ring_buffer.c 17.9 KB
Newer Older
1 2 3 4 5
/*
 * Performance events ring-buffer code:
 *
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 9 10 11 12 13 14
 *
 * For licensing details see kernel-base/COPYING
 */

#include <linux/perf_event.h>
#include <linux/vmalloc.h>
#include <linux/slab.h>
15
#include <linux/circ_buf.h>
16
#include <linux/poll.h>
17 18 19 20 21

#include "internal.h"

static void perf_output_wakeup(struct perf_output_handle *handle)
{
22
	atomic_set(&handle->rb->poll, POLLIN);
23

24 25
	handle->event->pending_wakeup = 1;
	irq_work_queue(&handle->event->pending);
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
}

/*
 * We need to ensure a later event_id doesn't publish a head when a former
 * event isn't done writing. However since we need to deal with NMIs we
 * cannot fully serialize things.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
 * event completes.
 */
static void perf_output_get_handle(struct perf_output_handle *handle)
{
	struct ring_buffer *rb = handle->rb;

	preempt_disable();
	local_inc(&rb->nest);
	handle->wakeup = local_read(&rb->wakeup);
}

static void perf_output_put_handle(struct perf_output_handle *handle)
{
	struct ring_buffer *rb = handle->rb;
	unsigned long head;

again:
	head = local_read(&rb->head);

	/*
	 * IRQ/NMI can happen here, which means we can miss a head update.
	 */

	if (!local_dec_and_test(&rb->nest))
		goto out;

	/*
61 62 63 64
	 * Since the mmap() consumer (userspace) can run on a different CPU:
	 *
	 *   kernel				user
	 *
65 66 67 68 69 70
	 *   if (LOAD ->data_tail) {		LOAD ->data_head
	 *			(A)		smp_rmb()	(C)
	 *	STORE $data			LOAD $data
	 *	smp_wmb()	(B)		smp_mb()	(D)
	 *	STORE ->data_head		STORE ->data_tail
	 *   }
71 72 73
	 *
	 * Where A pairs with D, and B pairs with C.
	 *
74 75 76
	 * In our case (A) is a control dependency that separates the load of
	 * the ->data_tail and the stores of $data. In case ->data_tail
	 * indicates there is no room in the buffer to store $data we do not.
77
	 *
78
	 * D needs to be a full barrier since it separates the data READ
79 80 81 82 83 84
	 * from the tail WRITE.
	 *
	 * For B a WMB is sufficient since it separates two WRITEs, and for C
	 * an RMB is sufficient since it separates two READs.
	 *
	 * See perf_output_begin().
85
	 */
86
	smp_wmb(); /* B, matches C */
87 88 89
	rb->user_page->data_head = head;

	/*
P
Peter Zijlstra 已提交
90 91
	 * Now check if we missed an update -- rely on previous implied
	 * compiler barriers to force a re-read.
92 93 94 95 96 97 98 99 100 101 102 103 104 105
	 */
	if (unlikely(head != local_read(&rb->head))) {
		local_inc(&rb->nest);
		goto again;
	}

	if (handle->wakeup != local_read(&rb->wakeup))
		perf_output_wakeup(handle);

out:
	preempt_enable();
}

int perf_output_begin(struct perf_output_handle *handle,
106
		      struct perf_event *event, unsigned int size)
107 108 109
{
	struct ring_buffer *rb;
	unsigned long tail, offset, head;
110
	int have_lost, page_shift;
111 112 113 114 115 116 117 118 119 120 121 122 123 124
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;

	rcu_read_lock();
	/*
	 * For inherited events we send all the output towards the parent.
	 */
	if (event->parent)
		event = event->parent;

	rb = rcu_dereference(event->rb);
125
	if (unlikely(!rb))
126 127
		goto out;

128
	if (unlikely(!rb->nr_pages))
129 130
		goto out;

131 132 133
	handle->rb    = rb;
	handle->event = event;

134
	have_lost = local_read(&rb->lost);
135
	if (unlikely(have_lost)) {
136 137 138
		size += sizeof(lost_event);
		if (event->attr.sample_id_all)
			size += event->id_header_size;
139 140 141 142 143
	}

	perf_output_get_handle(handle);

	do {
144
		tail = READ_ONCE(rb->user_page->data_tail);
145
		offset = head = local_read(&rb->head);
146 147
		if (!rb->overwrite &&
		    unlikely(CIRC_SPACE(head, tail, perf_data_size(rb)) < size))
148
			goto fail;
149 150 151 152 153 154 155 156 157 158 159 160 161

		/*
		 * The above forms a control dependency barrier separating the
		 * @tail load above from the data stores below. Since the @tail
		 * load is required to compute the branch to fail below.
		 *
		 * A, matches D; the full memory barrier userspace SHOULD issue
		 * after reading the data and before storing the new tail
		 * position.
		 *
		 * See perf_output_put_handle().
		 */

162
		head += size;
163 164
	} while (local_cmpxchg(&rb->head, offset, head) != offset);

165
	/*
166 167
	 * We rely on the implied barrier() by local_cmpxchg() to ensure
	 * none of the data stores below can be lifted up by the compiler.
168 169
	 */

170
	if (unlikely(head - local_read(&rb->wakeup) > rb->watermark))
171 172
		local_add(rb->watermark, &rb->wakeup);

173 174 175 176 177 178
	page_shift = PAGE_SHIFT + page_order(rb);

	handle->page = (offset >> page_shift) & (rb->nr_pages - 1);
	offset &= (1UL << page_shift) - 1;
	handle->addr = rb->data_pages[handle->page] + offset;
	handle->size = (1UL << page_shift) - offset;
179

180
	if (unlikely(have_lost)) {
181 182 183
		struct perf_sample_data sample_data;

		lost_event.header.size = sizeof(lost_event);
184 185 186 187 188
		lost_event.header.type = PERF_RECORD_LOST;
		lost_event.header.misc = 0;
		lost_event.id          = event->id;
		lost_event.lost        = local_xchg(&rb->lost, 0);

189 190
		perf_event_header__init_id(&lost_event.header,
					   &sample_data, event);
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
		perf_output_put(handle, lost_event);
		perf_event__output_id_sample(event, handle, &sample_data);
	}

	return 0;

fail:
	local_inc(&rb->lost);
	perf_output_put_handle(handle);
out:
	rcu_read_unlock();

	return -ENOSPC;
}

206
unsigned int perf_output_copy(struct perf_output_handle *handle,
207 208
		      const void *buf, unsigned int len)
{
209
	return __output_copy(handle, buf, len);
210 211
}

212 213 214 215 216 217
unsigned int perf_output_skip(struct perf_output_handle *handle,
			      unsigned int len)
{
	return __output_skip(handle, NULL, len);
}

218 219 220 221 222 223
void perf_output_end(struct perf_output_handle *handle)
{
	perf_output_put_handle(handle);
	rcu_read_unlock();
}

224 225
static void rb_irq_work(struct irq_work *work);

226 227 228 229 230 231 232 233 234 235 236 237
static void
ring_buffer_init(struct ring_buffer *rb, long watermark, int flags)
{
	long max_size = perf_data_size(rb);

	if (watermark)
		rb->watermark = min(max_size, watermark);

	if (!rb->watermark)
		rb->watermark = max_size / 2;

	if (flags & RING_BUFFER_WRITABLE)
238 239 240
		rb->overwrite = 0;
	else
		rb->overwrite = 1;
241 242

	atomic_set(&rb->refcount, 1);
243 244 245

	INIT_LIST_HEAD(&rb->event_list);
	spin_lock_init(&rb->event_lock);
246 247 248 249 250 251 252 253 254 255
	init_irq_work(&rb->irq_work, rb_irq_work);
}

static void ring_buffer_put_async(struct ring_buffer *rb)
{
	if (!atomic_dec_and_test(&rb->refcount))
		return;

	rb->rcu_head.next = (void *)rb;
	irq_work_queue(&rb->irq_work);
256 257
}

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
/*
 * This is called before hardware starts writing to the AUX area to
 * obtain an output handle and make sure there's room in the buffer.
 * When the capture completes, call perf_aux_output_end() to commit
 * the recorded data to the buffer.
 *
 * The ordering is similar to that of perf_output_{begin,end}, with
 * the exception of (B), which should be taken care of by the pmu
 * driver, since ordering rules will differ depending on hardware.
 */
void *perf_aux_output_begin(struct perf_output_handle *handle,
			    struct perf_event *event)
{
	struct perf_event *output_event = event;
	unsigned long aux_head, aux_tail;
	struct ring_buffer *rb;

	if (output_event->parent)
		output_event = output_event->parent;

	/*
	 * Since this will typically be open across pmu::add/pmu::del, we
	 * grab ring_buffer's refcount instead of holding rcu read lock
	 * to make sure it doesn't disappear under us.
	 */
	rb = ring_buffer_get(output_event);
	if (!rb)
		return NULL;

	if (!rb_has_aux(rb) || !atomic_inc_not_zero(&rb->aux_refcount))
		goto err;

	/*
	 * Nesting is not supported for AUX area, make sure nested
	 * writers are caught early
	 */
	if (WARN_ON_ONCE(local_xchg(&rb->aux_nest, 1)))
		goto err_put;

	aux_head = local_read(&rb->aux_head);

	handle->rb = rb;
	handle->event = event;
	handle->head = aux_head;
302
	handle->size = 0;
303 304

	/*
305 306 307
	 * In overwrite mode, AUX data stores do not depend on aux_tail,
	 * therefore (A) control dependency barrier does not exist. The
	 * (B) <-> (C) ordering is still observed by the pmu driver.
308
	 */
309 310
	if (!rb->aux_overwrite) {
		aux_tail = ACCESS_ONCE(rb->user_page->aux_tail);
311
		handle->wakeup = local_read(&rb->aux_wakeup) + rb->aux_watermark;
312 313 314 315 316 317 318 319 320 321 322 323 324 325
		if (aux_head - aux_tail < perf_aux_size(rb))
			handle->size = CIRC_SPACE(aux_head, aux_tail, perf_aux_size(rb));

		/*
		 * handle->size computation depends on aux_tail load; this forms a
		 * control dependency barrier separating aux_tail load from aux data
		 * store that will be enabled on successful return
		 */
		if (!handle->size) { /* A, matches D */
			event->pending_disable = 1;
			perf_output_wakeup(handle);
			local_set(&rb->aux_nest, 0);
			goto err_put;
		}
326 327 328 329 330 331 332 333
	}

	return handle->rb->aux_priv;

err_put:
	rb_free_aux(rb);

err:
334
	ring_buffer_put_async(rb);
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
	handle->event = NULL;

	return NULL;
}

/*
 * Commit the data written by hardware into the ring buffer by adjusting
 * aux_head and posting a PERF_RECORD_AUX into the perf buffer. It is the
 * pmu driver's responsibility to observe ordering rules of the hardware,
 * so that all the data is externally visible before this is called.
 */
void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size,
			 bool truncated)
{
	struct ring_buffer *rb = handle->rb;
350
	unsigned long aux_head;
351 352 353 354 355
	u64 flags = 0;

	if (truncated)
		flags |= PERF_AUX_FLAG_TRUNCATED;

356 357 358 359 360 361 362 363 364 365
	/* in overwrite mode, driver provides aux_head via handle */
	if (rb->aux_overwrite) {
		flags |= PERF_AUX_FLAG_OVERWRITE;

		aux_head = handle->head;
		local_set(&rb->aux_head, aux_head);
	} else {
		aux_head = local_read(&rb->aux_head);
		local_add(size, &rb->aux_head);
	}
366 367 368 369 370 371 372 373 374

	if (size || flags) {
		/*
		 * Only send RECORD_AUX if we have something useful to communicate
		 */

		perf_event_aux_event(handle->event, aux_head, size, flags);
	}

375
	aux_head = rb->user_page->aux_head = local_read(&rb->aux_head);
376

377 378 379 380
	if (aux_head - local_read(&rb->aux_wakeup) >= rb->aux_watermark) {
		perf_output_wakeup(handle);
		local_add(rb->aux_watermark, &rb->aux_wakeup);
	}
381 382 383 384
	handle->event = NULL;

	local_set(&rb->aux_nest, 0);
	rb_free_aux(rb);
385
	ring_buffer_put_async(rb);
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
}

/*
 * Skip over a given number of bytes in the AUX buffer, due to, for example,
 * hardware's alignment constraints.
 */
int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size)
{
	struct ring_buffer *rb = handle->rb;
	unsigned long aux_head;

	if (size > handle->size)
		return -ENOSPC;

	local_add(size, &rb->aux_head);

402 403 404 405 406 407 408 409
	aux_head = rb->user_page->aux_head = local_read(&rb->aux_head);
	if (aux_head - local_read(&rb->aux_wakeup) >= rb->aux_watermark) {
		perf_output_wakeup(handle);
		local_add(rb->aux_watermark, &rb->aux_wakeup);
		handle->wakeup = local_read(&rb->aux_wakeup) +
				 rb->aux_watermark;
	}

410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
	handle->head = aux_head;
	handle->size -= size;

	return 0;
}

void *perf_get_aux(struct perf_output_handle *handle)
{
	/* this is only valid between perf_aux_output_begin and *_end */
	if (!handle->event)
		return NULL;

	return handle->rb->aux_priv;
}

425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
#define PERF_AUX_GFP	(GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY)

static struct page *rb_alloc_aux_page(int node, int order)
{
	struct page *page;

	if (order > MAX_ORDER)
		order = MAX_ORDER;

	do {
		page = alloc_pages_node(node, PERF_AUX_GFP, order);
	} while (!page && order--);

	if (page && order) {
		/*
440 441 442 443
		 * Communicate the allocation size to the driver:
		 * if we managed to secure a high-order allocation,
		 * set its first page's private to this order;
		 * !PagePrivate(page) means it's just a normal page.
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
		 */
		split_page(page, order);
		SetPagePrivate(page);
		set_page_private(page, order);
	}

	return page;
}

static void rb_free_aux_page(struct ring_buffer *rb, int idx)
{
	struct page *page = virt_to_page(rb->aux_pages[idx]);

	ClearPagePrivate(page);
	page->mapping = NULL;
	__free_page(page);
}

462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
static void __rb_free_aux(struct ring_buffer *rb)
{
	int pg;

	if (rb->aux_priv) {
		rb->free_aux(rb->aux_priv);
		rb->free_aux = NULL;
		rb->aux_priv = NULL;
	}

	if (rb->aux_nr_pages) {
		for (pg = 0; pg < rb->aux_nr_pages; pg++)
			rb_free_aux_page(rb, pg);

		kfree(rb->aux_pages);
		rb->aux_nr_pages = 0;
	}
}

481
int rb_alloc_aux(struct ring_buffer *rb, struct perf_event *event,
482
		 pgoff_t pgoff, int nr_pages, long watermark, int flags)
483 484 485
{
	bool overwrite = !(flags & RING_BUFFER_WRITABLE);
	int node = (event->cpu == -1) ? -1 : cpu_to_node(event->cpu);
486
	int ret = -ENOMEM, max_order = 0;
487 488 489 490

	if (!has_aux(event))
		return -ENOTSUPP;

491
	if (event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) {
492 493 494 495 496 497
		/*
		 * We need to start with the max_order that fits in nr_pages,
		 * not the other way around, hence ilog2() and not get_order.
		 */
		max_order = ilog2(nr_pages);

498 499 500 501 502 503 504 505 506 507 508 509 510
		/*
		 * PMU requests more than one contiguous chunks of memory
		 * for SW double buffering
		 */
		if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_SW_DOUBLEBUF) &&
		    !overwrite) {
			if (!max_order)
				return -EINVAL;

			max_order--;
		}
	}

511 512 513 514 515
	rb->aux_pages = kzalloc_node(nr_pages * sizeof(void *), GFP_KERNEL, node);
	if (!rb->aux_pages)
		return -ENOMEM;

	rb->free_aux = event->pmu->free_aux;
516
	for (rb->aux_nr_pages = 0; rb->aux_nr_pages < nr_pages;) {
517
		struct page *page;
518
		int last, order;
519

520 521
		order = min(max_order, ilog2(nr_pages - rb->aux_nr_pages));
		page = rb_alloc_aux_page(node, order);
522 523 524
		if (!page)
			goto out;

525 526 527
		for (last = rb->aux_nr_pages + (1 << page_private(page));
		     last > rb->aux_nr_pages; rb->aux_nr_pages++)
			rb->aux_pages[rb->aux_nr_pages] = page_address(page++);
528 529
	}

530 531 532 533 534 535 536 537 538 539 540 541 542 543
	/*
	 * In overwrite mode, PMUs that don't support SG may not handle more
	 * than one contiguous allocation, since they rely on PMI to do double
	 * buffering. In this case, the entire buffer has to be one contiguous
	 * chunk.
	 */
	if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) &&
	    overwrite) {
		struct page *page = virt_to_page(rb->aux_pages[0]);

		if (page_private(page) != max_order)
			goto out;
	}

544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
	rb->aux_priv = event->pmu->setup_aux(event->cpu, rb->aux_pages, nr_pages,
					     overwrite);
	if (!rb->aux_priv)
		goto out;

	ret = 0;

	/*
	 * aux_pages (and pmu driver's private data, aux_priv) will be
	 * referenced in both producer's and consumer's contexts, thus
	 * we keep a refcount here to make sure either of the two can
	 * reference them safely.
	 */
	atomic_set(&rb->aux_refcount, 1);

559
	rb->aux_overwrite = overwrite;
560 561 562 563
	rb->aux_watermark = watermark;

	if (!rb->aux_watermark && !rb->aux_overwrite)
		rb->aux_watermark = nr_pages << (PAGE_SHIFT - 1);
564

565 566 567 568
out:
	if (!ret)
		rb->aux_pgoff = pgoff;
	else
569
		__rb_free_aux(rb);
570 571 572 573 574 575 576

	return ret;
}

void rb_free_aux(struct ring_buffer *rb)
{
	if (atomic_dec_and_test(&rb->aux_refcount))
577 578 579 580 581 582 583 584
		irq_work_queue(&rb->irq_work);
}

static void rb_irq_work(struct irq_work *work)
{
	struct ring_buffer *rb = container_of(work, struct ring_buffer, irq_work);

	if (!atomic_read(&rb->aux_refcount))
585
		__rb_free_aux(rb);
586 587 588

	if (rb->rcu_head.next == (void *)rb)
		call_rcu(&rb->rcu_head, rb_free_rcu);
589 590
}

591 592 593 594 595 596
#ifndef CONFIG_PERF_USE_VMALLOC

/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */

597 598
static struct page *
__perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
{
	if (pgoff > rb->nr_pages)
		return NULL;

	if (pgoff == 0)
		return virt_to_page(rb->user_page);

	return virt_to_page(rb->data_pages[pgoff - 1]);
}

static void *perf_mmap_alloc_page(int cpu)
{
	struct page *page;
	int node;

	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
	if (!page)
		return NULL;

	return page_address(page);
}

struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
{
	struct ring_buffer *rb;
	unsigned long size;
	int i;

	size = sizeof(struct ring_buffer);
	size += nr_pages * sizeof(void *);

	rb = kzalloc(size, GFP_KERNEL);
	if (!rb)
		goto fail;

	rb->user_page = perf_mmap_alloc_page(cpu);
	if (!rb->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		rb->data_pages[i] = perf_mmap_alloc_page(cpu);
		if (!rb->data_pages[i])
			goto fail_data_pages;
	}

	rb->nr_pages = nr_pages;

	ring_buffer_init(rb, watermark, flags);

	return rb;

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)rb->data_pages[i]);

	free_page((unsigned long)rb->user_page);

fail_user_page:
	kfree(rb);

fail:
	return NULL;
}

static void perf_mmap_free_page(unsigned long addr)
{
	struct page *page = virt_to_page((void *)addr);

	page->mapping = NULL;
	__free_page(page);
}

void rb_free(struct ring_buffer *rb)
{
	int i;

	perf_mmap_free_page((unsigned long)rb->user_page);
	for (i = 0; i < rb->nr_pages; i++)
		perf_mmap_free_page((unsigned long)rb->data_pages[i]);
	kfree(rb);
}

#else
683 684 685 686
static int data_page_nr(struct ring_buffer *rb)
{
	return rb->nr_pages << page_order(rb);
}
687

688 689
static struct page *
__perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
690
{
691 692
	/* The '>' counts in the user page. */
	if (pgoff > data_page_nr(rb))
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
		return NULL;

	return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

static void rb_free_work(struct work_struct *work)
{
	struct ring_buffer *rb;
	void *base;
	int i, nr;

	rb = container_of(work, struct ring_buffer, work);
712
	nr = data_page_nr(rb);
713 714

	base = rb->user_page;
715 716
	/* The '<=' counts in the user page. */
	for (i = 0; i <= nr; i++)
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
	kfree(rb);
}

void rb_free(struct ring_buffer *rb)
{
	schedule_work(&rb->work);
}

struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
{
	struct ring_buffer *rb;
	unsigned long size;
	void *all_buf;

	size = sizeof(struct ring_buffer);
	size += sizeof(void *);

	rb = kzalloc(size, GFP_KERNEL);
	if (!rb)
		goto fail;

	INIT_WORK(&rb->work, rb_free_work);

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

	rb->user_page = all_buf;
	rb->data_pages[0] = all_buf + PAGE_SIZE;
	rb->page_order = ilog2(nr_pages);
750
	rb->nr_pages = !!nr_pages;
751 752 753 754 755 756 757 758 759 760 761 762 763

	ring_buffer_init(rb, watermark, flags);

	return rb;

fail_all_buf:
	kfree(rb);

fail:
	return NULL;
}

#endif
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779

struct page *
perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
{
	if (rb->aux_nr_pages) {
		/* above AUX space */
		if (pgoff > rb->aux_pgoff + rb->aux_nr_pages)
			return NULL;

		/* AUX space */
		if (pgoff >= rb->aux_pgoff)
			return virt_to_page(rb->aux_pages[pgoff - rb->aux_pgoff]);
	}

	return __perf_mmap_to_page(rb, pgoff);
}