < 16
168
#define MAX_SKB_FRAGS 16UL
169
#else
170
#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
171
#endif
L
Linus Torvalds 已提交
172 173 174 175

typedef struct skb_frag_struct skb_frag_t;

struct skb_frag_struct {
176 177 178
	struct {
		struct page *p;
	} page;
179
#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
180 181
	__u32 page_offset;
	__u32 size;
182 183 184 185
#else
	__u16 page_offset;
	__u16 size;
#endif
L
Linus Torvalds 已提交
186 187
};

E
Eric Dumazet 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
static inline unsigned int skb_frag_size(const skb_frag_t *frag)
{
	return frag->size;
}

static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
{
	frag->size = size;
}

static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
{
	frag->size += delta;
}

static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
{
	frag->size -= delta;
}

208 209 210
#define HAVE_HW_TIME_STAMP

/**
211
 * struct skb_shared_hwtstamps - hardware time stamps
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
 * @hwtstamp:	hardware time stamp transformed into duration
 *		since arbitrary point in time
 * @syststamp:	hwtstamp transformed to system time base
 *
 * Software time stamps generated by ktime_get_real() are stored in
 * skb->tstamp. The relation between the different kinds of time
 * stamps is as follows:
 *
 * syststamp and tstamp can be compared against each other in
 * arbitrary combinations.  The accuracy of a
 * syststamp/tstamp/"syststamp from other device" comparison is
 * limited by the accuracy of the transformation into system time
 * base. This depends on the device driver and its underlying
 * hardware.
 *
 * hwtstamps can only be compared against other hwtstamps from
 * the same device.
 *
 * This structure is attached to packets as part of the
 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
 */
struct skb_shared_hwtstamps {
	ktime_t	hwtstamp;
	ktime_t	syststamp;
};

238 239 240 241 242 243 244 245 246 247 248
/* Definitions for tx_flags in struct skb_shared_info */
enum {
	/* generate hardware time stamp */
	SKBTX_HW_TSTAMP = 1 << 0,

	/* generate software time stamp */
	SKBTX_SW_TSTAMP = 1 << 1,

	/* device driver is going to provide hardware time stamp */
	SKBTX_IN_PROGRESS = 1 << 2,

249
	/* device driver supports TX zero-copy buffers */
E
Eric Dumazet 已提交
250
	SKBTX_DEV_ZEROCOPY = 1 << 3,
251 252

	/* generate wifi status information (where possible) */
E
Eric Dumazet 已提交
253
	SKBTX_WIFI_STATUS = 1 << 4,
254 255 256 257 258 259 260

	/* This indicates at least one fragment might be overwritten
	 * (as in vmsplice(), sendfile() ...)
	 * If we need to compute a TX checksum, we'll need to copy
	 * all frags to avoid possible bad checksum
	 */
	SKBTX_SHARED_FRAG = 1 << 5,
261 262 263 264 265
};

/*
 * The callback notifies userspace to release buffers when skb DMA is done in
 * lower device, the skb last reference should be 0 when calling this.
266 267
 * The zerocopy_success argument is true if zero copy transmit occurred,
 * false on data copy or out of memory error caused by data copy attempt.
268 269
 * The ctx field is used to track device context.
 * The desc field is used to track userspace buffer index.
270 271
 */
struct ubuf_info {
272
	void (*callback)(struct ubuf_info *, bool zerocopy_success);
273
	void *ctx;
274
	unsigned long desc;
275 276
};

L
Linus Torvalds 已提交
277 278 279 280
/* This data is invariant across clones and lives at
 * the end of the header data, ie. at skb->end.
 */
struct skb_shared_info {
281 282
	unsigned char	nr_frags;
	__u8		tx_flags;
283 284 285 286
	unsigned short	gso_size;
	/* Warning: this field is not always filled in (UFO)! */
	unsigned short	gso_segs;
	unsigned short  gso_type;
L
Linus Torvalds 已提交
287
	struct sk_buff	*frag_list;
288
	struct skb_shared_hwtstamps hwtstamps;
289
	__be32          ip6_frag_id;
E
Eric Dumazet 已提交
290 291 292 293 294 295

	/*
	 * Warning : all fields before dataref are cleared in __alloc_skb()
	 */
	atomic_t	dataref;

J
Johann Baudy 已提交
296 297 298
	/* Intermediate layers must ensure that destructor_arg
	 * remains valid until skb destructor */
	void *		destructor_arg;
299

300 301
	/* must be last field, see pskb_expand_head() */
	skb_frag_t	frags[MAX_SKB_FRAGS];
L
Linus Torvalds 已提交
302 303 304 305
};

/* We divide dataref into two halves.  The higher 16 bits hold references
 * to the payload part of skb->data.  The lower 16 bits hold references to
306 307
 * the entire skb->data.  A clone of a headerless skb holds the length of
 * the header in skb->hdr_len.
L
Linus Torvalds 已提交
308 309 310 311 312 313 314 315 316 317
 *
 * All users must obey the rule that the skb->data reference count must be
 * greater than or equal to the payload reference count.
 *
 * Holding a reference to the payload part means that the user does not
 * care about modifications to the header part of skb->data.
 */
#define SKB_DATAREF_SHIFT 16
#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)

318 319 320 321 322 323 324

enum {
	SKB_FCLONE_UNAVAILABLE,
	SKB_FCLONE_ORIG,
	SKB_FCLONE_CLONE,
};

325 326
enum {
	SKB_GSO_TCPV4 = 1 << 0,
H
Herbert Xu 已提交
327
	SKB_GSO_UDP = 1 << 1,
328 329 330

	/* This indicates the skb is from an untrusted source. */
	SKB_GSO_DODGY = 1 << 2,
M
Michael Chan 已提交
331 332

	/* This indicates the tcp segment has CWR set. */
H
Herbert Xu 已提交
333 334 335
	SKB_GSO_TCP_ECN = 1 << 3,

	SKB_GSO_TCPV6 = 1 << 4,
336 337

	SKB_GSO_FCOE = 1 << 5,
338 339

	SKB_GSO_GRE = 1 << 6,
340

E
Eric Dumazet 已提交
341
	SKB_GSO_IPIP = 1 << 7,
S
Simon Horman 已提交
342

E
Eric Dumazet 已提交
343
	SKB_GSO_SIT = 1 << 8,
E
Eric Dumazet 已提交
344

E
Eric Dumazet 已提交
345 346 347
	SKB_GSO_UDP_TUNNEL = 1 << 9,

	SKB_GSO_MPLS = 1 << 10,
348 349
};

350 351 352 353 354 355 356 357 358 359
#if BITS_PER_LONG > 32
#define NET_SKBUFF_DATA_USES_OFFSET 1
#endif

#ifdef NET_SKBUFF_DATA_USES_OFFSET
typedef unsigned int sk_buff_data_t;
#else
typedef unsigned char *sk_buff_data_t;
#endif

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
/**
 * struct skb_mstamp - multi resolution time stamps
 * @stamp_us: timestamp in us resolution
 * @stamp_jiffies: timestamp in jiffies
 */
struct skb_mstamp {
	union {
		u64		v64;
		struct {
			u32	stamp_us;
			u32	stamp_jiffies;
		};
	};
};

/**
 * skb_mstamp_get - get current timestamp
 * @cl: place to store timestamps
 */
static inline void skb_mstamp_get(struct skb_mstamp *cl)
{
	u64 val = local_clock();

	do_div(val, NSEC_PER_USEC);
	cl->stamp_us = (u32)val;
	cl->stamp_jiffies = (u32)jiffies;
}

/**
 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
 * @t1: pointer to newest sample
 * @t0: pointer to oldest sample
 */
static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
				      const struct skb_mstamp *t0)
{
	s32 delta_us = t1->stamp_us - t0->stamp_us;
	u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;

	/* If delta_us is negative, this might be because interval is too big,
	 * or local_clock() drift is too big : fallback using jiffies.
	 */
	if (delta_us <= 0 ||
	    delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))

		delta_us = jiffies_to_usecs(delta_jiffies);

	return delta_us;
}


L
Linus Torvalds 已提交
411 412 413 414
/** 
 *	struct sk_buff - socket buffer
 *	@next: Next buffer in list
 *	@prev: Previous buffer in list
415
 *	@tstamp: Time we arrived/left
416
 *	@sk: Socket we are owned by
L
Linus Torvalds 已提交
417
 *	@dev: Device we arrived on/are leaving by
418
 *	@cb: Control buffer. Free for use by every layer. Put private vars here
E
Eric Dumazet 已提交
419
 *	@_skb_refdst: destination entry (with norefcount bit)
420
 *	@sp: the security path, used for xfrm
L
Linus Torvalds 已提交
421 422 423
 *	@len: Length of actual data
 *	@data_len: Data length
 *	@mac_len: Length of link layer header
424
 *	@hdr_len: writable header length of cloned skb
425 426 427
 *	@csum: Checksum (must include start/offset pair)
 *	@csum_start: Offset from skb->head where checksumming should start
 *	@csum_offset: Offset from csum_start where checksum should be stored
428
 *	@priority: Packet queueing priority
W
WANG Cong 已提交
429
 *	@ignore_df: allow local fragmentation
L
Linus Torvalds 已提交
430
 *	@cloned: Head may be cloned (check refcnt to be sure)
431
 *	@ip_summed: Driver fed us an IP checksum
L
Linus Torvalds 已提交
432
 *	@nohdr: Payload reference only, must not modify header
433
 *	@nfctinfo: Relationship of this skb to the connection
L
Linus Torvalds 已提交
434
 *	@pkt_type: Packet class
435 436
 *	@fclone: skbuff clone status
 *	@ipvs_property: skbuff is owned by ipvs
437 438
 *	@peeked: this packet has been seen already, so stats have been
 *		done for it, don't do them again
439
 *	@nf_trace: netfilter packet trace flag
440 441 442
 *	@protocol: Packet protocol from driver
 *	@destructor: Destruct function
 *	@nfct: Associated connection, if any
L
Linus Torvalds 已提交
443
 *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
444
 *	@skb_iif: ifindex of device we arrived on
L
Linus Torvalds 已提交
445 446
 *	@tc_index: Traffic control index
 *	@tc_verd: traffic control verdict
447
 *	@hash: the packet hash
448
 *	@queue_mapping: Queue mapping for multiqueue devices
449
 *	@ndisc_nodetype: router type (from link layer)
450
 *	@ooo_okay: allow the mapping of a socket to a queue to be changed
451
 *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
452
 *		ports.
453 454
 *	@wifi_acked_valid: wifi_acked was set
 *	@wifi_acked: whether frame was acked on wifi or not
455
 *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
R
Randy Dunlap 已提交
456 457
 *	@dma_cookie: a cookie to one of several possible DMA operations
 *		done by skb DMA functions
E
Eliezer Tamir 已提交
458
  *	@napi_id: id of the NAPI struct this skb came from
459
 *	@secmark: security marking
460 461
 *	@mark: Generic packet mark
 *	@dropcount: total number of sk_receive_queue overflows
462
 *	@vlan_proto: vlan encapsulation protocol
463
 *	@vlan_tci: vlan tag control information
S
Simon Horman 已提交
464
 *	@inner_protocol: Protocol (encapsulation)
465 466
 *	@inner_transport_header: Inner transport layer header (encapsulation)
 *	@inner_network_header: Network layer header (encapsulation)
467
 *	@inner_mac_header: Link layer header (encapsulation)
468 469 470 471 472 473 474 475 476
 *	@transport_header: Transport layer header
 *	@network_header: Network layer header
 *	@mac_header: Link layer header
 *	@tail: Tail pointer
 *	@end: End pointer
 *	@head: Head of buffer
 *	@data: Data head pointer
 *	@truesize: Buffer size
 *	@users: User count - see {datagram,tcp}.c
L
Linus Torvalds 已提交
477 478 479 480 481 482 483
 */

struct sk_buff {
	/* These two members must be first. */
	struct sk_buff		*next;
	struct sk_buff		*prev;

484 485 486 487
	union {
		ktime_t		tstamp;
		struct skb_mstamp skb_mstamp;
	};
488 489

	struct sock		*sk;
L
Linus Torvalds 已提交
490 491 492 493 494 495 496 497
	struct net_device	*dev;

	/*
	 * This is the control buffer. It is free to use for every
	 * layer. Please put your private variables there. If you
	 * want to keep them across layers you have to do a skb_clone()
	 * first. This is owned by whoever has the skb queued ATM.
	 */
498
	char			cb[48] __aligned(8);
L
Linus Torvalds 已提交
499

E
Eric Dumazet 已提交
500
	unsigned long		_skb_refdst;
501 502 503
#ifdef CONFIG_XFRM
	struct	sec_path	*sp;
#endif
L
Linus Torvalds 已提交
504
	unsigned int		len,
505 506 507
				data_len;
	__u16			mac_len,
				hdr_len;
A
Al Viro 已提交
508 509
	union {
		__wsum		csum;
510 511 512 513
		struct {
			__u16	csum_start;
			__u16	csum_offset;
		};
A
Al Viro 已提交
514
	};
L
Linus Torvalds 已提交
515
	__u32			priority;
516
	kmemcheck_bitfield_begin(flags1);
W
WANG Cong 已提交
517
	__u8			ignore_df:1,
518 519
				cloned:1,
				ip_summed:2,
520 521
				nohdr:1,
				nfctinfo:3;
522
	__u8			pkt_type:3,
523
				fclone:2,
524
				ipvs_property:1,
525
				peeked:1,
526
				nf_trace:1;
527
	kmemcheck_bitfield_end(flags1);
E
Eric Dumazet 已提交
528
	__be16			protocol;
L
Linus Torvalds 已提交
529 530

	void			(*destructor)(struct sk_buff *skb);
531
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
532
	struct nf_conntrack	*nfct;
533
#endif
L
Linus Torvalds 已提交
534 535 536
#ifdef CONFIG_BRIDGE_NETFILTER
	struct nf_bridge_info	*nf_bridge;
#endif
537

538
	int			skb_iif;
539

540
	__u32			hash;
541

542
	__be16			vlan_proto;
543 544
	__u16			vlan_tci;

L
Linus Torvalds 已提交
545
#ifdef CONFIG_NET_SCHED
546
	__u16			tc_index;	/* traffic control index */
L
Linus Torvalds 已提交
547
#ifdef CONFIG_NET_CLS_ACT
548
	__u16			tc_verd;	/* traffic control verdict */
L
Linus Torvalds 已提交
549 550
#endif
#endif
551

552
	__u16			queue_mapping;
553
	kmemcheck_bitfield_begin(flags2);
554
#ifdef CONFIG_IPV6_NDISC_NODETYPE
555
	__u8			ndisc_nodetype:2;
556
#endif
557
	__u8			pfmemalloc:1;
558
	__u8			ooo_okay:1;
559
	__u8			l4_hash:1;
560 561
	__u8			wifi_acked_valid:1;
	__u8			wifi_acked:1;
562
	__u8			no_fcs:1;
563
	__u8			head_frag:1;
564 565 566 567 568 569
	/* Encapsulation protocol and NIC drivers should use
	 * this flag to indicate to each other if the skb contains
	 * encapsulated packet or not and maybe use the inner packet
	 * headers if needed
	 */
	__u8			encapsulation:1;
570
	/* 6/8 bit hole (depending on ndisc_nodetype presence) */
571 572
	kmemcheck_bitfield_end(flags2);

573
#if defined CONFIG_NET_DMA || defined CONFIG_NET_RX_BUSY_POLL
E
Eliezer Tamir 已提交
574 575 576 577
	union {
		unsigned int	napi_id;
		dma_cookie_t	dma_cookie;
	};
578
#endif
579 580 581
#ifdef CONFIG_NETWORK_SECMARK
	__u32			secmark;
#endif
582 583 584
	union {
		__u32		mark;
		__u32		dropcount;
E
Eric Dumazet 已提交
585
		__u32		reserved_tailroom;
586
	};
L
Linus Torvalds 已提交
587

S
Simon Horman 已提交
588
	__be16			inner_protocol;
589 590 591 592 593 594
	__u16			inner_transport_header;
	__u16			inner_network_header;
	__u16			inner_mac_header;
	__u16			transport_header;
	__u16			network_header;
	__u16			mac_header;
L
Linus Torvalds 已提交
595
	/* These elements must be at the end, see alloc_skb() for details.  */
596
	sk_buff_data_t		tail;
597
	sk_buff_data_t		end;
L
Linus Torvalds 已提交
598
	unsigned char		*head,
599
				*data;
600 601
	unsigned int		truesize;
	atomic_t		users;
L
Linus Torvalds 已提交
602 603 604 605 606 607 608 609 610
};

#ifdef __KERNEL__
/*
 *	Handling routines are only of interest to the kernel
 */
#include <linux/slab.h>


611 612 613 614 615 616 617 618 619
#define SKB_ALLOC_FCLONE	0x01
#define SKB_ALLOC_RX		0x02

/* Returns true if the skb was allocated from PFMEMALLOC reserves */
static inline bool skb_pfmemalloc(const struct sk_buff *skb)
{
	return unlikely(skb->pfmemalloc);
}

E
Eric Dumazet 已提交
620 621 622 623 624 625 626 627 628 629 630 631 632
/*
 * skb might have a dst pointer attached, refcounted or not.
 * _skb_refdst low order bit is set if refcount was _not_ taken
 */
#define SKB_DST_NOREF	1UL
#define SKB_DST_PTRMASK	~(SKB_DST_NOREF)

/**
 * skb_dst - returns skb dst_entry
 * @skb: buffer
 *
 * Returns skb dst_entry, regardless of reference taken or not.
 */
E
Eric Dumazet 已提交
633 634
static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
{
E
Eric Dumazet 已提交
635 636 637 638 639 640 641
	/* If refdst was not refcounted, check we still are in a 
	 * rcu_read_lock section
	 */
	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
		!rcu_read_lock_held() &&
		!rcu_read_lock_bh_held());
	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
E
Eric Dumazet 已提交
642 643
}

E
Eric Dumazet 已提交
644 645 646 647 648 649 650 651
/**
 * skb_dst_set - sets skb dst
 * @skb: buffer
 * @dst: dst entry
 *
 * Sets skb dst, assuming a reference was taken on dst and should
 * be released by skb_dst_drop()
 */
E
Eric Dumazet 已提交
652 653
static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
{
E
Eric Dumazet 已提交
654 655 656
	skb->_skb_refdst = (unsigned long)dst;
}

657 658
void __skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst,
			 bool force);
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690

/**
 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
 * @skb: buffer
 * @dst: dst entry
 *
 * Sets skb dst, assuming a reference was not taken on dst.
 * If dst entry is cached, we do not take reference and dst_release
 * will be avoided by refdst_drop. If dst entry is not cached, we take
 * reference, so that last dst_release can destroy the dst immediately.
 */
static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
{
	__skb_dst_set_noref(skb, dst, false);
}

/**
 * skb_dst_set_noref_force - sets skb dst, without taking reference
 * @skb: buffer
 * @dst: dst entry
 *
 * Sets skb dst, assuming a reference was not taken on dst.
 * No reference is taken and no dst_release will be called. While for
 * cached dsts deferred reclaim is a basic feature, for entries that are
 * not cached it is caller's job to guarantee that last dst_release for
 * provided dst happens when nobody uses it, eg. after a RCU grace period.
 */
static inline void skb_dst_set_noref_force(struct sk_buff *skb,
					   struct dst_entry *dst)
{
	__skb_dst_set_noref(skb, dst, true);
}
E
Eric Dumazet 已提交
691 692

/**
L
Lucas De Marchi 已提交
693
 * skb_dst_is_noref - Test if skb dst isn't refcounted
E
Eric Dumazet 已提交
694 695 696 697 698
 * @skb: buffer
 */
static inline bool skb_dst_is_noref(const struct sk_buff *skb)
{
	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
E
Eric Dumazet 已提交
699 700
}

E
Eric Dumazet 已提交
701 702
static inline struct rtable *skb_rtable(const struct sk_buff *skb)
{
E
Eric Dumazet 已提交
703
	return (struct rtable *)skb_dst(skb);
E
Eric Dumazet 已提交
704 705
}

706 707 708 709 710
void kfree_skb(struct sk_buff *skb);
void kfree_skb_list(struct sk_buff *segs);
void skb_tx_error(struct sk_buff *skb);
void consume_skb(struct sk_buff *skb);
void  __kfree_skb(struct sk_buff *skb);
711
extern struct kmem_cache *skbuff_head_cache;
E
Eric Dumazet 已提交
712

713 714 715
void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
		      bool *fragstolen, int *delta_truesize);
E
Eric Dumazet 已提交
716

717 718 719
struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
			    int node);
struct sk_buff *build_skb(void *data, unsigned int frag_size);
720
static inline struct sk_buff *alloc_skb(unsigned int size,
A
Al Viro 已提交
721
					gfp_t priority)
722
{
E
Eric Dumazet 已提交
723
	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
724 725 726
}

static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
A
Al Viro 已提交
727
					       gfp_t priority)
728
{
729
	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
730 731
}

732
struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
733 734 735 736 737
static inline struct sk_buff *alloc_skb_head(gfp_t priority)
{
	return __alloc_skb_head(priority, -1);
}

738 739 740 741 742 743 744 745 746 747 748
struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask);

int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
				     unsigned int headroom);
struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
				int newtailroom, gfp_t priority);
749 750
int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
			int offset, int len);
751 752 753 754
int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
		 int len);
int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
int skb_pad(struct sk_buff *skb, int pad);
755
#define dev_kfree_skb(a)	consume_skb(a)
L
Linus Torvalds 已提交
756

757 758 759 760
int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
			    int getfrag(void *from, char *to, int offset,
					int len, int odd, struct sk_buff *skb),
			    void *from, int length);
761

E
Eric Dumazet 已提交
762
struct skb_seq_state {
763 764 765 766 767 768 769 770 771
	__u32		lower_offset;
	__u32		upper_offset;
	__u32		frag_idx;
	__u32		stepped_offset;
	struct sk_buff	*root_skb;
	struct sk_buff	*cur_skb;
	__u8		*frag_data;
};

772 773 774 775 776
void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
			  unsigned int to, struct skb_seq_state *st);
unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
			  struct skb_seq_state *st);
void skb_abort_seq_read(struct skb_seq_state *st);
777

778 779 780
unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
			   unsigned int to, struct ts_config *config,
			   struct ts_state *state);
781

T
Tom Herbert 已提交
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
/*
 * Packet hash types specify the type of hash in skb_set_hash.
 *
 * Hash types refer to the protocol layer addresses which are used to
 * construct a packet's hash. The hashes are used to differentiate or identify
 * flows of the protocol layer for the hash type. Hash types are either
 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
 *
 * Properties of hashes:
 *
 * 1) Two packets in different flows have different hash values
 * 2) Two packets in the same flow should have the same hash value
 *
 * A hash at a higher layer is considered to be more specific. A driver should
 * set the most specific hash possible.
 *
 * A driver cannot indicate a more specific hash than the layer at which a hash
 * was computed. For instance an L3 hash cannot be set as an L4 hash.
 *
 * A driver may indicate a hash level which is less specific than the
 * actual layer the hash was computed on. For instance, a hash computed
 * at L4 may be considered an L3 hash. This should only be done if the
 * driver can't unambiguously determine that the HW computed the hash at
 * the higher layer. Note that the "should" in the second property above
 * permits this.
 */
enum pkt_hash_types {
	PKT_HASH_TYPE_NONE,	/* Undefined type */
	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
};

static inline void
skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
{
818 819
	skb->l4_hash = (type == PKT_HASH_TYPE_L4);
	skb->hash = hash;
T
Tom Herbert 已提交
820 821
}

822 823
void __skb_get_hash(struct sk_buff *skb);
static inline __u32 skb_get_hash(struct sk_buff *skb)
824
{
825
	if (!skb->l4_hash)
826
		__skb_get_hash(skb);
827

828
	return skb->hash;
829 830
}

T
Tom Herbert 已提交
831 832
static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
{
833
	return skb->hash;
T
Tom Herbert 已提交
834 835
}

836 837
static inline void skb_clear_hash(struct sk_buff *skb)
{
838 839
	skb->hash = 0;
	skb->l4_hash = 0;
840 841 842 843
}

static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
{
844
	if (!skb->l4_hash)
845 846 847
		skb_clear_hash(skb);
}

848 849
static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
{
850 851
	to->hash = from->hash;
	to->l4_hash = from->l4_hash;
852 853
};

854 855 856 857 858
#ifdef NET_SKBUFF_DATA_USES_OFFSET
static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
{
	return skb->head + skb->end;
}
859 860 861 862 863

static inline unsigned int skb_end_offset(const struct sk_buff *skb)
{
	return skb->end;
}
864 865 866 867 868
#else
static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
{
	return skb->end;
}
869 870 871 872 873

static inline unsigned int skb_end_offset(const struct sk_buff *skb)
{
	return skb->end - skb->head;
}
874 875
#endif

L
Linus Torvalds 已提交
876
/* Internal */
877
#define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
L
Linus Torvalds 已提交
878

879 880 881 882 883
static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
{
	return &skb_shinfo(skb)->hwtstamps;
}

L
Linus Torvalds 已提交
884 885 886 887 888 889 890 891
/**
 *	skb_queue_empty - check if a queue is empty
 *	@list: queue head
 *
 *	Returns true if the queue is empty, false otherwise.
 */
static inline int skb_queue_empty(const struct sk_buff_head *list)
{
892
	return list->next == (const struct sk_buff *) list;
L
Linus Torvalds 已提交
893 894
}

D
David S. Miller 已提交
895 896 897 898 899 900 901 902 903 904
/**
 *	skb_queue_is_last - check if skb is the last entry in the queue
 *	@list: queue head
 *	@skb: buffer
 *
 *	Returns true if @skb is the last buffer on the list.
 */
static inline bool skb_queue_is_last(const struct sk_buff_head *list,
				     const struct sk_buff *skb)
{
905
	return skb->next == (const struct sk_buff *) list;
D
David S. Miller 已提交
906 907
}

908 909 910 911 912 913 914 915 916 917
/**
 *	skb_queue_is_first - check if skb is the first entry in the queue
 *	@list: queue head
 *	@skb: buffer
 *
 *	Returns true if @skb is the first buffer on the list.
 */
static inline bool skb_queue_is_first(const struct sk_buff_head *list,
				      const struct sk_buff *skb)
{
918
	return skb->prev == (const struct sk_buff *) list;
919 920
}

D
David S. Miller 已提交
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
/**
 *	skb_queue_next - return the next packet in the queue
 *	@list: queue head
 *	@skb: current buffer
 *
 *	Return the next packet in @list after @skb.  It is only valid to
 *	call this if skb_queue_is_last() evaluates to false.
 */
static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
					     const struct sk_buff *skb)
{
	/* This BUG_ON may seem severe, but if we just return then we
	 * are going to dereference garbage.
	 */
	BUG_ON(skb_queue_is_last(list, skb));
	return skb->next;
}

939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
/**
 *	skb_queue_prev - return the prev packet in the queue
 *	@list: queue head
 *	@skb: current buffer
 *
 *	Return the prev packet in @list before @skb.  It is only valid to
 *	call this if skb_queue_is_first() evaluates to false.
 */
static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
					     const struct sk_buff *skb)
{
	/* This BUG_ON may seem severe, but if we just return then we
	 * are going to dereference garbage.
	 */
	BUG_ON(skb_queue_is_first(list, skb));
	return skb->prev;
}

L
Linus Torvalds 已提交
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
/**
 *	skb_get - reference buffer
 *	@skb: buffer to reference
 *
 *	Makes another reference to a socket buffer and returns a pointer
 *	to the buffer.
 */
static inline struct sk_buff *skb_get(struct sk_buff *skb)
{
	atomic_inc(&skb->users);
	return skb;
}

/*
 * If users == 1, we are the only owner and are can avoid redundant
 * atomic change.
 */

/**
 *	skb_cloned - is the buffer a clone
 *	@skb: buffer to check
 *
 *	Returns true if the buffer was generated with skb_clone() and is
 *	one of multiple shared copies of the buffer. Cloned buffers are
 *	shared data so must not be written to under normal circumstances.
 */
static inline int skb_cloned(const struct sk_buff *skb)
{
	return skb->cloned &&
	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
}

989 990 991 992 993 994 995 996 997 998
static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
{
	might_sleep_if(pri & __GFP_WAIT);

	if (skb_cloned(skb))
		return pskb_expand_head(skb, 0, 0, pri);

	return 0;
}

L
Linus Torvalds 已提交
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
/**
 *	skb_header_cloned - is the header a clone
 *	@skb: buffer to check
 *
 *	Returns true if modifying the header part of the buffer requires
 *	the data to be copied.
 */
static inline int skb_header_cloned(const struct sk_buff *skb)
{
	int dataref;

	if (!skb->cloned)
		return 0;

	dataref = atomic_read(&skb_shinfo(skb)->dataref);
	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
	return dataref != 1;
}

/**
 *	skb_header_release - release reference to header
 *	@skb: buffer to operate on
 *
 *	Drop a reference to the header part of the buffer.  This is done
 *	by acquiring a payload reference.  You must not read from the header
 *	part of skb->data after this.
 */
static inline void skb_header_release(struct sk_buff *skb)
{
	BUG_ON(skb->nohdr);
	skb->nohdr = 1;
	atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
}

/**
 *	skb_shared - is the buffer shared
 *	@skb: buffer to check
 *
 *	Returns true if more than one person has a reference to this
 *	buffer.
 */
static inline int skb_shared(const struct sk_buff *skb)
{
	return atomic_read(&skb->users) != 1;
}

/**
 *	skb_share_check - check if buffer is shared and if so clone it
 *	@skb: buffer to check
 *	@pri: priority for memory allocation
 *
 *	If the buffer is shared the buffer is cloned and the old copy
 *	drops a reference. A new clone with a single reference is returned.
 *	If the buffer is not shared the original buffer is returned. When
 *	being called from interrupt status or with spinlocks held pri must
 *	be GFP_ATOMIC.
 *
 *	NULL is returned on a memory allocation failure.
 */
1058
static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
L
Linus Torvalds 已提交
1059 1060 1061 1062
{
	might_sleep_if(pri & __GFP_WAIT);
	if (skb_shared(skb)) {
		struct sk_buff *nskb = skb_clone(skb, pri);
1063 1064 1065 1066 1067

		if (likely(nskb))
			consume_skb(skb);
		else
			kfree_skb(skb);
L
Linus Torvalds 已提交
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
		skb = nskb;
	}
	return skb;
}

/*
 *	Copy shared buffers into a new sk_buff. We effectively do COW on
 *	packets to handle cases where we have a local reader and forward
 *	and a couple of other messy ones. The normal one is tcpdumping
 *	a packet thats being forwarded.
 */

/**
 *	skb_unshare - make a copy of a shared buffer
 *	@skb: buffer to check
 *	@pri: priority for memory allocation
 *
 *	If the socket buffer is a clone then this function creates a new
 *	copy of the data, drops a reference count on the old copy and returns
 *	the new copy with the reference count at 1. If the buffer is not a clone
 *	the original buffer is returned. When called with a spinlock held or
 *	from interrupt state @pri must be %GFP_ATOMIC
 *
 *	%NULL is returned on a memory allocation failure.
 */
1093
static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
A
Al Viro 已提交
1094
					  gfp_t pri)
L
Linus Torvalds 已提交
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
{
	might_sleep_if(pri & __GFP_WAIT);
	if (skb_cloned(skb)) {
		struct sk_buff *nskb = skb_copy(skb, pri);
		kfree_skb(skb);	/* Free our shared copy */
		skb = nskb;
	}
	return skb;
}

/**
1106
 *	skb_peek - peek at the head of an &sk_buff_head
L
Linus Torvalds 已提交
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
 *	@list_: list to peek at
 *
 *	Peek an &sk_buff. Unlike most other operations you _MUST_
 *	be careful with this one. A peek leaves the buffer on the
 *	list and someone else may run off with it. You must hold
 *	the appropriate locks or have a private queue to do this.
 *
 *	Returns %NULL for an empty list or a pointer to the head element.
 *	The reference count is not incremented and the reference is therefore
 *	volatile. Use with caution.
 */
1118
static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
L
Linus Torvalds 已提交
1119
{
1120 1121 1122 1123 1124
	struct sk_buff *skb = list_->next;

	if (skb == (struct sk_buff *)list_)
		skb = NULL;
	return skb;
L
Linus Torvalds 已提交
1125 1126
}

P
Pavel Emelyanov 已提交
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
/**
 *	skb_peek_next - peek skb following the given one from a queue
 *	@skb: skb to start from
 *	@list_: list to peek at
 *
 *	Returns %NULL when the end of the list is met or a pointer to the
 *	next element. The reference count is not incremented and the
 *	reference is therefore volatile. Use with caution.
 */
static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
		const struct sk_buff_head *list_)
{
	struct sk_buff *next = skb->next;
1140

P
Pavel Emelyanov 已提交
1141 1142 1143 1144 1145
	if (next == (struct sk_buff *)list_)
		next = NULL;
	return next;
}

L
Linus Torvalds 已提交
1146
/**
1147
 *	skb_peek_tail - peek at the tail of an &sk_buff_head
L
Linus Torvalds 已提交
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
 *	@list_: list to peek at
 *
 *	Peek an &sk_buff. Unlike most other operations you _MUST_
 *	be careful with this one. A peek leaves the buffer on the
 *	list and someone else may run off with it. You must hold
 *	the appropriate locks or have a private queue to do this.
 *
 *	Returns %NULL for an empty list or a pointer to the tail element.
 *	The reference count is not incremented and the reference is therefore
 *	volatile. Use with caution.
 */
1159
static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
L
Linus Torvalds 已提交
1160
{
1161 1162 1163 1164 1165 1166
	struct sk_buff *skb = list_->prev;

	if (skb == (struct sk_buff *)list_)
		skb = NULL;
	return skb;

L
Linus Torvalds 已提交
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
}

/**
 *	skb_queue_len	- get queue length
 *	@list_: list to measure
 *
 *	Return the length of an &sk_buff queue.
 */
static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
{
	return list_->qlen;
}

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
/**
 *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
 *	@list: queue to initialize
 *
 *	This initializes only the list and queue length aspects of
 *	an sk_buff_head object.  This allows to initialize the list
 *	aspects of an sk_buff_head without reinitializing things like
 *	the spinlock.  It can also be used for on-stack sk_buff_head
 *	objects where the spinlock is known to not be used.
 */
static inline void __skb_queue_head_init(struct sk_buff_head *list)
{
	list->prev = list->next = (struct sk_buff *)list;
	list->qlen = 0;
}

1196 1197 1198 1199 1200 1201 1202 1203
/*
 * This function creates a split out lock class for each invocation;
 * this is needed for now since a whole lot of users of the skb-queue
 * infrastructure in drivers have different locking usage (in hardirq)
 * than the networking core (in softirq only). In the long run either the
 * network layer or drivers should need annotation to consolidate the
 * main types of usage into 3 classes.
 */
L
Linus Torvalds 已提交
1204 1205 1206
static inline void skb_queue_head_init(struct sk_buff_head *list)
{
	spin_lock_init(&list->lock);
1207
	__skb_queue_head_init(list);
L
Linus Torvalds 已提交
1208 1209
}

1210 1211 1212 1213 1214 1215 1216
static inline void skb_queue_head_init_class(struct sk_buff_head *list,
		struct lock_class_key *class)
{
	skb_queue_head_init(list);
	lockdep_set_class(&list->lock, class);
}

L
Linus Torvalds 已提交
1217
/*
1218
 *	Insert an sk_buff on a list.
L
Linus Torvalds 已提交
1219 1220 1221 1222
 *
 *	The "__skb_xxxx()" functions are the non-atomic ones that
 *	can only be called with interrupts disabled.
 */
1223 1224
void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
		struct sk_buff_head *list);
1225 1226 1227 1228 1229 1230 1231 1232 1233
static inline void __skb_insert(struct sk_buff *newsk,
				struct sk_buff *prev, struct sk_buff *next,
				struct sk_buff_head *list)
{
	newsk->next = next;
	newsk->prev = prev;
	next->prev  = prev->next = newsk;
	list->qlen++;
}
L
Linus Torvalds 已提交
1234

1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
static inline void __skb_queue_splice(const struct sk_buff_head *list,
				      struct sk_buff *prev,
				      struct sk_buff *next)
{
	struct sk_buff *first = list->next;
	struct sk_buff *last = list->prev;

	first->prev = prev;
	prev->next = first;

	last->next = next;
	next->prev = last;
}

/**
 *	skb_queue_splice - join two skb lists, this is designed for stacks
 *	@list: the new list to add
 *	@head: the place to add it in the first list
 */
static inline void skb_queue_splice(const struct sk_buff_head *list,
				    struct sk_buff_head *head)
{
	if (!skb_queue_empty(list)) {
		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1259
		head->qlen += list->qlen;
1260 1261 1262 1263
	}
}

/**
E
Eric Dumazet 已提交
1264
 *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
 *	@list: the new list to add
 *	@head: the place to add it in the first list
 *
 *	The list at @list is reinitialised
 */
static inline void skb_queue_splice_init(struct sk_buff_head *list,
					 struct sk_buff_head *head)
{
	if (!skb_queue_empty(list)) {
		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1275
		head->qlen += list->qlen;
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
		__skb_queue_head_init(list);
	}
}

/**
 *	skb_queue_splice_tail - join two skb lists, each list being a queue
 *	@list: the new list to add
 *	@head: the place to add it in the first list
 */
static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
					 struct sk_buff_head *head)
{
	if (!skb_queue_empty(list)) {
		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1290
		head->qlen += list->qlen;
1291 1292 1293 1294
	}
}

/**
E
Eric Dumazet 已提交
1295
 *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
 *	@list: the new list to add
 *	@head: the place to add it in the first list
 *
 *	Each of the lists is a queue.
 *	The list at @list is reinitialised
 */
static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
					      struct sk_buff_head *head)
{
	if (!skb_queue_empty(list)) {
		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1307
		head->qlen += list->qlen;
1308 1309 1310 1311
		__skb_queue_head_init(list);
	}
}

L
Linus Torvalds 已提交
1312
/**
1313
 *	__skb_queue_after - queue a buffer at the list head
L
Linus Torvalds 已提交
1314
 *	@list: list to use
1315
 *	@prev: place after this buffer
L
Linus Torvalds 已提交
1316 1317
 *	@newsk: buffer to queue
 *
1318
 *	Queue a buffer int the middle of a list. This function takes no locks
L
Linus Torvalds 已提交
1319 1320 1321 1322
 *	and you must therefore hold required locks before calling it.
 *
 *	A buffer cannot be placed on two lists at the same time.
 */
1323 1324 1325
static inline void __skb_queue_after(struct sk_buff_head *list,
				     struct sk_buff *prev,
				     struct sk_buff *newsk)
L
Linus Torvalds 已提交
1326
{
1327
	__skb_insert(newsk, prev, prev->next, list);
L
Linus Torvalds 已提交
1328 1329
}

1330 1331
void skb_append(struct sk_buff *old, struct sk_buff *newsk,
		struct sk_buff_head *list);
1332

1333 1334 1335 1336 1337 1338 1339
static inline void __skb_queue_before(struct sk_buff_head *list,
				      struct sk_buff *next,
				      struct sk_buff *newsk)
{
	__skb_insert(newsk, next->prev, next, list);
}

1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
/**
 *	__skb_queue_head - queue a buffer at the list head
 *	@list: list to use
 *	@newsk: buffer to queue
 *
 *	Queue a buffer at the start of a list. This function takes no locks
 *	and you must therefore hold required locks before calling it.
 *
 *	A buffer cannot be placed on two lists at the same time.
 */
1350
void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1351 1352 1353 1354 1355 1356
static inline void __skb_queue_head(struct sk_buff_head *list,
				    struct sk_buff *newsk)
{
	__skb_queue_after(list, (struct sk_buff *)list, newsk);
}

L
Linus Torvalds 已提交
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
/**
 *	__skb_queue_tail - queue a buffer at the list tail
 *	@list: list to use
 *	@newsk: buffer to queue
 *
 *	Queue a buffer at the end of a list. This function takes no locks
 *	and you must therefore hold required locks before calling it.
 *
 *	A buffer cannot be placed on two lists at the same time.
 */
1367
void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
L
Linus Torvalds 已提交
1368 1369 1370
static inline void __skb_queue_tail(struct sk_buff_head *list,
				   struct sk_buff *newsk)
{
1371
	__skb_queue_before(list, (struct sk_buff *)list, newsk);
L
Linus Torvalds 已提交
1372 1373 1374 1375 1376 1377
}

/*
 * remove sk_buff from list. _Must_ be called atomically, and with
 * the list known..
 */
1378
void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
L
Linus Torvalds 已提交
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
{
	struct sk_buff *next, *prev;

	list->qlen--;
	next	   = skb->next;
	prev	   = skb->prev;
	skb->next  = skb->prev = NULL;
	next->prev = prev;
	prev->next = next;
}

1391 1392 1393 1394 1395 1396 1397 1398
/**
 *	__skb_dequeue - remove from the head of the queue
 *	@list: list to dequeue from
 *
 *	Remove the head of the list. This function does not take any locks
 *	so must be used with appropriate locks held only. The head item is
 *	returned or %NULL if the list is empty.
 */
1399
struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1400 1401 1402 1403 1404 1405 1406
static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
{
	struct sk_buff *skb = skb_peek(list);
	if (skb)
		__skb_unlink(skb, list);
	return skb;
}
L
Linus Torvalds 已提交
1407 1408 1409 1410 1411 1412 1413 1414 1415

/**
 *	__skb_dequeue_tail - remove from the tail of the queue
 *	@list: list to dequeue from
 *
 *	Remove the tail of the list. This function does not take any locks
 *	so must be used with appropriate locks held only. The tail item is
 *	returned or %NULL if the list is empty.
 */
1416
struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
L
Linus Torvalds 已提交
1417 1418 1419 1420 1421 1422 1423 1424 1425
static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
{
	struct sk_buff *skb = skb_peek_tail(list);
	if (skb)
		__skb_unlink(skb, list);
	return skb;
}


1426
static inline bool skb_is_nonlinear(const struct sk_buff *skb)
L
Linus Torvalds 已提交
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
{
	return skb->data_len;
}

static inline unsigned int skb_headlen(const struct sk_buff *skb)
{
	return skb->len - skb->data_len;
}

static inline int skb_pagelen(const struct sk_buff *skb)
{
	int i, len = 0;

	for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
E
Eric Dumazet 已提交
1441
		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
L
Linus Torvalds 已提交
1442 1443 1444
	return len + skb_headlen(skb);
}

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
/**
 * __skb_fill_page_desc - initialise a paged fragment in an skb
 * @skb: buffer containing fragment to be initialised
 * @i: paged fragment index to initialise
 * @page: the page to use for this fragment
 * @off: the offset to the data with @page
 * @size: the length of the data
 *
 * Initialises the @i'th fragment of @skb to point to &size bytes at
 * offset @off within @page.
 *
 * Does not take any additional reference on the fragment.
 */
static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
					struct page *page, int off, int size)
L
Linus Torvalds 已提交
1460 1461 1462
{
	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];

1463 1464 1465 1466 1467 1468 1469 1470 1471
	/*
	 * Propagate page->pfmemalloc to the skb if we can. The problem is
	 * that not all callers have unique ownership of the page. If
	 * pfmemalloc is set, we check the mapping as a mapping implies
	 * page->index is set (index and pfmemalloc share space).
	 * If it's a valid mapping, we cannot use page->pfmemalloc but we
	 * do not lose pfmemalloc information as the pages would not be
	 * allocated using __GFP_MEMALLOC.
	 */
1472
	frag->page.p		  = page;
L
Linus Torvalds 已提交
1473
	frag->page_offset	  = off;
E
Eric Dumazet 已提交
1474
	skb_frag_size_set(frag, size);
1475 1476 1477 1478

	page = compound_head(page);
	if (page->pfmemalloc && !page->mapping)
		skb->pfmemalloc	= true;
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
}

/**
 * skb_fill_page_desc - initialise a paged fragment in an skb
 * @skb: buffer containing fragment to be initialised
 * @i: paged fragment index to initialise
 * @page: the page to use for this fragment
 * @off: the offset to the data with @page
 * @size: the length of the data
 *
 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
M
Mathias Krause 已提交
1490
 * @skb to point to @size bytes at offset @off within @page. In
1491 1492 1493 1494 1495 1496 1497 1498
 * addition updates @skb such that @i is the last fragment.
 *
 * Does not take any additional reference on the fragment.
 */
static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
				      struct page *page, int off, int size)
{
	__skb_fill_page_desc(skb, i, page, off, size);
L
Linus Torvalds 已提交
1499 1500 1501
	skb_shinfo(skb)->nr_frags = i + 1;
}

1502 1503
void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
		     int size, unsigned int truesize);
P
Peter Zijlstra 已提交
1504

J
Jason Wang 已提交
1505 1506 1507
void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
			  unsigned int truesize);

L
Linus Torvalds 已提交
1508
#define SKB_PAGE_ASSERT(skb) 	BUG_ON(skb_shinfo(skb)->nr_frags)
1509
#define SKB_FRAG_ASSERT(skb) 	BUG_ON(skb_has_frag_list(skb))
L
Linus Torvalds 已提交
1510 1511
#define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))

1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
#ifdef NET_SKBUFF_DATA_USES_OFFSET
static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
{
	return skb->head + skb->tail;
}

static inline void skb_reset_tail_pointer(struct sk_buff *skb)
{
	skb->tail = skb->data - skb->head;
}

static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
{
	skb_reset_tail_pointer(skb);
	skb->tail += offset;
}
1528

1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
#else /* NET_SKBUFF_DATA_USES_OFFSET */
static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
{
	return skb->tail;
}

static inline void skb_reset_tail_pointer(struct sk_buff *skb)
{
	skb->tail = skb->data;
}

static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
{
	skb->tail = skb->data + offset;
}
1544

1545 1546
#endif /* NET_SKBUFF_DATA_USES_OFFSET */

L
Linus Torvalds 已提交
1547 1548 1549
/*
 *	Add data to an sk_buff
 */
M
Mathias Krause 已提交
1550
unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
1551
unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
L
Linus Torvalds 已提交
1552 1553
static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
{
1554
	unsigned char *tmp = skb_tail_pointer(skb);
L
Linus Torvalds 已提交
1555 1556 1557 1558 1559 1560
	SKB_LINEAR_ASSERT(skb);
	skb->tail += len;
	skb->len  += len;
	return tmp;
}

1561
unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
L
Linus Torvalds 已提交
1562 1563 1564 1565 1566 1567 1568
static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
{
	skb->data -= len;
	skb->len  += len;
	return skb->data;
}

1569
unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
L
Linus Torvalds 已提交
1570 1571 1572 1573 1574 1575 1576
static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
{
	skb->len -= len;
	BUG_ON(skb->len < skb->data_len);
	return skb->data += len;
}

1577 1578 1579 1580 1581
static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
{
	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
}

1582
unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
L
Linus Torvalds 已提交
1583 1584 1585 1586

static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
{
	if (len > skb_headlen(skb) &&
G
Gerrit Renker 已提交
1587
	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
L
Linus Torvalds 已提交
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
		return NULL;
	skb->len -= len;
	return skb->data += len;
}

static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
{
	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
}

static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
{
	if (likely(len <= skb_headlen(skb)))
		return 1;
	if (unlikely(len > skb->len))
		return 0;
G
Gerrit Renker 已提交
1604
	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
L
Linus Torvalds 已提交
1605 1606 1607 1608 1609 1610 1611 1612
}

/**
 *	skb_headroom - bytes at buffer head
 *	@skb: buffer to check
 *
 *	Return the number of bytes of free space at the head of an &sk_buff.
 */
1613
static inline unsigned int skb_headroom(const struct sk_buff *skb)
L
Linus Torvalds 已提交
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
{
	return skb->data - skb->head;
}

/**
 *	skb_tailroom - bytes at buffer end
 *	@skb: buffer to check
 *
 *	Return the number of bytes of free space at the tail of an sk_buff
 */
static inline int skb_tailroom(const struct sk_buff *skb)
{
1626
	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
L
Linus Torvalds 已提交
1627 1628
}

1629 1630 1631 1632 1633 1634 1635 1636 1637
/**
 *	skb_availroom - bytes at buffer end
 *	@skb: buffer to check
 *
 *	Return the number of bytes of free space at the tail of an sk_buff
 *	allocated by sk_stream_alloc()
 */
static inline int skb_availroom(const struct sk_buff *skb)
{
E
Eric Dumazet 已提交
1638 1639 1640 1641
	if (skb_is_nonlinear(skb))
		return 0;

	return skb->end - skb->tail - skb->reserved_tailroom;
1642 1643
}

L
Linus Torvalds 已提交
1644 1645 1646 1647 1648 1649 1650 1651
/**
 *	skb_reserve - adjust headroom
 *	@skb: buffer to alter
 *	@len: bytes to move
 *
 *	Increase the headroom of an empty &sk_buff by reducing the tail
 *	room. This is only allowed for an empty buffer.
 */
1652
static inline void skb_reserve(struct sk_buff *skb, int len)
L
Linus Torvalds 已提交
1653 1654 1655 1656 1657
{
	skb->data += len;
	skb->tail += len;
}

1658 1659
static inline void skb_reset_inner_headers(struct sk_buff *skb)
{
1660
	skb->inner_mac_header = skb->mac_header;
1661 1662 1663 1664
	skb->inner_network_header = skb->network_header;
	skb->inner_transport_header = skb->transport_header;
}

1665 1666 1667 1668 1669
static inline void skb_reset_mac_len(struct sk_buff *skb)
{
	skb->mac_len = skb->network_header - skb->mac_header;
}

1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
static inline unsigned char *skb_inner_transport_header(const struct sk_buff
							*skb)
{
	return skb->head + skb->inner_transport_header;
}

static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
{
	skb->inner_transport_header = skb->data - skb->head;
}

static inline void skb_set_inner_transport_header(struct sk_buff *skb,
						   const int offset)
{
	skb_reset_inner_transport_header(skb);
	skb->inner_transport_header += offset;
}

static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
{
	return skb->head + skb->inner_network_header;
}

static inline void skb_reset_inner_network_header(struct sk_buff *skb)
{
	skb->inner_network_header = skb->data - skb->head;
}

static inline void skb_set_inner_network_header(struct sk_buff *skb,
						const int offset)
{
	skb_reset_inner_network_header(skb);
	skb->inner_network_header += offset;
}

1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
{
	return skb->head + skb->inner_mac_header;
}

static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
{
	skb->inner_mac_header = skb->data - skb->head;
}

static inline void skb_set_inner_mac_header(struct sk_buff *skb,
					    const int offset)
{
	skb_reset_inner_mac_header(skb);
	skb->inner_mac_header += offset;
}
1721 1722
static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
{
C
Cong Wang 已提交
1723
	return skb->transport_header != (typeof(skb->transport_header))~0U;
1724 1725
}

1726 1727
static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
{
1728
	return skb->head + skb->transport_header;
1729 1730
}

1731 1732
static inline void skb_reset_transport_header(struct sk_buff *skb)
{
1733
	skb->transport_header = skb->data - skb->head;
1734 1735
}

1736 1737 1738
static inline void skb_set_transport_header(struct sk_buff *skb,
					    const int offset)
{
1739 1740
	skb_reset_transport_header(skb);
	skb->transport_header += offset;
1741 1742
}

1743 1744
static inline unsigned char *skb_network_header(const struct sk_buff *skb)
{
1745
	return skb->head + skb->network_header;
1746 1747
}

1748 1749
static inline void skb_reset_network_header(struct sk_buff *skb)
{
1750
	skb->network_header = skb->data - skb->head;
1751 1752
}

1753 1754
static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
{
1755 1756
	skb_reset_network_header(skb);
	skb->network_header += offset;
1757 1758
}

1759
static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1760
{
1761
	return skb->head + skb->mac_header;
1762 1763
}

1764
static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1765
{
C
Cong Wang 已提交
1766
	return skb->mac_header != (typeof(skb->mac_header))~0U;
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
}

static inline void skb_reset_mac_header(struct sk_buff *skb)
{
	skb->mac_header = skb->data - skb->head;
}

static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
{
	skb_reset_mac_header(skb);
	skb->mac_header += offset;
}

1780 1781 1782 1783 1784
static inline void skb_pop_mac_header(struct sk_buff *skb)
{
	skb->mac_header = skb->network_header;
}

1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
static inline void skb_probe_transport_header(struct sk_buff *skb,
					      const int offset_hint)
{
	struct flow_keys keys;

	if (skb_transport_header_was_set(skb))
		return;
	else if (skb_flow_dissect(skb, &keys))
		skb_set_transport_header(skb, keys.thoff);
	else
		skb_set_transport_header(skb, offset_hint);
}

1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
static inline void skb_mac_header_rebuild(struct sk_buff *skb)
{
	if (skb_mac_header_was_set(skb)) {
		const unsigned char *old_mac = skb_mac_header(skb);

		skb_set_mac_header(skb, -skb->mac_len);
		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
	}
}

1808 1809 1810 1811 1812
static inline int skb_checksum_start_offset(const struct sk_buff *skb)
{
	return skb->csum_start - skb_headroom(skb);
}

1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
static inline int skb_transport_offset(const struct sk_buff *skb)
{
	return skb_transport_header(skb) - skb->data;
}

static inline u32 skb_network_header_len(const struct sk_buff *skb)
{
	return skb->transport_header - skb->network_header;
}

1823 1824 1825 1826 1827
static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
{
	return skb->inner_transport_header - skb->inner_network_header;
}

1828 1829 1830 1831
static inline int skb_network_offset(const struct sk_buff *skb)
{
	return skb_network_header(skb) - skb->data;
}
1832

1833 1834 1835 1836 1837
static inline int skb_inner_network_offset(const struct sk_buff *skb)
{
	return skb_inner_network_header(skb) - skb->data;
}

1838 1839 1840 1841 1842
static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
{
	return pskb_may_pull(skb, skb_network_offset(skb) + len);
}

L
Linus Torvalds 已提交
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
/*
 * CPUs often take a performance hit when accessing unaligned memory
 * locations. The actual performance hit varies, it can be small if the
 * hardware handles it or large if we have to take an exception and fix it
 * in software.
 *
 * Since an ethernet header is 14 bytes network drivers often end up with
 * the IP header at an unaligned offset. The IP header can be aligned by
 * shifting the start of the packet by 2 bytes. Drivers should do this
 * with:
 *
1854
 * skb_reserve(skb, NET_IP_ALIGN);
L
Linus Torvalds 已提交
1855 1856 1857 1858
 *
 * The downside to this alignment of the IP header is that the DMA is now
 * unaligned. On some architectures the cost of an unaligned DMA is high
 * and this cost outweighs the gains made by aligning the IP header.
1859
 *
L
Linus Torvalds 已提交
1860 1861 1862 1863 1864 1865 1866
 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
 * to be overridden.
 */
#ifndef NET_IP_ALIGN
#define NET_IP_ALIGN	2
#endif

1867 1868 1869 1870
/*
 * The networking layer reserves some headroom in skb data (via
 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
 * the header has to grow. In the default case, if the header has to grow
1871
 * 32 bytes or less we avoid the reallocation.
1872 1873 1874 1875 1876 1877 1878
 *
 * Unfortunately this headroom changes the DMA alignment of the resulting
 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
 * on some architectures. An architecture can override this value,
 * perhaps setting it to a cacheline in size (since that will maintain
 * cacheline alignment of the DMA). It must be a power of 2.
 *
1879
 * Various parts of the networking layer expect at least 32 bytes of
1880
 * headroom, you should not reduce this.
1881 1882 1883 1884
 *
 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
 * to reduce average number of cache lines per packet.
 * get_rps_cpus() for example only access one 64 bytes aligned block :
1885
 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1886 1887
 */
#ifndef NET_SKB_PAD
1888
#define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
1889 1890
#endif

1891
int ___pskb_trim(struct sk_buff *skb, unsigned int len);
L
Linus Torvalds 已提交
1892 1893 1894

static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
{
1895
	if (unlikely(skb_is_nonlinear(skb))) {
1896 1897 1898
		WARN_ON(1);
		return;
	}
1899 1900
	skb->len = len;
	skb_set_tail_pointer(skb, len);
L
Linus Torvalds 已提交
1901 1902
}

1903
void skb_trim(struct sk_buff *skb, unsigned int len);
L
Linus Torvalds 已提交
1904 1905 1906

static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
{
1907 1908 1909 1910
	if (skb->data_len)
		return ___pskb_trim(skb, len);
	__skb_trim(skb, len);
	return 0;
L
Linus Torvalds 已提交
1911 1912 1913 1914 1915 1916 1917
}

static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
{
	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
}

1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
/**
 *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
 *	@skb: buffer to alter
 *	@len: new length
 *
 *	This is identical to pskb_trim except that the caller knows that
 *	the skb is not cloned so we should never get an error due to out-
 *	of-memory.
 */
static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
{
	int err = pskb_trim(skb, len);
	BUG_ON(err);
}

L
Linus Torvalds 已提交
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
/**
 *	skb_orphan - orphan a buffer
 *	@skb: buffer to orphan
 *
 *	If a buffer currently has an owner then we call the owner's
 *	destructor function and make the @skb unowned. The buffer continues
 *	to exist but is no longer charged to its former owner.
 */
static inline void skb_orphan(struct sk_buff *skb)
{
E
Eric Dumazet 已提交
1943
	if (skb->destructor) {
L
Linus Torvalds 已提交
1944
		skb->destructor(skb);
E
Eric Dumazet 已提交
1945 1946
		skb->destructor = NULL;
		skb->sk		= NULL;
1947 1948
	} else {
		BUG_ON(skb->sk);
E
Eric Dumazet 已提交
1949
	}
L
Linus Torvalds 已提交
1950 1951
}

1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
/**
 *	skb_orphan_frags - orphan the frags contained in a buffer
 *	@skb: buffer to orphan frags from
 *	@gfp_mask: allocation mask for replacement pages
 *
 *	For each frag in the SKB which needs a destructor (i.e. has an
 *	owner) create a copy of that frag and release the original
 *	page by calling the destructor.
 */
static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
{
	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
		return 0;
	return skb_copy_ubufs(skb, gfp_mask);
}

L
Linus Torvalds 已提交
1968 1969 1970 1971 1972 1973 1974 1975
/**
 *	__skb_queue_purge - empty a list
 *	@list: list to empty
 *
 *	Delete all buffers on an &sk_buff list. Each buffer is removed from
 *	the list and one reference dropped. This function does not take the
 *	list lock and the caller must hold the relevant locks to use it.
 */
1976
void skb_queue_purge(struct sk_buff_head *list);
L
Linus Torvalds 已提交
1977 1978 1979 1980 1981 1982 1983
static inline void __skb_queue_purge(struct sk_buff_head *list)
{
	struct sk_buff *skb;
	while ((skb = __skb_dequeue(list)) != NULL)
		kfree_skb(skb);
}

1984 1985 1986 1987
#define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768)
#define NETDEV_FRAG_PAGE_MAX_SIZE  (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER)
#define NETDEV_PAGECNT_MAX_BIAS	   NETDEV_FRAG_PAGE_MAX_SIZE

1988
void *netdev_alloc_frag(unsigned int fragsz);
L
Linus Torvalds 已提交
1989

1990 1991
struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
				   gfp_t gfp_mask);
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

/**
 *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
 *	@dev: network device to receive on
 *	@length: length to allocate
 *
 *	Allocate a new &sk_buff and assign it a usage count of one. The
 *	buffer has unspecified headroom built in. Users should allocate
 *	the headroom they think they need without accounting for the
 *	built in space. The built in space is used for optimisations.
 *
 *	%NULL is returned if there is no free memory. Although this function
 *	allocates memory it can be called from an interrupt.
 */
static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2007
					       unsigned int length)
2008 2009 2010 2011
{
	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
}

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
/* legacy helper around __netdev_alloc_skb() */
static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
					      gfp_t gfp_mask)
{
	return __netdev_alloc_skb(NULL, length, gfp_mask);
}

/* legacy helper around netdev_alloc_skb() */
static inline struct sk_buff *dev_alloc_skb(unsigned int length)
{
	return netdev_alloc_skb(NULL, length);
}


2026 2027
static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
		unsigned int length, gfp_t gfp)
2028
{
2029
	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2030 2031 2032 2033 2034 2035

	if (NET_IP_ALIGN && skb)
		skb_reserve(skb, NET_IP_ALIGN);
	return skb;
}

2036 2037 2038 2039 2040 2041
static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
		unsigned int length)
{
	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
}

2042 2043
/**
 *	__skb_alloc_pages - allocate pages for ps-rx on a skb and preserve pfmemalloc data
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
 *	@gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
 *	@skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
 *	@order: size of the allocation
 *
 * 	Allocate a new page.
 *
 * 	%NULL is returned if there is no free memory.
*/
static inline struct page *__skb_alloc_pages(gfp_t gfp_mask,
					      struct sk_buff *skb,
					      unsigned int order)
{
	struct page *page;

	gfp_mask |= __GFP_COLD;

	if (!(gfp_mask & __GFP_NOMEMALLOC))
		gfp_mask |= __GFP_MEMALLOC;

	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
	if (skb && page && page->pfmemalloc)
		skb->pfmemalloc = true;

	return page;
}

/**
 *	__skb_alloc_page - allocate a page for ps-rx for a given skb and preserve pfmemalloc data
 *	@gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
 *	@skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
 *
 * 	Allocate a new page.
 *
 * 	%NULL is returned if there is no free memory.
 */
static inline struct page *__skb_alloc_page(gfp_t gfp_mask,
					     struct sk_buff *skb)
{
	return __skb_alloc_pages(gfp_mask, skb, 0);
}

/**
 *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
 *	@page: The page that was allocated from skb_alloc_page
 *	@skb: The skb that may need pfmemalloc set
 */
static inline void skb_propagate_pfmemalloc(struct page *page,
					     struct sk_buff *skb)
{
	if (page && page->pfmemalloc)
		skb->pfmemalloc = true;
}

2097
/**
2098
 * skb_frag_page - retrieve the page referred to by a paged fragment
2099 2100 2101 2102 2103 2104
 * @frag: the paged fragment
 *
 * Returns the &struct page associated with @frag.
 */
static inline struct page *skb_frag_page(const skb_frag_t *frag)
{
2105
	return frag->page.p;
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
}

/**
 * __skb_frag_ref - take an addition reference on a paged fragment.
 * @frag: the paged fragment
 *
 * Takes an additional reference on the paged fragment @frag.
 */
static inline void __skb_frag_ref(skb_frag_t *frag)
{
	get_page(skb_frag_page(frag));
}

/**
 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
 * @skb: the buffer
 * @f: the fragment offset.
 *
 * Takes an additional reference on the @f'th paged fragment of @skb.
 */
static inline void skb_frag_ref(struct sk_buff *skb, int f)
{
	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
}

/**
 * __skb_frag_unref - release a reference on a paged fragment.
 * @frag: the paged fragment
 *
 * Releases a reference on the paged fragment @frag.
 */
static inline void __skb_frag_unref(skb_frag_t *frag)
{
	put_page(skb_frag_page(frag));
}

/**
 * skb_frag_unref - release a reference on a paged fragment of an skb.
 * @skb: the buffer
 * @f: the fragment offset
 *
 * Releases a reference on the @f'th paged fragment of @skb.
 */
static inline void skb_frag_unref(struct sk_buff *skb, int f)
{
	__skb_frag_unref(&skb_shinfo(skb)->frags[f]);
}

/**
 * skb_frag_address - gets the address of the data contained in a paged fragment
 * @frag: the paged fragment buffer
 *
 * Returns the address of the data within @frag. The page must already
 * be mapped.
 */
static inline void *skb_frag_address(const skb_frag_t *frag)
{
	return page_address(skb_frag_page(frag)) + frag->page_offset;
}

/**
 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
 * @frag: the paged fragment buffer
 *
 * Returns the address of the data within @frag. Checks that the page
 * is mapped and returns %NULL otherwise.
 */
static inline void *skb_frag_address_safe(const skb_frag_t *frag)
{
	void *ptr = page_address(skb_frag_page(frag));
	if (unlikely(!ptr))
		return NULL;

	return ptr + frag->page_offset;
}

/**
 * __skb_frag_set_page - sets the page contained in a paged fragment
 * @frag: the paged fragment
 * @page: the page to set
 *
 * Sets the fragment @frag to contain @page.
 */
static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
{
2191
	frag->page.p = page;
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
}

/**
 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
 * @skb: the buffer
 * @f: the fragment offset
 * @page: the page to set
 *
 * Sets the @f'th fragment of @skb to contain @page.
 */
static inline void skb_frag_set_page(struct sk_buff *skb, int f,
				     struct page *page)
{
	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
}

E
Eric Dumazet 已提交
2208 2209
bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);

2210 2211
/**
 * skb_frag_dma_map - maps a paged fragment via the DMA API
2212
 * @dev: the device to map the fragment to
2213 2214 2215 2216
 * @frag: the paged fragment to map
 * @offset: the offset within the fragment (starting at the
 *          fragment's own offset)
 * @size: the number of bytes to map
2217
 * @dir: the direction of the mapping (%PCI_DMA_*)
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
 *
 * Maps the page associated with @frag to @device.
 */
static inline dma_addr_t skb_frag_dma_map(struct device *dev,
					  const skb_frag_t *frag,
					  size_t offset, size_t size,
					  enum dma_data_direction dir)
{
	return dma_map_page(dev, skb_frag_page(frag),
			    frag->page_offset + offset, size, dir);
}

E
Eric Dumazet 已提交
2230 2231 2232 2233 2234 2235
static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
					gfp_t gfp_mask)
{
	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
}

2236 2237 2238 2239 2240 2241 2242 2243
/**
 *	skb_clone_writable - is the header of a clone writable
 *	@skb: buffer to check
 *	@len: length up to which to write
 *
 *	Returns true if modifying the header part of the cloned buffer
 *	does not requires the data to be copied.
 */
2244
static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2245 2246 2247 2248 2249
{
	return !skb_header_cloned(skb) &&
	       skb_headroom(skb) + len <= skb->hdr_len;
}

H
Herbert Xu 已提交
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
			    int cloned)
{
	int delta = 0;

	if (headroom > skb_headroom(skb))
		delta = headroom - skb_headroom(skb);

	if (delta || cloned)
		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
					GFP_ATOMIC);
	return 0;
}

L
Linus Torvalds 已提交
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
/**
 *	skb_cow - copy header of skb when it is required
 *	@skb: buffer to cow
 *	@headroom: needed headroom
 *
 *	If the skb passed lacks sufficient headroom or its data part
 *	is shared, data is reallocated. If reallocation fails, an error
 *	is returned and original skb is not changed.
 *
 *	The result is skb with writable area skb->head...skb->tail
 *	and at least @headroom of space at head.
 */
static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
{
H
Herbert Xu 已提交
2278 2279
	return __skb_cow(skb, headroom, skb_cloned(skb));
}
L
Linus Torvalds 已提交
2280

H
Herbert Xu 已提交
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
/**
 *	skb_cow_head - skb_cow but only making the head writable
 *	@skb: buffer to cow
 *	@headroom: needed headroom
 *
 *	This function is identical to skb_cow except that we replace the
 *	skb_cloned check by skb_header_cloned.  It should be used when
 *	you only need to push on some header and do not need to modify
 *	the data.
 */
static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
{
	return __skb_cow(skb, headroom, skb_header_cloned(skb));
L
Linus Torvalds 已提交
2294 2295 2296 2297 2298 2299 2300 2301 2302
}

/**
 *	skb_padto	- pad an skbuff up to a minimal size
 *	@skb: buffer to pad
 *	@len: minimal length
 *
 *	Pads up a buffer to ensure the trailing bytes exist and are
 *	blanked. If the buffer already contains sufficient data it
2303 2304
 *	is untouched. Otherwise it is extended. Returns zero on
 *	success. The skb is freed on error.
L
Linus Torvalds 已提交
2305 2306
 */
 
2307
static inline int skb_padto(struct sk_buff *skb, unsigned int len)
L
Linus Torvalds 已提交
2308 2309 2310
{
	unsigned int size = skb->len;
	if (likely(size >= len))
2311
		return 0;
G
Gerrit Renker 已提交
2312
	return skb_pad(skb, len - size);
L
Linus Torvalds 已提交
2313 2314 2315 2316 2317 2318 2319 2320 2321
}

static inline int skb_add_data(struct sk_buff *skb,
			       char __user *from, int copy)
{
	const int off = skb->len;

	if (skb->ip_summed == CHECKSUM_NONE) {
		int err = 0;
2322
		__wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
L
Linus Torvalds 已提交
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
							    copy, 0, &err);
		if (!err) {
			skb->csum = csum_block_add(skb->csum, csum, off);
			return 0;
		}
	} else if (!copy_from_user(skb_put(skb, copy), from, copy))
		return 0;

	__skb_trim(skb, off);
	return -EFAULT;
}

2335 2336
static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
				    const struct page *page, int off)
L
Linus Torvalds 已提交
2337 2338
{
	if (i) {
E
Eric Dumazet 已提交
2339
		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
L
Linus Torvalds 已提交
2340

2341
		return page == skb_frag_page(frag) &&
E
Eric Dumazet 已提交
2342
		       off == frag->page_offset + skb_frag_size(frag);
L
Linus Torvalds 已提交
2343
	}
2344
	return false;
L
Linus Torvalds 已提交
2345 2346
}

H
Herbert Xu 已提交
2347 2348 2349 2350 2351
static inline int __skb_linearize(struct sk_buff *skb)
{
	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
}

L
Linus Torvalds 已提交
2352 2353 2354 2355 2356 2357 2358
/**
 *	skb_linearize - convert paged skb to linear one
 *	@skb: buffer to linarize
 *
 *	If there is no free memory -ENOMEM is returned, otherwise zero
 *	is returned and the old skb data released.
 */
H
Herbert Xu 已提交
2359 2360 2361 2362 2363
static inline int skb_linearize(struct sk_buff *skb)
{
	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
}

2364 2365 2366 2367 2368 2369 2370 2371 2372
/**
 * skb_has_shared_frag - can any frag be overwritten
 * @skb: buffer to test
 *
 * Return true if the skb has at least one frag that might be modified
 * by an external entity (as in vmsplice()/sendfile())
 */
static inline bool skb_has_shared_frag(const struct sk_buff *skb)
{
2373 2374
	return skb_is_nonlinear(skb) &&
	       skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2375 2376
}

H
Herbert Xu 已提交
2377 2378 2379 2380 2381 2382 2383 2384
/**
 *	skb_linearize_cow - make sure skb is linear and writable
 *	@skb: buffer to process
 *
 *	If there is no free memory -ENOMEM is returned, otherwise zero
 *	is returned and the old skb data released.
 */
static inline int skb_linearize_cow(struct sk_buff *skb)
L
Linus Torvalds 已提交
2385
{
H
Herbert Xu 已提交
2386 2387
	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
	       __skb_linearize(skb) : 0;
L
Linus Torvalds 已提交
2388 2389 2390 2391 2392 2393 2394 2395 2396
}

/**
 *	skb_postpull_rcsum - update checksum for received skb after pull
 *	@skb: buffer to update
 *	@start: start of data before pull
 *	@len: length of data pulled
 *
 *	After doing a pull on a received packet, you need to call this to
2397 2398
 *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
 *	CHECKSUM_NONE so that it can be recomputed from scratch.
L
Linus Torvalds 已提交
2399 2400 2401
 */

static inline void skb_postpull_rcsum(struct sk_buff *skb,
2402
				      const void *start, unsigned int len)
L
Linus Torvalds 已提交
2403
{
2404
	if (skb->ip_summed == CHECKSUM_COMPLETE)
L
Linus Torvalds 已提交
2405 2406 2407
		skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
}

2408 2409
unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);

2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
/**
 *	pskb_trim_rcsum - trim received skb and update checksum
 *	@skb: buffer to trim
 *	@len: new length
 *
 *	This is exactly the same as pskb_trim except that it ensures the
 *	checksum of received packets are still valid after the operation.
 */

static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
{
	if (likely(len >= skb->len))
		return 0;
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		skb->ip_summed = CHECKSUM_NONE;
	return __pskb_trim(skb, len);
}

L
Linus Torvalds 已提交
2428 2429
#define skb_queue_walk(queue, skb) \
		for (skb = (queue)->next;					\
2430
		     skb != (struct sk_buff *)(queue);				\
L
Linus Torvalds 已提交
2431 2432
		     skb = skb->next)

2433 2434 2435 2436 2437
#define skb_queue_walk_safe(queue, skb, tmp)					\
		for (skb = (queue)->next, tmp = skb->next;			\
		     skb != (struct sk_buff *)(queue);				\
		     skb = tmp, tmp = skb->next)

2438
#define skb_queue_walk_from(queue, skb)						\
2439
		for (; skb != (struct sk_buff *)(queue);			\
2440 2441 2442 2443 2444 2445 2446
		     skb = skb->next)

#define skb_queue_walk_from_safe(queue, skb, tmp)				\
		for (tmp = skb->next;						\
		     skb != (struct sk_buff *)(queue);				\
		     skb = tmp, tmp = skb->next)

2447 2448
#define skb_queue_reverse_walk(queue, skb) \
		for (skb = (queue)->prev;					\
2449
		     skb != (struct sk_buff *)(queue);				\
2450 2451
		     skb = skb->prev)

2452 2453 2454 2455 2456 2457 2458 2459 2460
#define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
		for (skb = (queue)->prev, tmp = skb->prev;			\
		     skb != (struct sk_buff *)(queue);				\
		     skb = tmp, tmp = skb->prev)

#define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
		for (tmp = skb->prev;						\
		     skb != (struct sk_buff *)(queue);				\
		     skb = tmp, tmp = skb->prev)
L
Linus Torvalds 已提交
2461

2462
static inline bool skb_has_frag_list(const struct sk_buff *skb)
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
{
	return skb_shinfo(skb)->frag_list != NULL;
}

static inline void skb_frag_list_init(struct sk_buff *skb)
{
	skb_shinfo(skb)->frag_list = NULL;
}

static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
{
	frag->next = skb_shinfo(skb)->frag_list;
	skb_shinfo(skb)->frag_list = frag;
}

#define skb_walk_frags(skb, iter)	\
	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)

2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
				    int *peeked, int *off, int *err);
struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
				  int *err);
unsigned int datagram_poll(struct file *file, struct socket *sock,
			   struct poll_table_struct *wait);
int skb_copy_datagram_iovec(const struct sk_buff *from, int offset,
			    struct iovec *to, int size);
int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, int hlen,
				     struct iovec *iov);
int skb_copy_datagram_from_iovec(struct sk_buff *skb, int offset,
				 const struct iovec *from, int from_offset,
				 int len);
int zerocopy_sg_from_iovec(struct sk_buff *skb, const struct iovec *frm,
			   int offset, size_t count);
int skb_copy_datagram_const_iovec(const struct sk_buff *from, int offset,
				  const struct iovec *to, int to_offset,
				  int size);
void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb);
int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
			      int len, __wsum csum);
int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
		    struct pipe_inode_info *pipe, unsigned int len,
		    unsigned int flags);
void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
2510
unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
2511 2512
int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
		 int len, int hlen);
2513 2514 2515
void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
void skb_scrub_packet(struct sk_buff *skb, bool xnet);
2516
unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
2517
struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
2518

2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
struct skb_checksum_ops {
	__wsum (*update)(const void *mem, int len, __wsum wsum);
	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
};

__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
		      __wsum csum, const struct skb_checksum_ops *ops);
__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
		    __wsum csum);

L
Linus Torvalds 已提交
2529 2530 2531 2532 2533
static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
				       int len, void *buffer)
{
	int hlen = skb_headlen(skb);

2534
	if (hlen - offset >= len)
L
Linus Torvalds 已提交
2535 2536 2537 2538 2539 2540 2541 2542
		return skb->data + offset;

	if (skb_copy_bits(skb, offset, buffer, len) < 0)
		return NULL;

	return buffer;
}

2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
/**
 *	skb_needs_linearize - check if we need to linearize a given skb
 *			      depending on the given device features.
 *	@skb: socket buffer to check
 *	@features: net device features
 *
 *	Returns true if either:
 *	1. skb has frag_list and the device doesn't support FRAGLIST, or
 *	2. skb is fragmented and the device does not support SG.
 */
static inline bool skb_needs_linearize(struct sk_buff *skb,
				       netdev_features_t features)
{
	return skb_is_nonlinear(skb) &&
	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
}

2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
					     void *to,
					     const unsigned int len)
{
	memcpy(to, skb->data, len);
}

static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
						    const int offset, void *to,
						    const unsigned int len)
{
	memcpy(to, skb->data + offset, len);
}

2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
static inline void skb_copy_to_linear_data(struct sk_buff *skb,
					   const void *from,
					   const unsigned int len)
{
	memcpy(skb->data, from, len);
}

static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
						  const int offset,
						  const void *from,
						  const unsigned int len)
{
	memcpy(skb->data + offset, from, len);
}

2590
void skb_init(void);
L
Linus Torvalds 已提交
2591

2592 2593 2594 2595 2596
static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
{
	return skb->tstamp;
}

2597 2598 2599 2600 2601 2602 2603 2604 2605
/**
 *	skb_get_timestamp - get timestamp from a skb
 *	@skb: skb to get stamp from
 *	@stamp: pointer to struct timeval to store stamp in
 *
 *	Timestamps are stored in the skb as offsets to a base timestamp.
 *	This function converts the offset back to a struct timeval and stores
 *	it in stamp.
 */
2606 2607
static inline void skb_get_timestamp(const struct sk_buff *skb,
				     struct timeval *stamp)
2608
{
2609
	*stamp = ktime_to_timeval(skb->tstamp);
2610 2611
}

2612 2613 2614 2615 2616 2617
static inline void skb_get_timestampns(const struct sk_buff *skb,
				       struct timespec *stamp)
{
	*stamp = ktime_to_timespec(skb->tstamp);
}

2618
static inline void __net_timestamp(struct sk_buff *skb)
2619
{
2620
	skb->tstamp = ktime_get_real();
2621 2622
}

2623 2624 2625 2626 2627
static inline ktime_t net_timedelta(ktime_t t)
{
	return ktime_sub(ktime_get_real(), t);
}

2628 2629 2630 2631
static inline ktime_t net_invalid_timestamp(void)
{
	return ktime_set(0, 0);
}
2632

2633 2634
#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING

2635 2636
void skb_clone_tx_timestamp(struct sk_buff *skb);
bool skb_defer_rx_timestamp(struct sk_buff *skb);
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653

#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */

static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
{
}

static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
{
	return false;
}

#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */

/**
 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
 *
2654 2655 2656 2657 2658
 * PHY drivers may accept clones of transmitted packets for
 * timestamping via their phy_driver.txtstamp method. These drivers
 * must call this function to return the skb back to the stack, with
 * or without a timestamp.
 *
2659
 * @skb: clone of the the original outgoing packet
2660
 * @hwtstamps: hardware time stamps, may be NULL if not available
2661 2662 2663 2664 2665
 *
 */
void skb_complete_tx_timestamp(struct sk_buff *skb,
			       struct skb_shared_hwtstamps *hwtstamps);

2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
/**
 * skb_tstamp_tx - queue clone of skb with send time stamps
 * @orig_skb:	the original outgoing packet
 * @hwtstamps:	hardware time stamps, may be NULL if not available
 *
 * If the skb has a socket associated, then this function clones the
 * skb (thus sharing the actual data and optional structures), stores
 * the optional hardware time stamping information (if non NULL) or
 * generates a software time stamp (otherwise), then queues the clone
 * to the error queue of the socket.  Errors are silently ignored.
 */
2677 2678
void skb_tstamp_tx(struct sk_buff *orig_skb,
		   struct skb_shared_hwtstamps *hwtstamps);
2679

2680 2681
static inline void sw_tx_timestamp(struct sk_buff *skb)
{
2682 2683
	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
	    !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2684 2685 2686 2687 2688 2689 2690
		skb_tstamp_tx(skb, NULL);
}

/**
 * skb_tx_timestamp() - Driver hook for transmit timestamping
 *
 * Ethernet MAC Drivers should call this function in their hard_xmit()
2691
 * function immediately before giving the sk_buff to the MAC hardware.
2692
 *
2693 2694 2695 2696
 * Specifically, one should make absolutely sure that this function is
 * called before TX completion of this packet can trigger.  Otherwise
 * the packet could potentially already be freed.
 *
2697 2698 2699 2700
 * @skb: A socket buffer.
 */
static inline void skb_tx_timestamp(struct sk_buff *skb)
{
2701
	skb_clone_tx_timestamp(skb);
2702 2703 2704
	sw_tx_timestamp(skb);
}

2705 2706 2707 2708 2709 2710 2711 2712 2713
/**
 * skb_complete_wifi_ack - deliver skb with wifi status
 *
 * @skb: the original outgoing packet
 * @acked: ack status
 *
 */
void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);

2714 2715
__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
__sum16 __skb_checksum_complete(struct sk_buff *skb);
2716

2717 2718 2719 2720 2721
static inline int skb_csum_unnecessary(const struct sk_buff *skb)
{
	return skb->ip_summed & CHECKSUM_UNNECESSARY;
}

2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
/**
 *	skb_checksum_complete - Calculate checksum of an entire packet
 *	@skb: packet to process
 *
 *	This function calculates the checksum over the entire packet plus
 *	the value of skb->csum.  The latter can be used to supply the
 *	checksum of a pseudo header as used by TCP/UDP.  It returns the
 *	checksum.
 *
 *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
 *	this function can be used to verify that checksum on received
 *	packets.  In that case the function should return zero if the
 *	checksum is correct.  In particular, this function will return zero
 *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
 *	hardware has already verified the correctness of the checksum.
 */
2738
static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2739
{
2740 2741
	return skb_csum_unnecessary(skb) ?
	       0 : __skb_checksum_complete(skb);
2742 2743
}

2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
/* Check if we need to perform checksum complete validation.
 *
 * Returns true if checksum complete is needed, false otherwise
 * (either checksum is unnecessary or zero checksum is allowed).
 */
static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
						  bool zero_okay,
						  __sum16 check)
{
	if (skb_csum_unnecessary(skb)) {
		return false;
	} else if (zero_okay && !check) {
		skb->ip_summed = CHECKSUM_UNNECESSARY;
		return false;
	}

	return true;
}

/* For small packets <= CHECKSUM_BREAK peform checksum complete directly
 * in checksum_init.
 */
#define CHECKSUM_BREAK 76

/* Validate (init) checksum based on checksum complete.
 *
 * Return values:
 *   0: checksum is validated or try to in skb_checksum_complete. In the latter
 *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
 *	checksum is stored in skb->csum for use in __skb_checksum_complete
 *   non-zero: value of invalid checksum
 *
 */
static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
						       bool complete,
						       __wsum psum)
{
	if (skb->ip_summed == CHECKSUM_COMPLETE) {
		if (!csum_fold(csum_add(psum, skb->csum))) {
			skb->ip_summed = CHECKSUM_UNNECESSARY;
			return 0;
		}
	}

	skb->csum = psum;

	if (complete || skb->len <= CHECKSUM_BREAK)
		return __skb_checksum_complete(skb);

	return 0;
}

static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
{
	return 0;
}

/* Perform checksum validate (init). Note that this is a macro since we only
 * want to calculate the pseudo header which is an input function if necessary.
 * First we try to validate without any computation (checksum unnecessary) and
 * then calculate based on checksum complete calling the function to compute
 * pseudo header.
 *
 * Return values:
 *   0: checksum is validated or try to in skb_checksum_complete
 *   non-zero: value of invalid checksum
 */
#define __skb_checksum_validate(skb, proto, complete,			\
				zero_okay, check, compute_pseudo)	\
({									\
	__sum16 __ret = 0;						\
	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
		__ret = __skb_checksum_validate_complete(skb,		\
				complete, compute_pseudo(skb, proto));	\
	__ret;								\
})

#define skb_checksum_init(skb, proto, compute_pseudo)			\
	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)

#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)

#define skb_checksum_validate(skb, proto, compute_pseudo)		\
	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)

#define skb_checksum_validate_zero_check(skb, proto, check,		\
					 compute_pseudo)		\
	__skb_checksum_validate_(skb, proto, true, true, check, compute_pseudo)

#define skb_checksum_simple_validate(skb)				\
	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)

2837
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2838
void nf_conntrack_destroy(struct nf_conntrack *nfct);
L
Linus Torvalds 已提交
2839 2840 2841
static inline void nf_conntrack_put(struct nf_conntrack *nfct)
{
	if (nfct && atomic_dec_and_test(&nfct->use))
2842
		nf_conntrack_destroy(nfct);
L
Linus Torvalds 已提交
2843 2844 2845 2846 2847 2848
}
static inline void nf_conntrack_get(struct nf_conntrack *nfct)
{
	if (nfct)
		atomic_inc(&nfct->use);
}
2849
#endif
L
Linus Torvalds 已提交
2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
#ifdef CONFIG_BRIDGE_NETFILTER
static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
{
	if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
		kfree(nf_bridge);
}
static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
{
	if (nf_bridge)
		atomic_inc(&nf_bridge->use);
}
#endif /* CONFIG_BRIDGE_NETFILTER */
2862 2863
static inline void nf_reset(struct sk_buff *skb)
{
2864
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2865 2866
	nf_conntrack_put(skb->nfct);
	skb->nfct = NULL;
2867
#endif
2868 2869 2870 2871 2872 2873
#ifdef CONFIG_BRIDGE_NETFILTER
	nf_bridge_put(skb->nf_bridge);
	skb->nf_bridge = NULL;
#endif
}

2874 2875
static inline void nf_reset_trace(struct sk_buff *skb)
{
2876
#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
G
Gao feng 已提交
2877 2878
	skb->nf_trace = 0;
#endif
2879 2880
}

2881 2882 2883
/* Note: This doesn't put any conntrack and bridge info in dst. */
static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
{
2884
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2885 2886 2887
	dst->nfct = src->nfct;
	nf_conntrack_get(src->nfct);
	dst->nfctinfo = src->nfctinfo;
2888
#endif
2889 2890 2891 2892
#ifdef CONFIG_BRIDGE_NETFILTER
	dst->nf_bridge  = src->nf_bridge;
	nf_bridge_get(src->nf_bridge);
#endif
2893 2894 2895
#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
	dst->nf_trace = src->nf_trace;
#endif
2896 2897
}

2898 2899 2900
static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
{
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2901
	nf_conntrack_put(dst->nfct);
2902
#endif
2903 2904 2905 2906 2907 2908
#ifdef CONFIG_BRIDGE_NETFILTER
	nf_bridge_put(dst->nf_bridge);
#endif
	__nf_copy(dst, src);
}

2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
#ifdef CONFIG_NETWORK_SECMARK
static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
{
	to->secmark = from->secmark;
}

static inline void skb_init_secmark(struct sk_buff *skb)
{
	skb->secmark = 0;
}
#else
static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
{ }

static inline void skb_init_secmark(struct sk_buff *skb)
{ }
#endif

2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
static inline bool skb_irq_freeable(const struct sk_buff *skb)
{
	return !skb->destructor &&
#if IS_ENABLED(CONFIG_XFRM)
		!skb->sp &&
#endif
#if IS_ENABLED(CONFIG_NF_CONNTRACK)
		!skb->nfct &&
#endif
		!skb->_skb_refdst &&
		!skb_has_frag_list(skb);
}

2940 2941 2942 2943 2944
static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
{
	skb->queue_mapping = queue_mapping;
}

2945
static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2946 2947 2948 2949
{
	return skb->queue_mapping;
}

2950 2951 2952 2953 2954
static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
{
	to->queue_mapping = from->queue_mapping;
}

2955 2956 2957 2958 2959
static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
{
	skb->queue_mapping = rx_queue + 1;
}

2960
static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2961 2962 2963 2964
{
	return skb->queue_mapping - 1;
}

2965
static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2966
{
E
Eric Dumazet 已提交
2967
	return skb->queue_mapping != 0;
2968 2969
}

2970 2971
u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
		  unsigned int num_tx_queues);
2972

2973 2974
static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
{
2975
#ifdef CONFIG_XFRM
2976 2977 2978 2979
	return skb->sp;
#else
	return NULL;
#endif
2980
}
2981

2982 2983 2984
/* Keeps track of mac header offset relative to skb->head.
 * It is useful for TSO of Tunneling protocol. e.g. GRE.
 * For non-tunnel skb it points to skb_mac_header() and for
2985 2986 2987
 * tunnel skb it points to outer mac header.
 * Keeps track of level of encapsulation of network headers.
 */
2988
struct skb_gso_cb {
2989 2990
	int	mac_offset;
	int	encap_level;
2991 2992 2993 2994 2995 2996 2997 2998 2999
};
#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb)

static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
{
	return (skb_mac_header(inner_skb) - inner_skb->head) -
		SKB_GSO_CB(inner_skb)->mac_offset;
}

3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
{
	int new_headroom, headroom;
	int ret;

	headroom = skb_headroom(skb);
	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
	if (ret)
		return ret;

	new_headroom = skb_headroom(skb);
	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
	return 0;
}

3015
static inline bool skb_is_gso(const struct sk_buff *skb)
H
Herbert Xu 已提交
3016 3017 3018 3019
{
	return skb_shinfo(skb)->gso_size;
}

3020
/* Note: Should be called only if skb_is_gso(skb) is true */
3021
static inline bool skb_is_gso_v6(const struct sk_buff *skb)
B
Brice Goglin 已提交
3022 3023 3024 3025
{
	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
}

3026
void __skb_warn_lro_forwarding(const struct sk_buff *skb);
3027 3028 3029 3030 3031

static inline bool skb_warn_if_lro(const struct sk_buff *skb)
{
	/* LRO sets gso_size but not gso_type, whereas if GSO is really
	 * wanted then gso_type will be set. */
3032 3033
	const struct skb_shared_info *shinfo = skb_shinfo(skb);

3034 3035
	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
	    unlikely(shinfo->gso_type == 0)) {
3036 3037 3038 3039 3040 3041
		__skb_warn_lro_forwarding(skb);
		return true;
	}
	return false;
}

3042 3043 3044 3045 3046 3047 3048
static inline void skb_forward_csum(struct sk_buff *skb)
{
	/* Unfortunately we don't support this one.  Any brave souls? */
	if (skb->ip_summed == CHECKSUM_COMPLETE)
		skb->ip_summed = CHECKSUM_NONE;
}

3049 3050 3051 3052 3053 3054 3055 3056
/**
 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
 * @skb: skb to check
 *
 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
 * use this helper, to document places where we make this assertion.
 */
3057
static inline void skb_checksum_none_assert(const struct sk_buff *skb)
3058 3059 3060 3061 3062 3063
{
#ifdef DEBUG
	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
#endif
}

3064
bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
3065

P
Paul Durrant 已提交
3066 3067
int skb_checksum_setup(struct sk_buff *skb, bool recalculate);

3068 3069
u32 __skb_get_poff(const struct sk_buff *skb);

3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
/**
 * skb_head_is_locked - Determine if the skb->head is locked down
 * @skb: skb to check
 *
 * The head on skbs build around a head frag can be removed if they are
 * not cloned.  This function returns true if the skb head is locked down
 * due to either being allocated via kmalloc, or by being a clone with
 * multiple references to the head.
 */
static inline bool skb_head_is_locked(const struct sk_buff *skb)
{
	return !skb->head_frag || skb_cloned(skb);
}
3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099

/**
 * skb_gso_network_seglen - Return length of individual segments of a gso packet
 *
 * @skb: GSO skb
 *
 * skb_gso_network_seglen is used to determine the real size of the
 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
 *
 * The MAC/L2 header is not accounted for.
 */
static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
{
	unsigned int hdr_len = skb_transport_header(skb) -
			       skb_network_header(skb);
	return hdr_len + skb_gso_transport_seglen(skb);
}
L
Linus Torvalds 已提交
3100 3101
#endif	/* __KERNEL__ */
#endif	/* _LINUX_SKBUFF_H */