uncore.c 33.7 KB
Newer Older
1 2
#include <linux/module.h>

3
#include <asm/cpu_device_id.h>
4
#include <asm/intel-family.h>
5
#include "uncore.h"
6 7

static struct intel_uncore_type *empty_uncore[] = { NULL, };
8 9
struct intel_uncore_type **uncore_msr_uncores = empty_uncore;
struct intel_uncore_type **uncore_pci_uncores = empty_uncore;
10

11 12 13
static bool pcidrv_registered;
struct pci_driver *uncore_pci_driver;
/* pci bus to socket mapping */
14 15
DEFINE_RAW_SPINLOCK(pci2phy_map_lock);
struct list_head pci2phy_map_head = LIST_HEAD_INIT(pci2phy_map_head);
16 17
struct pci_extra_dev *uncore_extra_pci_dev;
static int max_packages;
18

19 20 21 22
/* mask of cpus that collect uncore events */
static cpumask_t uncore_cpu_mask;

/* constraint for the fixed counter */
23
static struct event_constraint uncore_constraint_fixed =
24
	EVENT_CONSTRAINT(~0ULL, 1 << UNCORE_PMC_IDX_FIXED, ~0ULL);
25
struct event_constraint uncore_constraint_empty =
26
	EVENT_CONSTRAINT(0, 0, 0);
27

28 29
MODULE_LICENSE("GPL");

30
static int uncore_pcibus_to_physid(struct pci_bus *bus)
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
{
	struct pci2phy_map *map;
	int phys_id = -1;

	raw_spin_lock(&pci2phy_map_lock);
	list_for_each_entry(map, &pci2phy_map_head, list) {
		if (map->segment == pci_domain_nr(bus)) {
			phys_id = map->pbus_to_physid[bus->number];
			break;
		}
	}
	raw_spin_unlock(&pci2phy_map_lock);

	return phys_id;
}

47 48 49 50 51 52 53 54 55 56
static void uncore_free_pcibus_map(void)
{
	struct pci2phy_map *map, *tmp;

	list_for_each_entry_safe(map, tmp, &pci2phy_map_head, list) {
		list_del(&map->list);
		kfree(map);
	}
}

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
struct pci2phy_map *__find_pci2phy_map(int segment)
{
	struct pci2phy_map *map, *alloc = NULL;
	int i;

	lockdep_assert_held(&pci2phy_map_lock);

lookup:
	list_for_each_entry(map, &pci2phy_map_head, list) {
		if (map->segment == segment)
			goto end;
	}

	if (!alloc) {
		raw_spin_unlock(&pci2phy_map_lock);
		alloc = kmalloc(sizeof(struct pci2phy_map), GFP_KERNEL);
		raw_spin_lock(&pci2phy_map_lock);

		if (!alloc)
			return NULL;

		goto lookup;
	}

	map = alloc;
	alloc = NULL;
	map->segment = segment;
	for (i = 0; i < 256; i++)
		map->pbus_to_physid[i] = -1;
	list_add_tail(&map->list, &pci2phy_map_head);

end:
	kfree(alloc);
	return map;
}

93 94 95 96 97 98 99 100 101
ssize_t uncore_event_show(struct kobject *kobj,
			  struct kobj_attribute *attr, char *buf)
{
	struct uncore_event_desc *event =
		container_of(attr, struct uncore_event_desc, attr);
	return sprintf(buf, "%s", event->config);
}

struct intel_uncore_box *uncore_pmu_to_box(struct intel_uncore_pmu *pmu, int cpu)
102
{
103
	return pmu->boxes[topology_logical_package_id(cpu)];
104 105
}

106
u64 uncore_msr_read_counter(struct intel_uncore_box *box, struct perf_event *event)
107 108 109 110 111 112 113 114 115 116 117
{
	u64 count;

	rdmsrl(event->hw.event_base, count);

	return count;
}

/*
 * generic get constraint function for shared match/mask registers.
 */
118
struct event_constraint *
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
uncore_get_constraint(struct intel_uncore_box *box, struct perf_event *event)
{
	struct intel_uncore_extra_reg *er;
	struct hw_perf_event_extra *reg1 = &event->hw.extra_reg;
	struct hw_perf_event_extra *reg2 = &event->hw.branch_reg;
	unsigned long flags;
	bool ok = false;

	/*
	 * reg->alloc can be set due to existing state, so for fake box we
	 * need to ignore this, otherwise we might fail to allocate proper
	 * fake state for this extra reg constraint.
	 */
	if (reg1->idx == EXTRA_REG_NONE ||
	    (!uncore_box_is_fake(box) && reg1->alloc))
		return NULL;

	er = &box->shared_regs[reg1->idx];
	raw_spin_lock_irqsave(&er->lock, flags);
	if (!atomic_read(&er->ref) ||
	    (er->config1 == reg1->config && er->config2 == reg2->config)) {
		atomic_inc(&er->ref);
		er->config1 = reg1->config;
		er->config2 = reg2->config;
		ok = true;
	}
	raw_spin_unlock_irqrestore(&er->lock, flags);

	if (ok) {
		if (!uncore_box_is_fake(box))
			reg1->alloc = 1;
		return NULL;
	}

153
	return &uncore_constraint_empty;
154 155
}

156
void uncore_put_constraint(struct intel_uncore_box *box, struct perf_event *event)
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
{
	struct intel_uncore_extra_reg *er;
	struct hw_perf_event_extra *reg1 = &event->hw.extra_reg;

	/*
	 * Only put constraint if extra reg was actually allocated. Also
	 * takes care of event which do not use an extra shared reg.
	 *
	 * Also, if this is a fake box we shouldn't touch any event state
	 * (reg->alloc) and we don't care about leaving inconsistent box
	 * state either since it will be thrown out.
	 */
	if (uncore_box_is_fake(box) || !reg1->alloc)
		return;

	er = &box->shared_regs[reg1->idx];
	atomic_dec(&er->ref);
	reg1->alloc = 0;
}

177
u64 uncore_shared_reg_config(struct intel_uncore_box *box, int idx)
178 179 180 181 182 183 184 185 186 187 188 189 190 191
{
	struct intel_uncore_extra_reg *er;
	unsigned long flags;
	u64 config;

	er = &box->shared_regs[idx];

	raw_spin_lock_irqsave(&er->lock, flags);
	config = er->config;
	raw_spin_unlock_irqrestore(&er->lock, flags);

	return config;
}

192 193
static void uncore_assign_hw_event(struct intel_uncore_box *box,
				   struct perf_event *event, int idx)
194 195 196 197 198 199 200
{
	struct hw_perf_event *hwc = &event->hw;

	hwc->idx = idx;
	hwc->last_tag = ++box->tags[idx];

	if (hwc->idx == UNCORE_PMC_IDX_FIXED) {
201 202
		hwc->event_base = uncore_fixed_ctr(box);
		hwc->config_base = uncore_fixed_ctl(box);
203 204 205
		return;
	}

206 207
	hwc->config_base = uncore_event_ctl(box, hwc->idx);
	hwc->event_base  = uncore_perf_ctr(box, hwc->idx);
208 209
}

210
void uncore_perf_event_update(struct intel_uncore_box *box, struct perf_event *event)
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
{
	u64 prev_count, new_count, delta;
	int shift;

	if (event->hw.idx >= UNCORE_PMC_IDX_FIXED)
		shift = 64 - uncore_fixed_ctr_bits(box);
	else
		shift = 64 - uncore_perf_ctr_bits(box);

	/* the hrtimer might modify the previous event value */
again:
	prev_count = local64_read(&event->hw.prev_count);
	new_count = uncore_read_counter(box, event);
	if (local64_xchg(&event->hw.prev_count, new_count) != prev_count)
		goto again;

	delta = (new_count << shift) - (prev_count << shift);
	delta >>= shift;

	local64_add(delta, &event->count);
}

/*
 * The overflow interrupt is unavailable for SandyBridge-EP, is broken
 * for SandyBridge. So we use hrtimer to periodically poll the counter
 * to avoid overflow.
 */
static enum hrtimer_restart uncore_pmu_hrtimer(struct hrtimer *hrtimer)
{
	struct intel_uncore_box *box;
241
	struct perf_event *event;
242 243 244 245 246 247 248 249 250 251 252 253
	unsigned long flags;
	int bit;

	box = container_of(hrtimer, struct intel_uncore_box, hrtimer);
	if (!box->n_active || box->cpu != smp_processor_id())
		return HRTIMER_NORESTART;
	/*
	 * disable local interrupt to prevent uncore_pmu_event_start/stop
	 * to interrupt the update process
	 */
	local_irq_save(flags);

254 255 256 257 258 259 260 261
	/*
	 * handle boxes with an active event list as opposed to active
	 * counters
	 */
	list_for_each_entry(event, &box->active_list, active_entry) {
		uncore_perf_event_update(box, event);
	}

262 263 264 265 266
	for_each_set_bit(bit, box->active_mask, UNCORE_PMC_IDX_MAX)
		uncore_perf_event_update(box, box->events[bit]);

	local_irq_restore(flags);

267
	hrtimer_forward_now(hrtimer, ns_to_ktime(box->hrtimer_duration));
268 269 270
	return HRTIMER_RESTART;
}

271
void uncore_pmu_start_hrtimer(struct intel_uncore_box *box)
272
{
273 274
	hrtimer_start(&box->hrtimer, ns_to_ktime(box->hrtimer_duration),
		      HRTIMER_MODE_REL_PINNED);
275 276
}

277
void uncore_pmu_cancel_hrtimer(struct intel_uncore_box *box)
278 279 280 281 282 283 284 285 286 287
{
	hrtimer_cancel(&box->hrtimer);
}

static void uncore_pmu_init_hrtimer(struct intel_uncore_box *box)
{
	hrtimer_init(&box->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	box->hrtimer.function = uncore_pmu_hrtimer;
}

288 289
static struct intel_uncore_box *uncore_alloc_box(struct intel_uncore_type *type,
						 int node)
290
{
291
	int i, size, numshared = type->num_shared_regs ;
292 293
	struct intel_uncore_box *box;

294
	size = sizeof(*box) + numshared * sizeof(struct intel_uncore_extra_reg);
295

296
	box = kzalloc_node(size, GFP_KERNEL, node);
297 298 299
	if (!box)
		return NULL;

300
	for (i = 0; i < numshared; i++)
301 302
		raw_spin_lock_init(&box->shared_regs[i].lock);

303 304
	uncore_pmu_init_hrtimer(box);
	box->cpu = -1;
305 306
	box->pci_phys_id = -1;
	box->pkgid = -1;
307

308 309
	/* set default hrtimer timeout */
	box->hrtimer_duration = UNCORE_PMU_HRTIMER_INTERVAL;
310

311
	INIT_LIST_HEAD(&box->active_list);
312

313 314 315
	return box;
}

316 317 318 319 320 321
/*
 * Using uncore_pmu_event_init pmu event_init callback
 * as a detection point for uncore events.
 */
static int uncore_pmu_event_init(struct perf_event *event);

322
static bool is_box_event(struct intel_uncore_box *box, struct perf_event *event)
323
{
324
	return &box->pmu->pmu == event->pmu;
325 326
}

327
static int
328 329
uncore_collect_events(struct intel_uncore_box *box, struct perf_event *leader,
		      bool dogrp)
330 331 332 333 334 335 336 337 338 339 340 341
{
	struct perf_event *event;
	int n, max_count;

	max_count = box->pmu->type->num_counters;
	if (box->pmu->type->fixed_ctl)
		max_count++;

	if (box->n_events >= max_count)
		return -EINVAL;

	n = box->n_events;
342

343
	if (is_box_event(box, leader)) {
344 345 346 347
		box->event_list[n] = leader;
		n++;
	}

348 349 350 351
	if (!dogrp)
		return n;

	list_for_each_entry(event, &leader->sibling_list, group_entry) {
352
		if (!is_box_event(box, event) ||
353
		    event->state <= PERF_EVENT_STATE_OFF)
354 355 356 357 358 359 360 361 362 363 364 365
			continue;

		if (n >= max_count)
			return -EINVAL;

		box->event_list[n] = event;
		n++;
	}
	return n;
}

static struct event_constraint *
366
uncore_get_event_constraint(struct intel_uncore_box *box, struct perf_event *event)
367
{
368
	struct intel_uncore_type *type = box->pmu->type;
369 370
	struct event_constraint *c;

371 372 373 374 375 376
	if (type->ops->get_constraint) {
		c = type->ops->get_constraint(box, event);
		if (c)
			return c;
	}

377
	if (event->attr.config == UNCORE_FIXED_EVENT)
378
		return &uncore_constraint_fixed;
379 380 381 382 383 384 385 386 387 388 389

	if (type->constraints) {
		for_each_event_constraint(c, type->constraints) {
			if ((event->hw.config & c->cmask) == c->code)
				return c;
		}
	}

	return &type->unconstrainted;
}

390 391
static void uncore_put_event_constraint(struct intel_uncore_box *box,
					struct perf_event *event)
392 393 394 395 396
{
	if (box->pmu->type->ops->put_constraint)
		box->pmu->type->ops->put_constraint(box, event);
}

397
static int uncore_assign_events(struct intel_uncore_box *box, int assign[], int n)
398 399
{
	unsigned long used_mask[BITS_TO_LONGS(UNCORE_PMC_IDX_MAX)];
400
	struct event_constraint *c;
401
	int i, wmin, wmax, ret = 0;
402 403 404 405 406
	struct hw_perf_event *hwc;

	bitmap_zero(used_mask, UNCORE_PMC_IDX_MAX);

	for (i = 0, wmin = UNCORE_PMC_IDX_MAX, wmax = 0; i < n; i++) {
407
		c = uncore_get_event_constraint(box, box->event_list[i]);
408
		box->event_constraint[i] = c;
409 410 411 412 413 414 415
		wmin = min(wmin, c->weight);
		wmax = max(wmax, c->weight);
	}

	/* fastpath, try to reuse previous register */
	for (i = 0; i < n; i++) {
		hwc = &box->event_list[i]->hw;
416
		c = box->event_constraint[i];
417 418 419 420 421 422 423 424 425 426 427 428 429 430

		/* never assigned */
		if (hwc->idx == -1)
			break;

		/* constraint still honored */
		if (!test_bit(hwc->idx, c->idxmsk))
			break;

		/* not already used */
		if (test_bit(hwc->idx, used_mask))
			break;

		__set_bit(hwc->idx, used_mask);
431 432
		if (assign)
			assign[i] = hwc->idx;
433 434
	}
	/* slow path */
435
	if (i != n)
436
		ret = perf_assign_events(box->event_constraint, n,
437
					 wmin, wmax, n, assign);
438 439 440 441 442

	if (!assign || ret) {
		for (i = 0; i < n; i++)
			uncore_put_event_constraint(box, box->event_list[i]);
	}
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
	return ret ? -EINVAL : 0;
}

static void uncore_pmu_event_start(struct perf_event *event, int flags)
{
	struct intel_uncore_box *box = uncore_event_to_box(event);
	int idx = event->hw.idx;

	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
		return;

	if (WARN_ON_ONCE(idx == -1 || idx >= UNCORE_PMC_IDX_MAX))
		return;

	event->hw.state = 0;
	box->events[idx] = event;
	box->n_active++;
	__set_bit(idx, box->active_mask);

	local64_set(&event->hw.prev_count, uncore_read_counter(box, event));
	uncore_enable_event(box, event);

	if (box->n_active == 1) {
		uncore_enable_box(box);
		uncore_pmu_start_hrtimer(box);
	}
}

static void uncore_pmu_event_stop(struct perf_event *event, int flags)
{
	struct intel_uncore_box *box = uncore_event_to_box(event);
	struct hw_perf_event *hwc = &event->hw;

	if (__test_and_clear_bit(hwc->idx, box->active_mask)) {
		uncore_disable_event(box, event);
		box->n_active--;
		box->events[hwc->idx] = NULL;
		WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
		hwc->state |= PERF_HES_STOPPED;

		if (box->n_active == 0) {
			uncore_disable_box(box);
			uncore_pmu_cancel_hrtimer(box);
		}
	}

	if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
		/*
		 * Drain the remaining delta count out of a event
		 * that we are disabling:
		 */
		uncore_perf_event_update(box, event);
		hwc->state |= PERF_HES_UPTODATE;
	}
}

static int uncore_pmu_event_add(struct perf_event *event, int flags)
{
	struct intel_uncore_box *box = uncore_event_to_box(event);
	struct hw_perf_event *hwc = &event->hw;
	int assign[UNCORE_PMC_IDX_MAX];
	int i, n, ret;

	if (!box)
		return -ENODEV;

	ret = n = uncore_collect_events(box, event, false);
	if (ret < 0)
		return ret;

	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
	if (!(flags & PERF_EF_START))
		hwc->state |= PERF_HES_ARCH;

	ret = uncore_assign_events(box, assign, n);
	if (ret)
		return ret;

	/* save events moving to new counters */
	for (i = 0; i < box->n_events; i++) {
		event = box->event_list[i];
		hwc = &event->hw;

		if (hwc->idx == assign[i] &&
			hwc->last_tag == box->tags[assign[i]])
			continue;
		/*
		 * Ensure we don't accidentally enable a stopped
		 * counter simply because we rescheduled.
		 */
		if (hwc->state & PERF_HES_STOPPED)
			hwc->state |= PERF_HES_ARCH;

		uncore_pmu_event_stop(event, PERF_EF_UPDATE);
	}

	/* reprogram moved events into new counters */
	for (i = 0; i < n; i++) {
		event = box->event_list[i];
		hwc = &event->hw;

		if (hwc->idx != assign[i] ||
			hwc->last_tag != box->tags[assign[i]])
			uncore_assign_hw_event(box, event, assign[i]);
		else if (i < box->n_events)
			continue;

		if (hwc->state & PERF_HES_ARCH)
			continue;

		uncore_pmu_event_start(event, 0);
	}
	box->n_events = n;

	return 0;
}

static void uncore_pmu_event_del(struct perf_event *event, int flags)
{
	struct intel_uncore_box *box = uncore_event_to_box(event);
	int i;

	uncore_pmu_event_stop(event, PERF_EF_UPDATE);

	for (i = 0; i < box->n_events; i++) {
		if (event == box->event_list[i]) {
569 570
			uncore_put_event_constraint(box, event);

571
			for (++i; i < box->n_events; i++)
572 573 574 575 576 577 578 579 580 581 582
				box->event_list[i - 1] = box->event_list[i];

			--box->n_events;
			break;
		}
	}

	event->hw.idx = -1;
	event->hw.last_tag = ~0ULL;
}

583
void uncore_pmu_event_read(struct perf_event *event)
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
{
	struct intel_uncore_box *box = uncore_event_to_box(event);
	uncore_perf_event_update(box, event);
}

/*
 * validation ensures the group can be loaded onto the
 * PMU if it was the only group available.
 */
static int uncore_validate_group(struct intel_uncore_pmu *pmu,
				struct perf_event *event)
{
	struct perf_event *leader = event->group_leader;
	struct intel_uncore_box *fake_box;
	int ret = -EINVAL, n;

600
	fake_box = uncore_alloc_box(pmu->type, NUMA_NO_NODE);
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
	if (!fake_box)
		return -ENOMEM;

	fake_box->pmu = pmu;
	/*
	 * the event is not yet connected with its
	 * siblings therefore we must first collect
	 * existing siblings, then add the new event
	 * before we can simulate the scheduling
	 */
	n = uncore_collect_events(fake_box, leader, true);
	if (n < 0)
		goto out;

	fake_box->n_events = n;
	n = uncore_collect_events(fake_box, event, false);
	if (n < 0)
		goto out;

	fake_box->n_events = n;

622
	ret = uncore_assign_events(fake_box, NULL, n);
623 624 625 626 627
out:
	kfree(fake_box);
	return ret;
}

628
static int uncore_pmu_event_init(struct perf_event *event)
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
{
	struct intel_uncore_pmu *pmu;
	struct intel_uncore_box *box;
	struct hw_perf_event *hwc = &event->hw;
	int ret;

	if (event->attr.type != event->pmu->type)
		return -ENOENT;

	pmu = uncore_event_to_pmu(event);
	/* no device found for this pmu */
	if (pmu->func_id < 0)
		return -ENOENT;

	/*
	 * Uncore PMU does measure at all privilege level all the time.
	 * So it doesn't make sense to specify any exclude bits.
	 */
	if (event->attr.exclude_user || event->attr.exclude_kernel ||
			event->attr.exclude_hv || event->attr.exclude_idle)
		return -EINVAL;

	/* Sampling not supported yet */
	if (hwc->sample_period)
		return -EINVAL;

	/*
	 * Place all uncore events for a particular physical package
	 * onto a single cpu
	 */
	if (event->cpu < 0)
		return -EINVAL;
	box = uncore_pmu_to_box(pmu, event->cpu);
	if (!box || box->cpu < 0)
		return -EINVAL;
	event->cpu = box->cpu;
665
	event->pmu_private = box;
666

667 668
	event->event_caps |= PERF_EV_CAP_READ_ACTIVE_PKG;

669 670 671
	event->hw.idx = -1;
	event->hw.last_tag = ~0ULL;
	event->hw.extra_reg.idx = EXTRA_REG_NONE;
672
	event->hw.branch_reg.idx = EXTRA_REG_NONE;
673

674 675 676 677 678 679 680 681 682 683
	if (event->attr.config == UNCORE_FIXED_EVENT) {
		/* no fixed counter */
		if (!pmu->type->fixed_ctl)
			return -EINVAL;
		/*
		 * if there is only one fixed counter, only the first pmu
		 * can access the fixed counter
		 */
		if (pmu->type->single_fixed && pmu->pmu_idx > 0)
			return -EINVAL;
684 685 686

		/* fixed counters have event field hardcoded to zero */
		hwc->config = 0ULL;
687
	} else {
688 689
		hwc->config = event->attr.config &
			      (pmu->type->event_mask | ((u64)pmu->type->event_mask_ext << 32));
690 691 692 693 694
		if (pmu->type->ops->hw_config) {
			ret = pmu->type->ops->hw_config(box, event);
			if (ret)
				return ret;
		}
695 696 697 698 699 700 701 702 703 704
	}

	if (event->group_leader != event)
		ret = uncore_validate_group(pmu, event);
	else
		ret = 0;

	return ret;
}

705 706 707
static ssize_t uncore_get_attr_cpumask(struct device *dev,
				struct device_attribute *attr, char *buf)
{
708
	return cpumap_print_to_pagebuf(true, buf, &uncore_cpu_mask);
709 710 711 712 713 714 715 716 717 718 719 720 721
}

static DEVICE_ATTR(cpumask, S_IRUGO, uncore_get_attr_cpumask, NULL);

static struct attribute *uncore_pmu_attrs[] = {
	&dev_attr_cpumask.attr,
	NULL,
};

static struct attribute_group uncore_pmu_attr_group = {
	.attrs = uncore_pmu_attrs,
};

722
static int uncore_pmu_register(struct intel_uncore_pmu *pmu)
723 724 725
{
	int ret;

726 727 728 729 730 731 732 733 734 735
	if (!pmu->type->pmu) {
		pmu->pmu = (struct pmu) {
			.attr_groups	= pmu->type->attr_groups,
			.task_ctx_nr	= perf_invalid_context,
			.event_init	= uncore_pmu_event_init,
			.add		= uncore_pmu_event_add,
			.del		= uncore_pmu_event_del,
			.start		= uncore_pmu_event_start,
			.stop		= uncore_pmu_event_stop,
			.read		= uncore_pmu_event_read,
736
			.module		= THIS_MODULE,
737 738 739 740 741
		};
	} else {
		pmu->pmu = *pmu->type->pmu;
		pmu->pmu.attr_groups = pmu->type->attr_groups;
	}
742 743 744 745 746 747 748 749 750 751 752 753

	if (pmu->type->num_boxes == 1) {
		if (strlen(pmu->type->name) > 0)
			sprintf(pmu->name, "uncore_%s", pmu->type->name);
		else
			sprintf(pmu->name, "uncore");
	} else {
		sprintf(pmu->name, "uncore_%s_%d", pmu->type->name,
			pmu->pmu_idx);
	}

	ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
754 755
	if (!ret)
		pmu->registered = true;
756 757 758
	return ret;
}

759 760 761 762 763 764 765 766
static void uncore_pmu_unregister(struct intel_uncore_pmu *pmu)
{
	if (!pmu->registered)
		return;
	perf_pmu_unregister(&pmu->pmu);
	pmu->registered = false;
}

767 768 769 770 771 772 773 774 775
static void uncore_free_boxes(struct intel_uncore_pmu *pmu)
{
	int pkg;

	for (pkg = 0; pkg < max_packages; pkg++)
		kfree(pmu->boxes[pkg]);
	kfree(pmu->boxes);
}

776
static void uncore_type_exit(struct intel_uncore_type *type)
777
{
778
	struct intel_uncore_pmu *pmu = type->pmus;
779 780
	int i;

781 782 783 784
	if (pmu) {
		for (i = 0; i < type->num_boxes; i++, pmu++) {
			uncore_pmu_unregister(pmu);
			uncore_free_boxes(pmu);
785
		}
786 787 788
		kfree(type->pmus);
		type->pmus = NULL;
	}
789 790
	kfree(type->events_group);
	type->events_group = NULL;
791 792
}

793
static void uncore_types_exit(struct intel_uncore_type **types)
794
{
795 796
	for (; *types; types++)
		uncore_type_exit(*types);
797 798
}

799
static int __init uncore_type_init(struct intel_uncore_type *type, bool setid)
800 801
{
	struct intel_uncore_pmu *pmus;
802
	struct attribute_group *attr_group;
803
	struct attribute **attrs;
804
	size_t size;
805 806 807 808 809 810
	int i, j;

	pmus = kzalloc(sizeof(*pmus) * type->num_boxes, GFP_KERNEL);
	if (!pmus)
		return -ENOMEM;

811
	size = max_packages * sizeof(struct intel_uncore_box *);
812 813

	for (i = 0; i < type->num_boxes; i++) {
814 815 816 817 818
		pmus[i].func_id	= setid ? i : -1;
		pmus[i].pmu_idx	= i;
		pmus[i].type	= type;
		pmus[i].boxes	= kzalloc(size, GFP_KERNEL);
		if (!pmus[i].boxes)
819
			return -ENOMEM;
820 821
	}

822 823 824 825 826
	type->pmus = pmus;
	type->unconstrainted = (struct event_constraint)
		__EVENT_CONSTRAINT(0, (1ULL << type->num_counters) - 1,
				0, type->num_counters, 0, 0);

827
	if (type->event_descs) {
828
		for (i = 0; type->event_descs[i].attr.attr.name; i++);
829

830 831 832
		attr_group = kzalloc(sizeof(struct attribute *) * (i + 1) +
					sizeof(*attr_group), GFP_KERNEL);
		if (!attr_group)
833
			return -ENOMEM;
834

835 836 837
		attrs = (struct attribute **)(attr_group + 1);
		attr_group->name = "events";
		attr_group->attrs = attrs;
838 839 840 841

		for (j = 0; j < i; j++)
			attrs[j] = &type->event_descs[j].attr.attr;

842
		type->events_group = attr_group;
843 844
	}

845
	type->pmu_group = &uncore_pmu_attr_group;
846 847 848
	return 0;
}

849 850
static int __init
uncore_types_init(struct intel_uncore_type **types, bool setid)
851
{
852
	int ret;
853

854 855
	for (; *types; types++) {
		ret = uncore_type_init(*types, setid);
856
		if (ret)
857
			return ret;
858 859 860 861
	}
	return 0;
}

862 863 864
/*
 * add a pci uncore device
 */
865
static int uncore_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
866
{
867
	struct intel_uncore_type *type;
868
	struct intel_uncore_pmu *pmu = NULL;
869
	struct intel_uncore_box *box;
870
	int phys_id, pkg, ret;
871

872
	phys_id = uncore_pcibus_to_physid(pdev->bus);
873
	if (phys_id < 0)
874 875
		return -ENODEV;

876
	pkg = topology_phys_to_logical_pkg(phys_id);
877
	if (pkg < 0)
878 879
		return -EINVAL;

880
	if (UNCORE_PCI_DEV_TYPE(id->driver_data) == UNCORE_EXTRA_PCI_DEV) {
881
		int idx = UNCORE_PCI_DEV_IDX(id->driver_data);
882 883

		uncore_extra_pci_dev[pkg].dev[idx] = pdev;
884 885 886 887
		pci_set_drvdata(pdev, NULL);
		return 0;
	}

888
	type = uncore_pci_uncores[UNCORE_PCI_DEV_TYPE(id->driver_data)];
889

890
	/*
891 892 893
	 * Some platforms, e.g.  Knights Landing, use a common PCI device ID
	 * for multiple instances of an uncore PMU device type. We should check
	 * PCI slot and func to indicate the uncore box.
894
	 */
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
	if (id->driver_data & ~0xffff) {
		struct pci_driver *pci_drv = pdev->driver;
		const struct pci_device_id *ids = pci_drv->id_table;
		unsigned int devfn;

		while (ids && ids->vendor) {
			if ((ids->vendor == pdev->vendor) &&
			    (ids->device == pdev->device)) {
				devfn = PCI_DEVFN(UNCORE_PCI_DEV_DEV(ids->driver_data),
						  UNCORE_PCI_DEV_FUNC(ids->driver_data));
				if (devfn == pdev->devfn) {
					pmu = &type->pmus[UNCORE_PCI_DEV_IDX(ids->driver_data)];
					break;
				}
			}
			ids++;
		}
		if (pmu == NULL)
			return -ENODEV;
	} else {
		/*
		 * for performance monitoring unit with multiple boxes,
		 * each box has a different function id.
		 */
		pmu = &type->pmus[UNCORE_PCI_DEV_IDX(id->driver_data)];
920 921
	}

922 923 924 925 926 927 928
	if (WARN_ON_ONCE(pmu->boxes[pkg] != NULL))
		return -EINVAL;

	box = uncore_alloc_box(type, NUMA_NO_NODE);
	if (!box)
		return -ENOMEM;

929 930 931 932
	if (pmu->func_id < 0)
		pmu->func_id = pdev->devfn;
	else
		WARN_ON_ONCE(pmu->func_id != pdev->devfn);
933

934 935 936
	atomic_inc(&box->refcnt);
	box->pci_phys_id = phys_id;
	box->pkgid = pkg;
937 938
	box->pci_dev = pdev;
	box->pmu = pmu;
939
	uncore_box_init(box);
940 941
	pci_set_drvdata(pdev, box);

942 943
	pmu->boxes[pkg] = box;
	if (atomic_inc_return(&pmu->activeboxes) > 1)
944 945
		return 0;

946
	/* First active box registers the pmu */
947 948 949
	ret = uncore_pmu_register(pmu);
	if (ret) {
		pci_set_drvdata(pdev, NULL);
950
		pmu->boxes[pkg] = NULL;
951
		uncore_box_exit(box);
952 953 954
		kfree(box);
	}
	return ret;
955 956
}

957
static void uncore_pci_remove(struct pci_dev *pdev)
958
{
959
	struct intel_uncore_box *box;
960
	struct intel_uncore_pmu *pmu;
961
	int i, phys_id, pkg;
962

963
	phys_id = uncore_pcibus_to_physid(pdev->bus);
964 965
	pkg = topology_phys_to_logical_pkg(phys_id);

966 967 968
	box = pci_get_drvdata(pdev);
	if (!box) {
		for (i = 0; i < UNCORE_EXTRA_PCI_DEV_MAX; i++) {
969 970
			if (uncore_extra_pci_dev[pkg].dev[i] == pdev) {
				uncore_extra_pci_dev[pkg].dev[i] = NULL;
971 972 973 974 975 976
				break;
			}
		}
		WARN_ON_ONCE(i >= UNCORE_EXTRA_PCI_DEV_MAX);
		return;
	}
977

978
	pmu = box->pmu;
979
	if (WARN_ON_ONCE(phys_id != box->pci_phys_id))
980 981
		return;

982
	pci_set_drvdata(pdev, NULL);
983 984 985
	pmu->boxes[pkg] = NULL;
	if (atomic_dec_return(&pmu->activeboxes) == 0)
		uncore_pmu_unregister(pmu);
986
	uncore_box_exit(box);
987 988 989 990 991
	kfree(box);
}

static int __init uncore_pci_init(void)
{
992
	size_t size;
993 994
	int ret;

995 996 997 998
	size = max_packages * sizeof(struct pci_extra_dev);
	uncore_extra_pci_dev = kzalloc(size, GFP_KERNEL);
	if (!uncore_extra_pci_dev) {
		ret = -ENOMEM;
999
		goto err;
1000 1001 1002 1003 1004
	}

	ret = uncore_types_init(uncore_pci_uncores, false);
	if (ret)
		goto errtype;
1005 1006 1007 1008 1009

	uncore_pci_driver->probe = uncore_pci_probe;
	uncore_pci_driver->remove = uncore_pci_remove;

	ret = pci_register_driver(uncore_pci_driver);
1010
	if (ret)
1011
		goto errtype;
1012 1013 1014

	pcidrv_registered = true;
	return 0;
1015

1016
errtype:
1017
	uncore_types_exit(uncore_pci_uncores);
1018 1019
	kfree(uncore_extra_pci_dev);
	uncore_extra_pci_dev = NULL;
1020
	uncore_free_pcibus_map();
1021 1022
err:
	uncore_pci_uncores = empty_uncore;
1023 1024 1025
	return ret;
}

1026
static void uncore_pci_exit(void)
1027 1028 1029 1030
{
	if (pcidrv_registered) {
		pcidrv_registered = false;
		pci_unregister_driver(uncore_pci_driver);
1031
		uncore_types_exit(uncore_pci_uncores);
1032
		kfree(uncore_extra_pci_dev);
1033
		uncore_free_pcibus_map();
1034 1035 1036
	}
}

1037
static int uncore_cpu_dying(unsigned int cpu)
1038
{
1039
	struct intel_uncore_type *type, **types = uncore_msr_uncores;
1040 1041
	struct intel_uncore_pmu *pmu;
	struct intel_uncore_box *box;
1042
	int i, pkg;
1043

1044 1045 1046 1047 1048 1049 1050
	pkg = topology_logical_package_id(cpu);
	for (; *types; types++) {
		type = *types;
		pmu = type->pmus;
		for (i = 0; i < type->num_boxes; i++, pmu++) {
			box = pmu->boxes[pkg];
			if (box && atomic_dec_return(&box->refcnt) == 0)
1051
				uncore_box_exit(box);
1052 1053
		}
	}
1054
	return 0;
1055 1056
}

1057
static int uncore_cpu_starting(unsigned int cpu)
1058
{
1059
	struct intel_uncore_type *type, **types = uncore_msr_uncores;
1060
	struct intel_uncore_pmu *pmu;
1061
	struct intel_uncore_box *box;
1062
	int i, pkg;
1063

1064 1065 1066 1067 1068 1069 1070 1071 1072
	pkg = topology_logical_package_id(cpu);
	for (; *types; types++) {
		type = *types;
		pmu = type->pmus;
		for (i = 0; i < type->num_boxes; i++, pmu++) {
			box = pmu->boxes[pkg];
			if (!box)
				continue;
			/* The first cpu on a package activates the box */
1073
			if (atomic_inc_return(&box->refcnt) == 1)
1074
				uncore_box_init(box);
1075 1076
		}
	}
1077 1078

	return 0;
1079 1080
}

1081
static int uncore_cpu_prepare(unsigned int cpu)
1082
{
1083
	struct intel_uncore_type *type, **types = uncore_msr_uncores;
1084 1085
	struct intel_uncore_pmu *pmu;
	struct intel_uncore_box *box;
1086
	int i, pkg;
1087

1088 1089 1090 1091 1092 1093 1094 1095
	pkg = topology_logical_package_id(cpu);
	for (; *types; types++) {
		type = *types;
		pmu = type->pmus;
		for (i = 0; i < type->num_boxes; i++, pmu++) {
			if (pmu->boxes[pkg])
				continue;
			/* First cpu of a package allocates the box */
1096
			box = uncore_alloc_box(type, cpu_to_node(cpu));
1097 1098 1099
			if (!box)
				return -ENOMEM;
			box->pmu = pmu;
1100 1101
			box->pkgid = pkg;
			pmu->boxes[pkg] = box;
1102 1103 1104 1105 1106
		}
	}
	return 0;
}

1107 1108
static void uncore_change_type_ctx(struct intel_uncore_type *type, int old_cpu,
				   int new_cpu)
1109
{
1110
	struct intel_uncore_pmu *pmu = type->pmus;
1111
	struct intel_uncore_box *box;
1112
	int i, pkg;
1113

1114
	pkg = topology_logical_package_id(old_cpu < 0 ? new_cpu : old_cpu);
1115
	for (i = 0; i < type->num_boxes; i++, pmu++) {
1116
		box = pmu->boxes[pkg];
1117 1118
		if (!box)
			continue;
1119

1120 1121 1122 1123
		if (old_cpu < 0) {
			WARN_ON_ONCE(box->cpu != -1);
			box->cpu = new_cpu;
			continue;
1124
		}
1125 1126 1127 1128 1129 1130 1131 1132 1133

		WARN_ON_ONCE(box->cpu != old_cpu);
		box->cpu = -1;
		if (new_cpu < 0)
			continue;

		uncore_pmu_cancel_hrtimer(box);
		perf_pmu_migrate_context(&pmu->pmu, old_cpu, new_cpu);
		box->cpu = new_cpu;
1134 1135 1136
	}
}

1137 1138 1139 1140 1141 1142 1143
static void uncore_change_context(struct intel_uncore_type **uncores,
				  int old_cpu, int new_cpu)
{
	for (; *uncores; uncores++)
		uncore_change_type_ctx(*uncores, old_cpu, new_cpu);
}

1144
static int uncore_event_cpu_offline(unsigned int cpu)
1145
{
1146
	int target;
1147

1148
	/* Check if exiting cpu is used for collecting uncore events */
1149
	if (!cpumask_test_and_clear_cpu(cpu, &uncore_cpu_mask))
1150
		return 0;
1151

1152 1153
	/* Find a new cpu to collect uncore events */
	target = cpumask_any_but(topology_core_cpumask(cpu), cpu);
1154

1155 1156
	/* Migrate uncore events to the new target */
	if (target < nr_cpu_ids)
1157
		cpumask_set_cpu(target, &uncore_cpu_mask);
1158 1159
	else
		target = -1;
1160

1161 1162
	uncore_change_context(uncore_msr_uncores, cpu, target);
	uncore_change_context(uncore_pci_uncores, cpu, target);
1163
	return 0;
1164 1165
}

1166
static int uncore_event_cpu_online(unsigned int cpu)
1167
{
1168
	int target;
1169

1170 1171 1172 1173 1174 1175
	/*
	 * Check if there is an online cpu in the package
	 * which collects uncore events already.
	 */
	target = cpumask_any_and(&uncore_cpu_mask, topology_core_cpumask(cpu));
	if (target < nr_cpu_ids)
1176
		return 0;
1177 1178 1179

	cpumask_set_cpu(cpu, &uncore_cpu_mask);

1180 1181
	uncore_change_context(uncore_msr_uncores, -1, cpu);
	uncore_change_context(uncore_pci_uncores, -1, cpu);
1182
	return 0;
1183 1184
}

1185
static int __init type_pmu_register(struct intel_uncore_type *type)
1186
{
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
	int i, ret;

	for (i = 0; i < type->num_boxes; i++) {
		ret = uncore_pmu_register(&type->pmus[i]);
		if (ret)
			return ret;
	}
	return 0;
}

static int __init uncore_msr_pmus_register(void)
{
	struct intel_uncore_type **types = uncore_msr_uncores;
	int ret;

1202 1203
	for (; *types; types++) {
		ret = type_pmu_register(*types);
1204 1205 1206 1207
		if (ret)
			return ret;
	}
	return 0;
1208 1209 1210 1211
}

static int __init uncore_cpu_init(void)
{
1212
	int ret;
1213

1214
	ret = uncore_types_init(uncore_msr_uncores, true);
1215 1216 1217 1218
	if (ret)
		goto err;

	ret = uncore_msr_pmus_register();
1219
	if (ret)
1220
		goto err;
1221
	return 0;
1222 1223 1224 1225
err:
	uncore_types_exit(uncore_msr_uncores);
	uncore_msr_uncores = empty_uncore;
	return ret;
1226 1227
}

1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
#define X86_UNCORE_MODEL_MATCH(model, init)	\
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_ANY, (unsigned long)&init }

struct intel_uncore_init_fun {
	void	(*cpu_init)(void);
	int	(*pci_init)(void);
};

static const struct intel_uncore_init_fun nhm_uncore_init __initconst = {
	.cpu_init = nhm_uncore_cpu_init,
};

static const struct intel_uncore_init_fun snb_uncore_init __initconst = {
	.cpu_init = snb_uncore_cpu_init,
	.pci_init = snb_uncore_pci_init,
};

static const struct intel_uncore_init_fun ivb_uncore_init __initconst = {
	.cpu_init = snb_uncore_cpu_init,
	.pci_init = ivb_uncore_pci_init,
};

static const struct intel_uncore_init_fun hsw_uncore_init __initconst = {
	.cpu_init = snb_uncore_cpu_init,
	.pci_init = hsw_uncore_pci_init,
};

static const struct intel_uncore_init_fun bdw_uncore_init __initconst = {
	.cpu_init = snb_uncore_cpu_init,
	.pci_init = bdw_uncore_pci_init,
};

static const struct intel_uncore_init_fun snbep_uncore_init __initconst = {
	.cpu_init = snbep_uncore_cpu_init,
	.pci_init = snbep_uncore_pci_init,
};

static const struct intel_uncore_init_fun nhmex_uncore_init __initconst = {
	.cpu_init = nhmex_uncore_cpu_init,
};

static const struct intel_uncore_init_fun ivbep_uncore_init __initconst = {
	.cpu_init = ivbep_uncore_cpu_init,
	.pci_init = ivbep_uncore_pci_init,
};

static const struct intel_uncore_init_fun hswep_uncore_init __initconst = {
	.cpu_init = hswep_uncore_cpu_init,
	.pci_init = hswep_uncore_pci_init,
};

static const struct intel_uncore_init_fun bdx_uncore_init __initconst = {
	.cpu_init = bdx_uncore_cpu_init,
	.pci_init = bdx_uncore_pci_init,
};

static const struct intel_uncore_init_fun knl_uncore_init __initconst = {
	.cpu_init = knl_uncore_cpu_init,
	.pci_init = knl_uncore_pci_init,
};

static const struct intel_uncore_init_fun skl_uncore_init __initconst = {
1290
	.cpu_init = skl_uncore_cpu_init,
1291 1292 1293
	.pci_init = skl_uncore_pci_init,
};

1294 1295 1296 1297 1298
static const struct intel_uncore_init_fun skx_uncore_init __initconst = {
	.cpu_init = skx_uncore_cpu_init,
	.pci_init = skx_uncore_pci_init,
};

1299
static const struct x86_cpu_id intel_uncore_match[] __initconst = {
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
	X86_UNCORE_MODEL_MATCH(INTEL_FAM6_NEHALEM_EP,	  nhm_uncore_init),
	X86_UNCORE_MODEL_MATCH(INTEL_FAM6_NEHALEM,	  nhm_uncore_init),
	X86_UNCORE_MODEL_MATCH(INTEL_FAM6_WESTMERE,	  nhm_uncore_init),
	X86_UNCORE_MODEL_MATCH(INTEL_FAM6_WESTMERE_EP,	  nhm_uncore_init),
	X86_UNCORE_MODEL_MATCH(INTEL_FAM6_SANDYBRIDGE,	  snb_uncore_init),
	X86_UNCORE_MODEL_MATCH(INTEL_FAM6_IVYBRIDGE,	  ivb_uncore_init),
	X86_UNCORE_MODEL_MATCH(INTEL_FAM6_HASWELL_CORE,	  hsw_uncore_init),
	X86_UNCORE_MODEL_MATCH(INTEL_FAM6_HASWELL_ULT,	  hsw_uncore_init),
	X86_UNCORE_MODEL_MATCH(INTEL_FAM6_HASWELL_GT3E,	  hsw_uncore_init),
	X86_UNCORE_MODEL_MATCH(INTEL_FAM6_BROADWELL_CORE, bdw_uncore_init),
	X86_UNCORE_MODEL_MATCH(INTEL_FAM6_BROADWELL_GT3E, bdw_uncore_init),
	X86_UNCORE_MODEL_MATCH(INTEL_FAM6_SANDYBRIDGE_X,  snbep_uncore_init),
	X86_UNCORE_MODEL_MATCH(INTEL_FAM6_NEHALEM_EX,	  nhmex_uncore_init),
	X86_UNCORE_MODEL_MATCH(INTEL_FAM6_WESTMERE_EX,	  nhmex_uncore_init),
	X86_UNCORE_MODEL_MATCH(INTEL_FAM6_IVYBRIDGE_X,	  ivbep_uncore_init),
	X86_UNCORE_MODEL_MATCH(INTEL_FAM6_HASWELL_X,	  hswep_uncore_init),
	X86_UNCORE_MODEL_MATCH(INTEL_FAM6_BROADWELL_X,	  bdx_uncore_init),
	X86_UNCORE_MODEL_MATCH(INTEL_FAM6_BROADWELL_XEON_D, bdx_uncore_init),
	X86_UNCORE_MODEL_MATCH(INTEL_FAM6_XEON_PHI_KNL,	  knl_uncore_init),
1319
	X86_UNCORE_MODEL_MATCH(INTEL_FAM6_XEON_PHI_KNM,	  knl_uncore_init),
1320
	X86_UNCORE_MODEL_MATCH(INTEL_FAM6_SKYLAKE_DESKTOP,skl_uncore_init),
1321
	X86_UNCORE_MODEL_MATCH(INTEL_FAM6_SKYLAKE_MOBILE, skl_uncore_init),
1322
	X86_UNCORE_MODEL_MATCH(INTEL_FAM6_SKYLAKE_X,      skx_uncore_init),
1323 1324 1325 1326 1327
	{},
};

MODULE_DEVICE_TABLE(x86cpu, intel_uncore_match);

1328 1329
static int __init intel_uncore_init(void)
{
1330 1331 1332
	const struct x86_cpu_id *id;
	struct intel_uncore_init_fun *uncore_init;
	int pret = 0, cret = 0, ret;
1333

1334 1335
	id = x86_match_cpu(intel_uncore_match);
	if (!id)
1336 1337
		return -ENODEV;

1338
	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
1339 1340
		return -ENODEV;

1341 1342
	max_packages = topology_max_packages();

1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
	uncore_init = (struct intel_uncore_init_fun *)id->driver_data;
	if (uncore_init->pci_init) {
		pret = uncore_init->pci_init();
		if (!pret)
			pret = uncore_pci_init();
	}

	if (uncore_init->cpu_init) {
		uncore_init->cpu_init();
		cret = uncore_cpu_init();
	}
1354 1355 1356

	if (cret && pret)
		return -ENODEV;
1357

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
	/*
	 * Install callbacks. Core will call them for each online cpu.
	 *
	 * The first online cpu of each package allocates and takes
	 * the refcounts for all other online cpus in that package.
	 * If msrs are not enabled no allocation is required and
	 * uncore_cpu_prepare() is not called for each online cpu.
	 */
	if (!cret) {
	       ret = cpuhp_setup_state(CPUHP_PERF_X86_UNCORE_PREP,
T
Thomas Gleixner 已提交
1368 1369
				       "perf/x86/intel/uncore:prepare",
				       uncore_cpu_prepare, NULL);
1370 1371 1372 1373
		if (ret)
			goto err;
	} else {
		cpuhp_setup_state_nocalls(CPUHP_PERF_X86_UNCORE_PREP,
T
Thomas Gleixner 已提交
1374
					  "perf/x86/intel/uncore:prepare",
1375 1376
					  uncore_cpu_prepare, NULL);
	}
1377

1378
	cpuhp_setup_state(CPUHP_AP_PERF_X86_UNCORE_STARTING,
T
Thomas Gleixner 已提交
1379
			  "perf/x86/uncore:starting",
1380
			  uncore_cpu_starting, uncore_cpu_dying);
1381

1382
	cpuhp_setup_state(CPUHP_AP_PERF_X86_UNCORE_ONLINE,
T
Thomas Gleixner 已提交
1383
			  "perf/x86/uncore:online",
1384
			  uncore_event_cpu_online, uncore_event_cpu_offline);
1385
	return 0;
1386

1387
err:
1388 1389
	uncore_types_exit(uncore_msr_uncores);
	uncore_pci_exit();
1390 1391
	return ret;
}
1392 1393 1394 1395
module_init(intel_uncore_init);

static void __exit intel_uncore_exit(void)
{
1396 1397 1398
	cpuhp_remove_state_nocalls(CPUHP_AP_PERF_X86_UNCORE_ONLINE);
	cpuhp_remove_state_nocalls(CPUHP_AP_PERF_X86_UNCORE_STARTING);
	cpuhp_remove_state_nocalls(CPUHP_PERF_X86_UNCORE_PREP);
1399 1400 1401 1402
	uncore_types_exit(uncore_msr_uncores);
	uncore_pci_exit();
}
module_exit(intel_uncore_exit);