i915_gem.c 131.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/slab.h>
35
#include <linux/swap.h>
J
Jesse Barnes 已提交
36
#include <linux/pci.h>
37

38
static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
39
static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
40 41 42 43 44 45 46 47
static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
					     int write);
static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
						     uint64_t offset,
						     uint64_t size);
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
48
static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
49 50 51
static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
					   unsigned alignment);
static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
52 53 54
static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
				struct drm_i915_gem_pwrite *args,
				struct drm_file *file_priv);
55
static void i915_gem_free_object_tail(struct drm_gem_object *obj);
56

57 58 59
static LIST_HEAD(shrink_list);
static DEFINE_SPINLOCK(shrink_list_lock);

60 61 62 63 64 65 66 67
static inline bool
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
{
	return obj_priv->gtt_space &&
		!obj_priv->active &&
		obj_priv->pin_count == 0;
}

J
Jesse Barnes 已提交
68 69
int i915_gem_do_init(struct drm_device *dev, unsigned long start,
		     unsigned long end)
70 71 72
{
	drm_i915_private_t *dev_priv = dev->dev_private;

J
Jesse Barnes 已提交
73 74 75
	if (start >= end ||
	    (start & (PAGE_SIZE - 1)) != 0 ||
	    (end & (PAGE_SIZE - 1)) != 0) {
76 77 78
		return -EINVAL;
	}

J
Jesse Barnes 已提交
79 80
	drm_mm_init(&dev_priv->mm.gtt_space, start,
		    end - start);
81

J
Jesse Barnes 已提交
82 83 84 85
	dev->gtt_total = (uint32_t) (end - start);

	return 0;
}
86

J
Jesse Barnes 已提交
87 88 89 90 91 92 93 94 95
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_init *args = data;
	int ret;

	mutex_lock(&dev->struct_mutex);
	ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
96 97
	mutex_unlock(&dev->struct_mutex);

J
Jesse Barnes 已提交
98
	return ret;
99 100
}

101 102 103 104 105 106 107 108 109 110
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
			    struct drm_file *file_priv)
{
	struct drm_i915_gem_get_aperture *args = data;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	args->aper_size = dev->gtt_total;
111 112
	args->aper_available_size = (args->aper_size -
				     atomic_read(&dev->pin_memory));
113 114 115 116

	return 0;
}

117 118 119 120 121 122 123 124 125 126

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_create *args = data;
	struct drm_gem_object *obj;
127 128
	int ret;
	u32 handle;
129 130 131 132

	args->size = roundup(args->size, PAGE_SIZE);

	/* Allocate the new object */
133
	obj = i915_gem_alloc_object(dev, args->size);
134 135 136 137
	if (obj == NULL)
		return -ENOMEM;

	ret = drm_gem_handle_create(file_priv, obj, &handle);
138 139
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
140
		return ret;
141
	}
142

143 144
	/* Sink the floating reference from kref_init(handlecount) */
	drm_gem_object_handle_unreference_unlocked(obj);
145

146
	args->handle = handle;
147 148 149
	return 0;
}

150 151 152 153 154 155 156
static inline int
fast_shmem_read(struct page **pages,
		loff_t page_base, int page_offset,
		char __user *data,
		int length)
{
	char __iomem *vaddr;
157
	int unwritten;
158 159 160 161

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
	if (vaddr == NULL)
		return -ENOMEM;
162
	unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
163 164
	kunmap_atomic(vaddr, KM_USER0);

165 166 167 168
	if (unwritten)
		return -EFAULT;

	return 0;
169 170
}

171 172 173
static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
{
	drm_i915_private_t *dev_priv = obj->dev->dev_private;
174
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
175 176 177 178 179

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
		obj_priv->tiling_mode != I915_TILING_NONE;
}

180
static inline void
181 182 183 184 185 186 187 188
slow_shmem_copy(struct page *dst_page,
		int dst_offset,
		struct page *src_page,
		int src_offset,
		int length)
{
	char *dst_vaddr, *src_vaddr;

189 190
	dst_vaddr = kmap(dst_page);
	src_vaddr = kmap(src_page);
191 192 193

	memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);

194 195
	kunmap(src_page);
	kunmap(dst_page);
196 197
}

198
static inline void
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
slow_shmem_bit17_copy(struct page *gpu_page,
		      int gpu_offset,
		      struct page *cpu_page,
		      int cpu_offset,
		      int length,
		      int is_read)
{
	char *gpu_vaddr, *cpu_vaddr;

	/* Use the unswizzled path if this page isn't affected. */
	if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
		if (is_read)
			return slow_shmem_copy(cpu_page, cpu_offset,
					       gpu_page, gpu_offset, length);
		else
			return slow_shmem_copy(gpu_page, gpu_offset,
					       cpu_page, cpu_offset, length);
	}

218 219
	gpu_vaddr = kmap(gpu_page);
	cpu_vaddr = kmap(cpu_page);
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242

	/* Copy the data, XORing A6 with A17 (1). The user already knows he's
	 * XORing with the other bits (A9 for Y, A9 and A10 for X)
	 */
	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		if (is_read) {
			memcpy(cpu_vaddr + cpu_offset,
			       gpu_vaddr + swizzled_gpu_offset,
			       this_length);
		} else {
			memcpy(gpu_vaddr + swizzled_gpu_offset,
			       cpu_vaddr + cpu_offset,
			       this_length);
		}
		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

243 244
	kunmap(cpu_page);
	kunmap(gpu_page);
245 246
}

247 248 249 250 251 252 253 254 255 256
/**
 * This is the fast shmem pread path, which attempts to copy_from_user directly
 * from the backing pages of the object to the user's address space.  On a
 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
 */
static int
i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
257
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
258 259 260 261 262 263 264 265 266 267 268
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;
	int ret;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

	mutex_lock(&dev->struct_mutex);

269
	ret = i915_gem_object_get_pages(obj, 0);
270 271 272 273 274 275 276 277
	if (ret != 0)
		goto fail_unlock;

	ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
							args->size);
	if (ret != 0)
		goto fail_put_pages;

278
	obj_priv = to_intel_bo(obj);
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_shmem_read(obj_priv->pages,
				      page_base, page_offset,
				      user_data, page_length);
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

313 314 315 316 317
static int
i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
{
	int ret;

318
	ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
319 320 321 322 323 324 325

	/* If we've insufficient memory to map in the pages, attempt
	 * to make some space by throwing out some old buffers.
	 */
	if (ret == -ENOMEM) {
		struct drm_device *dev = obj->dev;

326 327
		ret = i915_gem_evict_something(dev, obj->size,
					       i915_gem_get_gtt_alignment(obj));
328 329 330
		if (ret)
			return ret;

331
		ret = i915_gem_object_get_pages(obj, 0);
332 333 334 335 336
	}

	return ret;
}

337 338 339 340 341 342 343 344 345 346 347
/**
 * This is the fallback shmem pread path, which allocates temporary storage
 * in kernel space to copy_to_user into outside of the struct_mutex, so we
 * can copy out of the object's backing pages while holding the struct mutex
 * and not take page faults.
 */
static int
i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
348
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
349 350 351 352 353 354 355 356 357 358
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
359
	int do_bit17_swizzling;
360 361 362 363 364 365 366 367 368 369 370

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, yet we want to hold it while
	 * dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

371
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
372 373 374 375 376
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
377
				      num_pages, 1, 0, user_pages, NULL);
378 379 380 381 382 383
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto fail_put_user_pages;
	}

384 385
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);

386 387
	mutex_lock(&dev->struct_mutex);

388 389
	ret = i915_gem_object_get_pages_or_evict(obj);
	if (ret)
390 391 392 393 394 395 396
		goto fail_unlock;

	ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
							args->size);
	if (ret != 0)
		goto fail_put_pages;

397
	obj_priv = to_intel_bo(obj);
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

420
		if (do_bit17_swizzling) {
421
			slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
422
					      shmem_page_offset,
423 424 425 426 427 428 429 430 431 432
					      user_pages[data_page_index],
					      data_page_offset,
					      page_length,
					      1);
		} else {
			slow_shmem_copy(user_pages[data_page_index],
					data_page_offset,
					obj_priv->pages[shmem_page_index],
					shmem_page_offset,
					page_length);
433
		}
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);
fail_put_user_pages:
	for (i = 0; i < pinned_pages; i++) {
		SetPageDirty(user_pages[i]);
		page_cache_release(user_pages[i]);
	}
449
	drm_free_large(user_pages);
450 451 452 453

	return ret;
}

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pread *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
470
		return -ENOENT;
471
	obj_priv = to_intel_bo(obj);
472 473 474 475 476 477 478

	/* Bounds check source.
	 *
	 * XXX: This could use review for overflow issues...
	 */
	if (args->offset > obj->size || args->size > obj->size ||
	    args->offset + args->size > obj->size) {
479
		drm_gem_object_unreference_unlocked(obj);
480 481 482
		return -EINVAL;
	}

483
	if (i915_gem_object_needs_bit17_swizzle(obj)) {
484
		ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
485 486 487 488 489 490
	} else {
		ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
		if (ret != 0)
			ret = i915_gem_shmem_pread_slow(dev, obj, args,
							file_priv);
	}
491

492
	drm_gem_object_unreference_unlocked(obj);
493

494
	return ret;
495 496
}

497 498
/* This is the fast write path which cannot handle
 * page faults in the source data
499
 */
500 501 502 503 504 505

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
506 507
{
	char *vaddr_atomic;
508
	unsigned long unwritten;
509

510
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
511 512
	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
						      user_data, length);
513
	io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
514 515 516 517 518 519 520 521 522
	if (unwritten)
		return -EFAULT;
	return 0;
}

/* Here's the write path which can sleep for
 * page faults
 */

523
static inline void
524 525 526 527
slow_kernel_write(struct io_mapping *mapping,
		  loff_t gtt_base, int gtt_offset,
		  struct page *user_page, int user_offset,
		  int length)
528
{
529 530
	char __iomem *dst_vaddr;
	char *src_vaddr;
531

532 533 534 535 536 537 538 539 540
	dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
	src_vaddr = kmap(user_page);

	memcpy_toio(dst_vaddr + gtt_offset,
		    src_vaddr + user_offset,
		    length);

	kunmap(user_page);
	io_mapping_unmap(dst_vaddr);
541 542
}

543 544 545 546 547 548 549
static inline int
fast_shmem_write(struct page **pages,
		 loff_t page_base, int page_offset,
		 char __user *data,
		 int length)
{
	char __iomem *vaddr;
550
	unsigned long unwritten;
551 552 553 554

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
	if (vaddr == NULL)
		return -ENOMEM;
555
	unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
556 557
	kunmap_atomic(vaddr, KM_USER0);

558 559
	if (unwritten)
		return -EFAULT;
560 561 562
	return 0;
}

563 564 565 566
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
567
static int
568 569 570
i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
571
{
572
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
573
	drm_i915_private_t *dev_priv = dev->dev_private;
574
	ssize_t remain;
575
	loff_t offset, page_base;
576
	char __user *user_data;
577 578
	int page_offset, page_length;
	int ret;
579 580 581 582 583 584 585 586 587 588 589 590 591

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
	if (!access_ok(VERIFY_READ, user_data, remain))
		return -EFAULT;


	mutex_lock(&dev->struct_mutex);
	ret = i915_gem_object_pin(obj, 0);
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
		return ret;
	}
592
	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
593 594 595
	if (ret)
		goto fail;

596
	obj_priv = to_intel_bo(obj);
597 598 599 600 601
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
602 603 604
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
605
		 */
606 607 608 609 610 611 612 613 614 615
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
				       page_offset, user_data, page_length);

		/* If we get a fault while copying data, then (presumably) our
616 617
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
618
		 */
619 620
		if (ret)
			goto fail;
621

622 623 624
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
625 626 627 628 629 630 631 632 633
	}

fail:
	i915_gem_object_unpin(obj);
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

634 635 636 637 638 639 640
/**
 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
 */
641
static int
642 643 644
i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
645
{
646
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
647 648 649 650 651 652 653 654
	drm_i915_private_t *dev_priv = dev->dev_private;
	ssize_t remain;
	loff_t gtt_page_base, offset;
	loff_t first_data_page, last_data_page, num_pages;
	loff_t pinned_pages, i;
	struct page **user_pages;
	struct mm_struct *mm = current->mm;
	int gtt_page_offset, data_page_offset, data_page_index, page_length;
655
	int ret;
656 657 658 659 660 661 662 663 664 665 666 667
	uint64_t data_ptr = args->data_ptr;

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

668
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
669 670 671 672 673 674 675 676 677 678 679
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto out_unpin_pages;
	}
680 681

	mutex_lock(&dev->struct_mutex);
682 683 684 685 686 687 688 689
	ret = i915_gem_object_pin(obj, 0);
	if (ret)
		goto out_unlock;

	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
	if (ret)
		goto out_unpin_object;

690
	obj_priv = to_intel_bo(obj);
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * gtt_page_base = page offset within aperture
		 * gtt_page_offset = offset within page in aperture
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		gtt_page_base = offset & PAGE_MASK;
		gtt_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((gtt_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - gtt_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

713 714 715 716 717
		slow_kernel_write(dev_priv->mm.gtt_mapping,
				  gtt_page_base, gtt_page_offset,
				  user_pages[data_page_index],
				  data_page_offset,
				  page_length);
718 719 720 721 722 723 724 725 726 727 728 729 730

		remain -= page_length;
		offset += page_length;
		data_ptr += page_length;
	}

out_unpin_object:
	i915_gem_object_unpin(obj);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
out_unpin_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
731
	drm_free_large(user_pages);
732 733 734 735

	return ret;
}

736 737 738 739
/**
 * This is the fast shmem pwrite path, which attempts to directly
 * copy_from_user into the kmapped pages backing the object.
 */
740
static int
741 742 743
i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
744
{
745
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
746 747 748 749
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;
750
	int ret;
751 752 753

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
754 755 756

	mutex_lock(&dev->struct_mutex);

757
	ret = i915_gem_object_get_pages(obj, 0);
758 759
	if (ret != 0)
		goto fail_unlock;
760

761
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
762 763 764
	if (ret != 0)
		goto fail_put_pages;

765
	obj_priv = to_intel_bo(obj);
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
	offset = args->offset;
	obj_priv->dirty = 1;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_shmem_write(obj_priv->pages,
				       page_base, page_offset,
				       user_data, page_length);
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

/**
 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This avoids taking mmap_sem for faulting on the user's address while the
 * struct_mutex is held.
 */
static int
i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
{
813
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
814 815 816 817 818 819 820 821 822 823
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
824
	int do_bit17_swizzling;
825 826 827 828 829 830 831 832 833 834 835

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

836
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
837 838 839 840 841 842 843 844 845 846
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto fail_put_user_pages;
847 848
	}

849 850
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);

851 852
	mutex_lock(&dev->struct_mutex);

853 854
	ret = i915_gem_object_get_pages_or_evict(obj);
	if (ret)
855 856 857 858 859 860
		goto fail_unlock;

	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
	if (ret != 0)
		goto fail_put_pages;

861
	obj_priv = to_intel_bo(obj);
862
	offset = args->offset;
863
	obj_priv->dirty = 1;
864

865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

885
		if (do_bit17_swizzling) {
886
			slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
887 888 889
					      shmem_page_offset,
					      user_pages[data_page_index],
					      data_page_offset,
890 891 892 893 894 895 896 897
					      page_length,
					      0);
		} else {
			slow_shmem_copy(obj_priv->pages[shmem_page_index],
					shmem_page_offset,
					user_pages[data_page_index],
					data_page_offset,
					page_length);
898
		}
899 900 901 902

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
903 904
	}

905 906 907
fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
908
	mutex_unlock(&dev->struct_mutex);
909 910 911
fail_put_user_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
912
	drm_free_large(user_pages);
913

914
	return ret;
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_pwrite *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
933
		return -ENOENT;
934
	obj_priv = to_intel_bo(obj);
935 936 937 938 939 940 941

	/* Bounds check destination.
	 *
	 * XXX: This could use review for overflow issues...
	 */
	if (args->offset > obj->size || args->size > obj->size ||
	    args->offset + args->size > obj->size) {
942
		drm_gem_object_unreference_unlocked(obj);
943 944 945 946 947 948 949 950 951
		return -EINVAL;
	}

	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
952 953 954
	if (obj_priv->phys_obj)
		ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
	else if (obj_priv->tiling_mode == I915_TILING_NONE &&
955 956
		 dev->gtt_total != 0 &&
		 obj->write_domain != I915_GEM_DOMAIN_CPU) {
957 958 959 960 961
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
		if (ret == -EFAULT) {
			ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
						       file_priv);
		}
962 963
	} else if (i915_gem_object_needs_bit17_swizzle(obj)) {
		ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
964 965 966 967 968 969 970
	} else {
		ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
		if (ret == -EFAULT) {
			ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
							 file_priv);
		}
	}
971 972 973 974 975 976

#if WATCH_PWRITE
	if (ret)
		DRM_INFO("pwrite failed %d\n", ret);
#endif

977
	drm_gem_object_unreference_unlocked(obj);
978 979 980 981 982

	return ret;
}

/**
983 984
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
985 986 987 988 989
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file_priv)
{
990
	struct drm_i915_private *dev_priv = dev->dev_private;
991 992
	struct drm_i915_gem_set_domain *args = data;
	struct drm_gem_object *obj;
993
	struct drm_i915_gem_object *obj_priv;
994 995
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
996 997 998 999 1000
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1001
	/* Only handle setting domains to types used by the CPU. */
1002
	if (write_domain & I915_GEM_GPU_DOMAINS)
1003 1004
		return -EINVAL;

1005
	if (read_domains & I915_GEM_GPU_DOMAINS)
1006 1007 1008 1009 1010 1011 1012 1013
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1014 1015
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1016
		return -ENOENT;
1017
	obj_priv = to_intel_bo(obj);
1018 1019

	mutex_lock(&dev->struct_mutex);
1020 1021 1022

	intel_mark_busy(dev, obj);

1023
#if WATCH_BUF
1024
	DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1025
		 obj, obj->size, read_domains, write_domain);
1026
#endif
1027 1028
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1029

1030 1031 1032 1033
		/* Update the LRU on the fence for the CPU access that's
		 * about to occur.
		 */
		if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1034 1035 1036
			struct drm_i915_fence_reg *reg =
				&dev_priv->fence_regs[obj_priv->fence_reg];
			list_move_tail(&reg->lru_list,
1037 1038 1039
				       &dev_priv->mm.fence_list);
		}

1040 1041 1042 1043 1044 1045
		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1046
	} else {
1047
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1048 1049
	}

1050 1051 1052 1053 1054
	
	/* Maintain LRU order of "inactive" objects */
	if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_sw_finish *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	mutex_lock(&dev->struct_mutex);
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		mutex_unlock(&dev->struct_mutex);
1079
		return -ENOENT;
1080 1081 1082
	}

#if WATCH_BUF
1083
	DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1084 1085
		 __func__, args->handle, obj, obj->size);
#endif
1086
	obj_priv = to_intel_bo(obj);
1087 1088

	/* Pinned buffers may be scanout, so flush the cache */
1089 1090 1091
	if (obj_priv->pin_count)
		i915_gem_object_flush_cpu_write_domain(obj);

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	loff_t offset;
	unsigned long addr;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1118
		return -ENOENT;
1119 1120 1121 1122 1123 1124 1125 1126

	offset = args->offset;

	down_write(&current->mm->mmap_sem);
	addr = do_mmap(obj->filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	up_write(&current->mm->mmap_sem);
1127
	drm_gem_object_unreference_unlocked(obj);
1128 1129 1130 1131 1132 1133 1134 1135
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct drm_gem_object *obj = vma->vm_private_data;
	struct drm_device *dev = obj->dev;
1156
	drm_i915_private_t *dev_priv = dev->dev_private;
1157
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1158 1159 1160
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1161
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1162 1163 1164 1165 1166 1167 1168 1169

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

	/* Now bind it into the GTT if needed */
	mutex_lock(&dev->struct_mutex);
	if (!obj_priv->gtt_space) {
1170
		ret = i915_gem_object_bind_to_gtt(obj, 0);
1171 1172
		if (ret)
			goto unlock;
1173 1174

		ret = i915_gem_object_set_to_gtt_domain(obj, write);
1175 1176
		if (ret)
			goto unlock;
1177 1178 1179
	}

	/* Need a new fence register? */
1180
	if (obj_priv->tiling_mode != I915_TILING_NONE) {
1181
		ret = i915_gem_object_get_fence_reg(obj);
1182 1183
		if (ret)
			goto unlock;
1184
	}
1185

1186 1187 1188
	if (i915_gem_object_is_inactive(obj_priv))
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1189 1190 1191 1192 1193
	pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1194
unlock:
1195 1196 1197
	mutex_unlock(&dev->struct_mutex);

	switch (ret) {
1198 1199 1200
	case 0:
	case -ERESTARTSYS:
		return VM_FAULT_NOPAGE;
1201 1202 1203 1204
	case -ENOMEM:
	case -EAGAIN:
		return VM_FAULT_OOM;
	default:
1205
		return VM_FAULT_SIGBUS;
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
	}
}

/**
 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
 * @obj: obj in question
 *
 * GEM memory mapping works by handing back to userspace a fake mmap offset
 * it can use in a subsequent mmap(2) call.  The DRM core code then looks
 * up the object based on the offset and sets up the various memory mapping
 * structures.
 *
 * This routine allocates and attaches a fake offset for @obj.
 */
static int
i915_gem_create_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_gem_mm *mm = dev->mm_private;
1225
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1226
	struct drm_map_list *list;
1227
	struct drm_local_map *map;
1228 1229 1230 1231
	int ret = 0;

	/* Set the object up for mmap'ing */
	list = &obj->map_list;
1232
	list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
	if (!list->map)
		return -ENOMEM;

	map = list->map;
	map->type = _DRM_GEM;
	map->size = obj->size;
	map->handle = obj;

	/* Get a DRM GEM mmap offset allocated... */
	list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
						    obj->size / PAGE_SIZE, 0, 0);
	if (!list->file_offset_node) {
		DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->file_offset_node = drm_mm_get_block(list->file_offset_node,
						  obj->size / PAGE_SIZE, 0);
	if (!list->file_offset_node) {
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->hash.key = list->file_offset_node->start;
	if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
		DRM_ERROR("failed to add to map hash\n");
1260
		ret = -ENOMEM;
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
		goto out_free_mm;
	}

	/* By now we should be all set, any drm_mmap request on the offset
	 * below will get to our mmap & fault handler */
	obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;

	return 0;

out_free_mm:
	drm_mm_put_block(list->file_offset_node);
out_free_list:
1273
	kfree(list->map);
1274 1275 1276 1277

	return ret;
}

1278 1279 1280 1281
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1282
 * Preserve the reservation of the mmapping with the DRM core code, but
1283 1284 1285 1286 1287 1288 1289 1290 1291
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1292
void
1293 1294 1295
i915_gem_release_mmap(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1296
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1297 1298 1299 1300 1301 1302

	if (dev->dev_mapping)
		unmap_mapping_range(dev->dev_mapping,
				    obj_priv->mmap_offset, obj->size, 1);
}

1303 1304 1305 1306
static void
i915_gem_free_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1307
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
	struct drm_gem_mm *mm = dev->mm_private;
	struct drm_map_list *list;

	list = &obj->map_list;
	drm_ht_remove_item(&mm->offset_hash, &list->hash);

	if (list->file_offset_node) {
		drm_mm_put_block(list->file_offset_node);
		list->file_offset_node = NULL;
	}

	if (list->map) {
1320
		kfree(list->map);
1321 1322 1323 1324 1325 1326
		list->map = NULL;
	}

	obj_priv->mmap_offset = 0;
}

1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
 * potential fence register mapping if needed.
 */
static uint32_t
i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1338
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
	int start, i;

	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
	if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
		return 4096;

	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
	if (IS_I9XX(dev))
		start = 1024*1024;
	else
		start = 512*1024;

	for (i = start; i < obj->size; i <<= 1)
		;

	return i;
}

/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file_priv: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap_gtt *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1392
		return -ENOENT;
1393 1394 1395

	mutex_lock(&dev->struct_mutex);

1396
	obj_priv = to_intel_bo(obj);
1397

1398 1399 1400 1401 1402 1403 1404 1405
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}


1406 1407
	if (!obj_priv->mmap_offset) {
		ret = i915_gem_create_mmap_offset(obj);
1408 1409 1410
		if (ret) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
1411
			return ret;
1412
		}
1413 1414 1415 1416 1417 1418 1419 1420 1421
	}

	args->offset = obj_priv->mmap_offset;

	/*
	 * Pull it into the GTT so that we have a page list (makes the
	 * initial fault faster and any subsequent flushing possible).
	 */
	if (!obj_priv->agp_mem) {
1422
		ret = i915_gem_object_bind_to_gtt(obj, 0);
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
		if (ret) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

1436
void
1437
i915_gem_object_put_pages(struct drm_gem_object *obj)
1438
{
1439
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1440 1441 1442
	int page_count = obj->size / PAGE_SIZE;
	int i;

1443
	BUG_ON(obj_priv->pages_refcount == 0);
C
Chris Wilson 已提交
1444
	BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1445

1446 1447
	if (--obj_priv->pages_refcount != 0)
		return;
1448

1449 1450 1451
	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_save_bit_17_swizzle(obj);

1452
	if (obj_priv->madv == I915_MADV_DONTNEED)
1453
		obj_priv->dirty = 0;
1454 1455 1456 1457 1458 1459

	for (i = 0; i < page_count; i++) {
		if (obj_priv->dirty)
			set_page_dirty(obj_priv->pages[i]);

		if (obj_priv->madv == I915_MADV_WILLNEED)
1460
			mark_page_accessed(obj_priv->pages[i]);
1461 1462 1463

		page_cache_release(obj_priv->pages[i]);
	}
1464 1465
	obj_priv->dirty = 0;

1466
	drm_free_large(obj_priv->pages);
1467
	obj_priv->pages = NULL;
1468 1469 1470
}

static void
1471 1472
i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno,
			       struct intel_ring_buffer *ring)
1473 1474 1475
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1476
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1477 1478
	BUG_ON(ring == NULL);
	obj_priv->ring = ring;
1479 1480 1481 1482 1483 1484 1485

	/* Add a reference if we're newly entering the active list. */
	if (!obj_priv->active) {
		drm_gem_object_reference(obj);
		obj_priv->active = 1;
	}
	/* Move from whatever list we were on to the tail of execution. */
1486
	spin_lock(&dev_priv->mm.active_list_lock);
1487
	list_move_tail(&obj_priv->list, &ring->active_list);
1488
	spin_unlock(&dev_priv->mm.active_list_lock);
1489
	obj_priv->last_rendering_seqno = seqno;
1490 1491
}

1492 1493 1494 1495 1496
static void
i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1497
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1498 1499 1500 1501 1502

	BUG_ON(!obj_priv->active);
	list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
	obj_priv->last_rendering_seqno = 0;
}
1503

1504 1505 1506 1507
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_gem_object *obj)
{
1508
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
1509
	struct inode *inode;
1510

1511 1512 1513 1514 1515 1516
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*. Here we mirror the actions taken
	 * when by shmem_delete_inode() to release the backing store.
	 */
C
Chris Wilson 已提交
1517
	inode = obj->filp->f_path.dentry->d_inode;
1518 1519 1520
	truncate_inode_pages(inode->i_mapping, 0);
	if (inode->i_op->truncate_range)
		inode->i_op->truncate_range(inode, 0, (loff_t)-1);
C
Chris Wilson 已提交
1521 1522

	obj_priv->madv = __I915_MADV_PURGED;
1523 1524 1525 1526 1527 1528 1529 1530
}

static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
{
	return obj_priv->madv == I915_MADV_DONTNEED;
}

1531 1532 1533 1534 1535
static void
i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1536
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1537 1538 1539 1540 1541 1542 1543

	i915_verify_inactive(dev, __FILE__, __LINE__);
	if (obj_priv->pin_count != 0)
		list_del_init(&obj_priv->list);
	else
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1544 1545
	BUG_ON(!list_empty(&obj_priv->gpu_write_list));

1546
	obj_priv->last_rendering_seqno = 0;
1547
	obj_priv->ring = NULL;
1548 1549 1550 1551 1552 1553 1554
	if (obj_priv->active) {
		obj_priv->active = 0;
		drm_gem_object_unreference(obj);
	}
	i915_verify_inactive(dev, __FILE__, __LINE__);
}

1555 1556
static void
i915_gem_process_flushing_list(struct drm_device *dev,
1557 1558
			       uint32_t flush_domains, uint32_t seqno,
			       struct intel_ring_buffer *ring)
1559 1560 1561 1562 1563 1564 1565
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv, *next;

	list_for_each_entry_safe(obj_priv, next,
				 &dev_priv->mm.gpu_write_list,
				 gpu_write_list) {
1566
		struct drm_gem_object *obj = &obj_priv->base;
1567 1568

		if ((obj->write_domain & flush_domains) ==
1569 1570
		    obj->write_domain &&
		    obj_priv->ring->ring_flag == ring->ring_flag) {
1571 1572 1573 1574
			uint32_t old_write_domain = obj->write_domain;

			obj->write_domain = 0;
			list_del_init(&obj_priv->gpu_write_list);
1575
			i915_gem_object_move_to_active(obj, seqno, ring);
1576 1577

			/* update the fence lru list */
1578 1579 1580 1581
			if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
				struct drm_i915_fence_reg *reg =
					&dev_priv->fence_regs[obj_priv->fence_reg];
				list_move_tail(&reg->lru_list,
1582
						&dev_priv->mm.fence_list);
1583
			}
1584 1585 1586 1587 1588 1589 1590

			trace_i915_gem_object_change_domain(obj,
							    obj->read_domains,
							    old_write_domain);
		}
	}
}
1591

1592
uint32_t
1593
i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1594
		 uint32_t flush_domains, struct intel_ring_buffer *ring)
1595 1596
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1597
	struct drm_i915_file_private *i915_file_priv = NULL;
1598 1599 1600 1601
	struct drm_i915_gem_request *request;
	uint32_t seqno;
	int was_empty;

1602 1603 1604
	if (file_priv != NULL)
		i915_file_priv = file_priv->driver_priv;

1605
	request = kzalloc(sizeof(*request), GFP_KERNEL);
1606 1607 1608
	if (request == NULL)
		return 0;

1609
	seqno = ring->add_request(dev, ring, file_priv, flush_domains);
1610 1611

	request->seqno = seqno;
1612
	request->ring = ring;
1613
	request->emitted_jiffies = jiffies;
1614 1615 1616
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);

1617 1618 1619 1620 1621 1622
	if (i915_file_priv) {
		list_add_tail(&request->client_list,
			      &i915_file_priv->mm.request_list);
	} else {
		INIT_LIST_HEAD(&request->client_list);
	}
1623

1624 1625 1626
	/* Associate any objects on the flushing list matching the write
	 * domain we're flushing with our flush.
	 */
1627
	if (flush_domains != 0) 
1628
		i915_gem_process_flushing_list(dev, flush_domains, seqno, ring);
1629

B
Ben Gamari 已提交
1630 1631 1632 1633 1634
	if (!dev_priv->mm.suspended) {
		mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
		if (was_empty)
			queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
	}
1635 1636 1637 1638 1639 1640 1641 1642 1643
	return seqno;
}

/**
 * Command execution barrier
 *
 * Ensures that all commands in the ring are finished
 * before signalling the CPU
 */
1644
static uint32_t
1645
i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1646 1647 1648 1649 1650 1651
{
	uint32_t flush_domains = 0;

	/* The sampler always gets flushed on i965 (sigh) */
	if (IS_I965G(dev))
		flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1652 1653 1654

	ring->flush(dev, ring,
			I915_GEM_DOMAIN_COMMAND, flush_domains);
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
	return flush_domains;
}

/**
 * Moves buffers associated only with the given active seqno from the active
 * to inactive list, potentially freeing them.
 */
static void
i915_gem_retire_request(struct drm_device *dev,
			struct drm_i915_gem_request *request)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

C
Chris Wilson 已提交
1668 1669
	trace_i915_gem_request_retire(dev, request->seqno);

1670 1671 1672
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
1673
	spin_lock(&dev_priv->mm.active_list_lock);
1674
	while (!list_empty(&request->ring->active_list)) {
1675 1676 1677
		struct drm_gem_object *obj;
		struct drm_i915_gem_object *obj_priv;

1678
		obj_priv = list_first_entry(&request->ring->active_list,
1679 1680
					    struct drm_i915_gem_object,
					    list);
1681
		obj = &obj_priv->base;
1682 1683 1684 1685 1686 1687

		/* If the seqno being retired doesn't match the oldest in the
		 * list, then the oldest in the list must still be newer than
		 * this seqno.
		 */
		if (obj_priv->last_rendering_seqno != request->seqno)
1688
			goto out;
1689

1690 1691 1692 1693 1694
#if WATCH_LRU
		DRM_INFO("%s: retire %d moves to inactive list %p\n",
			 __func__, request->seqno, obj);
#endif

1695 1696
		if (obj->write_domain != 0)
			i915_gem_object_move_to_flushing(obj);
1697 1698 1699 1700 1701 1702 1703 1704
		else {
			/* Take a reference on the object so it won't be
			 * freed while the spinlock is held.  The list
			 * protection for this spinlock is safe when breaking
			 * the lock like this since the next thing we do
			 * is just get the head of the list again.
			 */
			drm_gem_object_reference(obj);
1705
			i915_gem_object_move_to_inactive(obj);
1706 1707 1708 1709
			spin_unlock(&dev_priv->mm.active_list_lock);
			drm_gem_object_unreference(obj);
			spin_lock(&dev_priv->mm.active_list_lock);
		}
1710
	}
1711 1712
out:
	spin_unlock(&dev_priv->mm.active_list_lock);
1713 1714 1715 1716 1717
}

/**
 * Returns true if seq1 is later than seq2.
 */
1718
bool
1719 1720 1721 1722 1723 1724
i915_seqno_passed(uint32_t seq1, uint32_t seq2)
{
	return (int32_t)(seq1 - seq2) >= 0;
}

uint32_t
1725
i915_get_gem_seqno(struct drm_device *dev,
1726
		   struct intel_ring_buffer *ring)
1727
{
1728
	return ring->get_gem_seqno(dev, ring);
1729 1730 1731 1732 1733
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
1734 1735 1736
static void
i915_gem_retire_requests_ring(struct drm_device *dev,
			      struct intel_ring_buffer *ring)
1737 1738 1739 1740
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t seqno;

1741
	if (!ring->status_page.page_addr
1742
			|| list_empty(&ring->request_list))
1743 1744
		return;

1745
	seqno = i915_get_gem_seqno(dev, ring);
1746

1747
	while (!list_empty(&ring->request_list)) {
1748 1749 1750
		struct drm_i915_gem_request *request;
		uint32_t retiring_seqno;

1751
		request = list_first_entry(&ring->request_list,
1752 1753 1754 1755 1756
					   struct drm_i915_gem_request,
					   list);
		retiring_seqno = request->seqno;

		if (i915_seqno_passed(seqno, retiring_seqno) ||
1757
		    atomic_read(&dev_priv->mm.wedged)) {
1758 1759 1760
			i915_gem_retire_request(dev, request);

			list_del(&request->list);
1761
			list_del(&request->client_list);
1762
			kfree(request);
1763 1764 1765
		} else
			break;
	}
1766 1767 1768

	if (unlikely (dev_priv->trace_irq_seqno &&
		      i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1769 1770

		ring->user_irq_put(dev, ring);
1771 1772
		dev_priv->trace_irq_seqno = 0;
	}
1773 1774
}

1775 1776 1777 1778 1779
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
	if (!list_empty(&dev_priv->mm.deferred_free_list)) {
	    struct drm_i915_gem_object *obj_priv, *tmp;

	    /* We must be careful that during unbind() we do not
	     * accidentally infinitely recurse into retire requests.
	     * Currently:
	     *   retire -> free -> unbind -> wait -> retire_ring
	     */
	    list_for_each_entry_safe(obj_priv, tmp,
				     &dev_priv->mm.deferred_free_list,
				     list)
		    i915_gem_free_object_tail(&obj_priv->base);
	}

1794 1795 1796 1797 1798
	i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
	if (HAS_BSD(dev))
		i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
}

1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
void
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

	mutex_lock(&dev->struct_mutex);
1810
	i915_gem_retire_requests(dev);
1811

1812
	if (!dev_priv->mm.suspended &&
1813 1814 1815
		(!list_empty(&dev_priv->render_ring.request_list) ||
			(HAS_BSD(dev) &&
			 !list_empty(&dev_priv->bsd_ring.request_list))))
1816
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1817 1818 1819
	mutex_unlock(&dev->struct_mutex);
}

1820
int
1821 1822
i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
		int interruptible, struct intel_ring_buffer *ring)
1823 1824
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1825
	u32 ier;
1826 1827 1828 1829
	int ret = 0;

	BUG_ON(seqno == 0);

1830
	if (atomic_read(&dev_priv->mm.wedged))
1831 1832
		return -EIO;

1833
	if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) {
1834
		if (HAS_PCH_SPLIT(dev))
1835 1836 1837
			ier = I915_READ(DEIER) | I915_READ(GTIER);
		else
			ier = I915_READ(IER);
1838 1839 1840 1841 1842 1843 1844
		if (!ier) {
			DRM_ERROR("something (likely vbetool) disabled "
				  "interrupts, re-enabling\n");
			i915_driver_irq_preinstall(dev);
			i915_driver_irq_postinstall(dev);
		}

C
Chris Wilson 已提交
1845 1846
		trace_i915_gem_request_wait_begin(dev, seqno);

1847
		ring->waiting_gem_seqno = seqno;
1848
		ring->user_irq_get(dev, ring);
1849
		if (interruptible)
1850 1851 1852 1853
			ret = wait_event_interruptible(ring->irq_queue,
				i915_seqno_passed(
					ring->get_gem_seqno(dev, ring), seqno)
				|| atomic_read(&dev_priv->mm.wedged));
1854
		else
1855 1856 1857 1858
			wait_event(ring->irq_queue,
				i915_seqno_passed(
					ring->get_gem_seqno(dev, ring), seqno)
				|| atomic_read(&dev_priv->mm.wedged));
1859

1860
		ring->user_irq_put(dev, ring);
1861
		ring->waiting_gem_seqno = 0;
C
Chris Wilson 已提交
1862 1863

		trace_i915_gem_request_wait_end(dev, seqno);
1864
	}
1865
	if (atomic_read(&dev_priv->mm.wedged))
1866 1867 1868 1869
		ret = -EIO;

	if (ret && ret != -ERESTARTSYS)
		DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1870
			  __func__, ret, seqno, ring->get_gem_seqno(dev, ring));
1871 1872 1873 1874 1875 1876 1877

	/* Directly dispatch request retiring.  While we have the work queue
	 * to handle this, the waiter on a request often wants an associated
	 * buffer to have made it to the inactive list, and we would need
	 * a separate wait queue to handle that.
	 */
	if (ret == 0)
1878
		i915_gem_retire_requests_ring(dev, ring);
1879 1880 1881 1882

	return ret;
}

1883 1884 1885 1886 1887
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
static int
1888 1889
i915_wait_request(struct drm_device *dev, uint32_t seqno,
		struct intel_ring_buffer *ring)
1890
{
1891
	return i915_do_wait_request(dev, seqno, 1, ring);
1892 1893
}

1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
static void
i915_gem_flush(struct drm_device *dev,
	       uint32_t invalidate_domains,
	       uint32_t flush_domains)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	if (flush_domains & I915_GEM_DOMAIN_CPU)
		drm_agp_chipset_flush(dev);
	dev_priv->render_ring.flush(dev, &dev_priv->render_ring,
			invalidate_domains,
			flush_domains);
1905 1906 1907 1908 1909

	if (HAS_BSD(dev))
		dev_priv->bsd_ring.flush(dev, &dev_priv->bsd_ring,
				invalidate_domains,
				flush_domains);
1910 1911
}

1912 1913 1914 1915 1916 1917 1918 1919
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static int
i915_gem_object_wait_rendering(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1920
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1921 1922
	int ret;

1923 1924
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
1925
	 */
1926
	BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1927 1928 1929 1930 1931 1932 1933 1934 1935

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
	if (obj_priv->active) {
#if WATCH_BUF
		DRM_INFO("%s: object %p wait for seqno %08x\n",
			  __func__, obj, obj_priv->last_rendering_seqno);
#endif
1936 1937
		ret = i915_wait_request(dev,
				obj_priv->last_rendering_seqno, obj_priv->ring);
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
		if (ret != 0)
			return ret;
	}

	return 0;
}

/**
 * Unbinds an object from the GTT aperture.
 */
1948
int
1949 1950 1951
i915_gem_object_unbind(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1952
	drm_i915_private_t *dev_priv = dev->dev_private;
1953
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
	int ret = 0;

#if WATCH_BUF
	DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
	DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
#endif
	if (obj_priv->gtt_space == NULL)
		return 0;

	if (obj_priv->pin_count != 0) {
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

1968 1969 1970
	/* blow away mappings if mapped through GTT */
	i915_gem_release_mmap(obj);

1971 1972 1973 1974 1975 1976
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
	 * are flushed when we go to remap it. This will
	 * also ensure that all pending GPU writes are finished
	 * before we unbind.
	 */
1977
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1978
	if (ret == -ERESTARTSYS)
1979
		return ret;
1980 1981 1982 1983
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */
1984

1985 1986 1987 1988
	/* release the fence reg _after_ flushing */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
		i915_gem_clear_fence_reg(obj);

1989 1990 1991 1992 1993 1994
	if (obj_priv->agp_mem != NULL) {
		drm_unbind_agp(obj_priv->agp_mem);
		drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
		obj_priv->agp_mem = NULL;
	}

1995
	i915_gem_object_put_pages(obj);
1996
	BUG_ON(obj_priv->pages_refcount);
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

	if (obj_priv->gtt_space) {
		atomic_dec(&dev->gtt_count);
		atomic_sub(obj->size, &dev->gtt_memory);

		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
	}

	/* Remove ourselves from the LRU list if present. */
2007
	spin_lock(&dev_priv->mm.active_list_lock);
2008 2009
	if (!list_empty(&obj_priv->list))
		list_del_init(&obj_priv->list);
2010
	spin_unlock(&dev_priv->mm.active_list_lock);
2011

2012 2013 2014
	if (i915_gem_object_is_purgeable(obj_priv))
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
2015 2016
	trace_i915_gem_object_unbind(obj);

2017
	return ret;
2018 2019
}

2020
int
2021 2022 2023 2024
i915_gpu_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	bool lists_empty;
2025
	uint32_t seqno1, seqno2;
2026
	int ret;
2027 2028

	spin_lock(&dev_priv->mm.active_list_lock);
2029 2030 2031 2032
	lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
		       list_empty(&dev_priv->render_ring.active_list) &&
		       (!HAS_BSD(dev) ||
			list_empty(&dev_priv->bsd_ring.active_list)));
2033 2034 2035 2036 2037 2038 2039
	spin_unlock(&dev_priv->mm.active_list_lock);

	if (lists_empty)
		return 0;

	/* Flush everything onto the inactive list. */
	i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2040
	seqno1 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
2041
			&dev_priv->render_ring);
2042
	if (seqno1 == 0)
2043
		return -ENOMEM;
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
	ret = i915_wait_request(dev, seqno1, &dev_priv->render_ring);

	if (HAS_BSD(dev)) {
		seqno2 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
				&dev_priv->bsd_ring);
		if (seqno2 == 0)
			return -ENOMEM;

		ret = i915_wait_request(dev, seqno2, &dev_priv->bsd_ring);
		if (ret)
			return ret;
	}

2057

2058
	return ret;
2059 2060
}

2061
int
2062 2063
i915_gem_object_get_pages(struct drm_gem_object *obj,
			  gfp_t gfpmask)
2064
{
2065
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2066 2067 2068 2069 2070
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

2071 2072 2073
	BUG_ON(obj_priv->pages_refcount
			== DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);

2074
	if (obj_priv->pages_refcount++ != 0)
2075 2076 2077 2078 2079 2080
		return 0;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
	page_count = obj->size / PAGE_SIZE;
2081
	BUG_ON(obj_priv->pages != NULL);
2082
	obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2083 2084
	if (obj_priv->pages == NULL) {
		obj_priv->pages_refcount--;
2085 2086 2087 2088 2089 2090
		return -ENOMEM;
	}

	inode = obj->filp->f_path.dentry->d_inode;
	mapping = inode->i_mapping;
	for (i = 0; i < page_count; i++) {
2091
		page = read_cache_page_gfp(mapping, i,
2092
					   GFP_HIGHUSER |
2093
					   __GFP_COLD |
2094
					   __GFP_RECLAIMABLE |
2095
					   gfpmask);
2096 2097 2098
		if (IS_ERR(page))
			goto err_pages;

2099
		obj_priv->pages[i] = page;
2100
	}
2101 2102 2103 2104

	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_do_bit_17_swizzle(obj);

2105
	return 0;
2106 2107 2108 2109 2110 2111 2112 2113 2114

err_pages:
	while (i--)
		page_cache_release(obj_priv->pages[i]);

	drm_free_large(obj_priv->pages);
	obj_priv->pages = NULL;
	obj_priv->pages_refcount--;
	return PTR_ERR(page);
2115 2116
}

2117 2118 2119 2120 2121
static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2122
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
		SANDYBRIDGE_FENCE_PITCH_SHIFT;

	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
}

2139 2140 2141 2142 2143
static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2144
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
}

static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2164
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2165
	int regnum = obj_priv->fence_reg;
2166
	int tile_width;
2167
	uint32_t fence_reg, val;
2168 2169 2170 2171
	uint32_t pitch_val;

	if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2172
		WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2173
		     __func__, obj_priv->gtt_offset, obj->size);
2174 2175 2176
		return;
	}

2177 2178 2179
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		tile_width = 128;
2180
	else
2181 2182 2183 2184 2185
		tile_width = 512;

	/* Note: pitch better be a power of two tile widths */
	pitch_val = obj_priv->stride / tile_width;
	pitch_val = ffs(pitch_val) - 1;
2186

2187 2188 2189 2190 2191 2192
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
	else
		WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);

2193 2194 2195 2196 2197 2198 2199
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
	val |= I915_FENCE_SIZE_BITS(obj->size);
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2200 2201 2202 2203 2204
	if (regnum < 8)
		fence_reg = FENCE_REG_830_0 + (regnum * 4);
	else
		fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
	I915_WRITE(fence_reg, val);
2205 2206 2207 2208 2209 2210 2211
}

static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2212
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2213 2214 2215
	int regnum = obj_priv->fence_reg;
	uint32_t val;
	uint32_t pitch_val;
2216
	uint32_t fence_size_bits;
2217

2218
	if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2219
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2220
		WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2221
		     __func__, obj_priv->gtt_offset);
2222 2223 2224
		return;
	}

2225 2226 2227 2228
	pitch_val = obj_priv->stride / 128;
	pitch_val = ffs(pitch_val) - 1;
	WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);

2229 2230 2231
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2232 2233 2234
	fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
	WARN_ON(fence_size_bits & ~0x00000f00);
	val |= fence_size_bits;
2235 2236 2237 2238 2239 2240
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

	I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
}

2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
static int i915_find_fence_reg(struct drm_device *dev)
{
	struct drm_i915_fence_reg *reg = NULL;
	struct drm_i915_gem_object *obj_priv = NULL;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_gem_object *obj = NULL;
	int i, avail, ret;

	/* First try to find a free reg */
	avail = 0;
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
			return i;

2256
		obj_priv = to_intel_bo(reg->obj);
2257 2258 2259 2260 2261 2262 2263 2264 2265
		if (!obj_priv->pin_count)
		    avail++;
	}

	if (avail == 0)
		return -ENOSPC;

	/* None available, try to steal one or wait for a user to finish */
	i = I915_FENCE_REG_NONE;
2266 2267 2268 2269
	list_for_each_entry(reg, &dev_priv->mm.fence_list,
			    lru_list) {
		obj = reg->obj;
		obj_priv = to_intel_bo(obj);
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293

		if (obj_priv->pin_count)
			continue;

		/* found one! */
		i = obj_priv->fence_reg;
		break;
	}

	BUG_ON(i == I915_FENCE_REG_NONE);

	/* We only have a reference on obj from the active list. put_fence_reg
	 * might drop that one, causing a use-after-free in it. So hold a
	 * private reference to obj like the other callers of put_fence_reg
	 * (set_tiling ioctl) do. */
	drm_gem_object_reference(obj);
	ret = i915_gem_object_put_fence_reg(obj);
	drm_gem_object_unreference(obj);
	if (ret != 0)
		return ret;

	return i;
}

2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
/**
 * i915_gem_object_get_fence_reg - set up a fence reg for an object
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 *
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
 */
2307 2308
int
i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2309 2310
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2311
	struct drm_i915_private *dev_priv = dev->dev_private;
2312
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2313
	struct drm_i915_fence_reg *reg = NULL;
2314
	int ret;
2315

2316 2317
	/* Just update our place in the LRU if our fence is getting used. */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2318 2319
		reg = &dev_priv->fence_regs[obj_priv->fence_reg];
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2320 2321 2322
		return 0;
	}

2323 2324 2325 2326 2327
	switch (obj_priv->tiling_mode) {
	case I915_TILING_NONE:
		WARN(1, "allocating a fence for non-tiled object?\n");
		break;
	case I915_TILING_X:
2328 2329 2330 2331 2332
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (512 - 1)),
		     "object 0x%08x is X tiled but has non-512B pitch\n",
		     obj_priv->gtt_offset);
2333 2334
		break;
	case I915_TILING_Y:
2335 2336 2337 2338 2339
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (128 - 1)),
		     "object 0x%08x is Y tiled but has non-128B pitch\n",
		     obj_priv->gtt_offset);
2340 2341 2342
		break;
	}

2343 2344 2345
	ret = i915_find_fence_reg(dev);
	if (ret < 0)
		return ret;
2346

2347 2348
	obj_priv->fence_reg = ret;
	reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2349
	list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2350

2351 2352
	reg->obj = obj;

2353 2354 2355
	if (IS_GEN6(dev))
		sandybridge_write_fence_reg(reg);
	else if (IS_I965G(dev))
2356 2357 2358 2359 2360
		i965_write_fence_reg(reg);
	else if (IS_I9XX(dev))
		i915_write_fence_reg(reg);
	else
		i830_write_fence_reg(reg);
2361

2362 2363
	trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
			obj_priv->tiling_mode);
C
Chris Wilson 已提交
2364

2365
	return 0;
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
}

/**
 * i915_gem_clear_fence_reg - clear out fence register info
 * @obj: object to clear
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
static void
i915_gem_clear_fence_reg(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2379
	drm_i915_private_t *dev_priv = dev->dev_private;
2380
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2381 2382
	struct drm_i915_fence_reg *reg =
		&dev_priv->fence_regs[obj_priv->fence_reg];
2383

2384 2385 2386 2387
	if (IS_GEN6(dev)) {
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
			     (obj_priv->fence_reg * 8), 0);
	} else if (IS_I965G(dev)) {
2388
		I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2389
	} else {
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
		uint32_t fence_reg;

		if (obj_priv->fence_reg < 8)
			fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
		else
			fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
						       8) * 4;

		I915_WRITE(fence_reg, 0);
	}
2400

2401
	reg->obj = NULL;
2402
	obj_priv->fence_reg = I915_FENCE_REG_NONE;
2403
	list_del_init(&reg->lru_list);
2404 2405
}

2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
/**
 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
 * to the buffer to finish, and then resets the fence register.
 * @obj: tiled object holding a fence register.
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
int
i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
2418
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2419 2420 2421 2422

	if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
		return 0;

2423 2424 2425 2426 2427 2428
	/* If we've changed tiling, GTT-mappings of the object
	 * need to re-fault to ensure that the correct fence register
	 * setup is in place.
	 */
	i915_gem_release_mmap(obj);

2429 2430 2431 2432 2433 2434 2435
	/* On the i915, GPU access to tiled buffers is via a fence,
	 * therefore we must wait for any outstanding access to complete
	 * before clearing the fence.
	 */
	if (!IS_I965G(dev)) {
		int ret;

2436 2437 2438 2439
		ret = i915_gem_object_flush_gpu_write_domain(obj);
		if (ret != 0)
			return ret;

2440 2441 2442 2443 2444
		ret = i915_gem_object_wait_rendering(obj);
		if (ret != 0)
			return ret;
	}

2445
	i915_gem_object_flush_gtt_write_domain(obj);
2446 2447 2448 2449 2450
	i915_gem_clear_fence_reg (obj);

	return 0;
}

2451 2452 2453 2454 2455 2456 2457 2458
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2459
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2460
	struct drm_mm_node *free_space;
2461
	gfp_t gfpmask =  __GFP_NORETRY | __GFP_NOWARN;
2462
	int ret;
2463

C
Chris Wilson 已提交
2464
	if (obj_priv->madv != I915_MADV_WILLNEED) {
2465 2466 2467 2468
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2469
	if (alignment == 0)
2470
		alignment = i915_gem_get_gtt_alignment(obj);
2471
	if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2472 2473 2474 2475
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2476 2477 2478 2479 2480 2481 2482 2483
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
	if (obj->size > dev->gtt_total) {
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2484 2485 2486 2487 2488 2489
 search_free:
	free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
					obj->size, alignment, 0);
	if (free_space != NULL) {
		obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
						       alignment);
D
Daniel Vetter 已提交
2490
		if (obj_priv->gtt_space != NULL)
2491 2492 2493 2494 2495 2496 2497 2498 2499
			obj_priv->gtt_offset = obj_priv->gtt_space->start;
	}
	if (obj_priv->gtt_space == NULL) {
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
#if WATCH_LRU
		DRM_INFO("%s: GTT full, evicting something\n", __func__);
#endif
2500
		ret = i915_gem_evict_something(dev, obj->size, alignment);
2501
		if (ret)
2502
			return ret;
2503

2504 2505 2506 2507
		goto search_free;
	}

#if WATCH_BUF
2508
	DRM_INFO("Binding object of size %zd at 0x%08x\n",
2509 2510
		 obj->size, obj_priv->gtt_offset);
#endif
2511
	ret = i915_gem_object_get_pages(obj, gfpmask);
2512 2513 2514
	if (ret) {
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2515 2516 2517

		if (ret == -ENOMEM) {
			/* first try to clear up some space from the GTT */
2518 2519
			ret = i915_gem_evict_something(dev, obj->size,
						       alignment);
2520 2521
			if (ret) {
				/* now try to shrink everyone else */
2522 2523 2524
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2525 2526 2527 2528 2529 2530 2531 2532
				}

				return ret;
			}

			goto search_free;
		}

2533 2534 2535 2536 2537 2538 2539
		return ret;
	}

	/* Create an AGP memory structure pointing at our pages, and bind it
	 * into the GTT.
	 */
	obj_priv->agp_mem = drm_agp_bind_pages(dev,
2540
					       obj_priv->pages,
2541
					       obj->size >> PAGE_SHIFT,
2542 2543
					       obj_priv->gtt_offset,
					       obj_priv->agp_type);
2544
	if (obj_priv->agp_mem == NULL) {
2545
		i915_gem_object_put_pages(obj);
2546 2547
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2548

2549
		ret = i915_gem_evict_something(dev, obj->size, alignment);
2550
		if (ret)
2551 2552 2553
			return ret;

		goto search_free;
2554 2555 2556 2557
	}
	atomic_inc(&dev->gtt_count);
	atomic_add(obj->size, &dev->gtt_memory);

2558 2559 2560
	/* keep track of bounds object by adding it to the inactive list */
	list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

2561 2562 2563 2564
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2565 2566
	BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2567

C
Chris Wilson 已提交
2568 2569
	trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);

2570 2571 2572 2573 2574 2575
	return 0;
}

void
i915_gem_clflush_object(struct drm_gem_object *obj)
{
2576
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
2577 2578 2579 2580 2581

	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2582
	if (obj_priv->pages == NULL)
2583 2584
		return;

C
Chris Wilson 已提交
2585
	trace_i915_gem_object_clflush(obj);
2586

2587
	drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2588 2589
}

2590
/** Flushes any GPU write domain for the object if it's dirty. */
2591
static int
2592 2593 2594
i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2595
	uint32_t old_write_domain;
2596
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2597 2598

	if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2599
		return 0;
2600 2601

	/* Queue the GPU write cache flushing we need. */
C
Chris Wilson 已提交
2602
	old_write_domain = obj->write_domain;
2603
	i915_gem_flush(dev, 0, obj->write_domain);
2604 2605
	if (i915_add_request(dev, NULL, obj->write_domain, obj_priv->ring) == 0)
		return -ENOMEM;
C
Chris Wilson 已提交
2606 2607 2608 2609

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2610
	return 0;
2611 2612 2613 2614 2615 2616
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
{
C
Chris Wilson 已提交
2617 2618
	uint32_t old_write_domain;

2619 2620 2621 2622 2623 2624 2625
	if (obj->write_domain != I915_GEM_DOMAIN_GTT)
		return;

	/* No actual flushing is required for the GTT write domain.   Writes
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
	 */
C
Chris Wilson 已提交
2626
	old_write_domain = obj->write_domain;
2627
	obj->write_domain = 0;
C
Chris Wilson 已提交
2628 2629 2630 2631

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2632 2633 2634 2635 2636 2637 2638
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2639
	uint32_t old_write_domain;
2640 2641 2642 2643 2644 2645

	if (obj->write_domain != I915_GEM_DOMAIN_CPU)
		return;

	i915_gem_clflush_object(obj);
	drm_agp_chipset_flush(dev);
C
Chris Wilson 已提交
2646
	old_write_domain = obj->write_domain;
2647
	obj->write_domain = 0;
C
Chris Wilson 已提交
2648 2649 2650 2651

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2652 2653
}

2654
int
2655 2656
i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
{
2657 2658
	int ret = 0;

2659 2660 2661 2662 2663 2664 2665 2666
	switch (obj->write_domain) {
	case I915_GEM_DOMAIN_GTT:
		i915_gem_object_flush_gtt_write_domain(obj);
		break;
	case I915_GEM_DOMAIN_CPU:
		i915_gem_object_flush_cpu_write_domain(obj);
		break;
	default:
2667
		ret = i915_gem_object_flush_gpu_write_domain(obj);
2668 2669
		break;
	}
2670 2671

	return ret;
2672 2673
}

2674 2675 2676 2677 2678 2679
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2680
int
2681 2682
i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
{
2683
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
2684
	uint32_t old_write_domain, old_read_domains;
2685
	int ret;
2686

2687 2688 2689 2690
	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2691 2692 2693 2694
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret != 0)
		return ret;

2695 2696 2697 2698 2699
	/* Wait on any GPU rendering and flushing to occur. */
	ret = i915_gem_object_wait_rendering(obj);
	if (ret != 0)
		return ret;

C
Chris Wilson 已提交
2700 2701 2702
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

2703 2704
	/* If we're writing through the GTT domain, then CPU and GPU caches
	 * will need to be invalidated at next use.
2705
	 */
2706 2707
	if (write)
		obj->read_domains &= I915_GEM_DOMAIN_GTT;
2708

2709
	i915_gem_object_flush_cpu_write_domain(obj);
2710

2711 2712 2713 2714 2715 2716 2717 2718
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
	if (write) {
		obj->write_domain = I915_GEM_DOMAIN_GTT;
		obj_priv->dirty = 1;
2719 2720
	}

C
Chris Wilson 已提交
2721 2722 2723 2724
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2725 2726 2727
	return 0;
}

2728 2729 2730 2731 2732 2733 2734 2735
/*
 * Prepare buffer for display plane. Use uninterruptible for possible flush
 * wait, as in modesetting process we're not supposed to be interrupted.
 */
int
i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
2736
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2737 2738 2739 2740 2741 2742 2743
	uint32_t old_write_domain, old_read_domains;
	int ret;

	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2744 2745 2746
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;
2747 2748 2749 2750 2751 2752 2753

	/* Wait on any GPU rendering and flushing to occur. */
	if (obj_priv->active) {
#if WATCH_BUF
		DRM_INFO("%s: object %p wait for seqno %08x\n",
			  __func__, obj, obj_priv->last_rendering_seqno);
#endif
2754 2755 2756 2757
		ret = i915_do_wait_request(dev,
				obj_priv->last_rendering_seqno,
				0,
				obj_priv->ring);
2758 2759 2760 2761
		if (ret != 0)
			return ret;
	}

2762 2763
	i915_gem_object_flush_cpu_write_domain(obj);

2764 2765 2766 2767 2768 2769 2770
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2771
	obj->read_domains = I915_GEM_DOMAIN_GTT;
2772 2773 2774 2775 2776 2777 2778 2779 2780 2781
	obj->write_domain = I915_GEM_DOMAIN_GTT;
	obj_priv->dirty = 1;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

	return 0;
}

2782 2783 2784 2785 2786 2787 2788 2789 2790
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
{
C
Chris Wilson 已提交
2791
	uint32_t old_write_domain, old_read_domains;
2792 2793
	int ret;

2794 2795 2796 2797
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

2798
	/* Wait on any GPU rendering and flushing to occur. */
2799 2800 2801
	ret = i915_gem_object_wait_rendering(obj);
	if (ret != 0)
		return ret;
2802

2803
	i915_gem_object_flush_gtt_write_domain(obj);
2804

2805 2806
	/* If we have a partially-valid cache of the object in the CPU,
	 * finish invalidating it and free the per-page flags.
2807
	 */
2808
	i915_gem_object_set_to_full_cpu_read_domain(obj);
2809

C
Chris Wilson 已提交
2810 2811 2812
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

2813 2814
	/* Flush the CPU cache if it's still invalid. */
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2815 2816
		i915_gem_clflush_object(obj);

2817
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
2818 2819 2820 2821 2822
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2823 2824 2825 2826 2827 2828 2829 2830 2831
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
		obj->read_domains &= I915_GEM_DOMAIN_CPU;
		obj->write_domain = I915_GEM_DOMAIN_CPU;
	}
2832

C
Chris Wilson 已提交
2833 2834 2835 2836
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2837 2838 2839
	return 0;
}

2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
/*
 * Set the next domain for the specified object. This
 * may not actually perform the necessary flushing/invaliding though,
 * as that may want to be batched with other set_domain operations
 *
 * This is (we hope) the only really tricky part of gem. The goal
 * is fairly simple -- track which caches hold bits of the object
 * and make sure they remain coherent. A few concrete examples may
 * help to explain how it works. For shorthand, we use the notation
 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
 * a pair of read and write domain masks.
 *
 * Case 1: the batch buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Mapped to GTT
 *	4. Read by GPU
 *	5. Unmapped from GTT
 *	6. Freed
 *
 *	Let's take these a step at a time
 *
 *	1. Allocated
 *		Pages allocated from the kernel may still have
 *		cache contents, so we set them to (CPU, CPU) always.
 *	2. Written by CPU (using pwrite)
 *		The pwrite function calls set_domain (CPU, CPU) and
 *		this function does nothing (as nothing changes)
 *	3. Mapped by GTT
 *		This function asserts that the object is not
 *		currently in any GPU-based read or write domains
 *	4. Read by GPU
 *		i915_gem_execbuffer calls set_domain (COMMAND, 0).
 *		As write_domain is zero, this function adds in the
 *		current read domains (CPU+COMMAND, 0).
 *		flush_domains is set to CPU.
 *		invalidate_domains is set to COMMAND
 *		clflush is run to get data out of the CPU caches
 *		then i915_dev_set_domain calls i915_gem_flush to
 *		emit an MI_FLUSH and drm_agp_chipset_flush
 *	5. Unmapped from GTT
 *		i915_gem_object_unbind calls set_domain (CPU, CPU)
 *		flush_domains and invalidate_domains end up both zero
 *		so no flushing/invalidating happens
 *	6. Freed
 *		yay, done
 *
 * Case 2: The shared render buffer
 *
 *	1. Allocated
 *	2. Mapped to GTT
 *	3. Read/written by GPU
 *	4. set_domain to (CPU,CPU)
 *	5. Read/written by CPU
 *	6. Read/written by GPU
 *
 *	1. Allocated
 *		Same as last example, (CPU, CPU)
 *	2. Mapped to GTT
 *		Nothing changes (assertions find that it is not in the GPU)
 *	3. Read/written by GPU
 *		execbuffer calls set_domain (RENDER, RENDER)
 *		flush_domains gets CPU
 *		invalidate_domains gets GPU
 *		clflush (obj)
 *		MI_FLUSH and drm_agp_chipset_flush
 *	4. set_domain (CPU, CPU)
 *		flush_domains gets GPU
 *		invalidate_domains gets CPU
 *		wait_rendering (obj) to make sure all drawing is complete.
 *		This will include an MI_FLUSH to get the data from GPU
 *		to memory
 *		clflush (obj) to invalidate the CPU cache
 *		Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
 *	5. Read/written by CPU
 *		cache lines are loaded and dirtied
 *	6. Read written by GPU
 *		Same as last GPU access
 *
 * Case 3: The constant buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Read by GPU
 *	4. Updated (written) by CPU again
 *	5. Read by GPU
 *
 *	1. Allocated
 *		(CPU, CPU)
 *	2. Written by CPU
 *		(CPU, CPU)
 *	3. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 *	4. Updated (written) by CPU again
 *		(CPU, CPU)
 *		flush_domains = 0 (no previous write domain)
 *		invalidate_domains = 0 (no new read domains)
 *	5. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 */
2951
static void
2952
i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2953 2954
{
	struct drm_device		*dev = obj->dev;
2955
	drm_i915_private_t		*dev_priv = dev->dev_private;
2956
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
2957 2958
	uint32_t			invalidate_domains = 0;
	uint32_t			flush_domains = 0;
C
Chris Wilson 已提交
2959
	uint32_t			old_read_domains;
2960

2961 2962
	BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
	BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2963

2964 2965
	intel_mark_busy(dev, obj);

2966 2967 2968
#if WATCH_BUF
	DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
		 __func__, obj,
2969 2970
		 obj->read_domains, obj->pending_read_domains,
		 obj->write_domain, obj->pending_write_domain);
2971 2972 2973 2974 2975
#endif
	/*
	 * If the object isn't moving to a new write domain,
	 * let the object stay in multiple read domains
	 */
2976 2977
	if (obj->pending_write_domain == 0)
		obj->pending_read_domains |= obj->read_domains;
2978 2979 2980 2981 2982 2983 2984 2985 2986
	else
		obj_priv->dirty = 1;

	/*
	 * Flush the current write domain if
	 * the new read domains don't match. Invalidate
	 * any read domains which differ from the old
	 * write domain
	 */
2987 2988
	if (obj->write_domain &&
	    obj->write_domain != obj->pending_read_domains) {
2989
		flush_domains |= obj->write_domain;
2990 2991
		invalidate_domains |=
			obj->pending_read_domains & ~obj->write_domain;
2992 2993 2994 2995 2996
	}
	/*
	 * Invalidate any read caches which may have
	 * stale data. That is, any new read domains.
	 */
2997
	invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
2998 2999 3000 3001 3002 3003 3004 3005
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
#if WATCH_BUF
		DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
			 __func__, flush_domains, invalidate_domains);
#endif
		i915_gem_clflush_object(obj);
	}

C
Chris Wilson 已提交
3006 3007
	old_read_domains = obj->read_domains;

3008 3009 3010 3011 3012 3013 3014 3015
	/* The actual obj->write_domain will be updated with
	 * pending_write_domain after we emit the accumulated flush for all
	 * of our domain changes in execbuffers (which clears objects'
	 * write_domains).  So if we have a current write domain that we
	 * aren't changing, set pending_write_domain to that.
	 */
	if (flush_domains == 0 && obj->pending_write_domain == 0)
		obj->pending_write_domain = obj->write_domain;
3016
	obj->read_domains = obj->pending_read_domains;
3017

3018 3019 3020 3021 3022 3023 3024
	if (flush_domains & I915_GEM_GPU_DOMAINS) {
		if (obj_priv->ring == &dev_priv->render_ring)
			dev_priv->flush_rings |= FLUSH_RENDER_RING;
		else if (obj_priv->ring == &dev_priv->bsd_ring)
			dev_priv->flush_rings |= FLUSH_BSD_RING;
	}

3025 3026 3027 3028 3029 3030 3031 3032
	dev->invalidate_domains |= invalidate_domains;
	dev->flush_domains |= flush_domains;
#if WATCH_BUF
	DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
		 __func__,
		 obj->read_domains, obj->write_domain,
		 dev->invalidate_domains, dev->flush_domains);
#endif
C
Chris Wilson 已提交
3033 3034 3035 3036

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);
3037 3038 3039
}

/**
3040
 * Moves the object from a partially CPU read to a full one.
3041
 *
3042 3043
 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3044
 */
3045 3046
static void
i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3047
{
3048
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3049

3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
	if (!obj_priv->page_cpu_valid)
		return;

	/* If we're partially in the CPU read domain, finish moving it in.
	 */
	if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
		int i;

		for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
			if (obj_priv->page_cpu_valid[i])
				continue;
3061
			drm_clflush_pages(obj_priv->pages + i, 1);
3062 3063 3064 3065 3066 3067
		}
	}

	/* Free the page_cpu_valid mappings which are now stale, whether
	 * or not we've got I915_GEM_DOMAIN_CPU.
	 */
3068
	kfree(obj_priv->page_cpu_valid);
3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
	obj_priv->page_cpu_valid = NULL;
}

/**
 * Set the CPU read domain on a range of the object.
 *
 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
 * not entirely valid.  The page_cpu_valid member of the object flags which
 * pages have been flushed, and will be respected by
 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
 * of the whole object.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
					  uint64_t offset, uint64_t size)
{
3088
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
3089
	uint32_t old_read_domains;
3090
	int i, ret;
3091

3092 3093
	if (offset == 0 && size == obj->size)
		return i915_gem_object_set_to_cpu_domain(obj, 0);
3094

3095 3096 3097 3098
	ret = i915_gem_object_flush_gpu_write_domain(obj);
	if (ret)
		return ret;

3099
	/* Wait on any GPU rendering and flushing to occur. */
3100
	ret = i915_gem_object_wait_rendering(obj);
3101
	if (ret != 0)
3102
		return ret;
3103 3104 3105 3106 3107 3108
	i915_gem_object_flush_gtt_write_domain(obj);

	/* If we're already fully in the CPU read domain, we're done. */
	if (obj_priv->page_cpu_valid == NULL &&
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
		return 0;
3109

3110 3111 3112
	/* Otherwise, create/clear the per-page CPU read domain flag if we're
	 * newly adding I915_GEM_DOMAIN_CPU
	 */
3113
	if (obj_priv->page_cpu_valid == NULL) {
3114 3115
		obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
						   GFP_KERNEL);
3116 3117 3118 3119
		if (obj_priv->page_cpu_valid == NULL)
			return -ENOMEM;
	} else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
		memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3120 3121 3122 3123

	/* Flush the cache on any pages that are still invalid from the CPU's
	 * perspective.
	 */
3124 3125
	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
	     i++) {
3126 3127 3128
		if (obj_priv->page_cpu_valid[i])
			continue;

3129
		drm_clflush_pages(obj_priv->pages + i, 1);
3130 3131 3132 3133

		obj_priv->page_cpu_valid[i] = 1;
	}

3134 3135 3136 3137 3138
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

C
Chris Wilson 已提交
3139
	old_read_domains = obj->read_domains;
3140 3141
	obj->read_domains |= I915_GEM_DOMAIN_CPU;

C
Chris Wilson 已提交
3142 3143 3144 3145
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);

3146 3147 3148 3149 3150 3151 3152 3153 3154
	return 0;
}

/**
 * Pin an object to the GTT and evaluate the relocations landing in it.
 */
static int
i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
				 struct drm_file *file_priv,
J
Jesse Barnes 已提交
3155
				 struct drm_i915_gem_exec_object2 *entry,
3156
				 struct drm_i915_gem_relocation_entry *relocs)
3157 3158
{
	struct drm_device *dev = obj->dev;
3159
	drm_i915_private_t *dev_priv = dev->dev_private;
3160
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3161
	int i, ret;
3162
	void __iomem *reloc_page;
J
Jesse Barnes 已提交
3163 3164 3165 3166 3167 3168
	bool need_fence;

	need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
	             obj_priv->tiling_mode != I915_TILING_NONE;

	/* Check fence reg constraints and rebind if necessary */
3169 3170 3171 3172 3173 3174 3175
	if (need_fence &&
	    !i915_gem_object_fence_offset_ok(obj,
					     obj_priv->tiling_mode)) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			return ret;
	}
3176 3177 3178 3179 3180 3181

	/* Choose the GTT offset for our buffer and put it there. */
	ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
	if (ret)
		return ret;

J
Jesse Barnes 已提交
3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
	/*
	 * Pre-965 chips need a fence register set up in order to
	 * properly handle blits to/from tiled surfaces.
	 */
	if (need_fence) {
		ret = i915_gem_object_get_fence_reg(obj);
		if (ret != 0) {
			i915_gem_object_unpin(obj);
			return ret;
		}
	}

3194 3195 3196 3197 3198 3199
	entry->offset = obj_priv->gtt_offset;

	/* Apply the relocations, using the GTT aperture to avoid cache
	 * flushing requirements.
	 */
	for (i = 0; i < entry->relocation_count; i++) {
3200
		struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3201 3202
		struct drm_gem_object *target_obj;
		struct drm_i915_gem_object *target_obj_priv;
3203 3204
		uint32_t reloc_val, reloc_offset;
		uint32_t __iomem *reloc_entry;
3205 3206

		target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3207
						   reloc->target_handle);
3208 3209
		if (target_obj == NULL) {
			i915_gem_object_unpin(obj);
3210
			return -ENOENT;
3211
		}
3212
		target_obj_priv = to_intel_bo(target_obj);
3213

3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
#if WATCH_RELOC
		DRM_INFO("%s: obj %p offset %08x target %d "
			 "read %08x write %08x gtt %08x "
			 "presumed %08x delta %08x\n",
			 __func__,
			 obj,
			 (int) reloc->offset,
			 (int) reloc->target_handle,
			 (int) reloc->read_domains,
			 (int) reloc->write_domain,
			 (int) target_obj_priv->gtt_offset,
			 (int) reloc->presumed_offset,
			 reloc->delta);
#endif

3229 3230 3231 3232 3233
		/* The target buffer should have appeared before us in the
		 * exec_object list, so it should have a GTT space bound by now.
		 */
		if (target_obj_priv->gtt_space == NULL) {
			DRM_ERROR("No GTT space found for object %d\n",
3234
				  reloc->target_handle);
3235 3236 3237 3238 3239
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3240
		/* Validate that the target is in a valid r/w GPU domain */
3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
		if (reloc->write_domain & (reloc->write_domain - 1)) {
			DRM_ERROR("reloc with multiple write domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->read_domains,
				  reloc->write_domain);
			return -EINVAL;
		}
3251 3252
		if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
		    reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3253 3254 3255
			DRM_ERROR("reloc with read/write CPU domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
3256 3257 3258 3259
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->read_domains,
				  reloc->write_domain);
3260 3261
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
3262 3263
			return -EINVAL;
		}
3264 3265
		if (reloc->write_domain && target_obj->pending_write_domain &&
		    reloc->write_domain != target_obj->pending_write_domain) {
3266 3267 3268
			DRM_ERROR("Write domain conflict: "
				  "obj %p target %d offset %d "
				  "new %08x old %08x\n",
3269 3270 3271
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->write_domain,
3272 3273 3274 3275 3276 3277
				  target_obj->pending_write_domain);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3278 3279
		target_obj->pending_read_domains |= reloc->read_domains;
		target_obj->pending_write_domain |= reloc->write_domain;
3280 3281 3282 3283

		/* If the relocation already has the right value in it, no
		 * more work needs to be done.
		 */
3284
		if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3285 3286 3287 3288
			drm_gem_object_unreference(target_obj);
			continue;
		}

3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
		/* Check that the relocation address is valid... */
		if (reloc->offset > obj->size - 4) {
			DRM_ERROR("Relocation beyond object bounds: "
				  "obj %p target %d offset %d size %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->offset, (int) obj->size);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}
		if (reloc->offset & 3) {
			DRM_ERROR("Relocation not 4-byte aligned: "
				  "obj %p target %d offset %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->offset);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

		/* and points to somewhere within the target object. */
		if (reloc->delta >= target_obj->size) {
			DRM_ERROR("Relocation beyond target object bounds: "
				  "obj %p target %d delta %d size %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->delta, (int) target_obj->size);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3320 3321 3322 3323 3324
		ret = i915_gem_object_set_to_gtt_domain(obj, 1);
		if (ret != 0) {
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
3325 3326 3327 3328 3329
		}

		/* Map the page containing the relocation we're going to
		 * perform.
		 */
3330
		reloc_offset = obj_priv->gtt_offset + reloc->offset;
3331 3332
		reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
						      (reloc_offset &
3333 3334
						       ~(PAGE_SIZE - 1)),
						      KM_USER0);
3335
		reloc_entry = (uint32_t __iomem *)(reloc_page +
3336
						   (reloc_offset & (PAGE_SIZE - 1)));
3337
		reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3338 3339 3340

#if WATCH_BUF
		DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3341
			  obj, (unsigned int) reloc->offset,
3342 3343 3344
			  readl(reloc_entry), reloc_val);
#endif
		writel(reloc_val, reloc_entry);
3345
		io_mapping_unmap_atomic(reloc_page, KM_USER0);
3346

3347 3348
		/* The updated presumed offset for this entry will be
		 * copied back out to the user.
3349
		 */
3350
		reloc->presumed_offset = target_obj_priv->gtt_offset;
3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364

		drm_gem_object_unreference(target_obj);
	}

#if WATCH_BUF
	if (0)
		i915_gem_dump_object(obj, 128, __func__, ~0);
#endif
	return 0;
}

/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3365 3366 3367 3368
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3369 3370 3371 3372 3373 3374 3375 3376
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
static int
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
{
	struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
	int ret = 0;
3377
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3378 3379

	mutex_lock(&dev->struct_mutex);
3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
	while (!list_empty(&i915_file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&i915_file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);

		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;

3390
		ret = i915_wait_request(dev, request->seqno, request->ring);
3391 3392 3393
		if (ret != 0)
			break;
	}
3394
	mutex_unlock(&dev->struct_mutex);
3395

3396 3397 3398
	return ret;
}

3399
static int
J
Jesse Barnes 已提交
3400
i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
			      uint32_t buffer_count,
			      struct drm_i915_gem_relocation_entry **relocs)
{
	uint32_t reloc_count = 0, reloc_index = 0, i;
	int ret;

	*relocs = NULL;
	for (i = 0; i < buffer_count; i++) {
		if (reloc_count + exec_list[i].relocation_count < reloc_count)
			return -EINVAL;
		reloc_count += exec_list[i].relocation_count;
	}

3414
	*relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
J
Jesse Barnes 已提交
3415 3416
	if (*relocs == NULL) {
		DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
3417
		return -ENOMEM;
J
Jesse Barnes 已提交
3418
	}
3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429

	for (i = 0; i < buffer_count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;

		user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;

		ret = copy_from_user(&(*relocs)[reloc_index],
				     user_relocs,
				     exec_list[i].relocation_count *
				     sizeof(**relocs));
		if (ret != 0) {
3430
			drm_free_large(*relocs);
3431
			*relocs = NULL;
3432
			return -EFAULT;
3433 3434 3435 3436 3437
		}

		reloc_index += exec_list[i].relocation_count;
	}

3438
	return 0;
3439 3440 3441
}

static int
J
Jesse Barnes 已提交
3442
i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
3443 3444 3445 3446
			    uint32_t buffer_count,
			    struct drm_i915_gem_relocation_entry *relocs)
{
	uint32_t reloc_count = 0, i;
3447
	int ret = 0;
3448

3449 3450 3451
	if (relocs == NULL)
	    return 0;

3452 3453
	for (i = 0; i < buffer_count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;
3454
		int unwritten;
3455 3456 3457

		user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;

3458 3459 3460 3461 3462 3463 3464 3465
		unwritten = copy_to_user(user_relocs,
					 &relocs[reloc_count],
					 exec_list[i].relocation_count *
					 sizeof(*relocs));

		if (unwritten) {
			ret = -EFAULT;
			goto err;
3466 3467 3468 3469 3470
		}

		reloc_count += exec_list[i].relocation_count;
	}

3471
err:
3472
	drm_free_large(relocs);
3473 3474 3475 3476

	return ret;
}

3477
static int
J
Jesse Barnes 已提交
3478
i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494
			   uint64_t exec_offset)
{
	uint32_t exec_start, exec_len;

	exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
	exec_len = (uint32_t) exec->batch_len;

	if ((exec_start | exec_len) & 0x7)
		return -EINVAL;

	if (!exec_start)
		return -EINVAL;

	return 0;
}

3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508
static int
i915_gem_wait_for_pending_flip(struct drm_device *dev,
			       struct drm_gem_object **object_list,
			       int count)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	DEFINE_WAIT(wait);
	int i, ret = 0;

	for (;;) {
		prepare_to_wait(&dev_priv->pending_flip_queue,
				&wait, TASK_INTERRUPTIBLE);
		for (i = 0; i < count; i++) {
3509
			obj_priv = to_intel_bo(object_list[i]);
3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
			if (atomic_read(&obj_priv->pending_flip) > 0)
				break;
		}
		if (i == count)
			break;

		if (!signal_pending(current)) {
			mutex_unlock(&dev->struct_mutex);
			schedule();
			mutex_lock(&dev->struct_mutex);
			continue;
		}
		ret = -ERESTARTSYS;
		break;
	}
	finish_wait(&dev_priv->pending_flip_queue, &wait);

	return ret;
}

3530

3531
int
J
Jesse Barnes 已提交
3532 3533 3534 3535
i915_gem_do_execbuffer(struct drm_device *dev, void *data,
		       struct drm_file *file_priv,
		       struct drm_i915_gem_execbuffer2 *args,
		       struct drm_i915_gem_exec_object2 *exec_list)
3536 3537 3538 3539
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object **object_list = NULL;
	struct drm_gem_object *batch_obj;
3540
	struct drm_i915_gem_object *obj_priv;
3541
	struct drm_clip_rect *cliprects = NULL;
3542
	struct drm_i915_gem_relocation_entry *relocs = NULL;
J
Jesse Barnes 已提交
3543
	int ret = 0, ret2, i, pinned = 0;
3544
	uint64_t exec_offset;
3545
	uint32_t seqno, flush_domains, reloc_index;
3546
	int pin_tries, flips;
3547

3548 3549
	struct intel_ring_buffer *ring = NULL;

3550 3551 3552 3553
#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif
3554 3555 3556 3557 3558 3559 3560 3561 3562 3563
	if (args->flags & I915_EXEC_BSD) {
		if (!HAS_BSD(dev)) {
			DRM_ERROR("execbuf with wrong flag\n");
			return -EINVAL;
		}
		ring = &dev_priv->bsd_ring;
	} else {
		ring = &dev_priv->render_ring;
	}

3564 3565 3566 3567
	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}
3568
	object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
J
Jesse Barnes 已提交
3569 3570
	if (object_list == NULL) {
		DRM_ERROR("Failed to allocate object list for %d buffers\n",
3571 3572 3573 3574 3575
			  args->buffer_count);
		ret = -ENOMEM;
		goto pre_mutex_err;
	}

3576
	if (args->num_cliprects != 0) {
3577 3578
		cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
				    GFP_KERNEL);
3579 3580
		if (cliprects == NULL) {
			ret = -ENOMEM;
3581
			goto pre_mutex_err;
3582
		}
3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594

		ret = copy_from_user(cliprects,
				     (struct drm_clip_rect __user *)
				     (uintptr_t) args->cliprects_ptr,
				     sizeof(*cliprects) * args->num_cliprects);
		if (ret != 0) {
			DRM_ERROR("copy %d cliprects failed: %d\n",
				  args->num_cliprects, ret);
			goto pre_mutex_err;
		}
	}

3595 3596 3597 3598 3599
	ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
					    &relocs);
	if (ret != 0)
		goto pre_mutex_err;

3600 3601 3602 3603
	mutex_lock(&dev->struct_mutex);

	i915_verify_inactive(dev, __FILE__, __LINE__);

3604
	if (atomic_read(&dev_priv->mm.wedged)) {
3605
		mutex_unlock(&dev->struct_mutex);
3606 3607
		ret = -EIO;
		goto pre_mutex_err;
3608 3609 3610 3611
	}

	if (dev_priv->mm.suspended) {
		mutex_unlock(&dev->struct_mutex);
3612 3613
		ret = -EBUSY;
		goto pre_mutex_err;
3614 3615
	}

3616
	/* Look up object handles */
3617
	flips = 0;
3618 3619 3620 3621 3622 3623
	for (i = 0; i < args->buffer_count; i++) {
		object_list[i] = drm_gem_object_lookup(dev, file_priv,
						       exec_list[i].handle);
		if (object_list[i] == NULL) {
			DRM_ERROR("Invalid object handle %d at index %d\n",
				   exec_list[i].handle, i);
3624 3625
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
3626
			ret = -ENOENT;
3627 3628
			goto err;
		}
3629

3630
		obj_priv = to_intel_bo(object_list[i]);
3631 3632 3633
		if (obj_priv->in_execbuffer) {
			DRM_ERROR("Object %p appears more than once in object list\n",
				   object_list[i]);
3634 3635
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
3636
			ret = -EINVAL;
3637 3638 3639
			goto err;
		}
		obj_priv->in_execbuffer = true;
3640 3641 3642 3643 3644 3645 3646 3647
		flips += atomic_read(&obj_priv->pending_flip);
	}

	if (flips > 0) {
		ret = i915_gem_wait_for_pending_flip(dev, object_list,
						     args->buffer_count);
		if (ret)
			goto err;
3648
	}
3649

3650 3651 3652
	/* Pin and relocate */
	for (pin_tries = 0; ; pin_tries++) {
		ret = 0;
3653 3654
		reloc_index = 0;

3655 3656 3657 3658 3659
		for (i = 0; i < args->buffer_count; i++) {
			object_list[i]->pending_read_domains = 0;
			object_list[i]->pending_write_domain = 0;
			ret = i915_gem_object_pin_and_relocate(object_list[i],
							       file_priv,
3660 3661
							       &exec_list[i],
							       &relocs[reloc_index]);
3662 3663 3664
			if (ret)
				break;
			pinned = i + 1;
3665
			reloc_index += exec_list[i].relocation_count;
3666 3667 3668 3669 3670 3671
		}
		/* success */
		if (ret == 0)
			break;

		/* error other than GTT full, or we've already tried again */
C
Chris Wilson 已提交
3672
		if (ret != -ENOSPC || pin_tries >= 1) {
3673 3674
			if (ret != -ERESTARTSYS) {
				unsigned long long total_size = 0;
3675 3676
				int num_fences = 0;
				for (i = 0; i < args->buffer_count; i++) {
3677
					obj_priv = to_intel_bo(object_list[i]);
3678

3679
					total_size += object_list[i]->size;
3680 3681 3682 3683 3684
					num_fences +=
						exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
						obj_priv->tiling_mode != I915_TILING_NONE;
				}
				DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
3685
					  pinned+1, args->buffer_count,
3686 3687
					  total_size, num_fences,
					  ret);
3688 3689 3690 3691 3692 3693 3694 3695 3696 3697
				DRM_ERROR("%d objects [%d pinned], "
					  "%d object bytes [%d pinned], "
					  "%d/%d gtt bytes\n",
					  atomic_read(&dev->object_count),
					  atomic_read(&dev->pin_count),
					  atomic_read(&dev->object_memory),
					  atomic_read(&dev->pin_memory),
					  atomic_read(&dev->gtt_memory),
					  dev->gtt_total);
			}
3698 3699
			goto err;
		}
3700 3701 3702 3703

		/* unpin all of our buffers */
		for (i = 0; i < pinned; i++)
			i915_gem_object_unpin(object_list[i]);
3704
		pinned = 0;
3705 3706 3707

		/* evict everyone we can from the aperture */
		ret = i915_gem_evict_everything(dev);
3708
		if (ret && ret != -ENOSPC)
3709
			goto err;
3710 3711 3712 3713
	}

	/* Set the pending read domains for the batch buffer to COMMAND */
	batch_obj = object_list[args->buffer_count-1];
3714 3715 3716 3717 3718 3719
	if (batch_obj->pending_write_domain) {
		DRM_ERROR("Attempting to use self-modifying batch buffer\n");
		ret = -EINVAL;
		goto err;
	}
	batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3720

3721 3722 3723 3724 3725 3726 3727 3728
	/* Sanity check the batch buffer, prior to moving objects */
	exec_offset = exec_list[args->buffer_count - 1].offset;
	ret = i915_gem_check_execbuffer (args, exec_offset);
	if (ret != 0) {
		DRM_ERROR("execbuf with invalid offset/length\n");
		goto err;
	}

3729 3730
	i915_verify_inactive(dev, __FILE__, __LINE__);

3731 3732 3733 3734 3735 3736
	/* Zero the global flush/invalidate flags. These
	 * will be modified as new domains are computed
	 * for each object
	 */
	dev->invalidate_domains = 0;
	dev->flush_domains = 0;
3737
	dev_priv->flush_rings = 0;
3738

3739 3740 3741
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];

3742
		/* Compute new gpu domains and update invalidate/flush */
3743
		i915_gem_object_set_to_gpu_domain(obj);
3744 3745 3746 3747
	}

	i915_verify_inactive(dev, __FILE__, __LINE__);

3748 3749 3750 3751 3752 3753 3754 3755 3756 3757
	if (dev->invalidate_domains | dev->flush_domains) {
#if WATCH_EXEC
		DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
			  __func__,
			 dev->invalidate_domains,
			 dev->flush_domains);
#endif
		i915_gem_flush(dev,
			       dev->invalidate_domains,
			       dev->flush_domains);
3758
		if (dev_priv->flush_rings & FLUSH_RENDER_RING)
3759
			(void)i915_add_request(dev, file_priv,
3760 3761 3762 3763 3764 3765
					       dev->flush_domains,
					       &dev_priv->render_ring);
		if (dev_priv->flush_rings & FLUSH_BSD_RING)
			(void)i915_add_request(dev, file_priv,
					       dev->flush_domains,
					       &dev_priv->bsd_ring);
3766
	}
3767

3768 3769
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];
3770
		struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
3771
		uint32_t old_write_domain = obj->write_domain;
3772 3773

		obj->write_domain = obj->pending_write_domain;
3774 3775 3776 3777 3778 3779
		if (obj->write_domain)
			list_move_tail(&obj_priv->gpu_write_list,
				       &dev_priv->mm.gpu_write_list);
		else
			list_del_init(&obj_priv->gpu_write_list);

C
Chris Wilson 已提交
3780 3781 3782
		trace_i915_gem_object_change_domain(obj,
						    obj->read_domains,
						    old_write_domain);
3783 3784
	}

3785 3786 3787 3788 3789 3790 3791 3792 3793 3794
	i915_verify_inactive(dev, __FILE__, __LINE__);

#if WATCH_COHERENCY
	for (i = 0; i < args->buffer_count; i++) {
		i915_gem_object_check_coherency(object_list[i],
						exec_list[i].handle);
	}
#endif

#if WATCH_EXEC
3795
	i915_gem_dump_object(batch_obj,
3796 3797 3798 3799 3800 3801
			      args->batch_len,
			      __func__,
			      ~0);
#endif

	/* Exec the batchbuffer */
3802 3803
	ret = ring->dispatch_gem_execbuffer(dev, ring, args,
			cliprects, exec_offset);
3804 3805 3806 3807 3808 3809 3810 3811 3812
	if (ret) {
		DRM_ERROR("dispatch failed %d\n", ret);
		goto err;
	}

	/*
	 * Ensure that the commands in the batch buffer are
	 * finished before the interrupt fires
	 */
3813
	flush_domains = i915_retire_commands(dev, ring);
3814 3815 3816 3817 3818 3819 3820 3821 3822 3823

	i915_verify_inactive(dev, __FILE__, __LINE__);

	/*
	 * Get a seqno representing the execution of the current buffer,
	 * which we can wait on.  We would like to mitigate these interrupts,
	 * likely by only creating seqnos occasionally (so that we have
	 * *some* interrupts representing completion of buffers that we can
	 * wait on when trying to clear up gtt space).
	 */
3824
	seqno = i915_add_request(dev, file_priv, flush_domains, ring);
3825 3826 3827
	BUG_ON(seqno == 0);
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];
3828
		obj_priv = to_intel_bo(obj);
3829

3830
		i915_gem_object_move_to_active(obj, seqno, ring);
3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841
#if WATCH_LRU
		DRM_INFO("%s: move to exec list %p\n", __func__, obj);
#endif
	}
#if WATCH_LRU
	i915_dump_lru(dev, __func__);
#endif

	i915_verify_inactive(dev, __FILE__, __LINE__);

err:
3842 3843 3844
	for (i = 0; i < pinned; i++)
		i915_gem_object_unpin(object_list[i]);

3845 3846
	for (i = 0; i < args->buffer_count; i++) {
		if (object_list[i]) {
3847
			obj_priv = to_intel_bo(object_list[i]);
3848 3849
			obj_priv->in_execbuffer = false;
		}
3850
		drm_gem_object_unreference(object_list[i]);
3851
	}
3852 3853 3854

	mutex_unlock(&dev->struct_mutex);

3855
pre_mutex_err:
3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
	/* Copy the updated relocations out regardless of current error
	 * state.  Failure to update the relocs would mean that the next
	 * time userland calls execbuf, it would do so with presumed offset
	 * state that didn't match the actual object state.
	 */
	ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
					   relocs);
	if (ret2 != 0) {
		DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);

		if (ret == 0)
			ret = ret2;
	}

3870
	drm_free_large(object_list);
3871
	kfree(cliprects);
3872 3873 3874 3875

	return ret;
}

J
Jesse Barnes 已提交
3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret, i;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	/* Copy in the exec list from userland */
	exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec_list == NULL || exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -ENOMEM;
	}
	ret = copy_from_user(exec_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
		if (!IS_I965G(dev))
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
3942
	exec2.flags = I915_EXEC_RENDER;
J
Jesse Barnes 已提交
3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020

	ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		for (i = 0; i < args->buffer_count; i++)
			exec_list[i].offset = exec2_list[i].offset;
		/* ... and back out to userspace */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec_list,
				   sizeof(*exec_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec_list);
	drm_free_large(exec2_list);
	return ret;
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer2 *args = data;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		return -ENOMEM;
	}
	ret = copy_from_user(exec2_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec2_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec2_list,
				   sizeof(*exec2_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec2_list);
	return ret;
}

4021 4022 4023 4024
int
i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
{
	struct drm_device *dev = obj->dev;
4025
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4026 4027
	int ret;

4028 4029
	BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);

4030
	i915_verify_inactive(dev, __FILE__, __LINE__);
4031 4032 4033 4034 4035

	if (obj_priv->gtt_space != NULL) {
		if (alignment == 0)
			alignment = i915_gem_get_gtt_alignment(obj);
		if (obj_priv->gtt_offset & (alignment - 1)) {
4036 4037 4038 4039
			WARN(obj_priv->pin_count,
			     "bo is already pinned with incorrect alignment:"
			     " offset=%x, req.alignment=%x\n",
			     obj_priv->gtt_offset, alignment);
4040 4041 4042 4043 4044 4045
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

4046 4047
	if (obj_priv->gtt_space == NULL) {
		ret = i915_gem_object_bind_to_gtt(obj, alignment);
4048
		if (ret)
4049
			return ret;
4050
	}
J
Jesse Barnes 已提交
4051

4052 4053 4054 4055 4056 4057 4058 4059 4060
	obj_priv->pin_count++;

	/* If the object is not active and not pending a flush,
	 * remove it from the inactive list
	 */
	if (obj_priv->pin_count == 1) {
		atomic_inc(&dev->pin_count);
		atomic_add(obj->size, &dev->pin_memory);
		if (!obj_priv->active &&
4061
		    (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073
			list_del_init(&obj_priv->list);
	}
	i915_verify_inactive(dev, __FILE__, __LINE__);

	return 0;
}

void
i915_gem_object_unpin(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
4074
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086

	i915_verify_inactive(dev, __FILE__, __LINE__);
	obj_priv->pin_count--;
	BUG_ON(obj_priv->pin_count < 0);
	BUG_ON(obj_priv->gtt_space == NULL);

	/* If the object is no longer pinned, and is
	 * neither active nor being flushed, then stick it on
	 * the inactive list
	 */
	if (obj_priv->pin_count == 0) {
		if (!obj_priv->active &&
4087
		    (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111
			list_move_tail(&obj_priv->list,
				       &dev_priv->mm.inactive_list);
		atomic_dec(&dev->pin_count);
		atomic_sub(obj->size, &dev->pin_memory);
	}
	i915_verify_inactive(dev, __FILE__, __LINE__);
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	mutex_lock(&dev->struct_mutex);

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
		mutex_unlock(&dev->struct_mutex);
4112
		return -ENOENT;
4113
	}
4114
	obj_priv = to_intel_bo(obj);
4115

C
Chris Wilson 已提交
4116 4117
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
4118 4119 4120 4121 4122
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}

J
Jesse Barnes 已提交
4123 4124 4125
	if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
4126
		drm_gem_object_unreference(obj);
4127
		mutex_unlock(&dev->struct_mutex);
J
Jesse Barnes 已提交
4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139
		return -EINVAL;
	}

	obj_priv->user_pin_count++;
	obj_priv->pin_filp = file_priv;
	if (obj_priv->user_pin_count == 1) {
		ret = i915_gem_object_pin(obj, args->alignment);
		if (ret != 0) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
4140 4141 4142 4143 4144
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
4145
	i915_gem_object_flush_cpu_write_domain(obj);
4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158
	args->offset = obj_priv->gtt_offset;
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
J
Jesse Barnes 已提交
4159
	struct drm_i915_gem_object *obj_priv;
4160 4161 4162 4163 4164 4165 4166 4167

	mutex_lock(&dev->struct_mutex);

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
			  args->handle);
		mutex_unlock(&dev->struct_mutex);
4168
		return -ENOENT;
4169 4170
	}

4171
	obj_priv = to_intel_bo(obj);
J
Jesse Barnes 已提交
4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183
	if (obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}
	obj_priv->user_pin_count--;
	if (obj_priv->user_pin_count == 0) {
		obj_priv->pin_filp = NULL;
		i915_gem_object_unpin(obj);
	}
4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return 0;
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_busy *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
			  args->handle);
4202
		return -ENOENT;
4203 4204
	}

4205
	mutex_lock(&dev->struct_mutex);
4206

4207 4208 4209 4210
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4211
	 */
4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233
	obj_priv = to_intel_bo(obj);
	args->busy = obj_priv->active;
	if (args->busy) {
		/* Unconditionally flush objects, even when the gpu still uses this
		 * object. Userspace calling this function indicates that it wants to
		 * use this buffer rather sooner than later, so issuing the required
		 * flush earlier is beneficial.
		 */
		if (obj->write_domain) {
			i915_gem_flush(dev, 0, obj->write_domain);
			(void)i915_add_request(dev, file_priv, obj->write_domain, obj_priv->ring);
		}

		/* Update the active list for the hardware's current position.
		 * Otherwise this only updates on a delayed timer or when irqs
		 * are actually unmasked, and our working set ends up being
		 * larger than required.
		 */
		i915_gem_retire_requests_ring(dev, obj_priv->ring);

		args->busy = obj_priv->active;
	}
4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return 0;
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
    return i915_gem_ring_throttle(dev, file_priv);
}

4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
			  args->handle);
4267
		return -ENOENT;
4268 4269 4270
	}

	mutex_lock(&dev->struct_mutex);
4271
	obj_priv = to_intel_bo(obj);
4272 4273 4274 4275 4276 4277 4278 4279 4280

	if (obj_priv->pin_count) {
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);

		DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
		return -EINVAL;
	}

C
Chris Wilson 已提交
4281 4282
	if (obj_priv->madv != __I915_MADV_PURGED)
		obj_priv->madv = args->madv;
4283

4284 4285 4286 4287 4288
	/* if the object is no longer bound, discard its backing storage */
	if (i915_gem_object_is_purgeable(obj_priv) &&
	    obj_priv->gtt_space == NULL)
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4289 4290
	args->retained = obj_priv->madv != __I915_MADV_PURGED;

4291 4292 4293 4294 4295 4296
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

4297 4298 4299
struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
					      size_t size)
{
4300
	struct drm_i915_gem_object *obj;
4301

4302 4303 4304
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
4305

4306 4307 4308 4309
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
4310

4311 4312
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4313

4314
	obj->agp_type = AGP_USER_MEMORY;
4315
	obj->base.driver_private = NULL;
4316 4317 4318 4319
	obj->fence_reg = I915_FENCE_REG_NONE;
	INIT_LIST_HEAD(&obj->list);
	INIT_LIST_HEAD(&obj->gpu_write_list);
	obj->madv = I915_MADV_WILLNEED;
4320

4321 4322 4323 4324 4325 4326 4327 4328
	trace_i915_gem_object_create(&obj->base);

	return &obj->base;
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
4329

4330 4331 4332
	return 0;
}

4333
static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4334
{
4335
	struct drm_device *dev = obj->dev;
4336
	drm_i915_private_t *dev_priv = dev->dev_private;
4337
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4338
	int ret;
4339

4340 4341 4342 4343 4344 4345
	ret = i915_gem_object_unbind(obj);
	if (ret == -ERESTARTSYS) {
		list_move(&obj_priv->list,
			  &dev_priv->mm.deferred_free_list);
		return;
	}
4346

4347 4348
	if (obj_priv->mmap_offset)
		i915_gem_free_mmap_offset(obj);
4349

4350 4351
	drm_gem_object_release(obj);

4352
	kfree(obj_priv->page_cpu_valid);
4353
	kfree(obj_priv->bit_17);
4354
	kfree(obj_priv);
4355 4356
}

4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372
void i915_gem_free_object(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);

	trace_i915_gem_object_destroy(obj);

	while (obj_priv->pin_count > 0)
		i915_gem_object_unpin(obj);

	if (obj_priv->phys_obj)
		i915_gem_detach_phys_object(dev, obj);

	i915_gem_free_object_tail(obj);
}

4373 4374 4375 4376 4377
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4378

4379
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
4380

4381
	if (dev_priv->mm.suspended ||
4382 4383 4384
			(dev_priv->render_ring.gem_object == NULL) ||
			(HAS_BSD(dev) &&
			 dev_priv->bsd_ring.gem_object == NULL)) {
4385 4386
		mutex_unlock(&dev->struct_mutex);
		return 0;
4387 4388
	}

4389
	ret = i915_gpu_idle(dev);
4390 4391
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
4392
		return ret;
4393
	}
4394

4395 4396
	/* Under UMS, be paranoid and evict. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4397
		ret = i915_gem_evict_inactive(dev);
4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
	del_timer(&dev_priv->hangcheck_timer);

	i915_kernel_lost_context(dev);
4412
	i915_gem_cleanup_ringbuffer(dev);
4413

4414 4415
	mutex_unlock(&dev->struct_mutex);

4416 4417 4418
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

4419 4420 4421
	return 0;
}

4422 4423 4424 4425
/*
 * 965+ support PIPE_CONTROL commands, which provide finer grained control
 * over cache flushing.
 */
4426
static int
4427 4428 4429 4430 4431 4432 4433
i915_gem_init_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

4434
	obj = i915_gem_alloc_object(dev, 4096);
4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate seqno page\n");
		ret = -ENOMEM;
		goto err;
	}
	obj_priv = to_intel_bo(obj);
	obj_priv->agp_type = AGP_USER_CACHED_MEMORY;

	ret = i915_gem_object_pin(obj, 4096);
	if (ret)
		goto err_unref;

	dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
	dev_priv->seqno_page =  kmap(obj_priv->pages[0]);
	if (dev_priv->seqno_page == NULL)
		goto err_unpin;

	dev_priv->seqno_obj = obj;
	memset(dev_priv->seqno_page, 0, PAGE_SIZE);

	return 0;

err_unpin:
	i915_gem_object_unpin(obj);
err_unref:
	drm_gem_object_unreference(obj);
err:
	return ret;
}

4465 4466

static void
4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480
i915_gem_cleanup_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	obj = dev_priv->seqno_obj;
	obj_priv = to_intel_bo(obj);
	kunmap(obj_priv->pages[0]);
	i915_gem_object_unpin(obj);
	drm_gem_object_unreference(obj);
	dev_priv->seqno_obj = NULL;

	dev_priv->seqno_page = NULL;
4481 4482
}

4483 4484 4485 4486 4487
int
i915_gem_init_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4488

4489
	dev_priv->render_ring = render_ring;
4490

4491 4492 4493 4494 4495 4496
	if (!I915_NEED_GFX_HWS(dev)) {
		dev_priv->render_ring.status_page.page_addr
			= dev_priv->status_page_dmah->vaddr;
		memset(dev_priv->render_ring.status_page.page_addr,
				0, PAGE_SIZE);
	}
4497

4498 4499 4500 4501 4502
	if (HAS_PIPE_CONTROL(dev)) {
		ret = i915_gem_init_pipe_control(dev);
		if (ret)
			return ret;
	}
4503

4504
	ret = intel_init_ring_buffer(dev, &dev_priv->render_ring);
4505 4506 4507 4508
	if (ret)
		goto cleanup_pipe_control;

	if (HAS_BSD(dev)) {
4509 4510
		dev_priv->bsd_ring = bsd_ring;
		ret = intel_init_ring_buffer(dev, &dev_priv->bsd_ring);
4511 4512
		if (ret)
			goto cleanup_render_ring;
4513
	}
4514

4515 4516
	dev_priv->next_seqno = 1;

4517 4518 4519 4520 4521 4522 4523
	return 0;

cleanup_render_ring:
	intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
cleanup_pipe_control:
	if (HAS_PIPE_CONTROL(dev))
		i915_gem_cleanup_pipe_control(dev);
4524 4525 4526 4527 4528 4529 4530 4531 4532
	return ret;
}

void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

	intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4533 4534
	if (HAS_BSD(dev))
		intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4535 4536 4537 4538
	if (HAS_PIPE_CONTROL(dev))
		i915_gem_cleanup_pipe_control(dev);
}

4539 4540 4541 4542 4543 4544 4545
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;

J
Jesse Barnes 已提交
4546 4547 4548
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4549
	if (atomic_read(&dev_priv->mm.wedged)) {
4550
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4551
		atomic_set(&dev_priv->mm.wedged, 0);
4552 4553 4554
	}

	mutex_lock(&dev->struct_mutex);
4555 4556 4557
	dev_priv->mm.suspended = 0;

	ret = i915_gem_init_ringbuffer(dev);
4558 4559
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
4560
		return ret;
4561
	}
4562

4563
	spin_lock(&dev_priv->mm.active_list_lock);
4564
	BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4565
	BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
4566 4567
	spin_unlock(&dev_priv->mm.active_list_lock);

4568 4569
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4570
	BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4571
	BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
4572
	mutex_unlock(&dev->struct_mutex);
4573

4574 4575 4576
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
4577

4578
	return 0;
4579 4580 4581 4582 4583 4584 4585 4586

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
4587 4588 4589 4590 4591 4592
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
4593 4594 4595
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4596
	drm_irq_uninstall(dev);
4597
	return i915_gem_idle(dev);
4598 4599 4600 4601 4602 4603 4604
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

4605 4606 4607
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

4608 4609 4610
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
4611 4612 4613 4614 4615
}

void
i915_gem_load(struct drm_device *dev)
{
4616
	int i;
4617 4618
	drm_i915_private_t *dev_priv = dev->dev_private;

4619
	spin_lock_init(&dev_priv->mm.active_list_lock);
4620
	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4621
	INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4622
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4623
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4624
	INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4625 4626
	INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
	INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
4627 4628 4629 4630
	if (HAS_BSD(dev)) {
		INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
		INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
	}
4631 4632
	for (i = 0; i < 16; i++)
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4633 4634
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
4635 4636 4637 4638
	spin_lock(&shrink_list_lock);
	list_add(&dev_priv->mm.shrink_list, &shrink_list);
	spin_unlock(&shrink_list_lock);

4639 4640 4641 4642 4643 4644 4645 4646 4647 4648
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
		u32 tmp = I915_READ(MI_ARB_STATE);
		if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
			/* arb state is a masked write, so set bit + bit in mask */
			tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
			I915_WRITE(MI_ARB_STATE, tmp);
		}
	}

4649
	/* Old X drivers will take 0-2 for front, back, depth buffers */
4650 4651
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
4652

4653
	if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4654 4655 4656 4657
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668
	/* Initialize fence registers to zero */
	if (IS_I965G(dev)) {
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
	} else {
		for (i = 0; i < 8; i++)
			I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
		if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
			for (i = 0; i < 8; i++)
				I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
	}
4669
	i915_gem_detect_bit_6_swizzle(dev);
4670
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4671
}
4672 4673 4674 4675 4676 4677

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
int i915_gem_init_phys_object(struct drm_device *dev,
4678
			      int id, int size, int align)
4679 4680 4681 4682 4683 4684 4685 4686
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

4687
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4688 4689 4690 4691 4692
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

4693
	phys_obj->handle = drm_pci_alloc(dev, size, align);
4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
4706
	kfree(phys_obj);
4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734
	return ret;
}

void i915_gem_free_phys_object(struct drm_device *dev, int id)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

4735
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
				 struct drm_gem_object *obj)
{
	struct drm_i915_gem_object *obj_priv;
	int i;
	int ret;
	int page_count;

4747
	obj_priv = to_intel_bo(obj);
4748 4749 4750
	if (!obj_priv->phys_obj)
		return;

4751
	ret = i915_gem_object_get_pages(obj, 0);
4752 4753 4754 4755 4756 4757
	if (ret)
		goto out;

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4758
		char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4759 4760 4761 4762 4763
		char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(dst, KM_USER0);
	}
4764
	drm_clflush_pages(obj_priv->pages, page_count);
4765
	drm_agp_chipset_flush(dev);
4766 4767

	i915_gem_object_put_pages(obj);
4768 4769 4770 4771 4772 4773 4774
out:
	obj_priv->phys_obj->cur_obj = NULL;
	obj_priv->phys_obj = NULL;
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
4775 4776 4777
			    struct drm_gem_object *obj,
			    int id,
			    int align)
4778 4779 4780 4781 4782 4783 4784 4785 4786 4787
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

4788
	obj_priv = to_intel_bo(obj);
4789 4790 4791 4792 4793 4794 4795 4796 4797 4798

	if (obj_priv->phys_obj) {
		if (obj_priv->phys_obj->id == id)
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
4799
						obj->size, align);
4800
		if (ret) {
4801
			DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4802 4803 4804 4805 4806 4807 4808 4809
			goto out;
		}
	}

	/* bind to the object */
	obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj_priv->phys_obj->cur_obj = obj;

4810
	ret = i915_gem_object_get_pages(obj, 0);
4811 4812 4813 4814 4815 4816 4817 4818
	if (ret) {
		DRM_ERROR("failed to get page list\n");
		goto out;
	}

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4819
		char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4820 4821 4822 4823 4824 4825
		char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(src, KM_USER0);
	}

4826 4827
	i915_gem_object_put_pages(obj);

4828 4829 4830 4831 4832 4833 4834 4835 4836 4837
	return 0;
out:
	return ret;
}

static int
i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
4838
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4839 4840 4841 4842 4843 4844 4845
	void *obj_addr;
	int ret;
	char __user *user_data;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;

4846
	DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4847 4848 4849 4850 4851 4852 4853
	ret = copy_from_user(obj_addr, user_data, args->size);
	if (ret)
		return -EFAULT;

	drm_agp_chipset_flush(dev);
	return 0;
}
4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867

void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
{
	struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
	mutex_lock(&dev->struct_mutex);
	while (!list_empty(&i915_file_priv->mm.request_list))
		list_del_init(i915_file_priv->mm.request_list.next);
	mutex_unlock(&dev->struct_mutex);
}
4868

4869 4870 4871 4872 4873 4874 4875 4876
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int lists_empty;

	spin_lock(&dev_priv->mm.active_list_lock);
	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4877
		      list_empty(&dev_priv->render_ring.active_list);
4878 4879
	if (HAS_BSD(dev))
		lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
4880 4881 4882 4883 4884
	spin_unlock(&dev_priv->mm.active_list_lock);

	return !lists_empty;
}

4885
static int
4886
i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913
{
	drm_i915_private_t *dev_priv, *next_dev;
	struct drm_i915_gem_object *obj_priv, *next_obj;
	int cnt = 0;
	int would_deadlock = 1;

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
		spin_lock(&shrink_list_lock);
		list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
			struct drm_device *dev = dev_priv->dev;

			if (mutex_trylock(&dev->struct_mutex)) {
				list_for_each_entry(obj_priv,
						    &dev_priv->mm.inactive_list,
						    list)
					cnt++;
				mutex_unlock(&dev->struct_mutex);
			}
		}
		spin_unlock(&shrink_list_lock);

		return (cnt / 100) * sysctl_vfs_cache_pressure;
	}

	spin_lock(&shrink_list_lock);

4914
rescan:
4915 4916 4917 4918 4919 4920 4921 4922 4923
	/* first scan for clean buffers */
	list_for_each_entry_safe(dev_priv, next_dev,
				 &shrink_list, mm.shrink_list) {
		struct drm_device *dev = dev_priv->dev;

		if (! mutex_trylock(&dev->struct_mutex))
			continue;

		spin_unlock(&shrink_list_lock);
4924
		i915_gem_retire_requests(dev);
4925 4926 4927 4928 4929

		list_for_each_entry_safe(obj_priv, next_obj,
					 &dev_priv->mm.inactive_list,
					 list) {
			if (i915_gem_object_is_purgeable(obj_priv)) {
4930
				i915_gem_object_unbind(&obj_priv->base);
4931 4932 4933 4934 4935 4936 4937 4938
				if (--nr_to_scan <= 0)
					break;
			}
		}

		spin_lock(&shrink_list_lock);
		mutex_unlock(&dev->struct_mutex);

4939 4940
		would_deadlock = 0;

4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958
		if (nr_to_scan <= 0)
			break;
	}

	/* second pass, evict/count anything still on the inactive list */
	list_for_each_entry_safe(dev_priv, next_dev,
				 &shrink_list, mm.shrink_list) {
		struct drm_device *dev = dev_priv->dev;

		if (! mutex_trylock(&dev->struct_mutex))
			continue;

		spin_unlock(&shrink_list_lock);

		list_for_each_entry_safe(obj_priv, next_obj,
					 &dev_priv->mm.inactive_list,
					 list) {
			if (nr_to_scan > 0) {
4959
				i915_gem_object_unbind(&obj_priv->base);
4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970
				nr_to_scan--;
			} else
				cnt++;
		}

		spin_lock(&shrink_list_lock);
		mutex_unlock(&dev->struct_mutex);

		would_deadlock = 0;
	}

4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000
	if (nr_to_scan) {
		int active = 0;

		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
		list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
			struct drm_device *dev = dev_priv->dev;

			if (!mutex_trylock(&dev->struct_mutex))
				continue;

			spin_unlock(&shrink_list_lock);

			if (i915_gpu_is_active(dev)) {
				i915_gpu_idle(dev);
				active++;
			}

			spin_lock(&shrink_list_lock);
			mutex_unlock(&dev->struct_mutex);
		}

		if (active)
			goto rescan;
	}

5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026
	spin_unlock(&shrink_list_lock);

	if (would_deadlock)
		return -1;
	else if (cnt > 0)
		return (cnt / 100) * sysctl_vfs_cache_pressure;
	else
		return 0;
}

static struct shrinker shrinker = {
	.shrink = i915_gem_shrink,
	.seeks = DEFAULT_SEEKS,
};

__init void
i915_gem_shrinker_init(void)
{
    register_shrinker(&shrinker);
}

__exit void
i915_gem_shrinker_exit(void)
{
    unregister_shrinker(&shrinker);
}