ring_buffer.c 10.9 KB
Newer Older
1 2 3 4 5 6
/*
 * Performance events ring-buffer code:
 *
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 9 10 11 12 13 14
 *
 * For licensing details see kernel-base/COPYING
 */

#include <linux/perf_event.h>
#include <linux/vmalloc.h>
#include <linux/slab.h>
15
#include <linux/circ_buf.h>
16
#include <linux/poll.h>
17 18 19 20 21

#include "internal.h"

static void perf_output_wakeup(struct perf_output_handle *handle)
{
22
	atomic_set(&handle->rb->poll, POLLIN);
23

24 25
	handle->event->pending_wakeup = 1;
	irq_work_queue(&handle->event->pending);
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
}

/*
 * We need to ensure a later event_id doesn't publish a head when a former
 * event isn't done writing. However since we need to deal with NMIs we
 * cannot fully serialize things.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
 * event completes.
 */
static void perf_output_get_handle(struct perf_output_handle *handle)
{
	struct ring_buffer *rb = handle->rb;

	preempt_disable();
	local_inc(&rb->nest);
	handle->wakeup = local_read(&rb->wakeup);
}

static void perf_output_put_handle(struct perf_output_handle *handle)
{
	struct ring_buffer *rb = handle->rb;
	unsigned long head;

again:
	head = local_read(&rb->head);

	/*
	 * IRQ/NMI can happen here, which means we can miss a head update.
	 */

	if (!local_dec_and_test(&rb->nest))
		goto out;

	/*
61 62 63 64
	 * Since the mmap() consumer (userspace) can run on a different CPU:
	 *
	 *   kernel				user
	 *
65 66 67 68 69 70
	 *   if (LOAD ->data_tail) {		LOAD ->data_head
	 *			(A)		smp_rmb()	(C)
	 *	STORE $data			LOAD $data
	 *	smp_wmb()	(B)		smp_mb()	(D)
	 *	STORE ->data_head		STORE ->data_tail
	 *   }
71 72 73
	 *
	 * Where A pairs with D, and B pairs with C.
	 *
74 75 76
	 * In our case (A) is a control dependency that separates the load of
	 * the ->data_tail and the stores of $data. In case ->data_tail
	 * indicates there is no room in the buffer to store $data we do not.
77
	 *
78
	 * D needs to be a full barrier since it separates the data READ
79 80 81 82 83 84
	 * from the tail WRITE.
	 *
	 * For B a WMB is sufficient since it separates two WRITEs, and for C
	 * an RMB is sufficient since it separates two READs.
	 *
	 * See perf_output_begin().
85
	 */
86
	smp_wmb(); /* B, matches C */
87 88 89
	rb->user_page->data_head = head;

	/*
P
Peter Zijlstra 已提交
90 91
	 * Now check if we missed an update -- rely on previous implied
	 * compiler barriers to force a re-read.
92 93 94 95 96 97 98 99 100 101 102 103 104 105
	 */
	if (unlikely(head != local_read(&rb->head))) {
		local_inc(&rb->nest);
		goto again;
	}

	if (handle->wakeup != local_read(&rb->wakeup))
		perf_output_wakeup(handle);

out:
	preempt_enable();
}

int perf_output_begin(struct perf_output_handle *handle,
106
		      struct perf_event *event, unsigned int size)
107 108 109
{
	struct ring_buffer *rb;
	unsigned long tail, offset, head;
110
	int have_lost, page_shift;
111 112 113 114 115 116 117 118 119 120 121 122 123 124
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;

	rcu_read_lock();
	/*
	 * For inherited events we send all the output towards the parent.
	 */
	if (event->parent)
		event = event->parent;

	rb = rcu_dereference(event->rb);
125
	if (unlikely(!rb))
126 127
		goto out;

128
	if (unlikely(!rb->nr_pages))
129 130
		goto out;

131 132 133
	handle->rb    = rb;
	handle->event = event;

134
	have_lost = local_read(&rb->lost);
135
	if (unlikely(have_lost)) {
136 137 138
		size += sizeof(lost_event);
		if (event->attr.sample_id_all)
			size += event->id_header_size;
139 140 141 142 143 144 145
	}

	perf_output_get_handle(handle);

	do {
		tail = ACCESS_ONCE(rb->user_page->data_tail);
		offset = head = local_read(&rb->head);
146 147
		if (!rb->overwrite &&
		    unlikely(CIRC_SPACE(head, tail, perf_data_size(rb)) < size))
148
			goto fail;
149 150 151 152 153 154 155 156 157 158 159 160 161

		/*
		 * The above forms a control dependency barrier separating the
		 * @tail load above from the data stores below. Since the @tail
		 * load is required to compute the branch to fail below.
		 *
		 * A, matches D; the full memory barrier userspace SHOULD issue
		 * after reading the data and before storing the new tail
		 * position.
		 *
		 * See perf_output_put_handle().
		 */

162
		head += size;
163 164
	} while (local_cmpxchg(&rb->head, offset, head) != offset);

165
	/*
166 167
	 * We rely on the implied barrier() by local_cmpxchg() to ensure
	 * none of the data stores below can be lifted up by the compiler.
168 169
	 */

170
	if (unlikely(head - local_read(&rb->wakeup) > rb->watermark))
171 172
		local_add(rb->watermark, &rb->wakeup);

173 174 175 176 177 178
	page_shift = PAGE_SHIFT + page_order(rb);

	handle->page = (offset >> page_shift) & (rb->nr_pages - 1);
	offset &= (1UL << page_shift) - 1;
	handle->addr = rb->data_pages[handle->page] + offset;
	handle->size = (1UL << page_shift) - offset;
179

180
	if (unlikely(have_lost)) {
181 182 183
		struct perf_sample_data sample_data;

		lost_event.header.size = sizeof(lost_event);
184 185 186 187 188
		lost_event.header.type = PERF_RECORD_LOST;
		lost_event.header.misc = 0;
		lost_event.id          = event->id;
		lost_event.lost        = local_xchg(&rb->lost, 0);

189 190
		perf_event_header__init_id(&lost_event.header,
					   &sample_data, event);
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
		perf_output_put(handle, lost_event);
		perf_event__output_id_sample(event, handle, &sample_data);
	}

	return 0;

fail:
	local_inc(&rb->lost);
	perf_output_put_handle(handle);
out:
	rcu_read_unlock();

	return -ENOSPC;
}

206
unsigned int perf_output_copy(struct perf_output_handle *handle,
207 208
		      const void *buf, unsigned int len)
{
209
	return __output_copy(handle, buf, len);
210 211
}

212 213 214 215 216 217
unsigned int perf_output_skip(struct perf_output_handle *handle,
			      unsigned int len)
{
	return __output_skip(handle, NULL, len);
}

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
void perf_output_end(struct perf_output_handle *handle)
{
	perf_output_put_handle(handle);
	rcu_read_unlock();
}

static void
ring_buffer_init(struct ring_buffer *rb, long watermark, int flags)
{
	long max_size = perf_data_size(rb);

	if (watermark)
		rb->watermark = min(max_size, watermark);

	if (!rb->watermark)
		rb->watermark = max_size / 2;

	if (flags & RING_BUFFER_WRITABLE)
236 237 238
		rb->overwrite = 0;
	else
		rb->overwrite = 1;
239 240

	atomic_set(&rb->refcount, 1);
241 242 243

	INIT_LIST_HEAD(&rb->event_list);
	spin_lock_init(&rb->event_lock);
244 245
}

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
int rb_alloc_aux(struct ring_buffer *rb, struct perf_event *event,
		 pgoff_t pgoff, int nr_pages, int flags)
{
	bool overwrite = !(flags & RING_BUFFER_WRITABLE);
	int node = (event->cpu == -1) ? -1 : cpu_to_node(event->cpu);
	int ret = -ENOMEM;

	if (!has_aux(event))
		return -ENOTSUPP;

	rb->aux_pages = kzalloc_node(nr_pages * sizeof(void *), GFP_KERNEL, node);
	if (!rb->aux_pages)
		return -ENOMEM;

	rb->free_aux = event->pmu->free_aux;
	for (rb->aux_nr_pages = 0; rb->aux_nr_pages < nr_pages;
	     rb->aux_nr_pages++) {
		struct page *page;

		page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
		if (!page)
			goto out;

		rb->aux_pages[rb->aux_nr_pages] = page_address(page);
	}

	rb->aux_priv = event->pmu->setup_aux(event->cpu, rb->aux_pages, nr_pages,
					     overwrite);
	if (!rb->aux_priv)
		goto out;

	ret = 0;

	/*
	 * aux_pages (and pmu driver's private data, aux_priv) will be
	 * referenced in both producer's and consumer's contexts, thus
	 * we keep a refcount here to make sure either of the two can
	 * reference them safely.
	 */
	atomic_set(&rb->aux_refcount, 1);

out:
	if (!ret)
		rb->aux_pgoff = pgoff;
	else
		rb_free_aux(rb);

	return ret;
}

static void __rb_free_aux(struct ring_buffer *rb)
{
	int pg;

	if (rb->aux_priv) {
		rb->free_aux(rb->aux_priv);
		rb->free_aux = NULL;
		rb->aux_priv = NULL;
	}

	for (pg = 0; pg < rb->aux_nr_pages; pg++)
		free_page((unsigned long)rb->aux_pages[pg]);

	kfree(rb->aux_pages);
	rb->aux_nr_pages = 0;
}

void rb_free_aux(struct ring_buffer *rb)
{
	if (atomic_dec_and_test(&rb->aux_refcount))
		__rb_free_aux(rb);
}

319 320 321 322 323 324
#ifndef CONFIG_PERF_USE_VMALLOC

/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */

325 326
static struct page *
__perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
{
	if (pgoff > rb->nr_pages)
		return NULL;

	if (pgoff == 0)
		return virt_to_page(rb->user_page);

	return virt_to_page(rb->data_pages[pgoff - 1]);
}

static void *perf_mmap_alloc_page(int cpu)
{
	struct page *page;
	int node;

	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
	if (!page)
		return NULL;

	return page_address(page);
}

struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
{
	struct ring_buffer *rb;
	unsigned long size;
	int i;

	size = sizeof(struct ring_buffer);
	size += nr_pages * sizeof(void *);

	rb = kzalloc(size, GFP_KERNEL);
	if (!rb)
		goto fail;

	rb->user_page = perf_mmap_alloc_page(cpu);
	if (!rb->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		rb->data_pages[i] = perf_mmap_alloc_page(cpu);
		if (!rb->data_pages[i])
			goto fail_data_pages;
	}

	rb->nr_pages = nr_pages;

	ring_buffer_init(rb, watermark, flags);

	return rb;

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)rb->data_pages[i]);

	free_page((unsigned long)rb->user_page);

fail_user_page:
	kfree(rb);

fail:
	return NULL;
}

static void perf_mmap_free_page(unsigned long addr)
{
	struct page *page = virt_to_page((void *)addr);

	page->mapping = NULL;
	__free_page(page);
}

void rb_free(struct ring_buffer *rb)
{
	int i;

	perf_mmap_free_page((unsigned long)rb->user_page);
	for (i = 0; i < rb->nr_pages; i++)
		perf_mmap_free_page((unsigned long)rb->data_pages[i]);
	kfree(rb);
}

#else
411 412 413 414
static int data_page_nr(struct ring_buffer *rb)
{
	return rb->nr_pages << page_order(rb);
}
415

416 417
static struct page *
__perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
418
{
419 420
	/* The '>' counts in the user page. */
	if (pgoff > data_page_nr(rb))
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
		return NULL;

	return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

static void rb_free_work(struct work_struct *work)
{
	struct ring_buffer *rb;
	void *base;
	int i, nr;

	rb = container_of(work, struct ring_buffer, work);
440
	nr = data_page_nr(rb);
441 442

	base = rb->user_page;
443 444
	/* The '<=' counts in the user page. */
	for (i = 0; i <= nr; i++)
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
	kfree(rb);
}

void rb_free(struct ring_buffer *rb)
{
	schedule_work(&rb->work);
}

struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
{
	struct ring_buffer *rb;
	unsigned long size;
	void *all_buf;

	size = sizeof(struct ring_buffer);
	size += sizeof(void *);

	rb = kzalloc(size, GFP_KERNEL);
	if (!rb)
		goto fail;

	INIT_WORK(&rb->work, rb_free_work);

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

	rb->user_page = all_buf;
	rb->data_pages[0] = all_buf + PAGE_SIZE;
	rb->page_order = ilog2(nr_pages);
478
	rb->nr_pages = !!nr_pages;
479 480 481 482 483 484 485 486 487 488 489 490 491

	ring_buffer_init(rb, watermark, flags);

	return rb;

fail_all_buf:
	kfree(rb);

fail:
	return NULL;
}

#endif
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507

struct page *
perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
{
	if (rb->aux_nr_pages) {
		/* above AUX space */
		if (pgoff > rb->aux_pgoff + rb->aux_nr_pages)
			return NULL;

		/* AUX space */
		if (pgoff >= rb->aux_pgoff)
			return virt_to_page(rb->aux_pages[pgoff - rb->aux_pgoff]);
	}

	return __perf_mmap_to_page(rb, pgoff);
}