uncore.c 32.2 KB
Newer Older
1
#include "uncore.h"
2 3

static struct intel_uncore_type *empty_uncore[] = { NULL, };
4 5
struct intel_uncore_type **uncore_msr_uncores = empty_uncore;
struct intel_uncore_type **uncore_pci_uncores = empty_uncore;
6

7 8 9
static bool pcidrv_registered;
struct pci_driver *uncore_pci_driver;
/* pci bus to socket mapping */
10 11
DEFINE_RAW_SPINLOCK(pci2phy_map_lock);
struct list_head pci2phy_map_head = LIST_HEAD_INIT(pci2phy_map_head);
12
struct pci_dev *uncore_extra_pci_dev[UNCORE_SOCKET_MAX][UNCORE_EXTRA_PCI_DEV_MAX];
13

14
static DEFINE_RAW_SPINLOCK(uncore_box_lock);
15 16 17 18
/* mask of cpus that collect uncore events */
static cpumask_t uncore_cpu_mask;

/* constraint for the fixed counter */
19
static struct event_constraint uncore_constraint_fixed =
20
	EVENT_CONSTRAINT(~0ULL, 1 << UNCORE_PMC_IDX_FIXED, ~0ULL);
21
struct event_constraint uncore_constraint_empty =
22
	EVENT_CONSTRAINT(0, 0, 0);
23

24
static int uncore_pcibus_to_physid(struct pci_bus *bus)
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
{
	struct pci2phy_map *map;
	int phys_id = -1;

	raw_spin_lock(&pci2phy_map_lock);
	list_for_each_entry(map, &pci2phy_map_head, list) {
		if (map->segment == pci_domain_nr(bus)) {
			phys_id = map->pbus_to_physid[bus->number];
			break;
		}
	}
	raw_spin_unlock(&pci2phy_map_lock);

	return phys_id;
}

41 42 43 44 45 46 47 48 49 50
static void uncore_free_pcibus_map(void)
{
	struct pci2phy_map *map, *tmp;

	list_for_each_entry_safe(map, tmp, &pci2phy_map_head, list) {
		list_del(&map->list);
		kfree(map);
	}
}

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
struct pci2phy_map *__find_pci2phy_map(int segment)
{
	struct pci2phy_map *map, *alloc = NULL;
	int i;

	lockdep_assert_held(&pci2phy_map_lock);

lookup:
	list_for_each_entry(map, &pci2phy_map_head, list) {
		if (map->segment == segment)
			goto end;
	}

	if (!alloc) {
		raw_spin_unlock(&pci2phy_map_lock);
		alloc = kmalloc(sizeof(struct pci2phy_map), GFP_KERNEL);
		raw_spin_lock(&pci2phy_map_lock);

		if (!alloc)
			return NULL;

		goto lookup;
	}

	map = alloc;
	alloc = NULL;
	map->segment = segment;
	for (i = 0; i < 256; i++)
		map->pbus_to_physid[i] = -1;
	list_add_tail(&map->list, &pci2phy_map_head);

end:
	kfree(alloc);
	return map;
}

87 88 89 90 91 92 93 94 95
ssize_t uncore_event_show(struct kobject *kobj,
			  struct kobj_attribute *attr, char *buf)
{
	struct uncore_event_desc *event =
		container_of(attr, struct uncore_event_desc, attr);
	return sprintf(buf, "%s", event->config);
}

struct intel_uncore_box *uncore_pmu_to_box(struct intel_uncore_pmu *pmu, int cpu)
96 97 98 99 100 101 102 103
{
	struct intel_uncore_box *box;

	box = *per_cpu_ptr(pmu->box, cpu);
	if (box)
		return box;

	raw_spin_lock(&uncore_box_lock);
104 105 106
	/* Recheck in lock to handle races. */
	if (*per_cpu_ptr(pmu->box, cpu))
		goto out;
107 108 109 110 111 112 113
	list_for_each_entry(box, &pmu->box_list, list) {
		if (box->phys_id == topology_physical_package_id(cpu)) {
			atomic_inc(&box->refcnt);
			*per_cpu_ptr(pmu->box, cpu) = box;
			break;
		}
	}
114
out:
115 116 117 118 119
	raw_spin_unlock(&uncore_box_lock);

	return *per_cpu_ptr(pmu->box, cpu);
}

120
u64 uncore_msr_read_counter(struct intel_uncore_box *box, struct perf_event *event)
121 122 123 124 125 126 127 128 129 130 131
{
	u64 count;

	rdmsrl(event->hw.event_base, count);

	return count;
}

/*
 * generic get constraint function for shared match/mask registers.
 */
132
struct event_constraint *
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
uncore_get_constraint(struct intel_uncore_box *box, struct perf_event *event)
{
	struct intel_uncore_extra_reg *er;
	struct hw_perf_event_extra *reg1 = &event->hw.extra_reg;
	struct hw_perf_event_extra *reg2 = &event->hw.branch_reg;
	unsigned long flags;
	bool ok = false;

	/*
	 * reg->alloc can be set due to existing state, so for fake box we
	 * need to ignore this, otherwise we might fail to allocate proper
	 * fake state for this extra reg constraint.
	 */
	if (reg1->idx == EXTRA_REG_NONE ||
	    (!uncore_box_is_fake(box) && reg1->alloc))
		return NULL;

	er = &box->shared_regs[reg1->idx];
	raw_spin_lock_irqsave(&er->lock, flags);
	if (!atomic_read(&er->ref) ||
	    (er->config1 == reg1->config && er->config2 == reg2->config)) {
		atomic_inc(&er->ref);
		er->config1 = reg1->config;
		er->config2 = reg2->config;
		ok = true;
	}
	raw_spin_unlock_irqrestore(&er->lock, flags);

	if (ok) {
		if (!uncore_box_is_fake(box))
			reg1->alloc = 1;
		return NULL;
	}

167
	return &uncore_constraint_empty;
168 169
}

170
void uncore_put_constraint(struct intel_uncore_box *box, struct perf_event *event)
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
{
	struct intel_uncore_extra_reg *er;
	struct hw_perf_event_extra *reg1 = &event->hw.extra_reg;

	/*
	 * Only put constraint if extra reg was actually allocated. Also
	 * takes care of event which do not use an extra shared reg.
	 *
	 * Also, if this is a fake box we shouldn't touch any event state
	 * (reg->alloc) and we don't care about leaving inconsistent box
	 * state either since it will be thrown out.
	 */
	if (uncore_box_is_fake(box) || !reg1->alloc)
		return;

	er = &box->shared_regs[reg1->idx];
	atomic_dec(&er->ref);
	reg1->alloc = 0;
}

191
u64 uncore_shared_reg_config(struct intel_uncore_box *box, int idx)
192 193 194 195 196 197 198 199 200 201 202 203 204 205
{
	struct intel_uncore_extra_reg *er;
	unsigned long flags;
	u64 config;

	er = &box->shared_regs[idx];

	raw_spin_lock_irqsave(&er->lock, flags);
	config = er->config;
	raw_spin_unlock_irqrestore(&er->lock, flags);

	return config;
}

206 207
static void uncore_assign_hw_event(struct intel_uncore_box *box,
				   struct perf_event *event, int idx)
208 209 210 211 212 213 214
{
	struct hw_perf_event *hwc = &event->hw;

	hwc->idx = idx;
	hwc->last_tag = ++box->tags[idx];

	if (hwc->idx == UNCORE_PMC_IDX_FIXED) {
215 216
		hwc->event_base = uncore_fixed_ctr(box);
		hwc->config_base = uncore_fixed_ctl(box);
217 218 219
		return;
	}

220 221
	hwc->config_base = uncore_event_ctl(box, hwc->idx);
	hwc->event_base  = uncore_perf_ctr(box, hwc->idx);
222 223
}

224
void uncore_perf_event_update(struct intel_uncore_box *box, struct perf_event *event)
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
{
	u64 prev_count, new_count, delta;
	int shift;

	if (event->hw.idx >= UNCORE_PMC_IDX_FIXED)
		shift = 64 - uncore_fixed_ctr_bits(box);
	else
		shift = 64 - uncore_perf_ctr_bits(box);

	/* the hrtimer might modify the previous event value */
again:
	prev_count = local64_read(&event->hw.prev_count);
	new_count = uncore_read_counter(box, event);
	if (local64_xchg(&event->hw.prev_count, new_count) != prev_count)
		goto again;

	delta = (new_count << shift) - (prev_count << shift);
	delta >>= shift;

	local64_add(delta, &event->count);
}

/*
 * The overflow interrupt is unavailable for SandyBridge-EP, is broken
 * for SandyBridge. So we use hrtimer to periodically poll the counter
 * to avoid overflow.
 */
static enum hrtimer_restart uncore_pmu_hrtimer(struct hrtimer *hrtimer)
{
	struct intel_uncore_box *box;
255
	struct perf_event *event;
256 257 258 259 260 261 262 263 264 265 266 267
	unsigned long flags;
	int bit;

	box = container_of(hrtimer, struct intel_uncore_box, hrtimer);
	if (!box->n_active || box->cpu != smp_processor_id())
		return HRTIMER_NORESTART;
	/*
	 * disable local interrupt to prevent uncore_pmu_event_start/stop
	 * to interrupt the update process
	 */
	local_irq_save(flags);

268 269 270 271 272 273 274 275
	/*
	 * handle boxes with an active event list as opposed to active
	 * counters
	 */
	list_for_each_entry(event, &box->active_list, active_entry) {
		uncore_perf_event_update(box, event);
	}

276 277 278 279 280
	for_each_set_bit(bit, box->active_mask, UNCORE_PMC_IDX_MAX)
		uncore_perf_event_update(box, box->events[bit]);

	local_irq_restore(flags);

281
	hrtimer_forward_now(hrtimer, ns_to_ktime(box->hrtimer_duration));
282 283 284
	return HRTIMER_RESTART;
}

285
void uncore_pmu_start_hrtimer(struct intel_uncore_box *box)
286
{
287 288
	hrtimer_start(&box->hrtimer, ns_to_ktime(box->hrtimer_duration),
		      HRTIMER_MODE_REL_PINNED);
289 290
}

291
void uncore_pmu_cancel_hrtimer(struct intel_uncore_box *box)
292 293 294 295 296 297 298 299 300 301
{
	hrtimer_cancel(&box->hrtimer);
}

static void uncore_pmu_init_hrtimer(struct intel_uncore_box *box)
{
	hrtimer_init(&box->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	box->hrtimer.function = uncore_pmu_hrtimer;
}

302 303
static struct intel_uncore_box *uncore_alloc_box(struct intel_uncore_type *type,
						 int node)
304
{
305
	int i, size, numshared = type->num_shared_regs ;
306 307
	struct intel_uncore_box *box;

308
	size = sizeof(*box) + numshared * sizeof(struct intel_uncore_extra_reg);
309

310
	box = kzalloc_node(size, GFP_KERNEL, node);
311 312 313
	if (!box)
		return NULL;

314
	for (i = 0; i < numshared; i++)
315 316
		raw_spin_lock_init(&box->shared_regs[i].lock);

317 318 319 320 321
	uncore_pmu_init_hrtimer(box);
	atomic_set(&box->refcnt, 1);
	box->cpu = -1;
	box->phys_id = -1;

322 323
	/* set default hrtimer timeout */
	box->hrtimer_duration = UNCORE_PMU_HRTIMER_INTERVAL;
324

325
	INIT_LIST_HEAD(&box->active_list);
326

327 328 329
	return box;
}

330 331 332 333 334 335 336 337 338 339 340
/*
 * Using uncore_pmu_event_init pmu event_init callback
 * as a detection point for uncore events.
 */
static int uncore_pmu_event_init(struct perf_event *event);

static bool is_uncore_event(struct perf_event *event)
{
	return event->pmu->event_init == uncore_pmu_event_init;
}

341
static int
342 343
uncore_collect_events(struct intel_uncore_box *box, struct perf_event *leader,
		      bool dogrp)
344 345 346 347 348 349 350 351 352 353 354 355
{
	struct perf_event *event;
	int n, max_count;

	max_count = box->pmu->type->num_counters;
	if (box->pmu->type->fixed_ctl)
		max_count++;

	if (box->n_events >= max_count)
		return -EINVAL;

	n = box->n_events;
356 357 358 359 360 361

	if (is_uncore_event(leader)) {
		box->event_list[n] = leader;
		n++;
	}

362 363 364 365
	if (!dogrp)
		return n;

	list_for_each_entry(event, &leader->sibling_list, group_entry) {
366 367
		if (!is_uncore_event(event) ||
		    event->state <= PERF_EVENT_STATE_OFF)
368 369 370 371 372 373 374 375 376 377 378 379
			continue;

		if (n >= max_count)
			return -EINVAL;

		box->event_list[n] = event;
		n++;
	}
	return n;
}

static struct event_constraint *
380
uncore_get_event_constraint(struct intel_uncore_box *box, struct perf_event *event)
381
{
382
	struct intel_uncore_type *type = box->pmu->type;
383 384
	struct event_constraint *c;

385 386 387 388 389 390
	if (type->ops->get_constraint) {
		c = type->ops->get_constraint(box, event);
		if (c)
			return c;
	}

391
	if (event->attr.config == UNCORE_FIXED_EVENT)
392
		return &uncore_constraint_fixed;
393 394 395 396 397 398 399 400 401 402 403

	if (type->constraints) {
		for_each_event_constraint(c, type->constraints) {
			if ((event->hw.config & c->cmask) == c->code)
				return c;
		}
	}

	return &type->unconstrainted;
}

404 405
static void uncore_put_event_constraint(struct intel_uncore_box *box,
					struct perf_event *event)
406 407 408 409 410
{
	if (box->pmu->type->ops->put_constraint)
		box->pmu->type->ops->put_constraint(box, event);
}

411
static int uncore_assign_events(struct intel_uncore_box *box, int assign[], int n)
412 413
{
	unsigned long used_mask[BITS_TO_LONGS(UNCORE_PMC_IDX_MAX)];
414
	struct event_constraint *c;
415
	int i, wmin, wmax, ret = 0;
416 417 418 419 420
	struct hw_perf_event *hwc;

	bitmap_zero(used_mask, UNCORE_PMC_IDX_MAX);

	for (i = 0, wmin = UNCORE_PMC_IDX_MAX, wmax = 0; i < n; i++) {
421
		c = uncore_get_event_constraint(box, box->event_list[i]);
422
		box->event_constraint[i] = c;
423 424 425 426 427 428 429
		wmin = min(wmin, c->weight);
		wmax = max(wmax, c->weight);
	}

	/* fastpath, try to reuse previous register */
	for (i = 0; i < n; i++) {
		hwc = &box->event_list[i]->hw;
430
		c = box->event_constraint[i];
431 432 433 434 435 436 437 438 439 440 441 442 443 444

		/* never assigned */
		if (hwc->idx == -1)
			break;

		/* constraint still honored */
		if (!test_bit(hwc->idx, c->idxmsk))
			break;

		/* not already used */
		if (test_bit(hwc->idx, used_mask))
			break;

		__set_bit(hwc->idx, used_mask);
445 446
		if (assign)
			assign[i] = hwc->idx;
447 448
	}
	/* slow path */
449
	if (i != n)
450
		ret = perf_assign_events(box->event_constraint, n,
451
					 wmin, wmax, n, assign);
452 453 454 455 456

	if (!assign || ret) {
		for (i = 0; i < n; i++)
			uncore_put_event_constraint(box, box->event_list[i]);
	}
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
	return ret ? -EINVAL : 0;
}

static void uncore_pmu_event_start(struct perf_event *event, int flags)
{
	struct intel_uncore_box *box = uncore_event_to_box(event);
	int idx = event->hw.idx;

	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
		return;

	if (WARN_ON_ONCE(idx == -1 || idx >= UNCORE_PMC_IDX_MAX))
		return;

	event->hw.state = 0;
	box->events[idx] = event;
	box->n_active++;
	__set_bit(idx, box->active_mask);

	local64_set(&event->hw.prev_count, uncore_read_counter(box, event));
	uncore_enable_event(box, event);

	if (box->n_active == 1) {
		uncore_enable_box(box);
		uncore_pmu_start_hrtimer(box);
	}
}

static void uncore_pmu_event_stop(struct perf_event *event, int flags)
{
	struct intel_uncore_box *box = uncore_event_to_box(event);
	struct hw_perf_event *hwc = &event->hw;

	if (__test_and_clear_bit(hwc->idx, box->active_mask)) {
		uncore_disable_event(box, event);
		box->n_active--;
		box->events[hwc->idx] = NULL;
		WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
		hwc->state |= PERF_HES_STOPPED;

		if (box->n_active == 0) {
			uncore_disable_box(box);
			uncore_pmu_cancel_hrtimer(box);
		}
	}

	if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
		/*
		 * Drain the remaining delta count out of a event
		 * that we are disabling:
		 */
		uncore_perf_event_update(box, event);
		hwc->state |= PERF_HES_UPTODATE;
	}
}

static int uncore_pmu_event_add(struct perf_event *event, int flags)
{
	struct intel_uncore_box *box = uncore_event_to_box(event);
	struct hw_perf_event *hwc = &event->hw;
	int assign[UNCORE_PMC_IDX_MAX];
	int i, n, ret;

	if (!box)
		return -ENODEV;

	ret = n = uncore_collect_events(box, event, false);
	if (ret < 0)
		return ret;

	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
	if (!(flags & PERF_EF_START))
		hwc->state |= PERF_HES_ARCH;

	ret = uncore_assign_events(box, assign, n);
	if (ret)
		return ret;

	/* save events moving to new counters */
	for (i = 0; i < box->n_events; i++) {
		event = box->event_list[i];
		hwc = &event->hw;

		if (hwc->idx == assign[i] &&
			hwc->last_tag == box->tags[assign[i]])
			continue;
		/*
		 * Ensure we don't accidentally enable a stopped
		 * counter simply because we rescheduled.
		 */
		if (hwc->state & PERF_HES_STOPPED)
			hwc->state |= PERF_HES_ARCH;

		uncore_pmu_event_stop(event, PERF_EF_UPDATE);
	}

	/* reprogram moved events into new counters */
	for (i = 0; i < n; i++) {
		event = box->event_list[i];
		hwc = &event->hw;

		if (hwc->idx != assign[i] ||
			hwc->last_tag != box->tags[assign[i]])
			uncore_assign_hw_event(box, event, assign[i]);
		else if (i < box->n_events)
			continue;

		if (hwc->state & PERF_HES_ARCH)
			continue;

		uncore_pmu_event_start(event, 0);
	}
	box->n_events = n;

	return 0;
}

static void uncore_pmu_event_del(struct perf_event *event, int flags)
{
	struct intel_uncore_box *box = uncore_event_to_box(event);
	int i;

	uncore_pmu_event_stop(event, PERF_EF_UPDATE);

	for (i = 0; i < box->n_events; i++) {
		if (event == box->event_list[i]) {
583 584
			uncore_put_event_constraint(box, event);

585
			for (++i; i < box->n_events; i++)
586 587 588 589 590 591 592 593 594 595 596
				box->event_list[i - 1] = box->event_list[i];

			--box->n_events;
			break;
		}
	}

	event->hw.idx = -1;
	event->hw.last_tag = ~0ULL;
}

597
void uncore_pmu_event_read(struct perf_event *event)
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
{
	struct intel_uncore_box *box = uncore_event_to_box(event);
	uncore_perf_event_update(box, event);
}

/*
 * validation ensures the group can be loaded onto the
 * PMU if it was the only group available.
 */
static int uncore_validate_group(struct intel_uncore_pmu *pmu,
				struct perf_event *event)
{
	struct perf_event *leader = event->group_leader;
	struct intel_uncore_box *fake_box;
	int ret = -EINVAL, n;

614
	fake_box = uncore_alloc_box(pmu->type, NUMA_NO_NODE);
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
	if (!fake_box)
		return -ENOMEM;

	fake_box->pmu = pmu;
	/*
	 * the event is not yet connected with its
	 * siblings therefore we must first collect
	 * existing siblings, then add the new event
	 * before we can simulate the scheduling
	 */
	n = uncore_collect_events(fake_box, leader, true);
	if (n < 0)
		goto out;

	fake_box->n_events = n;
	n = uncore_collect_events(fake_box, event, false);
	if (n < 0)
		goto out;

	fake_box->n_events = n;

636
	ret = uncore_assign_events(fake_box, NULL, n);
637 638 639 640 641
out:
	kfree(fake_box);
	return ret;
}

642
static int uncore_pmu_event_init(struct perf_event *event)
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
{
	struct intel_uncore_pmu *pmu;
	struct intel_uncore_box *box;
	struct hw_perf_event *hwc = &event->hw;
	int ret;

	if (event->attr.type != event->pmu->type)
		return -ENOENT;

	pmu = uncore_event_to_pmu(event);
	/* no device found for this pmu */
	if (pmu->func_id < 0)
		return -ENOENT;

	/*
	 * Uncore PMU does measure at all privilege level all the time.
	 * So it doesn't make sense to specify any exclude bits.
	 */
	if (event->attr.exclude_user || event->attr.exclude_kernel ||
			event->attr.exclude_hv || event->attr.exclude_idle)
		return -EINVAL;

	/* Sampling not supported yet */
	if (hwc->sample_period)
		return -EINVAL;

	/*
	 * Place all uncore events for a particular physical package
	 * onto a single cpu
	 */
	if (event->cpu < 0)
		return -EINVAL;
	box = uncore_pmu_to_box(pmu, event->cpu);
	if (!box || box->cpu < 0)
		return -EINVAL;
	event->cpu = box->cpu;
679
	event->pmu_private = box;
680

681 682 683
	event->hw.idx = -1;
	event->hw.last_tag = ~0ULL;
	event->hw.extra_reg.idx = EXTRA_REG_NONE;
684
	event->hw.branch_reg.idx = EXTRA_REG_NONE;
685

686 687 688 689 690 691 692 693 694 695
	if (event->attr.config == UNCORE_FIXED_EVENT) {
		/* no fixed counter */
		if (!pmu->type->fixed_ctl)
			return -EINVAL;
		/*
		 * if there is only one fixed counter, only the first pmu
		 * can access the fixed counter
		 */
		if (pmu->type->single_fixed && pmu->pmu_idx > 0)
			return -EINVAL;
696 697 698

		/* fixed counters have event field hardcoded to zero */
		hwc->config = 0ULL;
699 700
	} else {
		hwc->config = event->attr.config & pmu->type->event_mask;
701 702 703 704 705
		if (pmu->type->ops->hw_config) {
			ret = pmu->type->ops->hw_config(box, event);
			if (ret)
				return ret;
		}
706 707 708 709 710 711 712 713 714 715
	}

	if (event->group_leader != event)
		ret = uncore_validate_group(pmu, event);
	else
		ret = 0;

	return ret;
}

716 717 718
static ssize_t uncore_get_attr_cpumask(struct device *dev,
				struct device_attribute *attr, char *buf)
{
719
	return cpumap_print_to_pagebuf(true, buf, &uncore_cpu_mask);
720 721 722 723 724 725 726 727 728 729 730 731 732
}

static DEVICE_ATTR(cpumask, S_IRUGO, uncore_get_attr_cpumask, NULL);

static struct attribute *uncore_pmu_attrs[] = {
	&dev_attr_cpumask.attr,
	NULL,
};

static struct attribute_group uncore_pmu_attr_group = {
	.attrs = uncore_pmu_attrs,
};

733
static int uncore_pmu_register(struct intel_uncore_pmu *pmu)
734 735 736
{
	int ret;

737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
	if (!pmu->type->pmu) {
		pmu->pmu = (struct pmu) {
			.attr_groups	= pmu->type->attr_groups,
			.task_ctx_nr	= perf_invalid_context,
			.event_init	= uncore_pmu_event_init,
			.add		= uncore_pmu_event_add,
			.del		= uncore_pmu_event_del,
			.start		= uncore_pmu_event_start,
			.stop		= uncore_pmu_event_stop,
			.read		= uncore_pmu_event_read,
		};
	} else {
		pmu->pmu = *pmu->type->pmu;
		pmu->pmu.attr_groups = pmu->type->attr_groups;
	}
752 753 754 755 756 757 758 759 760 761 762 763

	if (pmu->type->num_boxes == 1) {
		if (strlen(pmu->type->name) > 0)
			sprintf(pmu->name, "uncore_%s", pmu->type->name);
		else
			sprintf(pmu->name, "uncore");
	} else {
		sprintf(pmu->name, "uncore_%s_%d", pmu->type->name,
			pmu->pmu_idx);
	}

	ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
764 765
	if (!ret)
		pmu->registered = true;
766 767 768
	return ret;
}

769 770 771 772 773 774 775 776
static void uncore_pmu_unregister(struct intel_uncore_pmu *pmu)
{
	if (!pmu->registered)
		return;
	perf_pmu_unregister(&pmu->pmu);
	pmu->registered = false;
}

777 778 779 780
static void __init uncore_type_exit(struct intel_uncore_type *type)
{
	int i;

781
	if (type->pmus) {
782 783
		for (i = 0; i < type->num_boxes; i++) {
			uncore_pmu_unregister(&type->pmus[i]);
784
			free_percpu(type->pmus[i].box);
785
		}
786 787 788
		kfree(type->pmus);
		type->pmus = NULL;
	}
789 790
	kfree(type->events_group);
	type->events_group = NULL;
791 792
}

793
static void __init uncore_types_exit(struct intel_uncore_type **types)
794
{
795 796
	for (; *types; types++)
		uncore_type_exit(*types);
797 798
}

799 800 801
static int __init uncore_type_init(struct intel_uncore_type *type)
{
	struct intel_uncore_pmu *pmus;
802
	struct attribute_group *attr_group;
803 804 805 806 807 808 809
	struct attribute **attrs;
	int i, j;

	pmus = kzalloc(sizeof(*pmus) * type->num_boxes, GFP_KERNEL);
	if (!pmus)
		return -ENOMEM;

810 811
	type->pmus = pmus;

812 813
	type->unconstrainted = (struct event_constraint)
		__EVENT_CONSTRAINT(0, (1ULL << type->num_counters) - 1,
814
				0, type->num_counters, 0, 0);
815 816 817 818 819

	for (i = 0; i < type->num_boxes; i++) {
		pmus[i].func_id = -1;
		pmus[i].pmu_idx = i;
		pmus[i].type = type;
820
		INIT_LIST_HEAD(&pmus[i].box_list);
821 822
		pmus[i].box = alloc_percpu(struct intel_uncore_box *);
		if (!pmus[i].box)
823
			return -ENOMEM;
824 825 826 827 828 829 830
	}

	if (type->event_descs) {
		i = 0;
		while (type->event_descs[i].attr.attr.name)
			i++;

831 832 833
		attr_group = kzalloc(sizeof(struct attribute *) * (i + 1) +
					sizeof(*attr_group), GFP_KERNEL);
		if (!attr_group)
834
			return -ENOMEM;
835

836 837 838
		attrs = (struct attribute **)(attr_group + 1);
		attr_group->name = "events";
		attr_group->attrs = attrs;
839 840 841 842

		for (j = 0; j < i; j++)
			attrs[j] = &type->event_descs[j].attr.attr;

843
		type->events_group = attr_group;
844 845
	}

846
	type->pmu_group = &uncore_pmu_attr_group;
847 848 849 850 851 852 853 854 855 856
	return 0;
}

static int __init uncore_types_init(struct intel_uncore_type **types)
{
	int i, ret;

	for (i = 0; types[i]; i++) {
		ret = uncore_type_init(types[i]);
		if (ret)
857
			return ret;
858 859 860 861
	}
	return 0;
}

862 863 864
/*
 * add a pci uncore device
 */
865
static int uncore_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
866 867 868
{
	struct intel_uncore_pmu *pmu;
	struct intel_uncore_box *box;
869
	struct intel_uncore_type *type;
870
	bool first_box = false;
871
	int phys_id, ret;
872

873
	phys_id = uncore_pcibus_to_physid(pdev->bus);
874
	if (phys_id < 0 || phys_id >= UNCORE_SOCKET_MAX)
875 876
		return -ENODEV;

877
	if (UNCORE_PCI_DEV_TYPE(id->driver_data) == UNCORE_EXTRA_PCI_DEV) {
878 879
		int idx = UNCORE_PCI_DEV_IDX(id->driver_data);
		uncore_extra_pci_dev[phys_id][idx] = pdev;
880 881 882 883
		pci_set_drvdata(pdev, NULL);
		return 0;
	}

884
	type = uncore_pci_uncores[UNCORE_PCI_DEV_TYPE(id->driver_data)];
885
	box = uncore_alloc_box(type, NUMA_NO_NODE);
886 887 888 889 890 891 892
	if (!box)
		return -ENOMEM;

	/*
	 * for performance monitoring unit with multiple boxes,
	 * each box has a different function id.
	 */
893
	pmu = &type->pmus[UNCORE_PCI_DEV_IDX(id->driver_data)];
894 895 896 897 898 899
	/* Knights Landing uses a common PCI device ID for multiple instances of
	 * an uncore PMU device type. There is only one entry per device type in
	 * the knl_uncore_pci_ids table inspite of multiple devices present for
	 * some device types. Hence PCI device idx would be 0 for all devices.
	 * So increment pmu pointer to point to an unused array element.
	 */
900
	if (boot_cpu_data.x86_model == 87) {
901 902
		while (pmu->func_id >= 0)
			pmu++;
903 904
	}

905 906 907 908
	if (pmu->func_id < 0)
		pmu->func_id = pdev->devfn;
	else
		WARN_ON_ONCE(pmu->func_id != pdev->devfn);
909 910 911 912

	box->phys_id = phys_id;
	box->pci_dev = pdev;
	box->pmu = pmu;
913
	uncore_box_init(box);
914 915 916
	pci_set_drvdata(pdev, box);

	raw_spin_lock(&uncore_box_lock);
917 918
	if (list_empty(&pmu->box_list))
		first_box = true;
919 920 921
	list_add_tail(&box->list, &pmu->box_list);
	raw_spin_unlock(&uncore_box_lock);

922 923 924 925 926 927 928 929 930
	if (!first_box)
		return 0;

	ret = uncore_pmu_register(pmu);
	if (ret) {
		pci_set_drvdata(pdev, NULL);
		raw_spin_lock(&uncore_box_lock);
		list_del(&box->list);
		raw_spin_unlock(&uncore_box_lock);
931
		uncore_box_exit(box);
932 933 934
		kfree(box);
	}
	return ret;
935 936
}

937
static void uncore_pci_remove(struct pci_dev *pdev)
938 939
{
	struct intel_uncore_box *box = pci_get_drvdata(pdev);
940
	struct intel_uncore_pmu *pmu;
941
	int i, cpu, phys_id;
942
	bool last_box = false;
943

944
	phys_id = uncore_pcibus_to_physid(pdev->bus);
945 946 947
	box = pci_get_drvdata(pdev);
	if (!box) {
		for (i = 0; i < UNCORE_EXTRA_PCI_DEV_MAX; i++) {
948 949
			if (uncore_extra_pci_dev[phys_id][i] == pdev) {
				uncore_extra_pci_dev[phys_id][i] = NULL;
950 951 952 953 954 955
				break;
			}
		}
		WARN_ON_ONCE(i >= UNCORE_EXTRA_PCI_DEV_MAX);
		return;
	}
956

957
	pmu = box->pmu;
958 959 960
	if (WARN_ON_ONCE(phys_id != box->phys_id))
		return;

961 962
	pci_set_drvdata(pdev, NULL);

963 964
	raw_spin_lock(&uncore_box_lock);
	list_del(&box->list);
965 966
	if (list_empty(&pmu->box_list))
		last_box = true;
967 968 969 970 971 972 973 974 975 976
	raw_spin_unlock(&uncore_box_lock);

	for_each_possible_cpu(cpu) {
		if (*per_cpu_ptr(pmu->box, cpu) == box) {
			*per_cpu_ptr(pmu->box, cpu) = NULL;
			atomic_dec(&box->refcnt);
		}
	}

	WARN_ON_ONCE(atomic_read(&box->refcnt) != 1);
977
	uncore_box_exit(box);
978
	kfree(box);
979 980

	if (last_box)
981
		uncore_pmu_unregister(pmu);
982 983 984 985 986 987 988
}

static int __init uncore_pci_init(void)
{
	int ret;

	switch (boot_cpu_data.x86_model) {
989
	case 45: /* Sandy Bridge-EP */
990
		ret = snbep_uncore_pci_init();
991
		break;
992 993
	case 62: /* Ivy Bridge-EP */
		ret = ivbep_uncore_pci_init();
994
		break;
995 996 997
	case 63: /* Haswell-EP */
		ret = hswep_uncore_pci_init();
		break;
998
	case 79: /* BDX-EP */
999 1000 1001
	case 86: /* BDX-DE */
		ret = bdx_uncore_pci_init();
		break;
1002
	case 42: /* Sandy Bridge */
1003
		ret = snb_uncore_pci_init();
1004 1005
		break;
	case 58: /* Ivy Bridge */
1006
		ret = ivb_uncore_pci_init();
1007 1008 1009
		break;
	case 60: /* Haswell */
	case 69: /* Haswell Celeron */
1010
		ret = hsw_uncore_pci_init();
1011
		break;
1012 1013 1014
	case 61: /* Broadwell */
		ret = bdw_uncore_pci_init();
		break;
1015 1016 1017
	case 87: /* Knights Landing */
		ret = knl_uncore_pci_init();
		break;
1018 1019 1020
	case 94: /* SkyLake */
		ret = skl_uncore_pci_init();
		break;
1021 1022 1023 1024
	default:
		return 0;
	}

1025 1026 1027
	if (ret)
		return ret;

1028
	ret = uncore_types_init(uncore_pci_uncores);
1029
	if (ret)
1030
		goto err;
1031 1032 1033 1034 1035

	uncore_pci_driver->probe = uncore_pci_probe;
	uncore_pci_driver->remove = uncore_pci_remove;

	ret = pci_register_driver(uncore_pci_driver);
1036 1037 1038 1039 1040
	if (ret)
		goto err;

	pcidrv_registered = true;
	return 0;
1041

1042 1043 1044
err:
	uncore_types_exit(uncore_pci_uncores);
	uncore_pci_uncores = empty_uncore;
1045
	uncore_free_pcibus_map();
1046 1047 1048 1049 1050 1051 1052 1053
	return ret;
}

static void __init uncore_pci_exit(void)
{
	if (pcidrv_registered) {
		pcidrv_registered = false;
		pci_unregister_driver(uncore_pci_driver);
1054
		uncore_types_exit(uncore_pci_uncores);
1055
		uncore_free_pcibus_map();
1056 1057 1058
	}
}

1059 1060 1061
/* CPU hot plug/unplug are serialized by cpu_add_remove_lock mutex */
static LIST_HEAD(boxes_to_free);

1062
static void uncore_kfree_boxes(void)
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
{
	struct intel_uncore_box *box;

	while (!list_empty(&boxes_to_free)) {
		box = list_entry(boxes_to_free.next,
				 struct intel_uncore_box, list);
		list_del(&box->list);
		kfree(box);
	}
}

1074
static void uncore_cpu_dying(int cpu)
1075 1076 1077 1078 1079 1080
{
	struct intel_uncore_type *type;
	struct intel_uncore_pmu *pmu;
	struct intel_uncore_box *box;
	int i, j;

1081 1082
	for (i = 0; uncore_msr_uncores[i]; i++) {
		type = uncore_msr_uncores[i];
1083 1084 1085 1086
		for (j = 0; j < type->num_boxes; j++) {
			pmu = &type->pmus[j];
			box = *per_cpu_ptr(pmu->box, cpu);
			*per_cpu_ptr(pmu->box, cpu) = NULL;
1087
			if (box && atomic_dec_and_test(&box->refcnt)) {
1088
				list_add(&box->list, &boxes_to_free);
1089 1090
				uncore_box_exit(box);
			}
1091 1092 1093 1094
		}
	}
}

1095
static int uncore_cpu_starting(int cpu)
1096 1097 1098 1099 1100 1101 1102 1103
{
	struct intel_uncore_type *type;
	struct intel_uncore_pmu *pmu;
	struct intel_uncore_box *box, *exist;
	int i, j, k, phys_id;

	phys_id = topology_physical_package_id(cpu);

1104 1105
	for (i = 0; uncore_msr_uncores[i]; i++) {
		type = uncore_msr_uncores[i];
1106 1107 1108 1109
		for (j = 0; j < type->num_boxes; j++) {
			pmu = &type->pmus[j];
			box = *per_cpu_ptr(pmu->box, cpu);
			/* called by uncore_cpu_init? */
1110 1111
			if (box && box->phys_id >= 0) {
				uncore_box_init(box);
1112
				continue;
1113
			}
1114 1115 1116 1117 1118 1119

			for_each_online_cpu(k) {
				exist = *per_cpu_ptr(pmu->box, k);
				if (exist && exist->phys_id == phys_id) {
					atomic_inc(&exist->refcnt);
					*per_cpu_ptr(pmu->box, cpu) = exist;
1120 1121 1122 1123 1124
					if (box) {
						list_add(&box->list,
							 &boxes_to_free);
						box = NULL;
					}
1125 1126 1127 1128
					break;
				}
			}

1129
			if (box) {
1130
				box->phys_id = phys_id;
1131 1132
				uncore_box_init(box);
			}
1133 1134 1135 1136 1137
		}
	}
	return 0;
}

1138
static int uncore_cpu_prepare(int cpu, int phys_id)
1139 1140 1141 1142 1143 1144
{
	struct intel_uncore_type *type;
	struct intel_uncore_pmu *pmu;
	struct intel_uncore_box *box;
	int i, j;

1145 1146
	for (i = 0; uncore_msr_uncores[i]; i++) {
		type = uncore_msr_uncores[i];
1147 1148 1149 1150 1151
		for (j = 0; j < type->num_boxes; j++) {
			pmu = &type->pmus[j];
			if (pmu->func_id < 0)
				pmu->func_id = j;

1152
			box = uncore_alloc_box(type, cpu_to_node(cpu));
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
			if (!box)
				return -ENOMEM;

			box->pmu = pmu;
			box->phys_id = phys_id;
			*per_cpu_ptr(pmu->box, cpu) = box;
		}
	}
	return 0;
}

1164 1165
static void uncore_change_type_ctx(struct intel_uncore_type *type, int old_cpu,
				   int new_cpu)
1166
{
1167
	struct intel_uncore_pmu *pmu = type->pmus;
1168
	struct intel_uncore_box *box;
1169
	int i;
1170

1171 1172 1173 1174 1175 1176 1177
	for (i = 0; i < type->num_boxes; i++, pmu++) {
		if (old_cpu < 0)
			box = uncore_pmu_to_box(pmu, new_cpu);
		else
			box = uncore_pmu_to_box(pmu, old_cpu);
		if (!box)
			continue;
1178

1179 1180 1181 1182
		if (old_cpu < 0) {
			WARN_ON_ONCE(box->cpu != -1);
			box->cpu = new_cpu;
			continue;
1183
		}
1184 1185 1186 1187 1188 1189 1190 1191 1192

		WARN_ON_ONCE(box->cpu != old_cpu);
		box->cpu = -1;
		if (new_cpu < 0)
			continue;

		uncore_pmu_cancel_hrtimer(box);
		perf_pmu_migrate_context(&pmu->pmu, old_cpu, new_cpu);
		box->cpu = new_cpu;
1193 1194 1195
	}
}

1196 1197 1198 1199 1200 1201 1202
static void uncore_change_context(struct intel_uncore_type **uncores,
				  int old_cpu, int new_cpu)
{
	for (; *uncores; uncores++)
		uncore_change_type_ctx(*uncores, old_cpu, new_cpu);
}

1203
static void uncore_event_exit_cpu(int cpu)
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
{
	int i, phys_id, target;

	/* if exiting cpu is used for collecting uncore events */
	if (!cpumask_test_and_clear_cpu(cpu, &uncore_cpu_mask))
		return;

	/* find a new cpu to collect uncore events */
	phys_id = topology_physical_package_id(cpu);
	target = -1;
	for_each_online_cpu(i) {
		if (i == cpu)
			continue;
		if (phys_id == topology_physical_package_id(i)) {
			target = i;
			break;
		}
	}

	/* migrate uncore events to the new cpu */
	if (target >= 0)
		cpumask_set_cpu(target, &uncore_cpu_mask);

1227 1228
	uncore_change_context(uncore_msr_uncores, cpu, target);
	uncore_change_context(uncore_pci_uncores, cpu, target);
1229 1230
}

1231
static void uncore_event_init_cpu(int cpu)
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
{
	int i, phys_id;

	phys_id = topology_physical_package_id(cpu);
	for_each_cpu(i, &uncore_cpu_mask) {
		if (phys_id == topology_physical_package_id(i))
			return;
	}

	cpumask_set_cpu(cpu, &uncore_cpu_mask);

1243 1244
	uncore_change_context(uncore_msr_uncores, -1, cpu);
	uncore_change_context(uncore_pci_uncores, -1, cpu);
1245 1246
}

1247 1248
static int uncore_cpu_notifier(struct notifier_block *self,
			       unsigned long action, void *hcpu)
1249 1250 1251 1252 1253 1254
{
	unsigned int cpu = (long)hcpu;

	/* allocate/free data structure for uncore box */
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_UP_PREPARE:
1255
		return notifier_from_errno(uncore_cpu_prepare(cpu, -1));
1256 1257 1258 1259 1260 1261 1262
	case CPU_STARTING:
		uncore_cpu_starting(cpu);
		break;
	case CPU_UP_CANCELED:
	case CPU_DYING:
		uncore_cpu_dying(cpu);
		break;
1263 1264 1265 1266
	case CPU_ONLINE:
	case CPU_DEAD:
		uncore_kfree_boxes();
		break;
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
	default:
		break;
	}

	/* select the cpu that collects uncore events */
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_FAILED:
	case CPU_STARTING:
		uncore_event_init_cpu(cpu);
		break;
	case CPU_DOWN_PREPARE:
		uncore_event_exit_cpu(cpu);
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

1287
static struct notifier_block uncore_cpu_nb = {
1288
	.notifier_call	= uncore_cpu_notifier,
1289 1290 1291 1292
	/*
	 * to migrate uncore events, our notifier should be executed
	 * before perf core's notifier.
	 */
1293
	.priority	= CPU_PRI_PERF + 1,
1294 1295
};

1296
static int __init type_pmu_register(struct intel_uncore_type *type)
1297
{
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
	int i, ret;

	for (i = 0; i < type->num_boxes; i++) {
		ret = uncore_pmu_register(&type->pmus[i]);
		if (ret)
			return ret;
	}
	return 0;
}

static int __init uncore_msr_pmus_register(void)
{
	struct intel_uncore_type **types = uncore_msr_uncores;
	int ret;

1313 1314
	for (; *types; types++) {
		ret = type_pmu_register(*types);
1315 1316 1317 1318
		if (ret)
			return ret;
	}
	return 0;
1319 1320 1321 1322
}

static int __init uncore_cpu_init(void)
{
1323
	int ret;
1324 1325

	switch (boot_cpu_data.x86_model) {
1326 1327 1328 1329
	case 26: /* Nehalem */
	case 30:
	case 37: /* Westmere */
	case 44:
1330
		nhm_uncore_cpu_init();
1331 1332
		break;
	case 42: /* Sandy Bridge */
1333
	case 58: /* Ivy Bridge */
1334 1335 1336 1337 1338
	case 60: /* Haswell */
	case 69: /* Haswell */
	case 70: /* Haswell */
	case 61: /* Broadwell */
	case 71: /* Broadwell */
1339
		snb_uncore_cpu_init();
1340
		break;
1341
	case 45: /* Sandy Bridge-EP */
1342
		snbep_uncore_cpu_init();
1343
		break;
1344 1345
	case 46: /* Nehalem-EX */
	case 47: /* Westmere-EX aka. Xeon E7 */
1346
		nhmex_uncore_cpu_init();
1347
		break;
1348 1349
	case 62: /* Ivy Bridge-EP */
		ivbep_uncore_cpu_init();
1350
		break;
1351 1352 1353
	case 63: /* Haswell-EP */
		hswep_uncore_cpu_init();
		break;
1354
	case 79: /* BDX-EP */
1355 1356 1357
	case 86: /* BDX-DE */
		bdx_uncore_cpu_init();
		break;
1358 1359 1360
	case 87: /* Knights Landing */
		knl_uncore_cpu_init();
		break;
1361 1362 1363 1364
	default:
		return 0;
	}

1365
	ret = uncore_types_init(uncore_msr_uncores);
1366 1367 1368 1369
	if (ret)
		goto err;

	ret = uncore_msr_pmus_register();
1370
	if (ret)
1371
		goto err;
1372
	return 0;
1373 1374 1375 1376
err:
	uncore_types_exit(uncore_msr_uncores);
	uncore_msr_uncores = empty_uncore;
	return ret;
1377 1378
}

1379
static void __init uncore_cpu_setup(void *dummy)
1380
{
1381
	uncore_cpu_starting(smp_processor_id());
1382 1383
}

1384
static int __init uncore_cpumask_init(void)
1385
{
1386
	int cpu, ret = 0;
1387

1388
	cpu_notifier_register_begin();
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401

	for_each_online_cpu(cpu) {
		int i, phys_id = topology_physical_package_id(cpu);

		for_each_cpu(i, &uncore_cpu_mask) {
			if (phys_id == topology_physical_package_id(i)) {
				phys_id = -1;
				break;
			}
		}
		if (phys_id < 0)
			continue;

1402 1403 1404
		ret = uncore_cpu_prepare(cpu, phys_id);
		if (ret)
			goto out;
1405 1406 1407 1408
		uncore_event_init_cpu(cpu);
	}
	on_each_cpu(uncore_cpu_setup, NULL, 1);

1409
	__register_cpu_notifier(&uncore_cpu_nb);
1410

1411
out:
1412
	cpu_notifier_register_done();
1413
	return ret;
1414 1415
}

1416 1417 1418 1419 1420 1421 1422
static int __init intel_uncore_init(void)
{
	int ret;

	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
		return -ENODEV;

1423 1424 1425
	if (cpu_has_hypervisor)
		return -ENODEV;

1426
	ret = uncore_pci_init();
1427
	if (ret)
1428
		return ret;
1429
	ret = uncore_cpu_init();
1430 1431 1432 1433 1434
	if (ret)
		goto errpci;
	ret = uncore_cpumask_init();
	if (ret)
		goto errcpu;
1435 1436

	return 0;
1437 1438 1439 1440 1441

errcpu:
	uncore_types_exit(uncore_msr_uncores);
errpci:
	uncore_pci_exit();
1442 1443 1444
	return ret;
}
device_initcall(intel_uncore_init);