ring_buffer.c 8.8 KB
Newer Older
1 2 3 4 5 6
/*
 * Performance events ring-buffer code:
 *
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
A
Al Viro 已提交
7
 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 9 10 11 12 13 14
 *
 * For licensing details see kernel-base/COPYING
 */

#include <linux/perf_event.h>
#include <linux/vmalloc.h>
#include <linux/slab.h>
15
#include <linux/circ_buf.h>
16 17 18 19 20 21 22

#include "internal.h"

static void perf_output_wakeup(struct perf_output_handle *handle)
{
	atomic_set(&handle->rb->poll, POLL_IN);

23 24
	handle->event->pending_wakeup = 1;
	irq_work_queue(&handle->event->pending);
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
}

/*
 * We need to ensure a later event_id doesn't publish a head when a former
 * event isn't done writing. However since we need to deal with NMIs we
 * cannot fully serialize things.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
 * event completes.
 */
static void perf_output_get_handle(struct perf_output_handle *handle)
{
	struct ring_buffer *rb = handle->rb;

	preempt_disable();
	local_inc(&rb->nest);
	handle->wakeup = local_read(&rb->wakeup);
}

static void perf_output_put_handle(struct perf_output_handle *handle)
{
	struct ring_buffer *rb = handle->rb;
	unsigned long head;

again:
	head = local_read(&rb->head);

	/*
	 * IRQ/NMI can happen here, which means we can miss a head update.
	 */

	if (!local_dec_and_test(&rb->nest))
		goto out;

	/*
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
	 * Since the mmap() consumer (userspace) can run on a different CPU:
	 *
	 *   kernel				user
	 *
	 *   READ ->data_tail			READ ->data_head
	 *   smp_mb()	(A)			smp_rmb()	(C)
	 *   WRITE $data			READ $data
	 *   smp_wmb()	(B)			smp_mb()	(D)
	 *   STORE ->data_head			WRITE ->data_tail
	 *
	 * Where A pairs with D, and B pairs with C.
	 *
	 * I don't think A needs to be a full barrier because we won't in fact
	 * write data until we see the store from userspace. So we simply don't
	 * issue the data WRITE until we observe it. Be conservative for now.
	 *
	 * OTOH, D needs to be a full barrier since it separates the data READ
	 * from the tail WRITE.
	 *
	 * For B a WMB is sufficient since it separates two WRITEs, and for C
	 * an RMB is sufficient since it separates two READs.
	 *
	 * See perf_output_begin().
83
	 */
84
	smp_wmb();
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
	rb->user_page->data_head = head;

	/*
	 * Now check if we missed an update, rely on the (compiler)
	 * barrier in atomic_dec_and_test() to re-read rb->head.
	 */
	if (unlikely(head != local_read(&rb->head))) {
		local_inc(&rb->nest);
		goto again;
	}

	if (handle->wakeup != local_read(&rb->wakeup))
		perf_output_wakeup(handle);

out:
	preempt_enable();
}

int perf_output_begin(struct perf_output_handle *handle,
104
		      struct perf_event *event, unsigned int size)
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
{
	struct ring_buffer *rb;
	unsigned long tail, offset, head;
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;

	rcu_read_lock();
	/*
	 * For inherited events we send all the output towards the parent.
	 */
	if (event->parent)
		event = event->parent;

	rb = rcu_dereference(event->rb);
123
	if (unlikely(!rb))
124 125
		goto out;

126
	if (unlikely(!rb->nr_pages))
127 128
		goto out;

129 130 131
	handle->rb    = rb;
	handle->event = event;

132
	have_lost = local_read(&rb->lost);
133
	if (unlikely(have_lost)) {
134 135 136
		size += sizeof(lost_event);
		if (event->attr.sample_id_all)
			size += event->id_header_size;
137 138 139 140 141 142 143
	}

	perf_output_get_handle(handle);

	do {
		tail = ACCESS_ONCE(rb->user_page->data_tail);
		offset = head = local_read(&rb->head);
144 145
		if (!rb->overwrite &&
		    unlikely(CIRC_SPACE(head, tail, perf_data_size(rb)) < size))
146
			goto fail;
147
		head += size;
148 149
	} while (local_cmpxchg(&rb->head, offset, head) != offset);

150 151 152 153 154 155 156 157 158
	/*
	 * Separate the userpage->tail read from the data stores below.
	 * Matches the MB userspace SHOULD issue after reading the data
	 * and before storing the new tail position.
	 *
	 * See perf_output_put_handle().
	 */
	smp_mb();

159
	if (unlikely(head - local_read(&rb->wakeup) > rb->watermark))
160 161 162 163 164 165 166 167 168
		local_add(rb->watermark, &rb->wakeup);

	handle->page = offset >> (PAGE_SHIFT + page_order(rb));
	handle->page &= rb->nr_pages - 1;
	handle->size = offset & ((PAGE_SIZE << page_order(rb)) - 1);
	handle->addr = rb->data_pages[handle->page];
	handle->addr += handle->size;
	handle->size = (PAGE_SIZE << page_order(rb)) - handle->size;

169
	if (unlikely(have_lost)) {
170 171 172
		struct perf_sample_data sample_data;

		lost_event.header.size = sizeof(lost_event);
173 174 175 176 177
		lost_event.header.type = PERF_RECORD_LOST;
		lost_event.header.misc = 0;
		lost_event.id          = event->id;
		lost_event.lost        = local_xchg(&rb->lost, 0);

178 179
		perf_event_header__init_id(&lost_event.header,
					   &sample_data, event);
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
		perf_output_put(handle, lost_event);
		perf_event__output_id_sample(event, handle, &sample_data);
	}

	return 0;

fail:
	local_inc(&rb->lost);
	perf_output_put_handle(handle);
out:
	rcu_read_unlock();

	return -ENOSPC;
}

195
unsigned int perf_output_copy(struct perf_output_handle *handle,
196 197
		      const void *buf, unsigned int len)
{
198
	return __output_copy(handle, buf, len);
199 200
}

201 202 203 204 205 206
unsigned int perf_output_skip(struct perf_output_handle *handle,
			      unsigned int len)
{
	return __output_skip(handle, NULL, len);
}

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
void perf_output_end(struct perf_output_handle *handle)
{
	perf_output_put_handle(handle);
	rcu_read_unlock();
}

static void
ring_buffer_init(struct ring_buffer *rb, long watermark, int flags)
{
	long max_size = perf_data_size(rb);

	if (watermark)
		rb->watermark = min(max_size, watermark);

	if (!rb->watermark)
		rb->watermark = max_size / 2;

	if (flags & RING_BUFFER_WRITABLE)
225 226 227
		rb->overwrite = 0;
	else
		rb->overwrite = 1;
228 229

	atomic_set(&rb->refcount, 1);
230 231 232

	INIT_LIST_HEAD(&rb->event_list);
	spin_lock_init(&rb->event_lock);
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
}

#ifndef CONFIG_PERF_USE_VMALLOC

/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */

struct page *
perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
{
	if (pgoff > rb->nr_pages)
		return NULL;

	if (pgoff == 0)
		return virt_to_page(rb->user_page);

	return virt_to_page(rb->data_pages[pgoff - 1]);
}

static void *perf_mmap_alloc_page(int cpu)
{
	struct page *page;
	int node;

	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
	if (!page)
		return NULL;

	return page_address(page);
}

struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
{
	struct ring_buffer *rb;
	unsigned long size;
	int i;

	size = sizeof(struct ring_buffer);
	size += nr_pages * sizeof(void *);

	rb = kzalloc(size, GFP_KERNEL);
	if (!rb)
		goto fail;

	rb->user_page = perf_mmap_alloc_page(cpu);
	if (!rb->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		rb->data_pages[i] = perf_mmap_alloc_page(cpu);
		if (!rb->data_pages[i])
			goto fail_data_pages;
	}

	rb->nr_pages = nr_pages;

	ring_buffer_init(rb, watermark, flags);

	return rb;

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)rb->data_pages[i]);

	free_page((unsigned long)rb->user_page);

fail_user_page:
	kfree(rb);

fail:
	return NULL;
}

static void perf_mmap_free_page(unsigned long addr)
{
	struct page *page = virt_to_page((void *)addr);

	page->mapping = NULL;
	__free_page(page);
}

void rb_free(struct ring_buffer *rb)
{
	int i;

	perf_mmap_free_page((unsigned long)rb->user_page);
	for (i = 0; i < rb->nr_pages; i++)
		perf_mmap_free_page((unsigned long)rb->data_pages[i]);
	kfree(rb);
}

#else
327 328 329 330
static int data_page_nr(struct ring_buffer *rb)
{
	return rb->nr_pages << page_order(rb);
}
331 332 333 334

struct page *
perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
{
335 336
	/* The '>' counts in the user page. */
	if (pgoff > data_page_nr(rb))
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
		return NULL;

	return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

static void rb_free_work(struct work_struct *work)
{
	struct ring_buffer *rb;
	void *base;
	int i, nr;

	rb = container_of(work, struct ring_buffer, work);
356
	nr = data_page_nr(rb);
357 358

	base = rb->user_page;
359 360
	/* The '<=' counts in the user page. */
	for (i = 0; i <= nr; i++)
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
	kfree(rb);
}

void rb_free(struct ring_buffer *rb)
{
	schedule_work(&rb->work);
}

struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
{
	struct ring_buffer *rb;
	unsigned long size;
	void *all_buf;

	size = sizeof(struct ring_buffer);
	size += sizeof(void *);

	rb = kzalloc(size, GFP_KERNEL);
	if (!rb)
		goto fail;

	INIT_WORK(&rb->work, rb_free_work);

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

	rb->user_page = all_buf;
	rb->data_pages[0] = all_buf + PAGE_SIZE;
	rb->page_order = ilog2(nr_pages);
394
	rb->nr_pages = !!nr_pages;
395 396 397 398 399 400 401 402 403 404 405 406 407

	ring_buffer_init(rb, watermark, flags);

	return rb;

fail_all_buf:
	kfree(rb);

fail:
	return NULL;
}

#endif