rcutree_plugin.h 67.4 KB
Newer Older
1 2 3
/*
 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
 * Internal non-public definitions that provide either classic
P
Paul E. McKenney 已提交
4
 * or preemptible semantics.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright Red Hat, 2009
 * Copyright IBM Corporation, 2009
 *
 * Author: Ingo Molnar <mingo@elte.hu>
 *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
 */

27
#include <linux/delay.h>
28
#include <linux/stop_machine.h>
29

30 31 32 33 34 35 36 37
#define RCU_KTHREAD_PRIO 1

#ifdef CONFIG_RCU_BOOST
#define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
#else
#define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
#endif

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
/*
 * Check the RCU kernel configuration parameters and print informative
 * messages about anything out of the ordinary.  If you like #ifdef, you
 * will love this function.
 */
static void __init rcu_bootup_announce_oddness(void)
{
#ifdef CONFIG_RCU_TRACE
	printk(KERN_INFO "\tRCU debugfs-based tracing is enabled.\n");
#endif
#if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
	printk(KERN_INFO "\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
	       CONFIG_RCU_FANOUT);
#endif
#ifdef CONFIG_RCU_FANOUT_EXACT
	printk(KERN_INFO "\tHierarchical RCU autobalancing is disabled.\n");
#endif
#ifdef CONFIG_RCU_FAST_NO_HZ
	printk(KERN_INFO
	       "\tRCU dyntick-idle grace-period acceleration is enabled.\n");
#endif
#ifdef CONFIG_PROVE_RCU
	printk(KERN_INFO "\tRCU lockdep checking is enabled.\n");
#endif
#ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
	printk(KERN_INFO "\tRCU torture testing starts during boot.\n");
#endif
65
#if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
66 67 68 69 70 71 72
	printk(KERN_INFO "\tVerbose stalled-CPUs detection is disabled.\n");
#endif
#if NUM_RCU_LVL_4 != 0
	printk(KERN_INFO "\tExperimental four-level hierarchy is enabled.\n");
#endif
}

73 74
#ifdef CONFIG_TREE_PREEMPT_RCU

75
struct rcu_state rcu_preempt_state = RCU_STATE_INITIALIZER(rcu_preempt);
76
DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data);
77
static struct rcu_state *rcu_state = &rcu_preempt_state;
78

79
static void rcu_read_unlock_special(struct task_struct *t);
80 81
static int rcu_preempted_readers_exp(struct rcu_node *rnp);

82 83 84
/*
 * Tell them what RCU they are running.
 */
85
static void __init rcu_bootup_announce(void)
86
{
P
Paul E. McKenney 已提交
87
	printk(KERN_INFO "Preemptible hierarchical RCU implementation.\n");
88
	rcu_bootup_announce_oddness();
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
}

/*
 * Return the number of RCU-preempt batches processed thus far
 * for debug and statistics.
 */
long rcu_batches_completed_preempt(void)
{
	return rcu_preempt_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);

/*
 * Return the number of RCU batches processed thus far for debug & stats.
 */
long rcu_batches_completed(void)
{
	return rcu_batches_completed_preempt();
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

110 111 112 113 114 115 116 117 118
/*
 * Force a quiescent state for preemptible RCU.
 */
void rcu_force_quiescent_state(void)
{
	force_quiescent_state(&rcu_preempt_state, 0);
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

119
/*
P
Paul E. McKenney 已提交
120
 * Record a preemptible-RCU quiescent state for the specified CPU.  Note
121 122 123
 * that this just means that the task currently running on the CPU is
 * not in a quiescent state.  There might be any number of tasks blocked
 * while in an RCU read-side critical section.
124 125 126 127
 *
 * Unlike the other rcu_*_qs() functions, callers to this function
 * must disable irqs in order to protect the assignment to
 * ->rcu_read_unlock_special.
128
 */
129
static void rcu_preempt_qs(int cpu)
130 131
{
	struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
132

133
	rdp->passed_quiesce_gpnum = rdp->gpnum;
134
	barrier();
135
	if (rdp->passed_quiesce == 0)
136
		trace_rcu_grace_period("rcu_preempt", rdp->gpnum, "cpuqs");
137
	rdp->passed_quiesce = 1;
138
	current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
139 140 141
}

/*
142 143 144
 * We have entered the scheduler, and the current task might soon be
 * context-switched away from.  If this task is in an RCU read-side
 * critical section, we will no longer be able to rely on the CPU to
145 146 147 148 149 150
 * record that fact, so we enqueue the task on the blkd_tasks list.
 * The task will dequeue itself when it exits the outermost enclosing
 * RCU read-side critical section.  Therefore, the current grace period
 * cannot be permitted to complete until the blkd_tasks list entries
 * predating the current grace period drain, in other words, until
 * rnp->gp_tasks becomes NULL.
151 152
 *
 * Caller must disable preemption.
153
 */
154
static void rcu_preempt_note_context_switch(int cpu)
155 156
{
	struct task_struct *t = current;
157
	unsigned long flags;
158 159 160
	struct rcu_data *rdp;
	struct rcu_node *rnp;

161
	if (t->rcu_read_lock_nesting > 0 &&
162 163 164
	    (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {

		/* Possibly blocking in an RCU read-side critical section. */
165
		rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
166
		rnp = rdp->mynode;
P
Paul E. McKenney 已提交
167
		raw_spin_lock_irqsave(&rnp->lock, flags);
168
		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
169
		t->rcu_blocked_node = rnp;
170 171 172 173 174 175 176 177 178

		/*
		 * If this CPU has already checked in, then this task
		 * will hold up the next grace period rather than the
		 * current grace period.  Queue the task accordingly.
		 * If the task is queued for the current grace period
		 * (i.e., this CPU has not yet passed through a quiescent
		 * state for the current grace period), then as long
		 * as that task remains queued, the current grace period
179 180 181 182 183 184
		 * cannot end.  Note that there is some uncertainty as
		 * to exactly when the current grace period started.
		 * We take a conservative approach, which can result
		 * in unnecessarily waiting on tasks that started very
		 * slightly after the current grace period began.  C'est
		 * la vie!!!
185 186 187
		 *
		 * But first, note that the current CPU must still be
		 * on line!
188
		 */
189
		WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
190
		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
191 192 193
		if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
			list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
			rnp->gp_tasks = &t->rcu_node_entry;
194 195 196 197
#ifdef CONFIG_RCU_BOOST
			if (rnp->boost_tasks != NULL)
				rnp->boost_tasks = rnp->gp_tasks;
#endif /* #ifdef CONFIG_RCU_BOOST */
198 199 200 201 202
		} else {
			list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
			if (rnp->qsmask & rdp->grpmask)
				rnp->gp_tasks = &t->rcu_node_entry;
		}
203 204 205 206 207
		trace_rcu_preempt_task(rdp->rsp->name,
				       t->pid,
				       (rnp->qsmask & rdp->grpmask)
				       ? rnp->gpnum
				       : rnp->gpnum + 1);
P
Paul E. McKenney 已提交
208
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
209 210 211 212 213 214 215 216
	} else if (t->rcu_read_lock_nesting < 0 &&
		   t->rcu_read_unlock_special) {

		/*
		 * Complete exit from RCU read-side critical section on
		 * behalf of preempted instance of __rcu_read_unlock().
		 */
		rcu_read_unlock_special(t);
217 218 219 220 221 222 223 224 225 226 227
	}

	/*
	 * Either we were not in an RCU read-side critical section to
	 * begin with, or we have now recorded that critical section
	 * globally.  Either way, we can now note a quiescent state
	 * for this CPU.  Again, if we were in an RCU read-side critical
	 * section, and if that critical section was blocking the current
	 * grace period, then the fact that the task has been enqueued
	 * means that we continue to block the current grace period.
	 */
228
	local_irq_save(flags);
229
	rcu_preempt_qs(cpu);
230
	local_irq_restore(flags);
231 232 233
}

/*
P
Paul E. McKenney 已提交
234
 * Tree-preemptible RCU implementation for rcu_read_lock().
235 236 237 238 239
 * Just increment ->rcu_read_lock_nesting, shared state will be updated
 * if we block.
 */
void __rcu_read_lock(void)
{
240
	current->rcu_read_lock_nesting++;
241 242 243 244
	barrier();  /* needed if we ever invoke rcu_read_lock in rcutree.c */
}
EXPORT_SYMBOL_GPL(__rcu_read_lock);

245 246 247 248 249
/*
 * Check for preempted RCU readers blocking the current grace period
 * for the specified rcu_node structure.  If the caller needs a reliable
 * answer, it must hold the rcu_node's ->lock.
 */
250
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
251
{
252
	return rnp->gp_tasks != NULL;
253 254
}

255 256 257 258 259 260 261
/*
 * Record a quiescent state for all tasks that were previously queued
 * on the specified rcu_node structure and that were blocking the current
 * RCU grace period.  The caller must hold the specified rnp->lock with
 * irqs disabled, and this lock is released upon return, but irqs remain
 * disabled.
 */
P
Paul E. McKenney 已提交
262
static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
263 264 265 266 267
	__releases(rnp->lock)
{
	unsigned long mask;
	struct rcu_node *rnp_p;

268
	if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
P
Paul E. McKenney 已提交
269
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
270 271 272 273 274 275 276 277 278 279
		return;  /* Still need more quiescent states! */
	}

	rnp_p = rnp->parent;
	if (rnp_p == NULL) {
		/*
		 * Either there is only one rcu_node in the tree,
		 * or tasks were kicked up to root rcu_node due to
		 * CPUs going offline.
		 */
P
Paul E. McKenney 已提交
280
		rcu_report_qs_rsp(&rcu_preempt_state, flags);
281 282 283 284 285
		return;
	}

	/* Report up the rest of the hierarchy. */
	mask = rnp->grpmask;
P
Paul E. McKenney 已提交
286 287
	raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
	raw_spin_lock(&rnp_p->lock);	/* irqs already disabled. */
P
Paul E. McKenney 已提交
288
	rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
289 290
}

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
/*
 * Advance a ->blkd_tasks-list pointer to the next entry, instead
 * returning NULL if at the end of the list.
 */
static struct list_head *rcu_next_node_entry(struct task_struct *t,
					     struct rcu_node *rnp)
{
	struct list_head *np;

	np = t->rcu_node_entry.next;
	if (np == &rnp->blkd_tasks)
		np = NULL;
	return np;
}

306 307 308 309 310
/*
 * Handle special cases during rcu_read_unlock(), such as needing to
 * notify RCU core processing or task having blocked during the RCU
 * read-side critical section.
 */
311
static noinline void rcu_read_unlock_special(struct task_struct *t)
312 313
{
	int empty;
314
	int empty_exp;
315
	int empty_exp_now;
316
	unsigned long flags;
317
	struct list_head *np;
318 319 320
#ifdef CONFIG_RCU_BOOST
	struct rt_mutex *rbmp = NULL;
#endif /* #ifdef CONFIG_RCU_BOOST */
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
	struct rcu_node *rnp;
	int special;

	/* NMI handlers cannot block and cannot safely manipulate state. */
	if (in_nmi())
		return;

	local_irq_save(flags);

	/*
	 * If RCU core is waiting for this CPU to exit critical section,
	 * let it know that we have done so.
	 */
	special = t->rcu_read_unlock_special;
	if (special & RCU_READ_UNLOCK_NEED_QS) {
336
		rcu_preempt_qs(smp_processor_id());
337 338 339
	}

	/* Hardware IRQ handlers cannot block. */
340
	if (in_irq() || in_serving_softirq()) {
341 342 343 344 345 346 347 348
		local_irq_restore(flags);
		return;
	}

	/* Clean up if blocked during RCU read-side critical section. */
	if (special & RCU_READ_UNLOCK_BLOCKED) {
		t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;

349 350 351 352 353 354
		/*
		 * Remove this task from the list it blocked on.  The
		 * task can migrate while we acquire the lock, but at
		 * most one time.  So at most two passes through loop.
		 */
		for (;;) {
355
			rnp = t->rcu_blocked_node;
P
Paul E. McKenney 已提交
356
			raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
357
			if (rnp == t->rcu_blocked_node)
358
				break;
P
Paul E. McKenney 已提交
359
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
360
		}
361
		empty = !rcu_preempt_blocked_readers_cgp(rnp);
362 363
		empty_exp = !rcu_preempted_readers_exp(rnp);
		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
364
		np = rcu_next_node_entry(t, rnp);
365
		list_del_init(&t->rcu_node_entry);
366
		t->rcu_blocked_node = NULL;
367 368
		trace_rcu_unlock_preempted_task("rcu_preempt",
						rnp->gpnum, t->pid);
369 370 371 372
		if (&t->rcu_node_entry == rnp->gp_tasks)
			rnp->gp_tasks = np;
		if (&t->rcu_node_entry == rnp->exp_tasks)
			rnp->exp_tasks = np;
373 374 375
#ifdef CONFIG_RCU_BOOST
		if (&t->rcu_node_entry == rnp->boost_tasks)
			rnp->boost_tasks = np;
376 377 378 379
		/* Snapshot/clear ->rcu_boost_mutex with rcu_node lock held. */
		if (t->rcu_boost_mutex) {
			rbmp = t->rcu_boost_mutex;
			t->rcu_boost_mutex = NULL;
380
		}
381
#endif /* #ifdef CONFIG_RCU_BOOST */
382 383 384 385

		/*
		 * If this was the last task on the current list, and if
		 * we aren't waiting on any CPUs, report the quiescent state.
386 387
		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
		 * so we must take a snapshot of the expedited state.
388
		 */
389
		empty_exp_now = !rcu_preempted_readers_exp(rnp);
390 391 392 393 394 395 396 397
		if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
			trace_rcu_quiescent_state_report("preempt_rcu",
							 rnp->gpnum,
							 0, rnp->qsmask,
							 rnp->level,
							 rnp->grplo,
							 rnp->grphi,
							 !!rnp->gp_tasks);
P
Paul E. McKenney 已提交
398
			rcu_report_unblock_qs_rnp(rnp, flags);
399 400
		} else
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
401

402 403
#ifdef CONFIG_RCU_BOOST
		/* Unboost if we were boosted. */
404 405
		if (rbmp)
			rt_mutex_unlock(rbmp);
406 407
#endif /* #ifdef CONFIG_RCU_BOOST */

408 409 410 411
		/*
		 * If this was the last task on the expedited lists,
		 * then we need to report up the rcu_node hierarchy.
		 */
412
		if (!empty_exp && empty_exp_now)
413
			rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
414 415
	} else {
		local_irq_restore(flags);
416 417 418 419
	}
}

/*
P
Paul E. McKenney 已提交
420
 * Tree-preemptible RCU implementation for rcu_read_unlock().
421 422 423 424 425 426 427 428 429
 * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
 * invoke rcu_read_unlock_special() to clean up after a context switch
 * in an RCU read-side critical section and other special cases.
 */
void __rcu_read_unlock(void)
{
	struct task_struct *t = current;

430 431 432
	if (t->rcu_read_lock_nesting != 1)
		--t->rcu_read_lock_nesting;
	else {
433
		barrier();  /* critical section before exit code. */
434 435
		t->rcu_read_lock_nesting = INT_MIN;
		barrier();  /* assign before ->rcu_read_unlock_special load */
436 437
		if (unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
			rcu_read_unlock_special(t);
438 439
		barrier();  /* ->rcu_read_unlock_special load before assign */
		t->rcu_read_lock_nesting = 0;
440
	}
441
#ifdef CONFIG_PROVE_LOCKING
442 443 444 445 446
	{
		int rrln = ACCESS_ONCE(t->rcu_read_lock_nesting);

		WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
	}
447
#endif /* #ifdef CONFIG_PROVE_LOCKING */
448 449 450
}
EXPORT_SYMBOL_GPL(__rcu_read_unlock);

451 452 453 454 455 456 457 458 459 460 461
#ifdef CONFIG_RCU_CPU_STALL_VERBOSE

/*
 * Dump detailed information for all tasks blocking the current RCU
 * grace period on the specified rcu_node structure.
 */
static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
{
	unsigned long flags;
	struct task_struct *t;

462
	if (!rcu_preempt_blocked_readers_cgp(rnp))
463 464 465 466 467 468 469
		return;
	raw_spin_lock_irqsave(&rnp->lock, flags);
	t = list_entry(rnp->gp_tasks,
		       struct task_struct, rcu_node_entry);
	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
		sched_show_task(t);
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
}

/*
 * Dump detailed information for all tasks blocking the current RCU
 * grace period.
 */
static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);

	rcu_print_detail_task_stall_rnp(rnp);
	rcu_for_each_leaf_node(rsp, rnp)
		rcu_print_detail_task_stall_rnp(rnp);
}

#else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */

static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
}

#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */

493 494 495 496
/*
 * Scan the current list of tasks blocked within RCU read-side critical
 * sections, printing out the tid of each.
 */
497
static int rcu_print_task_stall(struct rcu_node *rnp)
498 499
{
	struct task_struct *t;
500
	int ndetected = 0;
501

502
	if (!rcu_preempt_blocked_readers_cgp(rnp))
503
		return 0;
504 505
	t = list_entry(rnp->gp_tasks,
		       struct task_struct, rcu_node_entry);
506
	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
507
		printk(" P%d", t->pid);
508 509 510
		ndetected++;
	}
	return ndetected;
511 512
}

513 514 515 516 517 518 519 520 521 522
/*
 * Suppress preemptible RCU's CPU stall warnings by pushing the
 * time of the next stall-warning message comfortably far into the
 * future.
 */
static void rcu_preempt_stall_reset(void)
{
	rcu_preempt_state.jiffies_stall = jiffies + ULONG_MAX / 2;
}

523 524 525 526 527 528
/*
 * Check that the list of blocked tasks for the newly completed grace
 * period is in fact empty.  It is a serious bug to complete a grace
 * period that still has RCU readers blocked!  This function must be
 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
 * must be held by the caller.
529 530 531
 *
 * Also, if there are blocked tasks on the list, they automatically
 * block the newly created grace period, so set up ->gp_tasks accordingly.
532 533 534
 */
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
535
	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
536 537
	if (!list_empty(&rnp->blkd_tasks))
		rnp->gp_tasks = rnp->blkd_tasks.next;
538
	WARN_ON_ONCE(rnp->qsmask);
539 540
}

541 542
#ifdef CONFIG_HOTPLUG_CPU

543 544 545 546 547 548
/*
 * Handle tasklist migration for case in which all CPUs covered by the
 * specified rcu_node have gone offline.  Move them up to the root
 * rcu_node.  The reason for not just moving them to the immediate
 * parent is to remove the need for rcu_read_unlock_special() to
 * make more than two attempts to acquire the target rcu_node's lock.
549 550
 * Returns true if there were tasks blocking the current RCU grace
 * period.
551
 *
552 553 554
 * Returns 1 if there was previously a task blocking the current grace
 * period on the specified rcu_node structure.
 *
555 556
 * The caller must hold rnp->lock with irqs disabled.
 */
557 558 559
static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
				     struct rcu_node *rnp,
				     struct rcu_data *rdp)
560 561 562
{
	struct list_head *lp;
	struct list_head *lp_root;
563
	int retval = 0;
564
	struct rcu_node *rnp_root = rcu_get_root(rsp);
565
	struct task_struct *t;
566

567 568
	if (rnp == rnp_root) {
		WARN_ONCE(1, "Last CPU thought to be offlined?");
569
		return 0;  /* Shouldn't happen: at least one CPU online. */
570
	}
571 572 573

	/* If we are on an internal node, complain bitterly. */
	WARN_ON_ONCE(rnp != rdp->mynode);
574 575

	/*
576 577 578 579 580 581 582
	 * Move tasks up to root rcu_node.  Don't try to get fancy for
	 * this corner-case operation -- just put this node's tasks
	 * at the head of the root node's list, and update the root node's
	 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
	 * if non-NULL.  This might result in waiting for more tasks than
	 * absolutely necessary, but this is a good performance/complexity
	 * tradeoff.
583
	 */
584
	if (rcu_preempt_blocked_readers_cgp(rnp))
585 586 587
		retval |= RCU_OFL_TASKS_NORM_GP;
	if (rcu_preempted_readers_exp(rnp))
		retval |= RCU_OFL_TASKS_EXP_GP;
588 589 590 591 592 593 594 595 596 597 598 599
	lp = &rnp->blkd_tasks;
	lp_root = &rnp_root->blkd_tasks;
	while (!list_empty(lp)) {
		t = list_entry(lp->next, typeof(*t), rcu_node_entry);
		raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
		list_del(&t->rcu_node_entry);
		t->rcu_blocked_node = rnp_root;
		list_add(&t->rcu_node_entry, lp_root);
		if (&t->rcu_node_entry == rnp->gp_tasks)
			rnp_root->gp_tasks = rnp->gp_tasks;
		if (&t->rcu_node_entry == rnp->exp_tasks)
			rnp_root->exp_tasks = rnp->exp_tasks;
600 601 602 603
#ifdef CONFIG_RCU_BOOST
		if (&t->rcu_node_entry == rnp->boost_tasks)
			rnp_root->boost_tasks = rnp->boost_tasks;
#endif /* #ifdef CONFIG_RCU_BOOST */
604
		raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
605
	}
606 607 608 609 610 611 612 613 614 615

#ifdef CONFIG_RCU_BOOST
	/* In case root is being boosted and leaf is not. */
	raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
	if (rnp_root->boost_tasks != NULL &&
	    rnp_root->boost_tasks != rnp_root->gp_tasks)
		rnp_root->boost_tasks = rnp_root->gp_tasks;
	raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
#endif /* #ifdef CONFIG_RCU_BOOST */

616 617
	rnp->gp_tasks = NULL;
	rnp->exp_tasks = NULL;
618
	return retval;
619 620
}

621 622
#endif /* #ifdef CONFIG_HOTPLUG_CPU */

623
/*
P
Paul E. McKenney 已提交
624
 * Do CPU-offline processing for preemptible RCU.
625
 */
626
static void rcu_preempt_cleanup_dead_cpu(int cpu)
627
{
628
	rcu_cleanup_dead_cpu(cpu, &rcu_preempt_state);
629 630
}

631 632 633 634 635 636 637 638 639 640 641 642
/*
 * Check for a quiescent state from the current CPU.  When a task blocks,
 * the task is recorded in the corresponding CPU's rcu_node structure,
 * which is checked elsewhere.
 *
 * Caller must disable hard irqs.
 */
static void rcu_preempt_check_callbacks(int cpu)
{
	struct task_struct *t = current;

	if (t->rcu_read_lock_nesting == 0) {
643
		rcu_preempt_qs(cpu);
644 645
		return;
	}
646 647
	if (t->rcu_read_lock_nesting > 0 &&
	    per_cpu(rcu_preempt_data, cpu).qs_pending)
648
		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
649 650 651
}

/*
P
Paul E. McKenney 已提交
652
 * Process callbacks for preemptible RCU.
653 654 655 656 657 658 659
 */
static void rcu_preempt_process_callbacks(void)
{
	__rcu_process_callbacks(&rcu_preempt_state,
				&__get_cpu_var(rcu_preempt_data));
}

660 661
#ifdef CONFIG_RCU_BOOST

662 663 664 665 666
static void rcu_preempt_do_callbacks(void)
{
	rcu_do_batch(&rcu_preempt_state, &__get_cpu_var(rcu_preempt_data));
}

667 668
#endif /* #ifdef CONFIG_RCU_BOOST */

669
/*
P
Paul E. McKenney 已提交
670
 * Queue a preemptible-RCU callback for invocation after a grace period.
671 672 673
 */
void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
674
	__call_rcu(head, func, &rcu_preempt_state, 0);
675 676 677
}
EXPORT_SYMBOL_GPL(call_rcu);

678 679 680 681 682 683 684 685 686 687 688 689 690 691
/*
 * Queue an RCU callback for lazy invocation after a grace period.
 * This will likely be later named something like "call_rcu_lazy()",
 * but this change will require some way of tagging the lazy RCU
 * callbacks in the list of pending callbacks.  Until then, this
 * function may only be called from __kfree_rcu().
 */
void kfree_call_rcu(struct rcu_head *head,
		    void (*func)(struct rcu_head *rcu))
{
	__call_rcu(head, func, &rcu_preempt_state, 1);
}
EXPORT_SYMBOL_GPL(kfree_call_rcu);

692 693 694 695 696
/**
 * synchronize_rcu - wait until a grace period has elapsed.
 *
 * Control will return to the caller some time after a full grace
 * period has elapsed, in other words after all currently executing RCU
697 698 699 700 701
 * read-side critical sections have completed.  Note, however, that
 * upon return from synchronize_rcu(), the caller might well be executing
 * concurrently with new RCU read-side critical sections that began while
 * synchronize_rcu() was waiting.  RCU read-side critical sections are
 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
702 703 704
 */
void synchronize_rcu(void)
{
705 706 707 708
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_rcu() in RCU read-side critical section");
709 710
	if (!rcu_scheduler_active)
		return;
711
	wait_rcu_gp(call_rcu);
712 713 714
}
EXPORT_SYMBOL_GPL(synchronize_rcu);

715 716 717 718 719 720 721 722 723 724 725 726
static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
static long sync_rcu_preempt_exp_count;
static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);

/*
 * Return non-zero if there are any tasks in RCU read-side critical
 * sections blocking the current preemptible-RCU expedited grace period.
 * If there is no preemptible-RCU expedited grace period currently in
 * progress, returns zero unconditionally.
 */
static int rcu_preempted_readers_exp(struct rcu_node *rnp)
{
727
	return rnp->exp_tasks != NULL;
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
}

/*
 * return non-zero if there is no RCU expedited grace period in progress
 * for the specified rcu_node structure, in other words, if all CPUs and
 * tasks covered by the specified rcu_node structure have done their bit
 * for the current expedited grace period.  Works only for preemptible
 * RCU -- other RCU implementation use other means.
 *
 * Caller must hold sync_rcu_preempt_exp_mutex.
 */
static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
{
	return !rcu_preempted_readers_exp(rnp) &&
	       ACCESS_ONCE(rnp->expmask) == 0;
}

/*
 * Report the exit from RCU read-side critical section for the last task
 * that queued itself during or before the current expedited preemptible-RCU
 * grace period.  This event is reported either to the rcu_node structure on
 * which the task was queued or to one of that rcu_node structure's ancestors,
 * recursively up the tree.  (Calm down, calm down, we do the recursion
 * iteratively!)
 *
753 754 755
 * Most callers will set the "wake" flag, but the task initiating the
 * expedited grace period need not wake itself.
 *
756 757
 * Caller must hold sync_rcu_preempt_exp_mutex.
 */
758 759
static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
			       bool wake)
760 761 762 763
{
	unsigned long flags;
	unsigned long mask;

P
Paul E. McKenney 已提交
764
	raw_spin_lock_irqsave(&rnp->lock, flags);
765
	for (;;) {
766 767
		if (!sync_rcu_preempt_exp_done(rnp)) {
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
768
			break;
769
		}
770
		if (rnp->parent == NULL) {
771
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
772 773
			if (wake)
				wake_up(&sync_rcu_preempt_exp_wq);
774 775 776
			break;
		}
		mask = rnp->grpmask;
P
Paul E. McKenney 已提交
777
		raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
778
		rnp = rnp->parent;
P
Paul E. McKenney 已提交
779
		raw_spin_lock(&rnp->lock); /* irqs already disabled */
780 781 782 783 784 785 786 787 788 789 790 791 792 793
		rnp->expmask &= ~mask;
	}
}

/*
 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
 * grace period for the specified rcu_node structure.  If there are no such
 * tasks, report it up the rcu_node hierarchy.
 *
 * Caller must hold sync_rcu_preempt_exp_mutex and rsp->onofflock.
 */
static void
sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
{
794
	unsigned long flags;
795
	int must_wait = 0;
796

797 798 799 800
	raw_spin_lock_irqsave(&rnp->lock, flags);
	if (list_empty(&rnp->blkd_tasks))
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	else {
801
		rnp->exp_tasks = rnp->blkd_tasks.next;
802
		rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
803 804
		must_wait = 1;
	}
805
	if (!must_wait)
806
		rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
807 808
}

809
/*
810 811
 * Wait for an rcu-preempt grace period, but expedite it.  The basic idea
 * is to invoke synchronize_sched_expedited() to push all the tasks to
812
 * the ->blkd_tasks lists and wait for this list to drain.
813 814 815
 */
void synchronize_rcu_expedited(void)
{
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
	unsigned long flags;
	struct rcu_node *rnp;
	struct rcu_state *rsp = &rcu_preempt_state;
	long snap;
	int trycount = 0;

	smp_mb(); /* Caller's modifications seen first by other CPUs. */
	snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
	smp_mb(); /* Above access cannot bleed into critical section. */

	/*
	 * Acquire lock, falling back to synchronize_rcu() if too many
	 * lock-acquisition failures.  Of course, if someone does the
	 * expedited grace period for us, just leave.
	 */
	while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_rcu();
			return;
		}
		if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
			goto mb_ret; /* Others did our work for us. */
	}
	if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
		goto unlock_mb_ret; /* Others did our work for us. */

844
	/* force all RCU readers onto ->blkd_tasks lists. */
845 846
	synchronize_sched_expedited();

P
Paul E. McKenney 已提交
847
	raw_spin_lock_irqsave(&rsp->onofflock, flags);
848 849 850

	/* Initialize ->expmask for all non-leaf rcu_node structures. */
	rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
P
Paul E. McKenney 已提交
851
		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
852
		rnp->expmask = rnp->qsmaskinit;
P
Paul E. McKenney 已提交
853
		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
854 855
	}

856
	/* Snapshot current state of ->blkd_tasks lists. */
857 858 859 860 861
	rcu_for_each_leaf_node(rsp, rnp)
		sync_rcu_preempt_exp_init(rsp, rnp);
	if (NUM_RCU_NODES > 1)
		sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));

P
Paul E. McKenney 已提交
862
	raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
863

864
	/* Wait for snapshotted ->blkd_tasks lists to drain. */
865 866 867 868 869 870 871 872 873 874 875
	rnp = rcu_get_root(rsp);
	wait_event(sync_rcu_preempt_exp_wq,
		   sync_rcu_preempt_exp_done(rnp));

	/* Clean up and exit. */
	smp_mb(); /* ensure expedited GP seen before counter increment. */
	ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
unlock_mb_ret:
	mutex_unlock(&sync_rcu_preempt_exp_mutex);
mb_ret:
	smp_mb(); /* ensure subsequent action seen after grace period. */
876 877 878
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);

879
/*
P
Paul E. McKenney 已提交
880
 * Check to see if there is any immediate preemptible-RCU-related work
881 882 883 884 885 886 887 888 889
 * to be done.
 */
static int rcu_preempt_pending(int cpu)
{
	return __rcu_pending(&rcu_preempt_state,
			     &per_cpu(rcu_preempt_data, cpu));
}

/*
P
Paul E. McKenney 已提交
890
 * Does preemptible RCU need the CPU to stay out of dynticks mode?
891 892 893 894 895 896
 */
static int rcu_preempt_needs_cpu(int cpu)
{
	return !!per_cpu(rcu_preempt_data, cpu).nxtlist;
}

897 898 899 900 901 902 903 904 905
/**
 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
 */
void rcu_barrier(void)
{
	_rcu_barrier(&rcu_preempt_state, call_rcu);
}
EXPORT_SYMBOL_GPL(rcu_barrier);

906
/*
P
Paul E. McKenney 已提交
907
 * Initialize preemptible RCU's per-CPU data.
908 909 910 911 912 913
 */
static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
{
	rcu_init_percpu_data(cpu, &rcu_preempt_state, 1);
}

914
/*
915 916
 * Move preemptible RCU's callbacks from dying CPU to other online CPU
 * and record a quiescent state.
917
 */
918
static void rcu_preempt_cleanup_dying_cpu(void)
919
{
920
	rcu_cleanup_dying_cpu(&rcu_preempt_state);
921 922
}

923
/*
P
Paul E. McKenney 已提交
924
 * Initialize preemptible RCU's state structures.
925 926 927
 */
static void __init __rcu_init_preempt(void)
{
928
	rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
929 930
}

931
/*
P
Paul E. McKenney 已提交
932
 * Check for a task exiting while in a preemptible-RCU read-side
933 934 935 936 937 938 939 940 941 942 943
 * critical section, clean up if so.  No need to issue warnings,
 * as debug_check_no_locks_held() already does this if lockdep
 * is enabled.
 */
void exit_rcu(void)
{
	struct task_struct *t = current;

	if (t->rcu_read_lock_nesting == 0)
		return;
	t->rcu_read_lock_nesting = 1;
944
	__rcu_read_unlock();
945 946 947 948
}

#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */

949 950
static struct rcu_state *rcu_state = &rcu_sched_state;

951 952 953
/*
 * Tell them what RCU they are running.
 */
954
static void __init rcu_bootup_announce(void)
955 956
{
	printk(KERN_INFO "Hierarchical RCU implementation.\n");
957
	rcu_bootup_announce_oddness();
958 959 960 961 962 963 964 965 966 967 968
}

/*
 * Return the number of RCU batches processed thus far for debug & stats.
 */
long rcu_batches_completed(void)
{
	return rcu_batches_completed_sched();
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

969 970 971 972 973 974 975 976 977 978
/*
 * Force a quiescent state for RCU, which, because there is no preemptible
 * RCU, becomes the same as rcu-sched.
 */
void rcu_force_quiescent_state(void)
{
	rcu_sched_force_quiescent_state();
}
EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);

979
/*
P
Paul E. McKenney 已提交
980
 * Because preemptible RCU does not exist, we never have to check for
981 982
 * CPUs being in quiescent states.
 */
983
static void rcu_preempt_note_context_switch(int cpu)
984 985 986
{
}

987
/*
P
Paul E. McKenney 已提交
988
 * Because preemptible RCU does not exist, there are never any preempted
989 990
 * RCU readers.
 */
991
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
992 993 994 995
{
	return 0;
}

996 997 998
#ifdef CONFIG_HOTPLUG_CPU

/* Because preemptible RCU does not exist, no quieting of tasks. */
P
Paul E. McKenney 已提交
999
static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1000
{
P
Paul E. McKenney 已提交
1001
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1002 1003 1004 1005
}

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

1006
/*
P
Paul E. McKenney 已提交
1007
 * Because preemptible RCU does not exist, we never have to check for
1008 1009 1010 1011 1012 1013
 * tasks blocked within RCU read-side critical sections.
 */
static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
}

1014
/*
P
Paul E. McKenney 已提交
1015
 * Because preemptible RCU does not exist, we never have to check for
1016 1017
 * tasks blocked within RCU read-side critical sections.
 */
1018
static int rcu_print_task_stall(struct rcu_node *rnp)
1019
{
1020
	return 0;
1021 1022
}

1023 1024 1025 1026 1027 1028 1029 1030
/*
 * Because preemptible RCU does not exist, there is no need to suppress
 * its CPU stall warnings.
 */
static void rcu_preempt_stall_reset(void)
{
}

1031
/*
P
Paul E. McKenney 已提交
1032
 * Because there is no preemptible RCU, there can be no readers blocked,
1033 1034
 * so there is no need to check for blocked tasks.  So check only for
 * bogus qsmask values.
1035 1036 1037
 */
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
1038
	WARN_ON_ONCE(rnp->qsmask);
1039 1040
}

1041 1042
#ifdef CONFIG_HOTPLUG_CPU

1043
/*
P
Paul E. McKenney 已提交
1044
 * Because preemptible RCU does not exist, it never needs to migrate
1045 1046 1047
 * tasks that were blocked within RCU read-side critical sections, and
 * such non-existent tasks cannot possibly have been blocking the current
 * grace period.
1048
 */
1049 1050 1051
static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
				     struct rcu_node *rnp,
				     struct rcu_data *rdp)
1052
{
1053
	return 0;
1054 1055
}

1056 1057
#endif /* #ifdef CONFIG_HOTPLUG_CPU */

1058
/*
P
Paul E. McKenney 已提交
1059
 * Because preemptible RCU does not exist, it never needs CPU-offline
1060 1061
 * processing.
 */
1062
static void rcu_preempt_cleanup_dead_cpu(int cpu)
1063 1064 1065
{
}

1066
/*
P
Paul E. McKenney 已提交
1067
 * Because preemptible RCU does not exist, it never has any callbacks
1068 1069
 * to check.
 */
1070
static void rcu_preempt_check_callbacks(int cpu)
1071 1072 1073 1074
{
}

/*
P
Paul E. McKenney 已提交
1075
 * Because preemptible RCU does not exist, it never has any callbacks
1076 1077
 * to process.
 */
1078
static void rcu_preempt_process_callbacks(void)
1079 1080 1081
{
}

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
/*
 * Queue an RCU callback for lazy invocation after a grace period.
 * This will likely be later named something like "call_rcu_lazy()",
 * but this change will require some way of tagging the lazy RCU
 * callbacks in the list of pending callbacks.  Until then, this
 * function may only be called from __kfree_rcu().
 *
 * Because there is no preemptible RCU, we use RCU-sched instead.
 */
void kfree_call_rcu(struct rcu_head *head,
		    void (*func)(struct rcu_head *rcu))
{
	__call_rcu(head, func, &rcu_sched_state, 1);
}
EXPORT_SYMBOL_GPL(kfree_call_rcu);

1098 1099
/*
 * Wait for an rcu-preempt grace period, but make it happen quickly.
P
Paul E. McKenney 已提交
1100
 * But because preemptible RCU does not exist, map to rcu-sched.
1101 1102 1103 1104 1105 1106 1107
 */
void synchronize_rcu_expedited(void)
{
	synchronize_sched_expedited();
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);

1108 1109 1110
#ifdef CONFIG_HOTPLUG_CPU

/*
P
Paul E. McKenney 已提交
1111
 * Because preemptible RCU does not exist, there is never any need to
1112 1113 1114
 * report on tasks preempted in RCU read-side critical sections during
 * expedited RCU grace periods.
 */
1115 1116
static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
			       bool wake)
1117 1118 1119 1120 1121
{
}

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

1122
/*
P
Paul E. McKenney 已提交
1123
 * Because preemptible RCU does not exist, it never has any work to do.
1124 1125 1126 1127 1128 1129 1130
 */
static int rcu_preempt_pending(int cpu)
{
	return 0;
}

/*
P
Paul E. McKenney 已提交
1131
 * Because preemptible RCU does not exist, it never needs any CPU.
1132 1133 1134 1135 1136 1137
 */
static int rcu_preempt_needs_cpu(int cpu)
{
	return 0;
}

1138
/*
P
Paul E. McKenney 已提交
1139
 * Because preemptible RCU does not exist, rcu_barrier() is just
1140 1141 1142 1143 1144 1145 1146 1147
 * another name for rcu_barrier_sched().
 */
void rcu_barrier(void)
{
	rcu_barrier_sched();
}
EXPORT_SYMBOL_GPL(rcu_barrier);

1148
/*
P
Paul E. McKenney 已提交
1149
 * Because preemptible RCU does not exist, there is no per-CPU
1150 1151 1152 1153 1154 1155
 * data to initialize.
 */
static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
{
}

1156
/*
1157
 * Because there is no preemptible RCU, there is no cleanup to do.
1158
 */
1159
static void rcu_preempt_cleanup_dying_cpu(void)
1160 1161 1162
{
}

1163
/*
P
Paul E. McKenney 已提交
1164
 * Because preemptible RCU does not exist, it need not be initialized.
1165 1166 1167 1168 1169
 */
static void __init __rcu_init_preempt(void)
{
}

1170
#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1171

1172 1173 1174 1175
#ifdef CONFIG_RCU_BOOST

#include "rtmutex_common.h"

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
#ifdef CONFIG_RCU_TRACE

static void rcu_initiate_boost_trace(struct rcu_node *rnp)
{
	if (list_empty(&rnp->blkd_tasks))
		rnp->n_balk_blkd_tasks++;
	else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
		rnp->n_balk_exp_gp_tasks++;
	else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
		rnp->n_balk_boost_tasks++;
	else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
		rnp->n_balk_notblocked++;
	else if (rnp->gp_tasks != NULL &&
1189
		 ULONG_CMP_LT(jiffies, rnp->boost_time))
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
		rnp->n_balk_notyet++;
	else
		rnp->n_balk_nos++;
}

#else /* #ifdef CONFIG_RCU_TRACE */

static void rcu_initiate_boost_trace(struct rcu_node *rnp)
{
}

#endif /* #else #ifdef CONFIG_RCU_TRACE */

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
/*
 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
 * or ->boost_tasks, advancing the pointer to the next task in the
 * ->blkd_tasks list.
 *
 * Note that irqs must be enabled: boosting the task can block.
 * Returns 1 if there are more tasks needing to be boosted.
 */
static int rcu_boost(struct rcu_node *rnp)
{
	unsigned long flags;
	struct rt_mutex mtx;
	struct task_struct *t;
	struct list_head *tb;

	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
		return 0;  /* Nothing left to boost. */

	raw_spin_lock_irqsave(&rnp->lock, flags);

	/*
	 * Recheck under the lock: all tasks in need of boosting
	 * might exit their RCU read-side critical sections on their own.
	 */
	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return 0;
	}

	/*
	 * Preferentially boost tasks blocking expedited grace periods.
	 * This cannot starve the normal grace periods because a second
	 * expedited grace period must boost all blocked tasks, including
	 * those blocking the pre-existing normal grace period.
	 */
1238
	if (rnp->exp_tasks != NULL) {
1239
		tb = rnp->exp_tasks;
1240 1241
		rnp->n_exp_boosts++;
	} else {
1242
		tb = rnp->boost_tasks;
1243 1244 1245
		rnp->n_normal_boosts++;
	}
	rnp->n_tasks_boosted++;
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269

	/*
	 * We boost task t by manufacturing an rt_mutex that appears to
	 * be held by task t.  We leave a pointer to that rt_mutex where
	 * task t can find it, and task t will release the mutex when it
	 * exits its outermost RCU read-side critical section.  Then
	 * simply acquiring this artificial rt_mutex will boost task
	 * t's priority.  (Thanks to tglx for suggesting this approach!)
	 *
	 * Note that task t must acquire rnp->lock to remove itself from
	 * the ->blkd_tasks list, which it will do from exit() if from
	 * nowhere else.  We therefore are guaranteed that task t will
	 * stay around at least until we drop rnp->lock.  Note that
	 * rnp->lock also resolves races between our priority boosting
	 * and task t's exiting its outermost RCU read-side critical
	 * section.
	 */
	t = container_of(tb, struct task_struct, rcu_node_entry);
	rt_mutex_init_proxy_locked(&mtx, t);
	t->rcu_boost_mutex = &mtx;
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
	rt_mutex_lock(&mtx);  /* Side effect: boosts task t's priority. */
	rt_mutex_unlock(&mtx);  /* Keep lockdep happy. */

1270 1271
	return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
	       ACCESS_ONCE(rnp->boost_tasks) != NULL;
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
}

/*
 * Timer handler to initiate waking up of boost kthreads that
 * have yielded the CPU due to excessive numbers of tasks to
 * boost.  We wake up the per-rcu_node kthread, which in turn
 * will wake up the booster kthread.
 */
static void rcu_boost_kthread_timer(unsigned long arg)
{
1282
	invoke_rcu_node_kthread((struct rcu_node *)arg);
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
}

/*
 * Priority-boosting kthread.  One per leaf rcu_node and one for the
 * root rcu_node.
 */
static int rcu_boost_kthread(void *arg)
{
	struct rcu_node *rnp = (struct rcu_node *)arg;
	int spincnt = 0;
	int more2boost;

1295
	trace_rcu_utilization("Start boost kthread@init");
1296
	for (;;) {
1297
		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1298
		trace_rcu_utilization("End boost kthread@rcu_wait");
1299
		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1300
		trace_rcu_utilization("Start boost kthread@rcu_wait");
1301
		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1302 1303 1304 1305 1306 1307
		more2boost = rcu_boost(rnp);
		if (more2boost)
			spincnt++;
		else
			spincnt = 0;
		if (spincnt > 10) {
1308
			trace_rcu_utilization("End boost kthread@rcu_yield");
1309
			rcu_yield(rcu_boost_kthread_timer, (unsigned long)rnp);
1310
			trace_rcu_utilization("Start boost kthread@rcu_yield");
1311 1312 1313
			spincnt = 0;
		}
	}
1314
	/* NOTREACHED */
1315
	trace_rcu_utilization("End boost kthread@notreached");
1316 1317 1318 1319 1320 1321 1322 1323 1324
	return 0;
}

/*
 * Check to see if it is time to start boosting RCU readers that are
 * blocking the current grace period, and, if so, tell the per-rcu_node
 * kthread to start boosting them.  If there is an expedited grace
 * period in progress, it is always time to boost.
 *
1325 1326 1327
 * The caller must hold rnp->lock, which this function releases,
 * but irqs remain disabled.  The ->boost_kthread_task is immortal,
 * so we don't need to worry about it going away.
1328
 */
1329
static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1330 1331 1332
{
	struct task_struct *t;

1333 1334
	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
		rnp->n_balk_exp_gp_tasks++;
1335
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1336
		return;
1337
	}
1338 1339 1340 1341 1342 1343 1344
	if (rnp->exp_tasks != NULL ||
	    (rnp->gp_tasks != NULL &&
	     rnp->boost_tasks == NULL &&
	     rnp->qsmask == 0 &&
	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
		if (rnp->exp_tasks == NULL)
			rnp->boost_tasks = rnp->gp_tasks;
1345
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1346 1347 1348
		t = rnp->boost_kthread_task;
		if (t != NULL)
			wake_up_process(t);
1349
	} else {
1350
		rcu_initiate_boost_trace(rnp);
1351 1352
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
1353 1354
}

1355 1356 1357 1358 1359 1360 1361 1362 1363
/*
 * Wake up the per-CPU kthread to invoke RCU callbacks.
 */
static void invoke_rcu_callbacks_kthread(void)
{
	unsigned long flags;

	local_irq_save(flags);
	__this_cpu_write(rcu_cpu_has_work, 1);
1364 1365 1366
	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
	    current != __this_cpu_read(rcu_cpu_kthread_task))
		wake_up_process(__this_cpu_read(rcu_cpu_kthread_task));
1367 1368 1369
	local_irq_restore(flags);
}

1370 1371 1372 1373 1374 1375 1376 1377 1378
/*
 * Is the current CPU running the RCU-callbacks kthread?
 * Caller must have preemption disabled.
 */
static bool rcu_is_callbacks_kthread(void)
{
	return __get_cpu_var(rcu_cpu_kthread_task) == current;
}

1379 1380 1381 1382 1383
/*
 * Set the affinity of the boost kthread.  The CPU-hotplug locks are
 * held, so no one should be messing with the existence of the boost
 * kthread.
 */
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp,
					  cpumask_var_t cm)
{
	struct task_struct *t;

	t = rnp->boost_kthread_task;
	if (t != NULL)
		set_cpus_allowed_ptr(rnp->boost_kthread_task, cm);
}

#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)

/*
 * Do priority-boost accounting for the start of a new grace period.
 */
static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
{
	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
}

/*
 * Create an RCU-boost kthread for the specified node if one does not
 * already exist.  We only create this kthread for preemptible RCU.
 * Returns zero if all is well, a negated errno otherwise.
 */
static int __cpuinit rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
						 struct rcu_node *rnp,
						 int rnp_index)
{
	unsigned long flags;
	struct sched_param sp;
	struct task_struct *t;

	if (&rcu_preempt_state != rsp)
		return 0;
1419
	rsp->boost = 1;
1420 1421 1422
	if (rnp->boost_kthread_task != NULL)
		return 0;
	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1423
			   "rcub/%d", rnp_index);
1424 1425 1426 1427 1428
	if (IS_ERR(t))
		return PTR_ERR(t);
	raw_spin_lock_irqsave(&rnp->lock, flags);
	rnp->boost_kthread_task = t;
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1429
	sp.sched_priority = RCU_BOOST_PRIO;
1430
	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1431
	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1432 1433 1434
	return 0;
}

1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
#ifdef CONFIG_HOTPLUG_CPU

/*
 * Stop the RCU's per-CPU kthread when its CPU goes offline,.
 */
static void rcu_stop_cpu_kthread(int cpu)
{
	struct task_struct *t;

	/* Stop the CPU's kthread. */
	t = per_cpu(rcu_cpu_kthread_task, cpu);
	if (t != NULL) {
		per_cpu(rcu_cpu_kthread_task, cpu) = NULL;
		kthread_stop(t);
	}
}

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

static void rcu_kthread_do_work(void)
{
	rcu_do_batch(&rcu_sched_state, &__get_cpu_var(rcu_sched_data));
	rcu_do_batch(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
	rcu_preempt_do_callbacks();
}

/*
 * Wake up the specified per-rcu_node-structure kthread.
 * Because the per-rcu_node kthreads are immortal, we don't need
 * to do anything to keep them alive.
 */
static void invoke_rcu_node_kthread(struct rcu_node *rnp)
{
	struct task_struct *t;

	t = rnp->node_kthread_task;
	if (t != NULL)
		wake_up_process(t);
}

/*
 * Set the specified CPU's kthread to run RT or not, as specified by
 * the to_rt argument.  The CPU-hotplug locks are held, so the task
 * is not going away.
 */
static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
{
	int policy;
	struct sched_param sp;
	struct task_struct *t;

	t = per_cpu(rcu_cpu_kthread_task, cpu);
	if (t == NULL)
		return;
	if (to_rt) {
		policy = SCHED_FIFO;
		sp.sched_priority = RCU_KTHREAD_PRIO;
	} else {
		policy = SCHED_NORMAL;
		sp.sched_priority = 0;
	}
	sched_setscheduler_nocheck(t, policy, &sp);
}

/*
 * Timer handler to initiate the waking up of per-CPU kthreads that
 * have yielded the CPU due to excess numbers of RCU callbacks.
 * We wake up the per-rcu_node kthread, which in turn will wake up
 * the booster kthread.
 */
static void rcu_cpu_kthread_timer(unsigned long arg)
{
	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, arg);
	struct rcu_node *rnp = rdp->mynode;

	atomic_or(rdp->grpmask, &rnp->wakemask);
	invoke_rcu_node_kthread(rnp);
}

/*
 * Drop to non-real-time priority and yield, but only after posting a
 * timer that will cause us to regain our real-time priority if we
 * remain preempted.  Either way, we restore our real-time priority
 * before returning.
 */
static void rcu_yield(void (*f)(unsigned long), unsigned long arg)
{
	struct sched_param sp;
	struct timer_list yield_timer;
1524
	int prio = current->rt_priority;
1525 1526 1527 1528 1529 1530 1531

	setup_timer_on_stack(&yield_timer, f, arg);
	mod_timer(&yield_timer, jiffies + 2);
	sp.sched_priority = 0;
	sched_setscheduler_nocheck(current, SCHED_NORMAL, &sp);
	set_user_nice(current, 19);
	schedule();
1532 1533
	set_user_nice(current, 0);
	sp.sched_priority = prio;
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
	del_timer(&yield_timer);
}

/*
 * Handle cases where the rcu_cpu_kthread() ends up on the wrong CPU.
 * This can happen while the corresponding CPU is either coming online
 * or going offline.  We cannot wait until the CPU is fully online
 * before starting the kthread, because the various notifier functions
 * can wait for RCU grace periods.  So we park rcu_cpu_kthread() until
 * the corresponding CPU is online.
 *
 * Return 1 if the kthread needs to stop, 0 otherwise.
 *
 * Caller must disable bh.  This function can momentarily enable it.
 */
static int rcu_cpu_kthread_should_stop(int cpu)
{
	while (cpu_is_offline(cpu) ||
	       !cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)) ||
	       smp_processor_id() != cpu) {
		if (kthread_should_stop())
			return 1;
		per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
		per_cpu(rcu_cpu_kthread_cpu, cpu) = raw_smp_processor_id();
		local_bh_enable();
		schedule_timeout_uninterruptible(1);
		if (!cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)))
			set_cpus_allowed_ptr(current, cpumask_of(cpu));
		local_bh_disable();
	}
	per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
	return 0;
}

/*
 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1571 1572
 * RCU softirq used in flavors and configurations of RCU that do not
 * support RCU priority boosting.
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
 */
static int rcu_cpu_kthread(void *arg)
{
	int cpu = (int)(long)arg;
	unsigned long flags;
	int spincnt = 0;
	unsigned int *statusp = &per_cpu(rcu_cpu_kthread_status, cpu);
	char work;
	char *workp = &per_cpu(rcu_cpu_has_work, cpu);

1583
	trace_rcu_utilization("Start CPU kthread@init");
1584 1585
	for (;;) {
		*statusp = RCU_KTHREAD_WAITING;
1586
		trace_rcu_utilization("End CPU kthread@rcu_wait");
1587
		rcu_wait(*workp != 0 || kthread_should_stop());
1588
		trace_rcu_utilization("Start CPU kthread@rcu_wait");
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
		local_bh_disable();
		if (rcu_cpu_kthread_should_stop(cpu)) {
			local_bh_enable();
			break;
		}
		*statusp = RCU_KTHREAD_RUNNING;
		per_cpu(rcu_cpu_kthread_loops, cpu)++;
		local_irq_save(flags);
		work = *workp;
		*workp = 0;
		local_irq_restore(flags);
		if (work)
			rcu_kthread_do_work();
		local_bh_enable();
		if (*workp != 0)
			spincnt++;
		else
			spincnt = 0;
		if (spincnt > 10) {
			*statusp = RCU_KTHREAD_YIELDING;
1609
			trace_rcu_utilization("End CPU kthread@rcu_yield");
1610
			rcu_yield(rcu_cpu_kthread_timer, (unsigned long)cpu);
1611
			trace_rcu_utilization("Start CPU kthread@rcu_yield");
1612 1613 1614 1615
			spincnt = 0;
		}
	}
	*statusp = RCU_KTHREAD_STOPPED;
1616
	trace_rcu_utilization("End CPU kthread@term");
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
	return 0;
}

/*
 * Spawn a per-CPU kthread, setting up affinity and priority.
 * Because the CPU hotplug lock is held, no other CPU will be attempting
 * to manipulate rcu_cpu_kthread_task.  There might be another CPU
 * attempting to access it during boot, but the locking in kthread_bind()
 * will enforce sufficient ordering.
 *
 * Please note that we cannot simply refuse to wake up the per-CPU
 * kthread because kthreads are created in TASK_UNINTERRUPTIBLE state,
 * which can result in softlockup complaints if the task ends up being
 * idle for more than a couple of minutes.
 *
 * However, please note also that we cannot bind the per-CPU kthread to its
 * CPU until that CPU is fully online.  We also cannot wait until the
 * CPU is fully online before we create its per-CPU kthread, as this would
 * deadlock the system when CPU notifiers tried waiting for grace
 * periods.  So we bind the per-CPU kthread to its CPU only if the CPU
 * is online.  If its CPU is not yet fully online, then the code in
 * rcu_cpu_kthread() will wait until it is fully online, and then do
 * the binding.
 */
static int __cpuinit rcu_spawn_one_cpu_kthread(int cpu)
{
	struct sched_param sp;
	struct task_struct *t;

1646
	if (!rcu_scheduler_fully_active ||
1647 1648
	    per_cpu(rcu_cpu_kthread_task, cpu) != NULL)
		return 0;
E
Eric Dumazet 已提交
1649 1650 1651
	t = kthread_create_on_node(rcu_cpu_kthread,
				   (void *)(long)cpu,
				   cpu_to_node(cpu),
1652
				   "rcuc/%d", cpu);
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
	if (IS_ERR(t))
		return PTR_ERR(t);
	if (cpu_online(cpu))
		kthread_bind(t, cpu);
	per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
	WARN_ON_ONCE(per_cpu(rcu_cpu_kthread_task, cpu) != NULL);
	sp.sched_priority = RCU_KTHREAD_PRIO;
	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
	per_cpu(rcu_cpu_kthread_task, cpu) = t;
	wake_up_process(t); /* Get to TASK_INTERRUPTIBLE quickly. */
	return 0;
}

/*
 * Per-rcu_node kthread, which is in charge of waking up the per-CPU
 * kthreads when needed.  We ignore requests to wake up kthreads
 * for offline CPUs, which is OK because force_quiescent_state()
 * takes care of this case.
 */
static int rcu_node_kthread(void *arg)
{
	int cpu;
	unsigned long flags;
	unsigned long mask;
	struct rcu_node *rnp = (struct rcu_node *)arg;
	struct sched_param sp;
	struct task_struct *t;

	for (;;) {
		rnp->node_kthread_status = RCU_KTHREAD_WAITING;
		rcu_wait(atomic_read(&rnp->wakemask) != 0);
		rnp->node_kthread_status = RCU_KTHREAD_RUNNING;
		raw_spin_lock_irqsave(&rnp->lock, flags);
		mask = atomic_xchg(&rnp->wakemask, 0);
		rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) {
			if ((mask & 0x1) == 0)
				continue;
			preempt_disable();
			t = per_cpu(rcu_cpu_kthread_task, cpu);
			if (!cpu_online(cpu) || t == NULL) {
				preempt_enable();
				continue;
			}
			per_cpu(rcu_cpu_has_work, cpu) = 1;
			sp.sched_priority = RCU_KTHREAD_PRIO;
			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
			preempt_enable();
		}
	}
	/* NOTREACHED */
	rnp->node_kthread_status = RCU_KTHREAD_STOPPED;
	return 0;
}

/*
 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
 * served by the rcu_node in question.  The CPU hotplug lock is still
 * held, so the value of rnp->qsmaskinit will be stable.
 *
 * We don't include outgoingcpu in the affinity set, use -1 if there is
 * no outgoing CPU.  If there are no CPUs left in the affinity set,
 * this function allows the kthread to execute on any CPU.
 */
static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
{
	cpumask_var_t cm;
	int cpu;
	unsigned long mask = rnp->qsmaskinit;

	if (rnp->node_kthread_task == NULL)
		return;
	if (!alloc_cpumask_var(&cm, GFP_KERNEL))
		return;
	cpumask_clear(cm);
	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
		if ((mask & 0x1) && cpu != outgoingcpu)
			cpumask_set_cpu(cpu, cm);
	if (cpumask_weight(cm) == 0) {
		cpumask_setall(cm);
		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
			cpumask_clear_cpu(cpu, cm);
		WARN_ON_ONCE(cpumask_weight(cm) == 0);
	}
	set_cpus_allowed_ptr(rnp->node_kthread_task, cm);
	rcu_boost_kthread_setaffinity(rnp, cm);
	free_cpumask_var(cm);
}

/*
 * Spawn a per-rcu_node kthread, setting priority and affinity.
 * Called during boot before online/offline can happen, or, if
 * during runtime, with the main CPU-hotplug locks held.  So only
 * one of these can be executing at a time.
 */
static int __cpuinit rcu_spawn_one_node_kthread(struct rcu_state *rsp,
						struct rcu_node *rnp)
{
	unsigned long flags;
	int rnp_index = rnp - &rsp->node[0];
	struct sched_param sp;
	struct task_struct *t;

1756
	if (!rcu_scheduler_fully_active ||
1757 1758 1759 1760
	    rnp->qsmaskinit == 0)
		return 0;
	if (rnp->node_kthread_task == NULL) {
		t = kthread_create(rcu_node_kthread, (void *)rnp,
1761
				   "rcun/%d", rnp_index);
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
		if (IS_ERR(t))
			return PTR_ERR(t);
		raw_spin_lock_irqsave(&rnp->lock, flags);
		rnp->node_kthread_task = t;
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		sp.sched_priority = 99;
		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
		wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
	}
	return rcu_spawn_one_boost_kthread(rsp, rnp, rnp_index);
}

/*
 * Spawn all kthreads -- called as soon as the scheduler is running.
 */
static int __init rcu_spawn_kthreads(void)
{
	int cpu;
	struct rcu_node *rnp;

1782
	rcu_scheduler_fully_active = 1;
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
	for_each_possible_cpu(cpu) {
		per_cpu(rcu_cpu_has_work, cpu) = 0;
		if (cpu_online(cpu))
			(void)rcu_spawn_one_cpu_kthread(cpu);
	}
	rnp = rcu_get_root(rcu_state);
	(void)rcu_spawn_one_node_kthread(rcu_state, rnp);
	if (NUM_RCU_NODES > 1) {
		rcu_for_each_leaf_node(rcu_state, rnp)
			(void)rcu_spawn_one_node_kthread(rcu_state, rnp);
	}
	return 0;
}
early_initcall(rcu_spawn_kthreads);

static void __cpuinit rcu_prepare_kthreads(int cpu)
{
	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
	struct rcu_node *rnp = rdp->mynode;

	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1804
	if (rcu_scheduler_fully_active) {
1805 1806 1807 1808 1809 1810
		(void)rcu_spawn_one_cpu_kthread(cpu);
		if (rnp->node_kthread_task == NULL)
			(void)rcu_spawn_one_node_kthread(rcu_state, rnp);
	}
}

1811 1812
#else /* #ifdef CONFIG_RCU_BOOST */

1813
static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1814
{
1815
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1816 1817
}

1818
static void invoke_rcu_callbacks_kthread(void)
1819
{
1820
	WARN_ON_ONCE(1);
1821 1822
}

1823 1824 1825 1826 1827
static bool rcu_is_callbacks_kthread(void)
{
	return false;
}

1828 1829 1830 1831
static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
{
}

1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
#ifdef CONFIG_HOTPLUG_CPU

static void rcu_stop_cpu_kthread(int cpu)
{
}

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
{
}

static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
{
}

1848 1849 1850 1851 1852 1853 1854
static int __init rcu_scheduler_really_started(void)
{
	rcu_scheduler_fully_active = 1;
	return 0;
}
early_initcall(rcu_scheduler_really_started);

1855 1856 1857 1858
static void __cpuinit rcu_prepare_kthreads(int cpu)
{
}

1859 1860
#endif /* #else #ifdef CONFIG_RCU_BOOST */

1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
#ifndef CONFIG_SMP

void synchronize_sched_expedited(void)
{
	cond_resched();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#else /* #ifndef CONFIG_SMP */

1871 1872
static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899

static int synchronize_sched_expedited_cpu_stop(void *data)
{
	/*
	 * There must be a full memory barrier on each affected CPU
	 * between the time that try_stop_cpus() is called and the
	 * time that it returns.
	 *
	 * In the current initial implementation of cpu_stop, the
	 * above condition is already met when the control reaches
	 * this point and the following smp_mb() is not strictly
	 * necessary.  Do smp_mb() anyway for documentation and
	 * robustness against future implementation changes.
	 */
	smp_mb(); /* See above comment block. */
	return 0;
}

/*
 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
 * approach to force grace period to end quickly.  This consumes
 * significant time on all CPUs, and is thus not recommended for
 * any sort of common-case code.
 *
 * Note that it is illegal to call this function while holding any
 * lock that is acquired by a CPU-hotplug notifier.  Failing to
 * observe this restriction will result in deadlock.
1900
 *
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
 * This implementation can be thought of as an application of ticket
 * locking to RCU, with sync_sched_expedited_started and
 * sync_sched_expedited_done taking on the roles of the halves
 * of the ticket-lock word.  Each task atomically increments
 * sync_sched_expedited_started upon entry, snapshotting the old value,
 * then attempts to stop all the CPUs.  If this succeeds, then each
 * CPU will have executed a context switch, resulting in an RCU-sched
 * grace period.  We are then done, so we use atomic_cmpxchg() to
 * update sync_sched_expedited_done to match our snapshot -- but
 * only if someone else has not already advanced past our snapshot.
 *
 * On the other hand, if try_stop_cpus() fails, we check the value
 * of sync_sched_expedited_done.  If it has advanced past our
 * initial snapshot, then someone else must have forced a grace period
 * some time after we took our snapshot.  In this case, our work is
 * done for us, and we can simply return.  Otherwise, we try again,
 * but keep our initial snapshot for purposes of checking for someone
 * doing our work for us.
 *
 * If we fail too many times in a row, we fall back to synchronize_sched().
1921 1922 1923
 */
void synchronize_sched_expedited(void)
{
1924
	int firstsnap, s, snap, trycount = 0;
1925

1926 1927
	/* Note that atomic_inc_return() implies full memory barrier. */
	firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
1928
	get_online_cpus();
1929 1930 1931 1932 1933

	/*
	 * Each pass through the following loop attempts to force a
	 * context switch on each CPU.
	 */
1934 1935 1936 1937
	while (try_stop_cpus(cpu_online_mask,
			     synchronize_sched_expedited_cpu_stop,
			     NULL) == -EAGAIN) {
		put_online_cpus();
1938 1939

		/* No joy, try again later.  Or just synchronize_sched(). */
1940 1941 1942 1943 1944 1945
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_sched();
			return;
		}
1946 1947 1948 1949

		/* Check to see if someone else did our work for us. */
		s = atomic_read(&sync_sched_expedited_done);
		if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
1950 1951 1952
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}
1953 1954 1955 1956 1957 1958 1959 1960 1961

		/*
		 * Refetching sync_sched_expedited_started allows later
		 * callers to piggyback on our grace period.  We subtract
		 * 1 to get the same token that the last incrementer got.
		 * We retry after they started, so our grace period works
		 * for them, and they started after our first try, so their
		 * grace period works for us.
		 */
1962
		get_online_cpus();
1963
		snap = atomic_read(&sync_sched_expedited_started);
1964
		smp_mb(); /* ensure read is before try_stop_cpus(). */
1965
	}
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980

	/*
	 * Everyone up to our most recent fetch is covered by our grace
	 * period.  Update the counter, but only if our work is still
	 * relevant -- which it won't be if someone who started later
	 * than we did beat us to the punch.
	 */
	do {
		s = atomic_read(&sync_sched_expedited_done);
		if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
			smp_mb(); /* ensure test happens before caller kfree */
			break;
		}
	} while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);

1981 1982 1983 1984 1985 1986
	put_online_cpus();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#endif /* #else #ifndef CONFIG_SMP */

1987 1988 1989 1990 1991 1992 1993 1994
#if !defined(CONFIG_RCU_FAST_NO_HZ)

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
 * 1 if so.  This function is part of the RCU implementation; it is -not-
 * an exported member of the RCU API.
 *
1995 1996
 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
 * any flavor of RCU.
1997 1998 1999
 */
int rcu_needs_cpu(int cpu)
{
2000 2001 2002
	return rcu_cpu_has_callbacks(cpu);
}

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
/*
 * Because we do not have RCU_FAST_NO_HZ, don't bother initializing for it.
 */
static void rcu_prepare_for_idle_init(int cpu)
{
}

/*
 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
 * after it.
 */
static void rcu_cleanup_after_idle(int cpu)
{
}

2018 2019 2020 2021 2022 2023 2024 2025
/*
 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=y,
 * is nothing.
 */
static void rcu_prepare_for_idle(int cpu)
{
}

2026 2027
#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */

2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
/*
 * This code is invoked when a CPU goes idle, at which point we want
 * to have the CPU do everything required for RCU so that it can enter
 * the energy-efficient dyntick-idle mode.  This is handled by a
 * state machine implemented by rcu_prepare_for_idle() below.
 *
 * The following three proprocessor symbols control this state machine:
 *
 * RCU_IDLE_FLUSHES gives the maximum number of times that we will attempt
 *	to satisfy RCU.  Beyond this point, it is better to incur a periodic
 *	scheduling-clock interrupt than to loop through the state machine
 *	at full power.
 * RCU_IDLE_OPT_FLUSHES gives the number of RCU_IDLE_FLUSHES that are
 *	optional if RCU does not need anything immediately from this
 *	CPU, even if this CPU still has RCU callbacks queued.  The first
 *	times through the state machine are mandatory: we need to give
 *	the state machine a chance to communicate a quiescent state
 *	to the RCU core.
 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
 *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
 *	is sized to be roughly one RCU grace period.  Those energy-efficiency
 *	benchmarkers who might otherwise be tempted to set this to a large
 *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
 *	system.  And if you are -that- concerned about energy efficiency,
 *	just power the system down and be done with it!
2053 2054 2055
 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
 *	permitted to sleep in dyntick-idle mode with only lazy RCU
 *	callbacks pending.  Setting this too high can OOM your system.
2056 2057 2058 2059 2060 2061 2062
 *
 * The values below work well in practice.  If future workloads require
 * adjustment, they can be converted into kernel config parameters, though
 * making the state machine smarter might be a better option.
 */
#define RCU_IDLE_FLUSHES 5		/* Number of dyntick-idle tries. */
#define RCU_IDLE_OPT_FLUSHES 3		/* Optional dyntick-idle tries. */
2063
#define RCU_IDLE_GP_DELAY 6		/* Roughly one grace period. */
2064
#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
2065

2066
static DEFINE_PER_CPU(int, rcu_dyntick_drain);
2067
static DEFINE_PER_CPU(unsigned long, rcu_dyntick_holdoff);
2068
static DEFINE_PER_CPU(struct hrtimer, rcu_idle_gp_timer);
2069 2070
static ktime_t rcu_idle_gp_wait;	/* If some non-lazy callbacks. */
static ktime_t rcu_idle_lazy_gp_wait;	/* If only lazy callbacks. */
2071 2072

/*
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
 * Allow the CPU to enter dyntick-idle mode if either: (1) There are no
 * callbacks on this CPU, (2) this CPU has not yet attempted to enter
 * dyntick-idle mode, or (3) this CPU is in the process of attempting to
 * enter dyntick-idle mode.  Otherwise, if we have recently tried and failed
 * to enter dyntick-idle mode, we refuse to try to enter it.  After all,
 * it is better to incur scheduling-clock interrupts than to spin
 * continuously for the same time duration!
 */
int rcu_needs_cpu(int cpu)
{
	/* If no callbacks, RCU doesn't need the CPU. */
	if (!rcu_cpu_has_callbacks(cpu))
		return 0;
	/* Otherwise, RCU needs the CPU only if it recently tried and failed. */
	return per_cpu(rcu_dyntick_holdoff, cpu) == jiffies;
}

2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
/*
 * Does the specified flavor of RCU have non-lazy callbacks pending on
 * the specified CPU?  Both RCU flavor and CPU are specified by the
 * rcu_data structure.
 */
static bool __rcu_cpu_has_nonlazy_callbacks(struct rcu_data *rdp)
{
	return rdp->qlen != rdp->qlen_lazy;
}

#ifdef CONFIG_TREE_PREEMPT_RCU

/*
 * Are there non-lazy RCU-preempt callbacks?  (There cannot be if there
 * is no RCU-preempt in the kernel.)
 */
static bool rcu_preempt_cpu_has_nonlazy_callbacks(int cpu)
{
	struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);

	return __rcu_cpu_has_nonlazy_callbacks(rdp);
}

#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */

static bool rcu_preempt_cpu_has_nonlazy_callbacks(int cpu)
{
	return 0;
}

#endif /* else #ifdef CONFIG_TREE_PREEMPT_RCU */

/*
 * Does any flavor of RCU have non-lazy callbacks on the specified CPU?
 */
static bool rcu_cpu_has_nonlazy_callbacks(int cpu)
{
	return __rcu_cpu_has_nonlazy_callbacks(&per_cpu(rcu_sched_data, cpu)) ||
	       __rcu_cpu_has_nonlazy_callbacks(&per_cpu(rcu_bh_data, cpu)) ||
	       rcu_preempt_cpu_has_nonlazy_callbacks(cpu);
}

2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
/*
 * Timer handler used to force CPU to start pushing its remaining RCU
 * callbacks in the case where it entered dyntick-idle mode with callbacks
 * pending.  The hander doesn't really need to do anything because the
 * real work is done upon re-entry to idle, or by the next scheduling-clock
 * interrupt should idle not be re-entered.
 */
static enum hrtimer_restart rcu_idle_gp_timer_func(struct hrtimer *hrtp)
{
	trace_rcu_prep_idle("Timer");
	return HRTIMER_NORESTART;
}

/*
 * Initialize the timer used to pull CPUs out of dyntick-idle mode.
 */
static void rcu_prepare_for_idle_init(int cpu)
{
	static int firsttime = 1;
	struct hrtimer *hrtp = &per_cpu(rcu_idle_gp_timer, cpu);

	hrtimer_init(hrtp, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hrtp->function = rcu_idle_gp_timer_func;
	if (firsttime) {
		unsigned int upj = jiffies_to_usecs(RCU_IDLE_GP_DELAY);

		rcu_idle_gp_wait = ns_to_ktime(upj * (u64)1000);
2159 2160
		upj = jiffies_to_usecs(RCU_IDLE_LAZY_GP_DELAY);
		rcu_idle_lazy_gp_wait = ns_to_ktime(upj * (u64)1000);
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
		firsttime = 0;
	}
}

/*
 * Clean up for exit from idle.  Because we are exiting from idle, there
 * is no longer any point to rcu_idle_gp_timer, so cancel it.  This will
 * do nothing if this timer is not active, so just cancel it unconditionally.
 */
static void rcu_cleanup_after_idle(int cpu)
{
	hrtimer_cancel(&per_cpu(rcu_idle_gp_timer, cpu));
}

2175 2176 2177 2178
/*
 * Check to see if any RCU-related work can be done by the current CPU,
 * and if so, schedule a softirq to get it done.  This function is part
 * of the RCU implementation; it is -not- an exported member of the RCU API.
2179
 *
2180 2181 2182 2183 2184 2185
 * The idea is for the current CPU to clear out all work required by the
 * RCU core for the current grace period, so that this CPU can be permitted
 * to enter dyntick-idle mode.  In some cases, it will need to be awakened
 * at the end of the grace period by whatever CPU ends the grace period.
 * This allows CPUs to go dyntick-idle more quickly, and to reduce the
 * number of wakeups by a modest integer factor.
2186 2187 2188
 *
 * Because it is not legal to invoke rcu_process_callbacks() with irqs
 * disabled, we do one pass of force_quiescent_state(), then do a
2189
 * invoke_rcu_core() to cause rcu_process_callbacks() to be invoked
2190
 * later.  The per-cpu rcu_dyntick_drain variable controls the sequencing.
2191 2192
 *
 * The caller must have disabled interrupts.
2193
 */
2194
static void rcu_prepare_for_idle(int cpu)
2195
{
2196 2197 2198
	unsigned long flags;

	local_irq_save(flags);
2199

2200
	/*
2201 2202
	 * If there are no callbacks on this CPU, enter dyntick-idle mode.
	 * Also reset state to avoid prejudicing later attempts.
2203
	 */
2204 2205
	if (!rcu_cpu_has_callbacks(cpu)) {
		per_cpu(rcu_dyntick_holdoff, cpu) = jiffies - 1;
2206
		per_cpu(rcu_dyntick_drain, cpu) = 0;
2207
		local_irq_restore(flags);
2208
		trace_rcu_prep_idle("No callbacks");
2209
		return;
2210
	}
2211 2212 2213 2214 2215

	/*
	 * If in holdoff mode, just return.  We will presumably have
	 * refrained from disabling the scheduling-clock tick.
	 */
2216
	if (per_cpu(rcu_dyntick_holdoff, cpu) == jiffies) {
2217
		local_irq_restore(flags);
2218
		trace_rcu_prep_idle("In holdoff");
2219
		return;
2220
	}
2221 2222 2223 2224

	/* Check and update the rcu_dyntick_drain sequencing. */
	if (per_cpu(rcu_dyntick_drain, cpu) <= 0) {
		/* First time through, initialize the counter. */
2225 2226 2227
		per_cpu(rcu_dyntick_drain, cpu) = RCU_IDLE_FLUSHES;
	} else if (per_cpu(rcu_dyntick_drain, cpu) <= RCU_IDLE_OPT_FLUSHES &&
		   !rcu_pending(cpu)) {
2228
		/* Can we go dyntick-idle despite still having callbacks? */
2229 2230 2231
		trace_rcu_prep_idle("Dyntick with callbacks");
		per_cpu(rcu_dyntick_drain, cpu) = 0;
		per_cpu(rcu_dyntick_holdoff, cpu) = jiffies - 1;
2232 2233 2234
		if (rcu_cpu_has_nonlazy_callbacks(cpu))
			hrtimer_start(&per_cpu(rcu_idle_gp_timer, cpu),
				      rcu_idle_gp_wait, HRTIMER_MODE_REL);
2235 2236 2237
		else
			hrtimer_start(&per_cpu(rcu_idle_gp_timer, cpu),
				      rcu_idle_lazy_gp_wait, HRTIMER_MODE_REL);
2238 2239
		return; /* Nothing more to do immediately. */
	} else if (--per_cpu(rcu_dyntick_drain, cpu) <= 0) {
2240
		/* We have hit the limit, so time to give up. */
2241
		per_cpu(rcu_dyntick_holdoff, cpu) = jiffies;
2242
		local_irq_restore(flags);
2243
		trace_rcu_prep_idle("Begin holdoff");
2244 2245
		invoke_rcu_core();  /* Force the CPU out of dyntick-idle. */
		return;
2246 2247
	}

2248 2249 2250 2251 2252 2253
	/*
	 * Do one step of pushing the remaining RCU callbacks through
	 * the RCU core state machine.
	 */
#ifdef CONFIG_TREE_PREEMPT_RCU
	if (per_cpu(rcu_preempt_data, cpu).nxtlist) {
2254
		local_irq_restore(flags);
2255 2256
		rcu_preempt_qs(cpu);
		force_quiescent_state(&rcu_preempt_state, 0);
2257
		local_irq_save(flags);
2258 2259
	}
#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
2260
	if (per_cpu(rcu_sched_data, cpu).nxtlist) {
2261
		local_irq_restore(flags);
2262 2263
		rcu_sched_qs(cpu);
		force_quiescent_state(&rcu_sched_state, 0);
2264
		local_irq_save(flags);
2265 2266
	}
	if (per_cpu(rcu_bh_data, cpu).nxtlist) {
2267
		local_irq_restore(flags);
2268 2269
		rcu_bh_qs(cpu);
		force_quiescent_state(&rcu_bh_state, 0);
2270
		local_irq_save(flags);
2271 2272
	}

2273 2274 2275 2276
	/*
	 * If RCU callbacks are still pending, RCU still needs this CPU.
	 * So try forcing the callbacks through the grace period.
	 */
2277
	if (rcu_cpu_has_callbacks(cpu)) {
2278
		local_irq_restore(flags);
2279
		trace_rcu_prep_idle("More callbacks");
2280
		invoke_rcu_core();
2281 2282
	} else {
		local_irq_restore(flags);
2283
		trace_rcu_prep_idle("Callbacks drained");
2284
	}
2285 2286 2287
}

#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */