uncore.c 32.4 KB
Newer Older
1
#include "uncore.h"
2 3

static struct intel_uncore_type *empty_uncore[] = { NULL, };
4 5
struct intel_uncore_type **uncore_msr_uncores = empty_uncore;
struct intel_uncore_type **uncore_pci_uncores = empty_uncore;
6

7 8 9
static bool pcidrv_registered;
struct pci_driver *uncore_pci_driver;
/* pci bus to socket mapping */
10 11
DEFINE_RAW_SPINLOCK(pci2phy_map_lock);
struct list_head pci2phy_map_head = LIST_HEAD_INIT(pci2phy_map_head);
12
struct pci_dev *uncore_extra_pci_dev[UNCORE_SOCKET_MAX][UNCORE_EXTRA_PCI_DEV_MAX];
13

14
static DEFINE_RAW_SPINLOCK(uncore_box_lock);
15 16 17 18
/* mask of cpus that collect uncore events */
static cpumask_t uncore_cpu_mask;

/* constraint for the fixed counter */
19
static struct event_constraint uncore_constraint_fixed =
20
	EVENT_CONSTRAINT(~0ULL, 1 << UNCORE_PMC_IDX_FIXED, ~0ULL);
21
struct event_constraint uncore_constraint_empty =
22
	EVENT_CONSTRAINT(0, 0, 0);
23

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
int uncore_pcibus_to_physid(struct pci_bus *bus)
{
	struct pci2phy_map *map;
	int phys_id = -1;

	raw_spin_lock(&pci2phy_map_lock);
	list_for_each_entry(map, &pci2phy_map_head, list) {
		if (map->segment == pci_domain_nr(bus)) {
			phys_id = map->pbus_to_physid[bus->number];
			break;
		}
	}
	raw_spin_unlock(&pci2phy_map_lock);

	return phys_id;
}

41 42 43 44 45 46 47 48 49 50
static void uncore_free_pcibus_map(void)
{
	struct pci2phy_map *map, *tmp;

	list_for_each_entry_safe(map, tmp, &pci2phy_map_head, list) {
		list_del(&map->list);
		kfree(map);
	}
}

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
struct pci2phy_map *__find_pci2phy_map(int segment)
{
	struct pci2phy_map *map, *alloc = NULL;
	int i;

	lockdep_assert_held(&pci2phy_map_lock);

lookup:
	list_for_each_entry(map, &pci2phy_map_head, list) {
		if (map->segment == segment)
			goto end;
	}

	if (!alloc) {
		raw_spin_unlock(&pci2phy_map_lock);
		alloc = kmalloc(sizeof(struct pci2phy_map), GFP_KERNEL);
		raw_spin_lock(&pci2phy_map_lock);

		if (!alloc)
			return NULL;

		goto lookup;
	}

	map = alloc;
	alloc = NULL;
	map->segment = segment;
	for (i = 0; i < 256; i++)
		map->pbus_to_physid[i] = -1;
	list_add_tail(&map->list, &pci2phy_map_head);

end:
	kfree(alloc);
	return map;
}

87 88 89 90 91 92 93 94 95
ssize_t uncore_event_show(struct kobject *kobj,
			  struct kobj_attribute *attr, char *buf)
{
	struct uncore_event_desc *event =
		container_of(attr, struct uncore_event_desc, attr);
	return sprintf(buf, "%s", event->config);
}

struct intel_uncore_pmu *uncore_event_to_pmu(struct perf_event *event)
96 97 98 99
{
	return container_of(event->pmu, struct intel_uncore_pmu, pmu);
}

100
struct intel_uncore_box *uncore_pmu_to_box(struct intel_uncore_pmu *pmu, int cpu)
101 102 103 104 105 106 107 108
{
	struct intel_uncore_box *box;

	box = *per_cpu_ptr(pmu->box, cpu);
	if (box)
		return box;

	raw_spin_lock(&uncore_box_lock);
109 110 111
	/* Recheck in lock to handle races. */
	if (*per_cpu_ptr(pmu->box, cpu))
		goto out;
112 113 114 115 116 117 118
	list_for_each_entry(box, &pmu->box_list, list) {
		if (box->phys_id == topology_physical_package_id(cpu)) {
			atomic_inc(&box->refcnt);
			*per_cpu_ptr(pmu->box, cpu) = box;
			break;
		}
	}
119
out:
120 121 122 123 124
	raw_spin_unlock(&uncore_box_lock);

	return *per_cpu_ptr(pmu->box, cpu);
}

125
struct intel_uncore_box *uncore_event_to_box(struct perf_event *event)
126 127 128 129 130 131 132 133
{
	/*
	 * perf core schedules event on the basis of cpu, uncore events are
	 * collected by one of the cpus inside a physical package.
	 */
	return uncore_pmu_to_box(uncore_event_to_pmu(event), smp_processor_id());
}

134
u64 uncore_msr_read_counter(struct intel_uncore_box *box, struct perf_event *event)
135 136 137 138 139 140 141 142 143 144 145
{
	u64 count;

	rdmsrl(event->hw.event_base, count);

	return count;
}

/*
 * generic get constraint function for shared match/mask registers.
 */
146
struct event_constraint *
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
uncore_get_constraint(struct intel_uncore_box *box, struct perf_event *event)
{
	struct intel_uncore_extra_reg *er;
	struct hw_perf_event_extra *reg1 = &event->hw.extra_reg;
	struct hw_perf_event_extra *reg2 = &event->hw.branch_reg;
	unsigned long flags;
	bool ok = false;

	/*
	 * reg->alloc can be set due to existing state, so for fake box we
	 * need to ignore this, otherwise we might fail to allocate proper
	 * fake state for this extra reg constraint.
	 */
	if (reg1->idx == EXTRA_REG_NONE ||
	    (!uncore_box_is_fake(box) && reg1->alloc))
		return NULL;

	er = &box->shared_regs[reg1->idx];
	raw_spin_lock_irqsave(&er->lock, flags);
	if (!atomic_read(&er->ref) ||
	    (er->config1 == reg1->config && er->config2 == reg2->config)) {
		atomic_inc(&er->ref);
		er->config1 = reg1->config;
		er->config2 = reg2->config;
		ok = true;
	}
	raw_spin_unlock_irqrestore(&er->lock, flags);

	if (ok) {
		if (!uncore_box_is_fake(box))
			reg1->alloc = 1;
		return NULL;
	}

181
	return &uncore_constraint_empty;
182 183
}

184
void uncore_put_constraint(struct intel_uncore_box *box, struct perf_event *event)
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
{
	struct intel_uncore_extra_reg *er;
	struct hw_perf_event_extra *reg1 = &event->hw.extra_reg;

	/*
	 * Only put constraint if extra reg was actually allocated. Also
	 * takes care of event which do not use an extra shared reg.
	 *
	 * Also, if this is a fake box we shouldn't touch any event state
	 * (reg->alloc) and we don't care about leaving inconsistent box
	 * state either since it will be thrown out.
	 */
	if (uncore_box_is_fake(box) || !reg1->alloc)
		return;

	er = &box->shared_regs[reg1->idx];
	atomic_dec(&er->ref);
	reg1->alloc = 0;
}

205
u64 uncore_shared_reg_config(struct intel_uncore_box *box, int idx)
206 207 208 209 210 211 212 213 214 215 216 217 218 219
{
	struct intel_uncore_extra_reg *er;
	unsigned long flags;
	u64 config;

	er = &box->shared_regs[idx];

	raw_spin_lock_irqsave(&er->lock, flags);
	config = er->config;
	raw_spin_unlock_irqrestore(&er->lock, flags);

	return config;
}

220
static void uncore_assign_hw_event(struct intel_uncore_box *box, struct perf_event *event, int idx)
221 222 223 224 225 226 227
{
	struct hw_perf_event *hwc = &event->hw;

	hwc->idx = idx;
	hwc->last_tag = ++box->tags[idx];

	if (hwc->idx == UNCORE_PMC_IDX_FIXED) {
228 229
		hwc->event_base = uncore_fixed_ctr(box);
		hwc->config_base = uncore_fixed_ctl(box);
230 231 232
		return;
	}

233 234
	hwc->config_base = uncore_event_ctl(box, hwc->idx);
	hwc->event_base  = uncore_perf_ctr(box, hwc->idx);
235 236
}

237
void uncore_perf_event_update(struct intel_uncore_box *box, struct perf_event *event)
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
{
	u64 prev_count, new_count, delta;
	int shift;

	if (event->hw.idx >= UNCORE_PMC_IDX_FIXED)
		shift = 64 - uncore_fixed_ctr_bits(box);
	else
		shift = 64 - uncore_perf_ctr_bits(box);

	/* the hrtimer might modify the previous event value */
again:
	prev_count = local64_read(&event->hw.prev_count);
	new_count = uncore_read_counter(box, event);
	if (local64_xchg(&event->hw.prev_count, new_count) != prev_count)
		goto again;

	delta = (new_count << shift) - (prev_count << shift);
	delta >>= shift;

	local64_add(delta, &event->count);
}

/*
 * The overflow interrupt is unavailable for SandyBridge-EP, is broken
 * for SandyBridge. So we use hrtimer to periodically poll the counter
 * to avoid overflow.
 */
static enum hrtimer_restart uncore_pmu_hrtimer(struct hrtimer *hrtimer)
{
	struct intel_uncore_box *box;
268
	struct perf_event *event;
269 270 271 272 273 274 275 276 277 278 279 280
	unsigned long flags;
	int bit;

	box = container_of(hrtimer, struct intel_uncore_box, hrtimer);
	if (!box->n_active || box->cpu != smp_processor_id())
		return HRTIMER_NORESTART;
	/*
	 * disable local interrupt to prevent uncore_pmu_event_start/stop
	 * to interrupt the update process
	 */
	local_irq_save(flags);

281 282 283 284 285 286 287 288
	/*
	 * handle boxes with an active event list as opposed to active
	 * counters
	 */
	list_for_each_entry(event, &box->active_list, active_entry) {
		uncore_perf_event_update(box, event);
	}

289 290 291 292 293
	for_each_set_bit(bit, box->active_mask, UNCORE_PMC_IDX_MAX)
		uncore_perf_event_update(box, box->events[bit]);

	local_irq_restore(flags);

294
	hrtimer_forward_now(hrtimer, ns_to_ktime(box->hrtimer_duration));
295 296 297
	return HRTIMER_RESTART;
}

298
void uncore_pmu_start_hrtimer(struct intel_uncore_box *box)
299
{
300 301
	hrtimer_start(&box->hrtimer, ns_to_ktime(box->hrtimer_duration),
		      HRTIMER_MODE_REL_PINNED);
302 303
}

304
void uncore_pmu_cancel_hrtimer(struct intel_uncore_box *box)
305 306 307 308 309 310 311 312 313 314
{
	hrtimer_cancel(&box->hrtimer);
}

static void uncore_pmu_init_hrtimer(struct intel_uncore_box *box)
{
	hrtimer_init(&box->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	box->hrtimer.function = uncore_pmu_hrtimer;
}

315
static struct intel_uncore_box *uncore_alloc_box(struct intel_uncore_type *type, int node)
316 317
{
	struct intel_uncore_box *box;
318
	int i, size;
319

320
	size = sizeof(*box) + type->num_shared_regs * sizeof(struct intel_uncore_extra_reg);
321

322
	box = kzalloc_node(size, GFP_KERNEL, node);
323 324 325
	if (!box)
		return NULL;

326 327 328
	for (i = 0; i < type->num_shared_regs; i++)
		raw_spin_lock_init(&box->shared_regs[i].lock);

329 330 331 332 333
	uncore_pmu_init_hrtimer(box);
	atomic_set(&box->refcnt, 1);
	box->cpu = -1;
	box->phys_id = -1;

334 335
	/* set default hrtimer timeout */
	box->hrtimer_duration = UNCORE_PMU_HRTIMER_INTERVAL;
336

337
	INIT_LIST_HEAD(&box->active_list);
338

339 340 341
	return box;
}

342 343 344 345 346 347 348 349 350 351 352
/*
 * Using uncore_pmu_event_init pmu event_init callback
 * as a detection point for uncore events.
 */
static int uncore_pmu_event_init(struct perf_event *event);

static bool is_uncore_event(struct perf_event *event)
{
	return event->pmu->event_init == uncore_pmu_event_init;
}

353 354
static int
uncore_collect_events(struct intel_uncore_box *box, struct perf_event *leader, bool dogrp)
355 356 357 358 359 360 361 362 363 364 365 366
{
	struct perf_event *event;
	int n, max_count;

	max_count = box->pmu->type->num_counters;
	if (box->pmu->type->fixed_ctl)
		max_count++;

	if (box->n_events >= max_count)
		return -EINVAL;

	n = box->n_events;
367 368 369 370 371 372

	if (is_uncore_event(leader)) {
		box->event_list[n] = leader;
		n++;
	}

373 374 375 376
	if (!dogrp)
		return n;

	list_for_each_entry(event, &leader->sibling_list, group_entry) {
377 378
		if (!is_uncore_event(event) ||
		    event->state <= PERF_EVENT_STATE_OFF)
379 380 381 382 383 384 385 386 387 388 389 390
			continue;

		if (n >= max_count)
			return -EINVAL;

		box->event_list[n] = event;
		n++;
	}
	return n;
}

static struct event_constraint *
391
uncore_get_event_constraint(struct intel_uncore_box *box, struct perf_event *event)
392
{
393
	struct intel_uncore_type *type = box->pmu->type;
394 395
	struct event_constraint *c;

396 397 398 399 400 401
	if (type->ops->get_constraint) {
		c = type->ops->get_constraint(box, event);
		if (c)
			return c;
	}

402
	if (event->attr.config == UNCORE_FIXED_EVENT)
403
		return &uncore_constraint_fixed;
404 405 406 407 408 409 410 411 412 413 414

	if (type->constraints) {
		for_each_event_constraint(c, type->constraints) {
			if ((event->hw.config & c->cmask) == c->code)
				return c;
		}
	}

	return &type->unconstrainted;
}

415
static void uncore_put_event_constraint(struct intel_uncore_box *box, struct perf_event *event)
416 417 418 419 420
{
	if (box->pmu->type->ops->put_constraint)
		box->pmu->type->ops->put_constraint(box, event);
}

421
static int uncore_assign_events(struct intel_uncore_box *box, int assign[], int n)
422 423
{
	unsigned long used_mask[BITS_TO_LONGS(UNCORE_PMC_IDX_MAX)];
424
	struct event_constraint *c;
425
	int i, wmin, wmax, ret = 0;
426 427 428 429 430
	struct hw_perf_event *hwc;

	bitmap_zero(used_mask, UNCORE_PMC_IDX_MAX);

	for (i = 0, wmin = UNCORE_PMC_IDX_MAX, wmax = 0; i < n; i++) {
431
		c = uncore_get_event_constraint(box, box->event_list[i]);
432
		box->event_constraint[i] = c;
433 434 435 436 437 438 439
		wmin = min(wmin, c->weight);
		wmax = max(wmax, c->weight);
	}

	/* fastpath, try to reuse previous register */
	for (i = 0; i < n; i++) {
		hwc = &box->event_list[i]->hw;
440
		c = box->event_constraint[i];
441 442 443 444 445 446 447 448 449 450 451 452 453 454

		/* never assigned */
		if (hwc->idx == -1)
			break;

		/* constraint still honored */
		if (!test_bit(hwc->idx, c->idxmsk))
			break;

		/* not already used */
		if (test_bit(hwc->idx, used_mask))
			break;

		__set_bit(hwc->idx, used_mask);
455 456
		if (assign)
			assign[i] = hwc->idx;
457 458
	}
	/* slow path */
459
	if (i != n)
460
		ret = perf_assign_events(box->event_constraint, n,
461
					 wmin, wmax, n, assign);
462 463 464 465 466

	if (!assign || ret) {
		for (i = 0; i < n; i++)
			uncore_put_event_constraint(box, box->event_list[i]);
	}
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
	return ret ? -EINVAL : 0;
}

static void uncore_pmu_event_start(struct perf_event *event, int flags)
{
	struct intel_uncore_box *box = uncore_event_to_box(event);
	int idx = event->hw.idx;

	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
		return;

	if (WARN_ON_ONCE(idx == -1 || idx >= UNCORE_PMC_IDX_MAX))
		return;

	event->hw.state = 0;
	box->events[idx] = event;
	box->n_active++;
	__set_bit(idx, box->active_mask);

	local64_set(&event->hw.prev_count, uncore_read_counter(box, event));
	uncore_enable_event(box, event);

	if (box->n_active == 1) {
		uncore_enable_box(box);
		uncore_pmu_start_hrtimer(box);
	}
}

static void uncore_pmu_event_stop(struct perf_event *event, int flags)
{
	struct intel_uncore_box *box = uncore_event_to_box(event);
	struct hw_perf_event *hwc = &event->hw;

	if (__test_and_clear_bit(hwc->idx, box->active_mask)) {
		uncore_disable_event(box, event);
		box->n_active--;
		box->events[hwc->idx] = NULL;
		WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
		hwc->state |= PERF_HES_STOPPED;

		if (box->n_active == 0) {
			uncore_disable_box(box);
			uncore_pmu_cancel_hrtimer(box);
		}
	}

	if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
		/*
		 * Drain the remaining delta count out of a event
		 * that we are disabling:
		 */
		uncore_perf_event_update(box, event);
		hwc->state |= PERF_HES_UPTODATE;
	}
}

static int uncore_pmu_event_add(struct perf_event *event, int flags)
{
	struct intel_uncore_box *box = uncore_event_to_box(event);
	struct hw_perf_event *hwc = &event->hw;
	int assign[UNCORE_PMC_IDX_MAX];
	int i, n, ret;

	if (!box)
		return -ENODEV;

	ret = n = uncore_collect_events(box, event, false);
	if (ret < 0)
		return ret;

	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
	if (!(flags & PERF_EF_START))
		hwc->state |= PERF_HES_ARCH;

	ret = uncore_assign_events(box, assign, n);
	if (ret)
		return ret;

	/* save events moving to new counters */
	for (i = 0; i < box->n_events; i++) {
		event = box->event_list[i];
		hwc = &event->hw;

		if (hwc->idx == assign[i] &&
			hwc->last_tag == box->tags[assign[i]])
			continue;
		/*
		 * Ensure we don't accidentally enable a stopped
		 * counter simply because we rescheduled.
		 */
		if (hwc->state & PERF_HES_STOPPED)
			hwc->state |= PERF_HES_ARCH;

		uncore_pmu_event_stop(event, PERF_EF_UPDATE);
	}

	/* reprogram moved events into new counters */
	for (i = 0; i < n; i++) {
		event = box->event_list[i];
		hwc = &event->hw;

		if (hwc->idx != assign[i] ||
			hwc->last_tag != box->tags[assign[i]])
			uncore_assign_hw_event(box, event, assign[i]);
		else if (i < box->n_events)
			continue;

		if (hwc->state & PERF_HES_ARCH)
			continue;

		uncore_pmu_event_start(event, 0);
	}
	box->n_events = n;

	return 0;
}

static void uncore_pmu_event_del(struct perf_event *event, int flags)
{
	struct intel_uncore_box *box = uncore_event_to_box(event);
	int i;

	uncore_pmu_event_stop(event, PERF_EF_UPDATE);

	for (i = 0; i < box->n_events; i++) {
		if (event == box->event_list[i]) {
593 594
			uncore_put_event_constraint(box, event);

595 596 597 598 599 600 601 602 603 604 605 606
			while (++i < box->n_events)
				box->event_list[i - 1] = box->event_list[i];

			--box->n_events;
			break;
		}
	}

	event->hw.idx = -1;
	event->hw.last_tag = ~0ULL;
}

607
void uncore_pmu_event_read(struct perf_event *event)
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
{
	struct intel_uncore_box *box = uncore_event_to_box(event);
	uncore_perf_event_update(box, event);
}

/*
 * validation ensures the group can be loaded onto the
 * PMU if it was the only group available.
 */
static int uncore_validate_group(struct intel_uncore_pmu *pmu,
				struct perf_event *event)
{
	struct perf_event *leader = event->group_leader;
	struct intel_uncore_box *fake_box;
	int ret = -EINVAL, n;

624
	fake_box = uncore_alloc_box(pmu->type, NUMA_NO_NODE);
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
	if (!fake_box)
		return -ENOMEM;

	fake_box->pmu = pmu;
	/*
	 * the event is not yet connected with its
	 * siblings therefore we must first collect
	 * existing siblings, then add the new event
	 * before we can simulate the scheduling
	 */
	n = uncore_collect_events(fake_box, leader, true);
	if (n < 0)
		goto out;

	fake_box->n_events = n;
	n = uncore_collect_events(fake_box, event, false);
	if (n < 0)
		goto out;

	fake_box->n_events = n;

646
	ret = uncore_assign_events(fake_box, NULL, n);
647 648 649 650 651
out:
	kfree(fake_box);
	return ret;
}

652
static int uncore_pmu_event_init(struct perf_event *event)
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
{
	struct intel_uncore_pmu *pmu;
	struct intel_uncore_box *box;
	struct hw_perf_event *hwc = &event->hw;
	int ret;

	if (event->attr.type != event->pmu->type)
		return -ENOENT;

	pmu = uncore_event_to_pmu(event);
	/* no device found for this pmu */
	if (pmu->func_id < 0)
		return -ENOENT;

	/*
	 * Uncore PMU does measure at all privilege level all the time.
	 * So it doesn't make sense to specify any exclude bits.
	 */
	if (event->attr.exclude_user || event->attr.exclude_kernel ||
			event->attr.exclude_hv || event->attr.exclude_idle)
		return -EINVAL;

	/* Sampling not supported yet */
	if (hwc->sample_period)
		return -EINVAL;

	/*
	 * Place all uncore events for a particular physical package
	 * onto a single cpu
	 */
	if (event->cpu < 0)
		return -EINVAL;
	box = uncore_pmu_to_box(pmu, event->cpu);
	if (!box || box->cpu < 0)
		return -EINVAL;
	event->cpu = box->cpu;

690 691 692
	event->hw.idx = -1;
	event->hw.last_tag = ~0ULL;
	event->hw.extra_reg.idx = EXTRA_REG_NONE;
693
	event->hw.branch_reg.idx = EXTRA_REG_NONE;
694

695 696 697 698 699 700 701 702 703 704
	if (event->attr.config == UNCORE_FIXED_EVENT) {
		/* no fixed counter */
		if (!pmu->type->fixed_ctl)
			return -EINVAL;
		/*
		 * if there is only one fixed counter, only the first pmu
		 * can access the fixed counter
		 */
		if (pmu->type->single_fixed && pmu->pmu_idx > 0)
			return -EINVAL;
705 706 707

		/* fixed counters have event field hardcoded to zero */
		hwc->config = 0ULL;
708 709
	} else {
		hwc->config = event->attr.config & pmu->type->event_mask;
710 711 712 713 714
		if (pmu->type->ops->hw_config) {
			ret = pmu->type->ops->hw_config(box, event);
			if (ret)
				return ret;
		}
715 716 717 718 719 720 721 722 723 724
	}

	if (event->group_leader != event)
		ret = uncore_validate_group(pmu, event);
	else
		ret = 0;

	return ret;
}

725 726 727
static ssize_t uncore_get_attr_cpumask(struct device *dev,
				struct device_attribute *attr, char *buf)
{
728
	return cpumap_print_to_pagebuf(true, buf, &uncore_cpu_mask);
729 730 731 732 733 734 735 736 737 738 739 740 741
}

static DEVICE_ATTR(cpumask, S_IRUGO, uncore_get_attr_cpumask, NULL);

static struct attribute *uncore_pmu_attrs[] = {
	&dev_attr_cpumask.attr,
	NULL,
};

static struct attribute_group uncore_pmu_attr_group = {
	.attrs = uncore_pmu_attrs,
};

742
static int uncore_pmu_register(struct intel_uncore_pmu *pmu)
743 744 745
{
	int ret;

746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
	if (!pmu->type->pmu) {
		pmu->pmu = (struct pmu) {
			.attr_groups	= pmu->type->attr_groups,
			.task_ctx_nr	= perf_invalid_context,
			.event_init	= uncore_pmu_event_init,
			.add		= uncore_pmu_event_add,
			.del		= uncore_pmu_event_del,
			.start		= uncore_pmu_event_start,
			.stop		= uncore_pmu_event_stop,
			.read		= uncore_pmu_event_read,
		};
	} else {
		pmu->pmu = *pmu->type->pmu;
		pmu->pmu.attr_groups = pmu->type->attr_groups;
	}
761 762 763 764 765 766 767 768 769 770 771 772

	if (pmu->type->num_boxes == 1) {
		if (strlen(pmu->type->name) > 0)
			sprintf(pmu->name, "uncore_%s", pmu->type->name);
		else
			sprintf(pmu->name, "uncore");
	} else {
		sprintf(pmu->name, "uncore_%s_%d", pmu->type->name,
			pmu->pmu_idx);
	}

	ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
773 774
	if (!ret)
		pmu->registered = true;
775 776 777
	return ret;
}

778 779 780 781 782 783 784 785
static void uncore_pmu_unregister(struct intel_uncore_pmu *pmu)
{
	if (!pmu->registered)
		return;
	perf_pmu_unregister(&pmu->pmu);
	pmu->registered = false;
}

786 787 788 789
static void __init uncore_type_exit(struct intel_uncore_type *type)
{
	int i;

790
	if (type->pmus) {
791 792
		for (i = 0; i < type->num_boxes; i++) {
			uncore_pmu_unregister(&type->pmus[i]);
793
			free_percpu(type->pmus[i].box);
794
		}
795 796 797
		kfree(type->pmus);
		type->pmus = NULL;
	}
798 799
	kfree(type->events_group);
	type->events_group = NULL;
800 801
}

802
static void __init uncore_types_exit(struct intel_uncore_type **types)
803 804
{
	int i;
805

806 807 808 809
	for (i = 0; types[i]; i++)
		uncore_type_exit(types[i]);
}

810 811 812
static int __init uncore_type_init(struct intel_uncore_type *type)
{
	struct intel_uncore_pmu *pmus;
813
	struct attribute_group *attr_group;
814 815 816 817 818 819 820
	struct attribute **attrs;
	int i, j;

	pmus = kzalloc(sizeof(*pmus) * type->num_boxes, GFP_KERNEL);
	if (!pmus)
		return -ENOMEM;

821 822
	type->pmus = pmus;

823 824
	type->unconstrainted = (struct event_constraint)
		__EVENT_CONSTRAINT(0, (1ULL << type->num_counters) - 1,
825
				0, type->num_counters, 0, 0);
826 827 828 829 830

	for (i = 0; i < type->num_boxes; i++) {
		pmus[i].func_id = -1;
		pmus[i].pmu_idx = i;
		pmus[i].type = type;
831
		INIT_LIST_HEAD(&pmus[i].box_list);
832 833
		pmus[i].box = alloc_percpu(struct intel_uncore_box *);
		if (!pmus[i].box)
834
			return -ENOMEM;
835 836 837 838 839 840 841
	}

	if (type->event_descs) {
		i = 0;
		while (type->event_descs[i].attr.attr.name)
			i++;

842 843 844
		attr_group = kzalloc(sizeof(struct attribute *) * (i + 1) +
					sizeof(*attr_group), GFP_KERNEL);
		if (!attr_group)
845
			return -ENOMEM;
846

847 848 849
		attrs = (struct attribute **)(attr_group + 1);
		attr_group->name = "events";
		attr_group->attrs = attrs;
850 851 852 853

		for (j = 0; j < i; j++)
			attrs[j] = &type->event_descs[j].attr.attr;

854
		type->events_group = attr_group;
855 856
	}

857
	type->pmu_group = &uncore_pmu_attr_group;
858 859 860 861 862 863 864 865 866 867
	return 0;
}

static int __init uncore_types_init(struct intel_uncore_type **types)
{
	int i, ret;

	for (i = 0; types[i]; i++) {
		ret = uncore_type_init(types[i]);
		if (ret)
868
			return ret;
869 870 871 872
	}
	return 0;
}

873 874 875
/*
 * add a pci uncore device
 */
876
static int uncore_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
877 878 879
{
	struct intel_uncore_pmu *pmu;
	struct intel_uncore_box *box;
880
	struct intel_uncore_type *type;
881
	bool first_box = false;
882
	int phys_id, ret;
883

884
	phys_id = uncore_pcibus_to_physid(pdev->bus);
885
	if (phys_id < 0 || phys_id >= UNCORE_SOCKET_MAX)
886 887
		return -ENODEV;

888
	if (UNCORE_PCI_DEV_TYPE(id->driver_data) == UNCORE_EXTRA_PCI_DEV) {
889 890
		int idx = UNCORE_PCI_DEV_IDX(id->driver_data);
		uncore_extra_pci_dev[phys_id][idx] = pdev;
891 892 893 894
		pci_set_drvdata(pdev, NULL);
		return 0;
	}

895
	type = uncore_pci_uncores[UNCORE_PCI_DEV_TYPE(id->driver_data)];
896
	box = uncore_alloc_box(type, NUMA_NO_NODE);
897 898 899 900 901 902 903
	if (!box)
		return -ENOMEM;

	/*
	 * for performance monitoring unit with multiple boxes,
	 * each box has a different function id.
	 */
904
	pmu = &type->pmus[UNCORE_PCI_DEV_IDX(id->driver_data)];
905 906 907 908 909 910 911 912 913
	/* Knights Landing uses a common PCI device ID for multiple instances of
	 * an uncore PMU device type. There is only one entry per device type in
	 * the knl_uncore_pci_ids table inspite of multiple devices present for
	 * some device types. Hence PCI device idx would be 0 for all devices.
	 * So increment pmu pointer to point to an unused array element.
	 */
	if (boot_cpu_data.x86_model == 87)
		while (pmu->func_id >= 0)
			pmu++;
914 915 916 917
	if (pmu->func_id < 0)
		pmu->func_id = pdev->devfn;
	else
		WARN_ON_ONCE(pmu->func_id != pdev->devfn);
918 919 920 921

	box->phys_id = phys_id;
	box->pci_dev = pdev;
	box->pmu = pmu;
922
	uncore_box_init(box);
923 924 925
	pci_set_drvdata(pdev, box);

	raw_spin_lock(&uncore_box_lock);
926 927
	if (list_empty(&pmu->box_list))
		first_box = true;
928 929 930
	list_add_tail(&box->list, &pmu->box_list);
	raw_spin_unlock(&uncore_box_lock);

931 932 933 934 935 936 937 938 939 940 941 942
	if (!first_box)
		return 0;

	ret = uncore_pmu_register(pmu);
	if (ret) {
		pci_set_drvdata(pdev, NULL);
		raw_spin_lock(&uncore_box_lock);
		list_del(&box->list);
		raw_spin_unlock(&uncore_box_lock);
		kfree(box);
	}
	return ret;
943 944
}

945
static void uncore_pci_remove(struct pci_dev *pdev)
946 947
{
	struct intel_uncore_box *box = pci_get_drvdata(pdev);
948
	struct intel_uncore_pmu *pmu;
949
	int i, cpu, phys_id;
950
	bool last_box = false;
951

952
	phys_id = uncore_pcibus_to_physid(pdev->bus);
953 954 955
	box = pci_get_drvdata(pdev);
	if (!box) {
		for (i = 0; i < UNCORE_EXTRA_PCI_DEV_MAX; i++) {
956 957
			if (uncore_extra_pci_dev[phys_id][i] == pdev) {
				uncore_extra_pci_dev[phys_id][i] = NULL;
958 959 960 961 962 963
				break;
			}
		}
		WARN_ON_ONCE(i >= UNCORE_EXTRA_PCI_DEV_MAX);
		return;
	}
964

965
	pmu = box->pmu;
966 967 968
	if (WARN_ON_ONCE(phys_id != box->phys_id))
		return;

969 970
	pci_set_drvdata(pdev, NULL);

971 972
	raw_spin_lock(&uncore_box_lock);
	list_del(&box->list);
973 974
	if (list_empty(&pmu->box_list))
		last_box = true;
975 976 977 978 979 980 981 982 983 984 985
	raw_spin_unlock(&uncore_box_lock);

	for_each_possible_cpu(cpu) {
		if (*per_cpu_ptr(pmu->box, cpu) == box) {
			*per_cpu_ptr(pmu->box, cpu) = NULL;
			atomic_dec(&box->refcnt);
		}
	}

	WARN_ON_ONCE(atomic_read(&box->refcnt) != 1);
	kfree(box);
986 987

	if (last_box)
988
		uncore_pmu_unregister(pmu);
989 990 991 992 993 994 995
}

static int __init uncore_pci_init(void)
{
	int ret;

	switch (boot_cpu_data.x86_model) {
996
	case 45: /* Sandy Bridge-EP */
997
		ret = snbep_uncore_pci_init();
998
		break;
999 1000
	case 62: /* Ivy Bridge-EP */
		ret = ivbep_uncore_pci_init();
1001
		break;
1002 1003 1004
	case 63: /* Haswell-EP */
		ret = hswep_uncore_pci_init();
		break;
1005
	case 79: /* BDX-EP */
1006 1007 1008
	case 86: /* BDX-DE */
		ret = bdx_uncore_pci_init();
		break;
1009
	case 42: /* Sandy Bridge */
1010
		ret = snb_uncore_pci_init();
1011 1012
		break;
	case 58: /* Ivy Bridge */
1013
		ret = ivb_uncore_pci_init();
1014 1015 1016
		break;
	case 60: /* Haswell */
	case 69: /* Haswell Celeron */
1017
		ret = hsw_uncore_pci_init();
1018
		break;
1019 1020 1021
	case 61: /* Broadwell */
		ret = bdw_uncore_pci_init();
		break;
1022 1023 1024
	case 87: /* Knights Landing */
		ret = knl_uncore_pci_init();
		break;
1025 1026 1027
	case 94: /* SkyLake */
		ret = skl_uncore_pci_init();
		break;
1028 1029 1030 1031
	default:
		return 0;
	}

1032 1033 1034
	if (ret)
		return ret;

1035
	ret = uncore_types_init(uncore_pci_uncores);
1036
	if (ret)
1037
		goto err;
1038 1039 1040 1041 1042

	uncore_pci_driver->probe = uncore_pci_probe;
	uncore_pci_driver->remove = uncore_pci_remove;

	ret = pci_register_driver(uncore_pci_driver);
1043 1044 1045 1046 1047
	if (ret)
		goto err;

	pcidrv_registered = true;
	return 0;
1048

1049 1050 1051
err:
	uncore_types_exit(uncore_pci_uncores);
	uncore_pci_uncores = empty_uncore;
1052
	uncore_free_pcibus_map();
1053 1054 1055 1056 1057 1058 1059 1060
	return ret;
}

static void __init uncore_pci_exit(void)
{
	if (pcidrv_registered) {
		pcidrv_registered = false;
		pci_unregister_driver(uncore_pci_driver);
1061
		uncore_types_exit(uncore_pci_uncores);
1062
		uncore_free_pcibus_map();
1063 1064 1065
	}
}

1066 1067 1068
/* CPU hot plug/unplug are serialized by cpu_add_remove_lock mutex */
static LIST_HEAD(boxes_to_free);

1069
static void uncore_kfree_boxes(void)
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
{
	struct intel_uncore_box *box;

	while (!list_empty(&boxes_to_free)) {
		box = list_entry(boxes_to_free.next,
				 struct intel_uncore_box, list);
		list_del(&box->list);
		kfree(box);
	}
}

1081
static void uncore_cpu_dying(int cpu)
1082 1083 1084 1085 1086 1087
{
	struct intel_uncore_type *type;
	struct intel_uncore_pmu *pmu;
	struct intel_uncore_box *box;
	int i, j;

1088 1089
	for (i = 0; uncore_msr_uncores[i]; i++) {
		type = uncore_msr_uncores[i];
1090 1091 1092 1093 1094
		for (j = 0; j < type->num_boxes; j++) {
			pmu = &type->pmus[j];
			box = *per_cpu_ptr(pmu->box, cpu);
			*per_cpu_ptr(pmu->box, cpu) = NULL;
			if (box && atomic_dec_and_test(&box->refcnt))
1095
				list_add(&box->list, &boxes_to_free);
1096 1097 1098 1099
		}
	}
}

1100
static int uncore_cpu_starting(int cpu)
1101 1102 1103 1104 1105 1106 1107 1108
{
	struct intel_uncore_type *type;
	struct intel_uncore_pmu *pmu;
	struct intel_uncore_box *box, *exist;
	int i, j, k, phys_id;

	phys_id = topology_physical_package_id(cpu);

1109 1110
	for (i = 0; uncore_msr_uncores[i]; i++) {
		type = uncore_msr_uncores[i];
1111 1112 1113 1114
		for (j = 0; j < type->num_boxes; j++) {
			pmu = &type->pmus[j];
			box = *per_cpu_ptr(pmu->box, cpu);
			/* called by uncore_cpu_init? */
1115 1116
			if (box && box->phys_id >= 0) {
				uncore_box_init(box);
1117
				continue;
1118
			}
1119 1120 1121 1122 1123 1124

			for_each_online_cpu(k) {
				exist = *per_cpu_ptr(pmu->box, k);
				if (exist && exist->phys_id == phys_id) {
					atomic_inc(&exist->refcnt);
					*per_cpu_ptr(pmu->box, cpu) = exist;
1125 1126 1127 1128 1129
					if (box) {
						list_add(&box->list,
							 &boxes_to_free);
						box = NULL;
					}
1130 1131 1132 1133
					break;
				}
			}

1134
			if (box) {
1135
				box->phys_id = phys_id;
1136 1137
				uncore_box_init(box);
			}
1138 1139 1140 1141 1142
		}
	}
	return 0;
}

1143
static int uncore_cpu_prepare(int cpu, int phys_id)
1144 1145 1146 1147 1148 1149
{
	struct intel_uncore_type *type;
	struct intel_uncore_pmu *pmu;
	struct intel_uncore_box *box;
	int i, j;

1150 1151
	for (i = 0; uncore_msr_uncores[i]; i++) {
		type = uncore_msr_uncores[i];
1152 1153 1154 1155 1156
		for (j = 0; j < type->num_boxes; j++) {
			pmu = &type->pmus[j];
			if (pmu->func_id < 0)
				pmu->func_id = j;

1157
			box = uncore_alloc_box(type, cpu_to_node(cpu));
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
			if (!box)
				return -ENOMEM;

			box->pmu = pmu;
			box->phys_id = phys_id;
			*per_cpu_ptr(pmu->box, cpu) = box;
		}
	}
	return 0;
}

1169
static void
1170
uncore_change_context(struct intel_uncore_type **uncores, int old_cpu, int new_cpu)
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
{
	struct intel_uncore_type *type;
	struct intel_uncore_pmu *pmu;
	struct intel_uncore_box *box;
	int i, j;

	for (i = 0; uncores[i]; i++) {
		type = uncores[i];
		for (j = 0; j < type->num_boxes; j++) {
			pmu = &type->pmus[j];
			if (old_cpu < 0)
				box = uncore_pmu_to_box(pmu, new_cpu);
			else
				box = uncore_pmu_to_box(pmu, old_cpu);
			if (!box)
				continue;

			if (old_cpu < 0) {
				WARN_ON_ONCE(box->cpu != -1);
				box->cpu = new_cpu;
				continue;
			}

			WARN_ON_ONCE(box->cpu != old_cpu);
			if (new_cpu >= 0) {
				uncore_pmu_cancel_hrtimer(box);
				perf_pmu_migrate_context(&pmu->pmu,
						old_cpu, new_cpu);
				box->cpu = new_cpu;
			} else {
				box->cpu = -1;
			}
		}
	}
}

1207
static void uncore_event_exit_cpu(int cpu)
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
{
	int i, phys_id, target;

	/* if exiting cpu is used for collecting uncore events */
	if (!cpumask_test_and_clear_cpu(cpu, &uncore_cpu_mask))
		return;

	/* find a new cpu to collect uncore events */
	phys_id = topology_physical_package_id(cpu);
	target = -1;
	for_each_online_cpu(i) {
		if (i == cpu)
			continue;
		if (phys_id == topology_physical_package_id(i)) {
			target = i;
			break;
		}
	}

	/* migrate uncore events to the new cpu */
	if (target >= 0)
		cpumask_set_cpu(target, &uncore_cpu_mask);

1231 1232
	uncore_change_context(uncore_msr_uncores, cpu, target);
	uncore_change_context(uncore_pci_uncores, cpu, target);
1233 1234
}

1235
static void uncore_event_init_cpu(int cpu)
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
{
	int i, phys_id;

	phys_id = topology_physical_package_id(cpu);
	for_each_cpu(i, &uncore_cpu_mask) {
		if (phys_id == topology_physical_package_id(i))
			return;
	}

	cpumask_set_cpu(cpu, &uncore_cpu_mask);

1247 1248
	uncore_change_context(uncore_msr_uncores, -1, cpu);
	uncore_change_context(uncore_pci_uncores, -1, cpu);
1249 1250
}

1251 1252
static int uncore_cpu_notifier(struct notifier_block *self,
			       unsigned long action, void *hcpu)
1253 1254 1255 1256 1257 1258
{
	unsigned int cpu = (long)hcpu;

	/* allocate/free data structure for uncore box */
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_UP_PREPARE:
1259
		return notifier_from_errno(uncore_cpu_prepare(cpu, -1));
1260 1261 1262 1263 1264 1265 1266
	case CPU_STARTING:
		uncore_cpu_starting(cpu);
		break;
	case CPU_UP_CANCELED:
	case CPU_DYING:
		uncore_cpu_dying(cpu);
		break;
1267 1268 1269 1270
	case CPU_ONLINE:
	case CPU_DEAD:
		uncore_kfree_boxes();
		break;
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
	default:
		break;
	}

	/* select the cpu that collects uncore events */
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_FAILED:
	case CPU_STARTING:
		uncore_event_init_cpu(cpu);
		break;
	case CPU_DOWN_PREPARE:
		uncore_event_exit_cpu(cpu);
		break;
	default:
		break;
	}

	return NOTIFY_OK;
}

1291
static struct notifier_block uncore_cpu_nb = {
1292
	.notifier_call	= uncore_cpu_notifier,
1293 1294 1295 1296
	/*
	 * to migrate uncore events, our notifier should be executed
	 * before perf core's notifier.
	 */
1297
	.priority	= CPU_PRI_PERF + 1,
1298 1299
};

1300
static int __init type_pmu_register(struct intel_uncore_type *type)
1301
{
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
	int i, ret;

	for (i = 0; i < type->num_boxes; i++) {
		ret = uncore_pmu_register(&type->pmus[i]);
		if (ret)
			return ret;
	}
	return 0;
}

static int __init uncore_msr_pmus_register(void)
{
	struct intel_uncore_type **types = uncore_msr_uncores;
	int ret;

	while (*types) {
		ret = type_pmu_register(*types++);
		if (ret)
			return ret;
	}
	return 0;
1323 1324 1325 1326
}

static int __init uncore_cpu_init(void)
{
1327
	int ret;
1328 1329

	switch (boot_cpu_data.x86_model) {
1330 1331 1332 1333
	case 26: /* Nehalem */
	case 30:
	case 37: /* Westmere */
	case 44:
1334
		nhm_uncore_cpu_init();
1335 1336
		break;
	case 42: /* Sandy Bridge */
1337
	case 58: /* Ivy Bridge */
1338 1339 1340 1341 1342
	case 60: /* Haswell */
	case 69: /* Haswell */
	case 70: /* Haswell */
	case 61: /* Broadwell */
	case 71: /* Broadwell */
1343
		snb_uncore_cpu_init();
1344
		break;
1345
	case 45: /* Sandy Bridge-EP */
1346
		snbep_uncore_cpu_init();
1347
		break;
1348 1349
	case 46: /* Nehalem-EX */
	case 47: /* Westmere-EX aka. Xeon E7 */
1350
		nhmex_uncore_cpu_init();
1351
		break;
1352 1353
	case 62: /* Ivy Bridge-EP */
		ivbep_uncore_cpu_init();
1354
		break;
1355 1356 1357
	case 63: /* Haswell-EP */
		hswep_uncore_cpu_init();
		break;
1358
	case 79: /* BDX-EP */
1359 1360 1361
	case 86: /* BDX-DE */
		bdx_uncore_cpu_init();
		break;
1362 1363 1364
	case 87: /* Knights Landing */
		knl_uncore_cpu_init();
		break;
1365 1366 1367 1368
	default:
		return 0;
	}

1369
	ret = uncore_types_init(uncore_msr_uncores);
1370 1371 1372 1373
	if (ret)
		goto err;

	ret = uncore_msr_pmus_register();
1374
	if (ret)
1375
		goto err;
1376
	return 0;
1377 1378 1379 1380
err:
	uncore_types_exit(uncore_msr_uncores);
	uncore_msr_uncores = empty_uncore;
	return ret;
1381 1382
}

1383
static void __init uncore_cpu_setup(void *dummy)
1384
{
1385
	uncore_cpu_starting(smp_processor_id());
1386 1387
}

1388
static int __init uncore_cpumask_init(void)
1389
{
1390
	int cpu, ret = 0;
1391

1392
	cpu_notifier_register_begin();
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405

	for_each_online_cpu(cpu) {
		int i, phys_id = topology_physical_package_id(cpu);

		for_each_cpu(i, &uncore_cpu_mask) {
			if (phys_id == topology_physical_package_id(i)) {
				phys_id = -1;
				break;
			}
		}
		if (phys_id < 0)
			continue;

1406 1407 1408
		ret = uncore_cpu_prepare(cpu, phys_id);
		if (ret)
			goto out;
1409 1410 1411 1412
		uncore_event_init_cpu(cpu);
	}
	on_each_cpu(uncore_cpu_setup, NULL, 1);

1413
	__register_cpu_notifier(&uncore_cpu_nb);
1414

1415
out:
1416
	cpu_notifier_register_done();
1417
	return ret;
1418 1419
}

1420 1421 1422 1423 1424 1425 1426
static int __init intel_uncore_init(void)
{
	int ret;

	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
		return -ENODEV;

1427 1428 1429
	if (cpu_has_hypervisor)
		return -ENODEV;

1430
	ret = uncore_pci_init();
1431
	if (ret)
1432
		return ret;
1433
	ret = uncore_cpu_init();
1434 1435 1436 1437 1438
	if (ret)
		goto errpci;
	ret = uncore_cpumask_init();
	if (ret)
		goto errcpu;
1439 1440

	return 0;
1441 1442 1443 1444 1445

errcpu:
	uncore_types_exit(uncore_msr_uncores);
errpci:
	uncore_pci_exit();
1446 1447 1448
	return ret;
}
device_initcall(intel_uncore_init);