fw-ohci.c 53.7 KB
Newer Older
1 2
/*
 * Driver for OHCI 1394 controllers
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/poll.h>
A
Andrew Morton 已提交
28
#include <linux/dma-mapping.h>
A
Al Viro 已提交
29
#include <linux/mm.h>
A
Andrew Morton 已提交
30

31 32 33 34 35 36
#include <asm/uaccess.h>
#include <asm/semaphore.h>

#include "fw-transaction.h"
#include "fw-ohci.h"

37 38 39 40 41 42 43 44 45 46 47 48 49
#define DESCRIPTOR_OUTPUT_MORE		0
#define DESCRIPTOR_OUTPUT_LAST		(1 << 12)
#define DESCRIPTOR_INPUT_MORE		(2 << 12)
#define DESCRIPTOR_INPUT_LAST		(3 << 12)
#define DESCRIPTOR_STATUS		(1 << 11)
#define DESCRIPTOR_KEY_IMMEDIATE	(2 << 8)
#define DESCRIPTOR_PING			(1 << 7)
#define DESCRIPTOR_YY			(1 << 6)
#define DESCRIPTOR_NO_IRQ		(0 << 4)
#define DESCRIPTOR_IRQ_ERROR		(1 << 4)
#define DESCRIPTOR_IRQ_ALWAYS		(3 << 4)
#define DESCRIPTOR_BRANCH_ALWAYS	(3 << 2)
#define DESCRIPTOR_WAIT			(3 << 0)
50 51 52 53 54 55 56 57 58 59

struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

60 61 62 63 64 65 66 67 68 69 70 71 72 73
struct db_descriptor {
	__le16 first_size;
	__le16 control;
	__le16 second_req_count;
	__le16 first_req_count;
	__le32 branch_address;
	__le16 second_res_count;
	__le16 first_res_count;
	__le32 reserved0;
	__le32 first_buffer;
	__le32 second_buffer;
	__le32 reserved1;
} __attribute__((aligned(16)));

74 75 76 77
#define CONTROL_SET(regs)	(regs)
#define CONTROL_CLEAR(regs)	((regs) + 4)
#define COMMAND_PTR(regs)	((regs) + 12)
#define CONTEXT_MATCH(regs)	((regs) + 16)
78

79
struct ar_buffer {
80
	struct descriptor descriptor;
81 82 83
	struct ar_buffer *next;
	__le32 data[0];
};
84

85 86 87 88 89
struct ar_context {
	struct fw_ohci *ohci;
	struct ar_buffer *current_buffer;
	struct ar_buffer *last_buffer;
	void *pointer;
90
	u32 regs;
91 92 93
	struct tasklet_struct tasklet;
};

94 95 96 97 98 99
struct context;

typedef int (*descriptor_callback_t)(struct context *ctx,
				     struct descriptor *d,
				     struct descriptor *last);
struct context {
S
Stefan Richter 已提交
100
	struct fw_ohci *ohci;
101
	u32 regs;
S
Stefan Richter 已提交
102

103 104 105 106 107 108 109 110 111 112
	struct descriptor *buffer;
	dma_addr_t buffer_bus;
	size_t buffer_size;
	struct descriptor *head_descriptor;
	struct descriptor *tail_descriptor;
	struct descriptor *tail_descriptor_last;
	struct descriptor *prev_descriptor;

	descriptor_callback_t callback;

S
Stefan Richter 已提交
113
	struct tasklet_struct tasklet;
114 115
};

116 117 118 119 120 121
#define IT_HEADER_SY(v)          ((v) <<  0)
#define IT_HEADER_TCODE(v)       ((v) <<  4)
#define IT_HEADER_CHANNEL(v)     ((v) <<  8)
#define IT_HEADER_TAG(v)         ((v) << 14)
#define IT_HEADER_SPEED(v)       ((v) << 16)
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
122 123 124

struct iso_context {
	struct fw_iso_context base;
125
	struct context context;
126 127
	void *header;
	size_t header_length;
128 129 130 131 132 133 134
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

135
	u32 version;
136 137 138 139
	__iomem char *registers;
	dma_addr_t self_id_bus;
	__le32 *self_id_cpu;
	struct tasklet_struct bus_reset_tasklet;
140
	int node_id;
141 142
	int generation;
	int request_generation;
143
	u32 bus_seconds;
144

145 146 147 148
	/*
	 * Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held.
	 */
149 150 151 152 153 154 155 156 157 158 159 160
	spinlock_t lock;
	u32 self_id_buffer[512];

	/* Config rom buffers */
	__be32 *config_rom;
	dma_addr_t config_rom_bus;
	__be32 *next_config_rom;
	dma_addr_t next_config_rom_bus;
	u32 next_header;

	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
161 162
	struct context at_request_ctx;
	struct context at_response_ctx;
163 164 165 166 167 168 169

	u32 it_context_mask;
	struct iso_context *it_context_list;
	u32 ir_context_mask;
	struct iso_context *ir_context_list;
};

A
Adrian Bunk 已提交
170
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
171 172 173 174
{
	return container_of(card, struct fw_ohci, card);
}

175 176 177 178 179 180
#define IT_CONTEXT_CYCLE_MATCH_ENABLE	0x80000000
#define IR_CONTEXT_BUFFER_FILL		0x80000000
#define IR_CONTEXT_ISOCH_HEADER		0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE	0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE	0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE	0x08000000
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

#define OHCI1394_MAX_AT_REQ_RETRIES	0x2
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define FW_OHCI_MAJOR			240
#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI_LOOP_COUNT			500
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800
196
#define OHCI_TCODE_PHY_PACKET		0x0e
197
#define OHCI_VERSION_1_1		0x010010
198 199
#define ISO_BUFFER_SIZE			(64 * 1024)
#define AT_BUFFER_SIZE			4096
200

201 202
static char ohci_driver_name[] = KBUILD_MODNAME;

A
Adrian Bunk 已提交
203
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
204 205 206 207
{
	writel(data, ohci->registers + offset);
}

A
Adrian Bunk 已提交
208
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
209 210 211 212
{
	return readl(ohci->registers + offset);
}

A
Adrian Bunk 已提交
213
static inline void flush_writes(const struct fw_ohci *ohci)
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

static int
ohci_update_phy_reg(struct fw_card *card, int addr,
		    int clear_bits, int set_bits)
{
	struct fw_ohci *ohci = fw_ohci(card);
	u32 val, old;

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
	msleep(2);
	val = reg_read(ohci, OHCI1394_PhyControl);
	if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
		fw_error("failed to set phy reg bits.\n");
		return -EBUSY;
	}

	old = OHCI1394_PhyControl_ReadData(val);
	old = (old & ~clear_bits) | set_bits;
	reg_write(ohci, OHCI1394_PhyControl,
		  OHCI1394_PhyControl_Write(addr, old));

	return 0;
}

242
static int ar_context_add_page(struct ar_context *ctx)
243
{
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
	struct device *dev = ctx->ohci->card.device;
	struct ar_buffer *ab;
	dma_addr_t ab_bus;
	size_t offset;

	ab = (struct ar_buffer *) __get_free_page(GFP_ATOMIC);
	if (ab == NULL)
		return -ENOMEM;

	ab_bus = dma_map_single(dev, ab, PAGE_SIZE, DMA_BIDIRECTIONAL);
	if (dma_mapping_error(ab_bus)) {
		free_page((unsigned long) ab);
		return -ENOMEM;
	}

259
	memset(&ab->descriptor, 0, sizeof(ab->descriptor));
260 261 262
	ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
						    DESCRIPTOR_STATUS |
						    DESCRIPTOR_BRANCH_ALWAYS);
263 264 265 266 267 268 269 270
	offset = offsetof(struct ar_buffer, data);
	ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
	ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
	ab->descriptor.branch_address = 0;

	dma_sync_single_for_device(dev, ab_bus, PAGE_SIZE, DMA_BIDIRECTIONAL);

271
	ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
272 273 274
	ctx->last_buffer->next = ab;
	ctx->last_buffer = ab;

275
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
276
	flush_writes(ctx->ohci);
277 278

	return 0;
279 280
}

281
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
282 283
{
	struct fw_ohci *ohci = ctx->ohci;
284 285 286
	struct fw_packet p;
	u32 status, length, tcode;

287 288 289
	p.header[0] = le32_to_cpu(buffer[0]);
	p.header[1] = le32_to_cpu(buffer[1]);
	p.header[2] = le32_to_cpu(buffer[2]);
290 291 292 293 294

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
295
		p.header[3] = (__force __u32) buffer[3];
296
		p.header_length = 16;
297
		p.payload_length = 0;
298 299 300
		break;

	case TCODE_READ_BLOCK_REQUEST :
301 302 303 304 305 306
		p.header[3] = le32_to_cpu(buffer[3]);
		p.header_length = 16;
		p.payload_length = 0;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
307 308 309
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
310
		p.header[3] = le32_to_cpu(buffer[3]);
311
		p.header_length = 16;
312
		p.payload_length = p.header[3] >> 16;
313 314 315 316
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
317
	case OHCI_TCODE_PHY_PACKET:
318
		p.header_length = 12;
319
		p.payload_length = 0;
320 321
		break;
	}
322

323 324 325 326 327 328 329 330 331 332
	p.payload = (void *) buffer + p.header_length;

	/* FIXME: What to do about evt_* errors? */
	length = (p.header_length + p.payload_length + 3) / 4;
	status = le32_to_cpu(buffer[length]);

	p.ack        = ((status >> 16) & 0x1f) - 16;
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;
333

334 335
	/*
	 * The OHCI bus reset handler synthesizes a phy packet with
336 337 338 339 340
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
341 342
	 * request.
	 */
343

344
	if (p.ack + 16 == 0x09)
345
		ohci->request_generation = (buffer[2] >> 16) & 0xff;
346
	else if (ctx == &ohci->ar_request_ctx)
347
		fw_core_handle_request(&ohci->card, &p);
348
	else
349
		fw_core_handle_response(&ohci->card, &p);
350

351 352
	return buffer + length + 1;
}
353

354 355 356 357 358 359 360 361 362 363 364 365 366 367
static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
	struct fw_ohci *ohci = ctx->ohci;
	struct ar_buffer *ab;
	struct descriptor *d;
	void *buffer, *end;

	ab = ctx->current_buffer;
	d = &ab->descriptor;

	if (d->res_count == 0) {
		size_t size, rest, offset;

368 369
		/*
		 * This descriptor is finished and we may have a
370
		 * packet split across this and the next buffer. We
371 372
		 * reuse the page for reassembling the split packet.
		 */
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402

		offset = offsetof(struct ar_buffer, data);
		dma_unmap_single(ohci->card.device,
				 ab->descriptor.data_address - offset,
				 PAGE_SIZE, DMA_BIDIRECTIONAL);

		buffer = ab;
		ab = ab->next;
		d = &ab->descriptor;
		size = buffer + PAGE_SIZE - ctx->pointer;
		rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
		memmove(buffer, ctx->pointer, size);
		memcpy(buffer + size, ab->data, rest);
		ctx->current_buffer = ab;
		ctx->pointer = (void *) ab->data + rest;
		end = buffer + size + rest;

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);

		free_page((unsigned long)buffer);
		ar_context_add_page(ctx);
	} else {
		buffer = ctx->pointer;
		ctx->pointer = end =
			(void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);

		while (buffer < end)
			buffer = handle_ar_packet(ctx, buffer);
	}
403 404 405
}

static int
406
ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
407
{
408
	struct ar_buffer ab;
409

410 411 412
	ctx->regs        = regs;
	ctx->ohci        = ohci;
	ctx->last_buffer = &ab;
413 414
	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

415 416 417 418 419
	ar_context_add_page(ctx);
	ar_context_add_page(ctx);
	ctx->current_buffer = ab.next;
	ctx->pointer = ctx->current_buffer->data;

420 421 422 423 424 425 426 427 428 429 430 431 432
	return 0;
}

static void ar_context_run(struct ar_context *ctx)
{
	struct ar_buffer *ab = ctx->current_buffer;
	dma_addr_t ab_bus;
	size_t offset;

	offset = offsetof(struct ar_buffer, data);
	ab_bus = ab->descriptor.data_address - offset;

	reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
433
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
434
	flush_writes(ctx->ohci);
435
}
S
Stefan Richter 已提交
436

437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
static void context_tasklet(unsigned long data)
{
	struct context *ctx = (struct context *) data;
	struct fw_ohci *ohci = ctx->ohci;
	struct descriptor *d, *last;
	u32 address;
	int z;

	dma_sync_single_for_cpu(ohci->card.device, ctx->buffer_bus,
				ctx->buffer_size, DMA_TO_DEVICE);

	d    = ctx->tail_descriptor;
	last = ctx->tail_descriptor_last;

	while (last->branch_address != 0) {
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
454
		d = ctx->buffer + (address - ctx->buffer_bus) / sizeof(*d);
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
		last = (z == 2) ? d : d + z - 1;

		if (!ctx->callback(ctx, d, last))
			break;

		ctx->tail_descriptor      = d;
		ctx->tail_descriptor_last = last;
	}
}

static int
context_init(struct context *ctx, struct fw_ohci *ohci,
	     size_t buffer_size, u32 regs,
	     descriptor_callback_t callback)
{
	ctx->ohci = ohci;
	ctx->regs = regs;
	ctx->buffer_size = buffer_size;
	ctx->buffer = kmalloc(buffer_size, GFP_KERNEL);
	if (ctx->buffer == NULL)
		return -ENOMEM;

	tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
	ctx->callback = callback;

	ctx->buffer_bus =
		dma_map_single(ohci->card.device, ctx->buffer,
			       buffer_size, DMA_TO_DEVICE);
	if (dma_mapping_error(ctx->buffer_bus)) {
		kfree(ctx->buffer);
		return -ENOMEM;
	}

	ctx->head_descriptor      = ctx->buffer;
	ctx->prev_descriptor      = ctx->buffer;
	ctx->tail_descriptor      = ctx->buffer;
	ctx->tail_descriptor_last = ctx->buffer;

493 494
	/*
	 * We put a dummy descriptor in the buffer that has a NULL
495 496 497
	 * branch address and looks like it's been sent.  That way we
	 * have a descriptor to append DMA programs to.  Also, the
	 * ring buffer invariant is that it always has at least one
498 499
	 * element so that head == tail means buffer full.
	 */
500

501
	memset(ctx->head_descriptor, 0, sizeof(*ctx->head_descriptor));
502
	ctx->head_descriptor->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
503 504 505 506 507 508
	ctx->head_descriptor->transfer_status = cpu_to_le16(0x8011);
	ctx->head_descriptor++;

	return 0;
}

509
static void
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
context_release(struct context *ctx)
{
	struct fw_card *card = &ctx->ohci->card;

	dma_unmap_single(card->device, ctx->buffer_bus,
			 ctx->buffer_size, DMA_TO_DEVICE);
	kfree(ctx->buffer);
}

static struct descriptor *
context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
{
	struct descriptor *d, *tail, *end;

	d = ctx->head_descriptor;
	tail = ctx->tail_descriptor;
526
	end = ctx->buffer + ctx->buffer_size / sizeof(*d);
527 528 529 530 531 532 533 534 535 536 537 538 539

	if (d + z <= tail) {
		goto has_space;
	} else if (d > tail && d + z <= end) {
		goto has_space;
	} else if (d > tail && ctx->buffer + z <= tail) {
		d = ctx->buffer;
		goto has_space;
	}

	return NULL;

 has_space:
540 541
	memset(d, 0, z * sizeof(*d));
	*d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof(*d);
542 543 544 545

	return d;
}

546
static void context_run(struct context *ctx, u32 extra)
547 548 549
{
	struct fw_ohci *ohci = ctx->ohci;

550
	reg_write(ohci, COMMAND_PTR(ctx->regs),
551
		  le32_to_cpu(ctx->tail_descriptor_last->branch_address));
552 553
	reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
	reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
554 555 556 557 558 559 560 561
	flush_writes(ohci);
}

static void context_append(struct context *ctx,
			   struct descriptor *d, int z, int extra)
{
	dma_addr_t d_bus;

562
	d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof(*d);
563 564 565 566 567 568 569 570

	ctx->head_descriptor = d + z + extra;
	ctx->prev_descriptor->branch_address = cpu_to_le32(d_bus | z);
	ctx->prev_descriptor = z == 2 ? d : d + z - 1;

	dma_sync_single_for_device(ctx->ohci->card.device, ctx->buffer_bus,
				   ctx->buffer_size, DMA_TO_DEVICE);

571
	reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
572 573 574 575 576 577
	flush_writes(ctx->ohci);
}

static void context_stop(struct context *ctx)
{
	u32 reg;
578
	int i;
579

580
	reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
581
	flush_writes(ctx->ohci);
582

583
	for (i = 0; i < 10; i++) {
584
		reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
585 586 587 588 589 590
		if ((reg & CONTEXT_ACTIVE) == 0)
			break;

		fw_notify("context_stop: still active (0x%08x)\n", reg);
		msleep(1);
	}
591
}
592

593 594 595
struct driver_data {
	struct fw_packet *packet;
};
596

597 598
/*
 * This function apppends a packet to the DMA queue for transmission.
599
 * Must always be called with the ochi->lock held to ensure proper
600 601
 * generation handling and locking around packet queue manipulation.
 */
602 603
static int
at_context_queue_packet(struct context *ctx, struct fw_packet *packet)
604 605
{
	struct fw_ohci *ohci = ctx->ohci;
606 607 608 609
	dma_addr_t d_bus, payload_bus;
	struct driver_data *driver_data;
	struct descriptor *d, *last;
	__le32 *header;
610
	int z, tcode;
611
	u32 reg;
612

613 614 615 616
	d = context_get_descriptors(ctx, 4, &d_bus);
	if (d == NULL) {
		packet->ack = RCODE_SEND_ERROR;
		return -1;
617 618
	}

619
	d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
620 621
	d[0].res_count = cpu_to_le16(packet->timestamp);

622 623
	/*
	 * The DMA format for asyncronous link packets is different
624 625
	 * from the IEEE1394 layout, so shift the fields around
	 * accordingly.  If header_length is 8, it's a PHY packet, to
626 627
	 * which we need to prepend an extra quadlet.
	 */
628 629

	header = (__le32 *) &d[1];
630
	if (packet->header_length > 8) {
631 632 633 634 635
		header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					(packet->speed << 16));
		header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					(packet->header[0] & 0xffff0000));
		header[2] = cpu_to_le32(packet->header[2]);
636 637 638

		tcode = (packet->header[0] >> 4) & 0x0f;
		if (TCODE_IS_BLOCK_PACKET(tcode))
639
			header[3] = cpu_to_le32(packet->header[3]);
640
		else
641 642 643
			header[3] = (__force __le32) packet->header[3];

		d[0].req_count = cpu_to_le16(packet->header_length);
644
	} else {
645 646 647 648 649
		header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
					(packet->speed << 16));
		header[1] = cpu_to_le32(packet->header[0]);
		header[2] = cpu_to_le32(packet->header[1]);
		d[0].req_count = cpu_to_le16(12);
650 651
	}

652 653
	driver_data = (struct driver_data *) &d[3];
	driver_data->packet = packet;
654
	packet->driver_data = driver_data;
655 656 657 658 659 660 661 662 663 664 665 666 667 668
	
	if (packet->payload_length > 0) {
		payload_bus =
			dma_map_single(ohci->card.device, packet->payload,
				       packet->payload_length, DMA_TO_DEVICE);
		if (dma_mapping_error(payload_bus)) {
			packet->ack = RCODE_SEND_ERROR;
			return -1;
		}

		d[2].req_count    = cpu_to_le16(packet->payload_length);
		d[2].data_address = cpu_to_le32(payload_bus);
		last = &d[2];
		z = 3;
669
	} else {
670 671
		last = &d[0];
		z = 2;
672 673
	}

674 675 676
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_IRQ_ALWAYS |
				     DESCRIPTOR_BRANCH_ALWAYS);
677

678 679 680 681 682 683 684
	/* FIXME: Document how the locking works. */
	if (ohci->generation != packet->generation) {
		packet->ack = RCODE_GENERATION;
		return -1;
	}

	context_append(ctx, d, z, 4 - z);
685

686
	/* If the context isn't already running, start it up. */
687
	reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
688
	if ((reg & CONTEXT_RUN) == 0)
689 690 691
		context_run(ctx, 0);

	return 0;
692 693
}

694 695 696
static int handle_at_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
697
{
698
	struct driver_data *driver_data;
699
	struct fw_packet *packet;
700 701
	struct fw_ohci *ohci = context->ohci;
	dma_addr_t payload_bus;
702 703
	int evt;

704 705 706
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;
707

708 709 710 711 712
	driver_data = (struct driver_data *) &d[3];
	packet = driver_data->packet;
	if (packet == NULL)
		/* This packet was cancelled, just continue. */
		return 1;
713

714 715 716
	payload_bus = le32_to_cpu(last->data_address);
	if (payload_bus != 0)
		dma_unmap_single(ohci->card.device, payload_bus,
717 718
				 packet->payload_length, DMA_TO_DEVICE);

719 720
	evt = le16_to_cpu(last->transfer_status) & 0x1f;
	packet->timestamp = le16_to_cpu(last->res_count);
721

722 723 724 725 726
	switch (evt) {
	case OHCI1394_evt_timeout:
		/* Async response transmit timed out. */
		packet->ack = RCODE_CANCELLED;
		break;
727

728
	case OHCI1394_evt_flushed:
729 730 731 732
		/*
		 * The packet was flushed should give same error as
		 * when we try to use a stale generation count.
		 */
733 734
		packet->ack = RCODE_GENERATION;
		break;
735

736
	case OHCI1394_evt_missing_ack:
737 738 739 740
		/*
		 * Using a valid (current) generation count, but the
		 * node is not on the bus or not sending acks.
		 */
741 742
		packet->ack = RCODE_NO_ACK;
		break;
743

744 745 746 747 748 749 750 751 752
	case ACK_COMPLETE + 0x10:
	case ACK_PENDING + 0x10:
	case ACK_BUSY_X + 0x10:
	case ACK_BUSY_A + 0x10:
	case ACK_BUSY_B + 0x10:
	case ACK_DATA_ERROR + 0x10:
	case ACK_TYPE_ERROR + 0x10:
		packet->ack = evt - 0x10;
		break;
753

754 755 756 757
	default:
		packet->ack = RCODE_SEND_ERROR;
		break;
	}
758

759
	packet->callback(packet, &ohci->card, packet->ack);
760

761
	return 1;
762 763
}

764 765 766 767 768
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)
769 770 771 772 773 774 775

static void
handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
{
	struct fw_packet response;
	int tcode, length, i;

776
	tcode = HEADER_GET_TCODE(packet->header[0]);
777
	if (TCODE_IS_BLOCK_PACKET(tcode))
778
		length = HEADER_GET_DATA_LENGTH(packet->header[3]);
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
	else
		length = 4;

	i = csr - CSR_CONFIG_ROM;
	if (i + length > CONFIG_ROM_SIZE) {
		fw_fill_response(&response, packet->header,
				 RCODE_ADDRESS_ERROR, NULL, 0);
	} else if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
	} else {
		fw_fill_response(&response, packet->header, RCODE_COMPLETE,
				 (void *) ohci->config_rom + i, length);
	}

	fw_core_handle_response(&ohci->card, &response);
}

static void
handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
{
	struct fw_packet response;
	int tcode, length, ext_tcode, sel;
	__be32 *payload, lock_old;
	u32 lock_arg, lock_data;

805 806
	tcode = HEADER_GET_TCODE(packet->header[0]);
	length = HEADER_GET_DATA_LENGTH(packet->header[3]);
807
	payload = packet->payload;
808
	ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833

	if (tcode == TCODE_LOCK_REQUEST &&
	    ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
		lock_arg = be32_to_cpu(payload[0]);
		lock_data = be32_to_cpu(payload[1]);
	} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
		lock_arg = 0;
		lock_data = 0;
	} else {
		fw_fill_response(&response, packet->header,
				 RCODE_TYPE_ERROR, NULL, 0);
		goto out;
	}

	sel = (csr - CSR_BUS_MANAGER_ID) / 4;
	reg_write(ohci, OHCI1394_CSRData, lock_data);
	reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
	reg_write(ohci, OHCI1394_CSRControl, sel);

	if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
		lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
	else
		fw_notify("swap not done yet\n");

	fw_fill_response(&response, packet->header,
834
			 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
835 836 837 838 839
 out:
	fw_core_handle_response(&ohci->card, &response);
}

static void
840
handle_local_request(struct context *ctx, struct fw_packet *packet)
841 842 843 844
{
	u64 offset;
	u32 csr;

845 846 847 848
	if (ctx == &ctx->ohci->at_request_ctx) {
		packet->ack = ACK_PENDING;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
849 850 851

	offset =
		((unsigned long long)
852
		 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
		packet->header[2];
	csr = offset - CSR_REGISTER_BASE;

	/* Handle config rom reads. */
	if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
		handle_local_rom(ctx->ohci, packet, csr);
	else switch (csr) {
	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		handle_local_lock(ctx->ohci, packet, csr);
		break;
	default:
		if (ctx == &ctx->ohci->at_request_ctx)
			fw_core_handle_request(&ctx->ohci->card, packet);
		else
			fw_core_handle_response(&ctx->ohci->card, packet);
		break;
	}
873 874 875 876 877

	if (ctx == &ctx->ohci->at_response_ctx) {
		packet->ack = ACK_COMPLETE;
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	}
878
}
879

880
static void
881
at_context_transmit(struct context *ctx, struct fw_packet *packet)
882 883
{
	unsigned long flags;
884
	int retval;
885 886 887

	spin_lock_irqsave(&ctx->ohci->lock, flags);

888
	if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
889
	    ctx->ohci->generation == packet->generation) {
890 891 892
		spin_unlock_irqrestore(&ctx->ohci->lock, flags);
		handle_local_request(ctx, packet);
		return;
893
	}
894

895
	retval = at_context_queue_packet(ctx, packet);
896 897
	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

898 899 900
	if (retval < 0)
		packet->callback(packet, &ctx->ohci->card, packet->ack);
	
901 902 903 904 905
}

static void bus_reset_tasklet(unsigned long data)
{
	struct fw_ohci *ohci = (struct fw_ohci *)data;
906
	int self_id_count, i, j, reg;
907 908 909 910 911 912 913 914
	int generation, new_generation;
	unsigned long flags;

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
		fw_error("node ID not valid, new bus reset in progress\n");
		return;
	}
915
	ohci->node_id = reg & 0xffff;
916

917 918
	/*
	 * The count in the SelfIDCount register is the number of
919 920
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
921 922
	 * bit extra to get the actual number of self IDs.
	 */
923 924 925 926 927 928 929 930 931 932

	self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
	generation = (le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
			fw_error("inconsistent self IDs\n");
		ohci->self_id_buffer[j] = le32_to_cpu(ohci->self_id_cpu[i]);
	}

933 934
	/*
	 * Check the consistency of the self IDs we just read.  The
935 936 937 938 939 940 941 942 943
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
944 945
	 * of self IDs.
	 */
946 947 948 949 950 951 952 953 954 955 956 957

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
		fw_notify("recursive bus reset detected, "
			  "discarding self ids\n");
		return;
	}

	/* FIXME: Document how the locking works. */
	spin_lock_irqsave(&ohci->lock, flags);

	ohci->generation = generation;
958 959
	context_stop(&ohci->at_request_ctx);
	context_stop(&ohci->at_response_ctx);
960 961
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

962 963
	/*
	 * This next bit is unrelated to the AT context stuff but we
964 965 966 967
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
968 969
	 * next_config_rom pointer so a new udpate can take place.
	 */
970 971 972 973 974 975 976 977

	if (ohci->next_config_rom != NULL) {
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

978 979
		/*
		 * Restore config_rom image and manually update
980 981
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
982 983
		 * do that last.
		 */
984 985 986 987 988 989 990 991
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
		ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
		reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

992
	fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
993 994 995 996 997 998
				 self_id_count, ohci->self_id_buffer);
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
999
	u32 event, iso_event, cycle_time;
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

	if (!event)
		return IRQ_NONE;

	reg_write(ohci, OHCI1394_IntEventClear, event);

	if (event & OHCI1394_selfIDComplete)
		tasklet_schedule(&ohci->bus_reset_tasklet);

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

1024
	iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1025 1026 1027 1028
	reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1029
		tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1030 1031 1032
		iso_event &= ~(1 << i);
	}

1033
	iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1034 1035 1036 1037
	reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
1038
		tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1039 1040 1041
		iso_event &= ~(1 << i);
	}

1042 1043 1044 1045 1046 1047
	if (event & OHCI1394_cycle64Seconds) {
		cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
		if ((cycle_time & 0x80000000) == 0)
			ohci->bus_seconds++;
	}

1048 1049 1050
	return IRQ_HANDLED;
}

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
static int software_reset(struct fw_ohci *ohci)
{
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);

	for (i = 0; i < OHCI_LOOP_COUNT; i++) {
		if ((reg_read(ohci, OHCI1394_HCControlSet) &
		     OHCI1394_HCControl_softReset) == 0)
			return 0;
		msleep(1);
	}

	return -EBUSY;
}

1067 1068 1069 1070 1071
static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct pci_dev *dev = to_pci_dev(card->device);

1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
	if (software_reset(ohci)) {
		fw_error("Failed to reset ohci card.\n");
		return -EBUSY;
	}

	/*
	 * Now enable LPS, which we need in order to start accessing
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
	 * full link enabled.
	 */
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
	msleep(50);

	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));

	ar_context_run(&ohci->ar_request_ctx);
	ar_context_run(&ohci->ar_response_ctx);

	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskSet,
		  OHCI1394_selfIDComplete |
		  OHCI1394_RQPkt | OHCI1394_RSPkt |
		  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		  OHCI1394_isochRx | OHCI1394_isochTx |
		  OHCI1394_masterIntEnable |
		  OHCI1394_cycle64Seconds);

	/* Activate link_on bit and contender bit in our self ID packets.*/
	if (ohci_update_phy_reg(card, 4, 0,
				PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
		return -EIO;

1123 1124
	/*
	 * When the link is not yet enabled, the atomic config rom
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

	ohci->next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &ohci->next_config_rom_bus, GFP_KERNEL);
	if (ohci->next_config_rom == NULL)
		return -ENOMEM;

	memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
	fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);

	ohci->next_header = config_rom[0];
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
	reg_write(ohci, OHCI1394_BusOptions, config_rom[2]);
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

	if (request_irq(dev->irq, irq_handler,
1160
			IRQF_SHARED, ohci_driver_name, ohci)) {
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
		fw_error("Failed to allocate shared interrupt %d.\n",
			 dev->irq);
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
		return -EIO;
	}

	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
	flush_writes(ohci);

1173 1174 1175 1176
	/*
	 * We are ready to go, initiate bus reset to finish the
	 * initialization.
	 */
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193

	fw_core_initiate_bus_reset(&ohci->card, 1);

	return 0;
}

static int
ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
{
	struct fw_ohci *ohci;
	unsigned long flags;
	int retval = 0;
	__be32 *next_config_rom;
	dma_addr_t next_config_rom_bus;

	ohci = fw_ohci(card);

1194 1195
	/*
	 * When the OHCI controller is enabled, the config rom update
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;

		memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
		fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
				  length * 4);

		ohci->next_header = config_rom[0];
		ohci->next_config_rom[0] = 0;

		reg_write(ohci, OHCI1394_ConfigROMmap,
			  ohci->next_config_rom_bus);
	} else {
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);
		retval = -EBUSY;
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

1250 1251
	/*
	 * Now initiate a bus reset to have the changes take
1252 1253 1254
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
1255 1256
	 * takes effect.
	 */
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
	if (retval == 0)
		fw_core_initiate_bus_reset(&ohci->card, 1);

	return retval;
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

1277 1278 1279
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);
1280 1281 1282
	struct context *ctx = &ohci->at_request_ctx;
	struct driver_data *driver_data = packet->driver_data;
	int retval = -ENOENT;
1283

1284
	tasklet_disable(&ctx->tasklet);
1285

1286 1287
	if (packet->ack != 0)
		goto out;
1288

1289 1290 1291 1292
	driver_data->packet = NULL;
	packet->ack = RCODE_CANCELLED;
	packet->callback(packet, &ohci->card, packet->ack);
	retval = 0;
1293

1294 1295
 out:
	tasklet_enable(&ctx->tasklet);
1296

1297
	return retval;
1298 1299
}

1300 1301 1302 1303 1304
static int
ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
{
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
1305
	int n, retval = 0;
1306

1307 1308 1309 1310
	/*
	 * FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
	 */
1311 1312 1313 1314 1315 1316 1317 1318

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
		retval = -ESTALE;
		goto out;
	}

1319 1320 1321 1322
	/*
	 * Note, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses.
	 */
1323 1324 1325 1326 1327 1328 1329

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

1330 1331
	flush_writes(ohci);
 out:
1332
	spin_unlock_irqrestore(&ohci->lock, flags);
1333 1334
	return retval;
}
S
Stefan Richter 已提交
1335

1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
static u64
ohci_get_bus_time(struct fw_card *card)
{
	struct fw_ohci *ohci = fw_ohci(card);
	u32 cycle_time;
	u64 bus_time;

	cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
	bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;

	return bus_time;
}

1349 1350 1351
static int handle_ir_dualbuffer_packet(struct context *context,
				       struct descriptor *d,
				       struct descriptor *last)
1352
{
1353 1354 1355
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
	struct db_descriptor *db = (struct db_descriptor *) d;
1356
	__le32 *ir_header;
1357
	size_t header_length;
1358 1359
	void *p, *end;
	int i;
1360

1361 1362 1363 1364
	if (db->first_res_count > 0 && db->second_res_count > 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;

1365 1366 1367 1368 1369 1370 1371
	header_length = le16_to_cpu(db->first_req_count) -
		le16_to_cpu(db->first_res_count);

	i = ctx->header_length;
	p = db + 1;
	end = p + header_length;
	while (p < end && i + ctx->base.header_size <= PAGE_SIZE) {
1372 1373
		/*
		 * The iso header is byteswapped to little endian by
1374 1375 1376
		 * the controller, but the remaining header quadlets
		 * are big endian.  We want to present all the headers
		 * as big endian, so we have to swap the first
1377 1378
		 * quadlet.
		 */
1379 1380
		*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
		memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1381 1382 1383 1384 1385
		i += ctx->base.header_size;
		p += ctx->base.header_size + 4;
	}

	ctx->header_length = i;
1386

1387
	if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1388 1389 1390
		ir_header = (__le32 *) (db + 1);
		ctx->base.callback(&ctx->base,
				   le32_to_cpu(ir_header[0]) & 0xffff,
1391
				   ctx->header_length, ctx->header,
1392
				   ctx->base.callback_data);
1393 1394
		ctx->header_length = 0;
	}
1395

1396
	return 1;
1397 1398
}

1399 1400 1401
static int handle_it_packet(struct context *context,
			    struct descriptor *d,
			    struct descriptor *last)
1402
{
1403 1404
	struct iso_context *ctx =
		container_of(context, struct iso_context, context);
S
Stefan Richter 已提交
1405

1406 1407 1408 1409
	if (last->transfer_status == 0)
		/* This descriptor isn't done yet, stop iteration. */
		return 0;

1410
	if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
1411 1412
		ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
				   0, NULL, ctx->base.callback_data);
1413 1414

	return 1;
1415 1416
}

1417
static struct fw_iso_context *
1418
ohci_allocate_iso_context(struct fw_card *card, int type, size_t header_size)
1419 1420 1421
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct iso_context *ctx, *list;
1422
	descriptor_callback_t callback;
1423
	u32 *mask, regs;
1424
	unsigned long flags;
1425
	int index, retval = -ENOMEM;
1426 1427 1428 1429

	if (type == FW_ISO_CONTEXT_TRANSMIT) {
		mask = &ohci->it_context_mask;
		list = ohci->it_context_list;
1430
		callback = handle_it_packet;
1431
	} else {
S
Stefan Richter 已提交
1432 1433
		mask = &ohci->ir_context_mask;
		list = ohci->ir_context_list;
1434
		callback = handle_ir_dualbuffer_packet;
1435 1436
	}

1437
	/* FIXME: We need a fallback for pre 1.1 OHCI. */
1438 1439 1440 1441
	if (callback == handle_ir_dualbuffer_packet &&
	    ohci->version < OHCI_VERSION_1_1)
		return ERR_PTR(-EINVAL);

1442 1443 1444 1445 1446 1447 1448 1449 1450
	spin_lock_irqsave(&ohci->lock, flags);
	index = ffs(*mask) - 1;
	if (index >= 0)
		*mask &= ~(1 << index);
	spin_unlock_irqrestore(&ohci->lock, flags);

	if (index < 0)
		return ERR_PTR(-EBUSY);

S
Stefan Richter 已提交
1451 1452 1453 1454 1455
	if (type == FW_ISO_CONTEXT_TRANSMIT)
		regs = OHCI1394_IsoXmitContextBase(index);
	else
		regs = OHCI1394_IsoRcvContextBase(index);

1456
	ctx = &list[index];
1457
	memset(ctx, 0, sizeof(*ctx));
1458 1459 1460 1461 1462
	ctx->header_length = 0;
	ctx->header = (void *) __get_free_page(GFP_KERNEL);
	if (ctx->header == NULL)
		goto out;

1463
	retval = context_init(&ctx->context, ohci, ISO_BUFFER_SIZE,
1464
			      regs, callback);
1465 1466
	if (retval < 0)
		goto out_with_header;
1467 1468

	return &ctx->base;
1469 1470 1471 1472 1473 1474 1475 1476 1477

 out_with_header:
	free_page((unsigned long)ctx->header);
 out:
	spin_lock_irqsave(&ohci->lock, flags);
	*mask |= 1 << index;
	spin_unlock_irqrestore(&ohci->lock, flags);

	return ERR_PTR(retval);
1478 1479
}

1480 1481
static int ohci_start_iso(struct fw_iso_context *base,
			  s32 cycle, u32 sync, u32 tags)
1482
{
S
Stefan Richter 已提交
1483
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1484
	struct fw_ohci *ohci = ctx->context.ohci;
1485
	u32 control, match;
1486 1487
	int index;

1488 1489
	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
1490 1491 1492
		match = 0;
		if (cycle >= 0)
			match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1493
				(cycle & 0x7fff) << 16;
1494

1495 1496
		reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1497
		context_run(&ctx->context, match);
1498 1499
	} else {
		index = ctx - ohci->ir_context_list;
1500 1501 1502 1503 1504 1505
		control = IR_CONTEXT_DUAL_BUFFER_MODE | IR_CONTEXT_ISOCH_HEADER;
		match = (tags << 28) | (sync << 8) | ctx->base.channel;
		if (cycle >= 0) {
			match |= (cycle & 0x07fff) << 12;
			control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
		}
1506

1507 1508
		reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1509
		reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
1510
		context_run(&ctx->context, control);
1511
	}
1512 1513 1514 1515

	return 0;
}

1516 1517 1518
static int ohci_stop_iso(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
1519
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
	int index;

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
	} else {
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
	}
	flush_writes(ohci);
	context_stop(&ctx->context);

	return 0;
}

1535 1536 1537
static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
S
Stefan Richter 已提交
1538
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1539 1540 1541
	unsigned long flags;
	int index;

1542 1543
	ohci_stop_iso(base);
	context_release(&ctx->context);
1544
	free_page((unsigned long)ctx->header);
1545

1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
	spin_lock_irqsave(&ohci->lock, flags);

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		ohci->it_context_mask |= 1 << index;
	} else {
		index = ctx - ohci->ir_context_list;
		ohci->ir_context_mask |= 1 << index;
	}

	spin_unlock_irqrestore(&ohci->lock, flags);
}

static int
1560 1561 1562 1563
ohci_queue_iso_transmit(struct fw_iso_context *base,
			struct fw_iso_packet *packet,
			struct fw_iso_buffer *buffer,
			unsigned long payload)
1564
{
S
Stefan Richter 已提交
1565
	struct iso_context *ctx = container_of(base, struct iso_context, base);
1566
	struct descriptor *d, *last, *pd;
1567 1568
	struct fw_iso_packet *p;
	__le32 *header;
1569
	dma_addr_t d_bus, page_bus;
1570 1571
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
1572
	int page, end_page, i, length, offset;
1573

1574 1575 1576 1577
	/*
	 * FIXME: Cycle lost behavior should be configurable: lose
	 * packet, retransmit or terminate..
	 */
1578 1579

	p = packet;
1580
	payload_index = payload;
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
1599
	header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
1600

1601 1602 1603
	d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
	if (d == NULL)
		return -ENOMEM;
1604 1605

	if (!p->skip) {
1606
		d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1607 1608 1609
		d[0].req_count = cpu_to_le16(8);

		header = (__le32 *) &d[1];
1610 1611 1612 1613 1614
		header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
					IT_HEADER_TAG(p->tag) |
					IT_HEADER_TCODE(TCODE_STREAM_DATA) |
					IT_HEADER_CHANNEL(ctx->base.channel) |
					IT_HEADER_SPEED(ctx->base.speed));
1615
		header[1] =
1616
			cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
1617 1618 1619 1620 1621
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
1622
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
1635 1636 1637

		page_bus = page_private(buffer->pages[page]);
		pd[i].data_address = cpu_to_le32(page_bus + offset);
1638 1639 1640 1641 1642

		payload_index += length;
	}

	if (p->interrupt)
1643
		irq = DESCRIPTOR_IRQ_ALWAYS;
1644
	else
1645
		irq = DESCRIPTOR_NO_IRQ;
1646

1647
	last = z == 2 ? d : d + z - 1;
1648 1649 1650
	last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
				     DESCRIPTOR_STATUS |
				     DESCRIPTOR_BRANCH_ALWAYS |
1651
				     irq);
1652

1653
	context_append(&ctx->context, d, z, header_z);
1654 1655 1656

	return 0;
}
S
Stefan Richter 已提交
1657

1658
static int
1659 1660 1661 1662
ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
				  struct fw_iso_packet *packet,
				  struct fw_iso_buffer *buffer,
				  unsigned long payload)
1663 1664 1665 1666 1667 1668 1669
{
	struct iso_context *ctx = container_of(base, struct iso_context, base);
	struct db_descriptor *db = NULL;
	struct descriptor *d;
	struct fw_iso_packet *p;
	dma_addr_t d_bus, page_bus;
	u32 z, header_z, length, rest;
1670
	int page, offset, packet_count, header_size;
S
Stefan Richter 已提交
1671

1672 1673 1674 1675
	/*
	 * FIXME: Cycle lost behavior should be configurable: lose
	 * packet, retransmit or terminate..
	 */
1676

1677 1678 1679 1680 1681 1682
	if (packet->skip) {
		d = context_get_descriptors(&ctx->context, 2, &d_bus);
		if (d == NULL)
			return -ENOMEM;

		db = (struct db_descriptor *) d;
1683 1684 1685
		db->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_BRANCH_ALWAYS |
					  DESCRIPTOR_WAIT);
1686 1687 1688
		db->first_size = cpu_to_le16(ctx->base.header_size + 4);
		context_append(&ctx->context, d, 2, 0);
	}
1689

1690 1691 1692
	p = packet;
	z = 2;

1693 1694 1695 1696
	/*
	 * The OHCI controller puts the status word in the header
	 * buffer too, so we need 4 extra bytes per packet.
	 */
1697 1698 1699
	packet_count = p->header_length / ctx->base.header_size;
	header_size = packet_count * (ctx->base.header_size + 4);

1700
	/* Get header size in number of descriptors. */
1701
	header_z = DIV_ROUND_UP(header_size, sizeof(*d));
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
	page     = payload >> PAGE_SHIFT;
	offset   = payload & ~PAGE_MASK;
	rest     = p->payload_length;

	/* FIXME: OHCI 1.0 doesn't support dual buffer receive */
	/* FIXME: make packet-per-buffer/dual-buffer a context option */
	while (rest > 0) {
		d = context_get_descriptors(&ctx->context,
					    z + header_z, &d_bus);
		if (d == NULL)
			return -ENOMEM;

		db = (struct db_descriptor *) d;
1715 1716
		db->control = cpu_to_le16(DESCRIPTOR_STATUS |
					  DESCRIPTOR_BRANCH_ALWAYS);
1717 1718
		db->first_size = cpu_to_le16(ctx->base.header_size + 4);
		db->first_req_count = cpu_to_le16(header_size);
1719
		db->first_res_count = db->first_req_count;
1720
		db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
S
Stefan Richter 已提交
1721

1722 1723 1724 1725 1726
		if (offset + rest < PAGE_SIZE)
			length = rest;
		else
			length = PAGE_SIZE - offset;

1727 1728
		db->second_req_count = cpu_to_le16(length);
		db->second_res_count = db->second_req_count;
1729 1730 1731
		page_bus = page_private(buffer->pages[page]);
		db->second_buffer = cpu_to_le32(page_bus + offset);

1732
		if (p->interrupt && length == rest)
1733
			db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
1734

1735 1736 1737 1738 1739 1740
		context_append(&ctx->context, d, z, header_z);
		offset = (offset + length) & ~PAGE_MASK;
		rest -= length;
		page++;
	}

1741 1742
	return 0;
}
1743

1744 1745 1746 1747 1748 1749
static int
ohci_queue_iso(struct fw_iso_context *base,
	       struct fw_iso_packet *packet,
	       struct fw_iso_buffer *buffer,
	       unsigned long payload)
{
1750 1751
	struct iso_context *ctx = container_of(base, struct iso_context, base);

1752 1753
	if (base->type == FW_ISO_CONTEXT_TRANSMIT)
		return ohci_queue_iso_transmit(base, packet, buffer, payload);
1754
	else if (ctx->context.ohci->version >= OHCI_VERSION_1_1)
1755 1756
		return ohci_queue_iso_receive_dualbuffer(base, packet,
							 buffer, payload);
1757 1758 1759
	else
		/* FIXME: Implement fallback for OHCI 1.0 controllers. */
		return -EINVAL;
1760 1761
}

1762
static const struct fw_card_driver ohci_driver = {
1763 1764 1765 1766 1767 1768
	.name			= ohci_driver_name,
	.enable			= ohci_enable,
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
1769
	.cancel_packet		= ohci_cancel_packet,
1770
	.enable_phys_dma	= ohci_enable_phys_dma,
1771
	.get_bus_time		= ohci_get_bus_time,
1772 1773 1774 1775

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
	.queue_iso		= ohci_queue_iso,
1776
	.start_iso		= ohci_start_iso,
1777
	.stop_iso		= ohci_stop_iso,
1778 1779 1780 1781 1782 1783
};

static int __devinit
pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
{
	struct fw_ohci *ohci;
1784
	u32 bus_options, max_receive, link_speed;
1785
	u64 guid;
1786
	int err;
1787 1788
	size_t size;

1789
	ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
1790 1791 1792 1793 1794 1795 1796
	if (ohci == NULL) {
		fw_error("Could not malloc fw_ohci data.\n");
		return -ENOMEM;
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

1797 1798
	err = pci_enable_device(dev);
	if (err) {
1799
		fw_error("Failed to enable OHCI hardware.\n");
1800
		goto fail_put_card;
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

	spin_lock_init(&ohci->lock);

	tasklet_init(&ohci->bus_reset_tasklet,
		     bus_reset_tasklet, (unsigned long)ohci);

1812 1813
	err = pci_request_region(dev, 0, ohci_driver_name);
	if (err) {
1814
		fw_error("MMIO resource unavailable\n");
1815
		goto fail_disable;
1816 1817 1818 1819 1820
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
		fw_error("Failed to remap registers\n");
1821 1822
		err = -ENXIO;
		goto fail_iomem;
1823 1824 1825 1826 1827 1828 1829 1830
	}

	ar_context_init(&ohci->ar_request_ctx, ohci,
			OHCI1394_AsReqRcvContextControlSet);

	ar_context_init(&ohci->ar_response_ctx, ohci,
			OHCI1394_AsRspRcvContextControlSet);

1831 1832
	context_init(&ohci->at_request_ctx, ohci, AT_BUFFER_SIZE,
		     OHCI1394_AsReqTrContextControlSet, handle_at_packet);
1833

1834 1835
	context_init(&ohci->at_response_ctx, ohci, AT_BUFFER_SIZE,
		     OHCI1394_AsRspTrContextControlSet, handle_at_packet);
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
	ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
	size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
	ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
	size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
		fw_error("Out of memory for it/ir contexts.\n");
1851 1852
		err = -ENOMEM;
		goto fail_registers;
1853 1854 1855 1856 1857 1858 1859 1860 1861
	}

	/* self-id dma buffer allocation */
	ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
					       SELF_ID_BUF_SIZE,
					       &ohci->self_id_bus,
					       GFP_KERNEL);
	if (ohci->self_id_cpu == NULL) {
		fw_error("Out of memory for self ID buffer.\n");
1862 1863
		err = -ENOMEM;
		goto fail_registers;
1864 1865 1866 1867 1868 1869 1870 1871
	}

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

1872 1873 1874
	err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
	if (err < 0)
		goto fail_self_id;
1875

1876
	ohci->version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
1877
	fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
1878
		  dev->dev.bus_id, ohci->version >> 16, ohci->version & 0xff);
1879 1880

	return 0;
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896

 fail_self_id:
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
 fail_registers:
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
	pci_iounmap(dev, ohci->registers);
 fail_iomem:
	pci_release_region(dev, 0);
 fail_disable:
	pci_disable_device(dev);
 fail_put_card:
	fw_card_put(&ohci->card);

	return err;
1897 1898 1899 1900 1901 1902 1903
}

static void pci_remove(struct pci_dev *dev)
{
	struct fw_ohci *ohci;

	ohci = pci_get_drvdata(dev);
1904 1905
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	flush_writes(ohci);
1906 1907
	fw_core_remove_card(&ohci->card);

1908 1909 1910 1911
	/*
	 * FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more.
	 */
1912 1913 1914

	software_reset(ohci);
	free_irq(dev->irq, ohci);
1915 1916 1917 1918 1919 1920 1921 1922
	dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
			  ohci->self_id_cpu, ohci->self_id_bus);
	kfree(ohci->it_context_list);
	kfree(ohci->ir_context_list);
	pci_iounmap(dev, ohci->registers);
	pci_release_region(dev, 0);
	pci_disable_device(dev);
	fw_card_put(&ohci->card);
1923 1924 1925 1926

	fw_notify("Removed fw-ohci device.\n");
}

1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
#ifdef CONFIG_PM
static int pci_suspend(struct pci_dev *pdev, pm_message_t state)
{
	struct fw_ohci *ohci = pci_get_drvdata(pdev);
	int err;

	software_reset(ohci);
	free_irq(pdev->irq, ohci);
	err = pci_save_state(pdev);
	if (err) {
		fw_error("pci_save_state failed with %d", err);
		return err;
	}
	err = pci_set_power_state(pdev, pci_choose_state(pdev, state));
	if (err) {
		fw_error("pci_set_power_state failed with %d", err);
		return err;
	}

	return 0;
}

static int pci_resume(struct pci_dev *pdev)
{
	struct fw_ohci *ohci = pci_get_drvdata(pdev);
	int err;

	pci_set_power_state(pdev, PCI_D0);
	pci_restore_state(pdev);
	err = pci_enable_device(pdev);
	if (err) {
		fw_error("pci_enable_device failed with %d", err);
		return err;
	}

	return ohci_enable(&ohci->card, ohci->config_rom, CONFIG_ROM_SIZE);
}
#endif

1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
static struct pci_device_id pci_table[] = {
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
1978 1979 1980 1981
#ifdef CONFIG_PM
	.resume		= pci_resume,
	.suspend	= pci_suspend,
#endif
1982 1983 1984 1985 1986 1987
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

1988 1989 1990 1991 1992
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
MODULE_ALIAS("ohci1394");
#endif

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
static int __init fw_ohci_init(void)
{
	return pci_register_driver(&fw_ohci_pci_driver);
}

static void __exit fw_ohci_cleanup(void)
{
	pci_unregister_driver(&fw_ohci_pci_driver);
}

module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);