nvd0_display.c 56.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright 2011 Red Hat Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * Authors: Ben Skeggs
 */

25
#include <linux/dma-mapping.h>
26

27
#include "drmP.h"
28
#include "drm_crtc_helper.h"
29 30 31 32 33

#include "nouveau_drv.h"
#include "nouveau_connector.h"
#include "nouveau_encoder.h"
#include "nouveau_crtc.h"
34
#include "nouveau_dma.h"
35
#include "nouveau_fb.h"
36
#include "nv50_display.h"
37

38 39
#define EVO_DMA_NR 9

40
#define EVO_MASTER  (0x00)
41
#define EVO_FLIP(c) (0x01 + (c))
42 43
#define EVO_OVLY(c) (0x05 + (c))
#define EVO_OIMM(c) (0x09 + (c))
44 45
#define EVO_CURS(c) (0x0d + (c))

46 47 48 49 50 51
/* offsets in shared sync bo of various structures */
#define EVO_SYNC(c, o) ((c) * 0x0100 + (o))
#define EVO_MAST_NTFY     EVO_SYNC(  0, 0x00)
#define EVO_FLIP_SEM0(c)  EVO_SYNC((c), 0x00)
#define EVO_FLIP_SEM1(c)  EVO_SYNC((c), 0x10)

52 53 54 55 56 57 58 59 60 61
struct evo {
	int idx;
	dma_addr_t handle;
	u32 *ptr;
	struct {
		u32 offset;
		u16 value;
	} sem;
};

62 63
struct nvd0_display {
	struct nouveau_gpuobj *mem;
64
	struct nouveau_bo *sync;
65
	struct evo evo[9];
66 67

	struct tasklet_struct tasklet;
68
	u32 modeset;
69 70 71 72 73 74 75 76 77
};

static struct nvd0_display *
nvd0_display(struct drm_device *dev)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	return dev_priv->engine.display.priv;
}

78 79 80 81 82 83 84 85 86
static struct drm_crtc *
nvd0_display_crtc_get(struct drm_encoder *encoder)
{
	return nouveau_encoder(encoder)->crtc;
}

/******************************************************************************
 * EVO channel helpers
 *****************************************************************************/
87
static inline int
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
evo_icmd(struct drm_device *dev, int id, u32 mthd, u32 data)
{
	int ret = 0;
	nv_mask(dev, 0x610700 + (id * 0x10), 0x00000001, 0x00000001);
	nv_wr32(dev, 0x610704 + (id * 0x10), data);
	nv_mask(dev, 0x610704 + (id * 0x10), 0x80000ffc, 0x80000000 | mthd);
	if (!nv_wait(dev, 0x610704 + (id * 0x10), 0x80000000, 0x00000000))
		ret = -EBUSY;
	nv_mask(dev, 0x610700 + (id * 0x10), 0x00000001, 0x00000000);
	return ret;
}

static u32 *
evo_wait(struct drm_device *dev, int id, int nr)
{
	struct nvd0_display *disp = nvd0_display(dev);
	u32 put = nv_rd32(dev, 0x640000 + (id * 0x1000)) / 4;

	if (put + nr >= (PAGE_SIZE / 4)) {
		disp->evo[id].ptr[put] = 0x20000000;

		nv_wr32(dev, 0x640000 + (id * 0x1000), 0x00000000);
		if (!nv_wait(dev, 0x640004 + (id * 0x1000), ~0, 0x00000000)) {
			NV_ERROR(dev, "evo %d dma stalled\n", id);
			return NULL;
		}

		put = 0;
	}

118 119 120
	if (nouveau_reg_debug & NOUVEAU_REG_DEBUG_EVO)
		NV_INFO(dev, "Evo%d: %p START\n", id, disp->evo[id].ptr + put);

121 122 123 124 125 126 127
	return disp->evo[id].ptr + put;
}

static void
evo_kick(u32 *push, struct drm_device *dev, int id)
{
	struct nvd0_display *disp = nvd0_display(dev);
128 129 130 131 132 133 134 135 136 137

	if (nouveau_reg_debug & NOUVEAU_REG_DEBUG_EVO) {
		u32 curp = nv_rd32(dev, 0x640000 + (id * 0x1000)) >> 2;
		u32 *cur = disp->evo[id].ptr + curp;

		while (cur < push)
			NV_INFO(dev, "Evo%d: 0x%08x\n", id, *cur++);
		NV_INFO(dev, "Evo%d: %p KICK!\n", id, push);
	}

138 139 140 141 142 143
	nv_wr32(dev, 0x640000 + (id * 0x1000), (push - disp->evo[id].ptr) << 2);
}

#define evo_mthd(p,m,s) *((p)++) = (((s) << 18) | (m))
#define evo_data(p,d)   *((p)++) = (d)

144 145
static int
evo_init_dma(struct drm_device *dev, int ch)
146
{
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
	struct nvd0_display *disp = nvd0_display(dev);
	u32 flags;

	flags = 0x00000000;
	if (ch == EVO_MASTER)
		flags |= 0x01000000;

	nv_wr32(dev, 0x610494 + (ch * 0x0010), (disp->evo[ch].handle >> 8) | 3);
	nv_wr32(dev, 0x610498 + (ch * 0x0010), 0x00010000);
	nv_wr32(dev, 0x61049c + (ch * 0x0010), 0x00000001);
	nv_mask(dev, 0x610490 + (ch * 0x0010), 0x00000010, 0x00000010);
	nv_wr32(dev, 0x640000 + (ch * 0x1000), 0x00000000);
	nv_wr32(dev, 0x610490 + (ch * 0x0010), 0x00000013 | flags);
	if (!nv_wait(dev, 0x610490 + (ch * 0x0010), 0x80000000, 0x00000000)) {
		NV_ERROR(dev, "PDISP: ch%d 0x%08x\n", ch,
			      nv_rd32(dev, 0x610490 + (ch * 0x0010)));
		return -EBUSY;
	}

	nv_mask(dev, 0x610090, (1 << ch), (1 << ch));
	nv_mask(dev, 0x6100a0, (1 << ch), (1 << ch));
	return 0;
}

static void
evo_fini_dma(struct drm_device *dev, int ch)
{
	if (!(nv_rd32(dev, 0x610490 + (ch * 0x0010)) & 0x00000010))
		return;

	nv_mask(dev, 0x610490 + (ch * 0x0010), 0x00000010, 0x00000000);
	nv_mask(dev, 0x610490 + (ch * 0x0010), 0x00000003, 0x00000000);
	nv_wait(dev, 0x610490 + (ch * 0x0010), 0x80000000, 0x00000000);
	nv_mask(dev, 0x610090, (1 << ch), 0x00000000);
	nv_mask(dev, 0x6100a0, (1 << ch), 0x00000000);
}

184 185 186 187 188 189
static inline void
evo_piow(struct drm_device *dev, int ch, u16 mthd, u32 data)
{
	nv_wr32(dev, 0x640000 + (ch * 0x1000) + mthd, data);
}

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
static int
evo_init_pio(struct drm_device *dev, int ch)
{
	nv_wr32(dev, 0x610490 + (ch * 0x0010), 0x00000001);
	if (!nv_wait(dev, 0x610490 + (ch * 0x0010), 0x00010000, 0x00010000)) {
		NV_ERROR(dev, "PDISP: ch%d 0x%08x\n", ch,
			      nv_rd32(dev, 0x610490 + (ch * 0x0010)));
		return -EBUSY;
	}

	nv_mask(dev, 0x610090, (1 << ch), (1 << ch));
	nv_mask(dev, 0x6100a0, (1 << ch), (1 << ch));
	return 0;
}

static void
evo_fini_pio(struct drm_device *dev, int ch)
{
	if (!(nv_rd32(dev, 0x610490 + (ch * 0x0010)) & 0x00000001))
		return;

	nv_mask(dev, 0x610490 + (ch * 0x0010), 0x00000010, 0x00000010);
	nv_mask(dev, 0x610490 + (ch * 0x0010), 0x00000001, 0x00000000);
	nv_wait(dev, 0x610490 + (ch * 0x0010), 0x00010000, 0x00000000);
	nv_mask(dev, 0x610090, (1 << ch), 0x00000000);
	nv_mask(dev, 0x6100a0, (1 << ch), 0x00000000);
216 217
}

218 219 220
static bool
evo_sync_wait(void *data)
{
221
	return nouveau_bo_rd32(data, EVO_MAST_NTFY) != 0x00000000;
222 223 224 225 226 227
}

static int
evo_sync(struct drm_device *dev, int ch)
{
	struct nvd0_display *disp = nvd0_display(dev);
228
	u32 *push = evo_wait(dev, ch, 8);
229
	if (push) {
230
		nouveau_bo_wr32(disp->sync, EVO_MAST_NTFY, 0x00000000);
231
		evo_mthd(push, 0x0084, 1);
232
		evo_data(push, 0x80000000 | EVO_MAST_NTFY);
233 234 235 236
		evo_mthd(push, 0x0080, 2);
		evo_data(push, 0x00000000);
		evo_data(push, 0x00000000);
		evo_kick(push, dev, ch);
237
		if (nv_wait_cb(dev, evo_sync_wait, disp->sync))
238 239 240 241 242 243 244
			return 0;
	}

	return -EBUSY;
}

/******************************************************************************
245
 * Page flipping channel
246 247 248 249
 *****************************************************************************/
struct nouveau_bo *
nvd0_display_crtc_sema(struct drm_device *dev, int crtc)
{
250
	return nvd0_display(dev)->sync;
251 252 253 254 255 256 257
}

void
nvd0_display_flip_stop(struct drm_crtc *crtc)
{
	struct nvd0_display *disp = nvd0_display(crtc->dev);
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
258
	struct evo *evo = &disp->evo[EVO_FLIP(nv_crtc->index)];
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
	u32 *push;

	push = evo_wait(crtc->dev, evo->idx, 8);
	if (push) {
		evo_mthd(push, 0x0084, 1);
		evo_data(push, 0x00000000);
		evo_mthd(push, 0x0094, 1);
		evo_data(push, 0x00000000);
		evo_mthd(push, 0x00c0, 1);
		evo_data(push, 0x00000000);
		evo_mthd(push, 0x0080, 1);
		evo_data(push, 0x00000000);
		evo_kick(push, crtc->dev, evo->idx);
	}
}

int
nvd0_display_flip_next(struct drm_crtc *crtc, struct drm_framebuffer *fb,
		       struct nouveau_channel *chan, u32 swap_interval)
{
	struct nouveau_framebuffer *nv_fb = nouveau_framebuffer(fb);
	struct nvd0_display *disp = nvd0_display(crtc->dev);
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
282
	struct evo *evo = &disp->evo[EVO_FLIP(nv_crtc->index)];
283 284 285 286
	u64 offset;
	u32 *push;
	int ret;

287 288
	evo_sync(crtc->dev, EVO_MASTER);

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
	swap_interval <<= 4;
	if (swap_interval == 0)
		swap_interval |= 0x100;

	push = evo_wait(crtc->dev, evo->idx, 128);
	if (unlikely(push == NULL))
		return -EBUSY;

	/* synchronise with the rendering channel, if necessary */
	if (likely(chan)) {
		ret = RING_SPACE(chan, 10);
		if (ret)
			return ret;

		offset  = chan->dispc_vma[nv_crtc->index].offset;
		offset += evo->sem.offset;

306
		BEGIN_NVC0(chan, 2, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4);
307 308 309 310
		OUT_RING  (chan, upper_32_bits(offset));
		OUT_RING  (chan, lower_32_bits(offset));
		OUT_RING  (chan, 0xf00d0000 | evo->sem.value);
		OUT_RING  (chan, 0x1002);
311
		BEGIN_NVC0(chan, 2, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4);
312 313 314 315 316 317
		OUT_RING  (chan, upper_32_bits(offset));
		OUT_RING  (chan, lower_32_bits(offset ^ 0x10));
		OUT_RING  (chan, 0x74b1e000);
		OUT_RING  (chan, 0x1001);
		FIRE_RING (chan);
	} else {
318
		nouveau_bo_wr32(disp->sync, evo->sem.offset / 4,
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
				0xf00d0000 | evo->sem.value);
		evo_sync(crtc->dev, EVO_MASTER);
	}

	/* queue the flip */
	evo_mthd(push, 0x0100, 1);
	evo_data(push, 0xfffe0000);
	evo_mthd(push, 0x0084, 1);
	evo_data(push, swap_interval);
	if (!(swap_interval & 0x00000100)) {
		evo_mthd(push, 0x00e0, 1);
		evo_data(push, 0x40000000);
	}
	evo_mthd(push, 0x0088, 4);
	evo_data(push, evo->sem.offset);
	evo_data(push, 0xf00d0000 | evo->sem.value);
	evo_data(push, 0x74b1e000);
	evo_data(push, NvEvoSync);
	evo_mthd(push, 0x00a0, 2);
	evo_data(push, 0x00000000);
	evo_data(push, 0x00000000);
	evo_mthd(push, 0x00c0, 1);
	evo_data(push, nv_fb->r_dma);
	evo_mthd(push, 0x0110, 2);
	evo_data(push, 0x00000000);
	evo_data(push, 0x00000000);
	evo_mthd(push, 0x0400, 5);
	evo_data(push, nv_fb->nvbo->bo.offset >> 8);
	evo_data(push, 0);
	evo_data(push, (fb->height << 16) | fb->width);
	evo_data(push, nv_fb->r_pitch);
	evo_data(push, nv_fb->r_format);
	evo_mthd(push, 0x0080, 1);
	evo_data(push, 0x00000000);
	evo_kick(push, crtc->dev, evo->idx);

	evo->sem.offset ^= 0x10;
	evo->sem.value++;
	return 0;
}

360 361 362 363
/******************************************************************************
 * CRTC
 *****************************************************************************/
static int
364
nvd0_crtc_set_dither(struct nouveau_crtc *nv_crtc, bool update)
365
{
366
	struct drm_nouveau_private *dev_priv = nv_crtc->base.dev->dev_private;
367
	struct drm_device *dev = nv_crtc->base.dev;
368 369 370
	struct nouveau_connector *nv_connector;
	struct drm_connector *connector;
	u32 *push, mode = 0x00;
371
	u32 mthd;
372

373
	nv_connector = nouveau_crtc_connector_get(nv_crtc);
374 375 376 377 378 379 380 381 382 383 384 385 386
	connector = &nv_connector->base;
	if (nv_connector->dithering_mode == DITHERING_MODE_AUTO) {
		if (nv_crtc->base.fb->depth > connector->display_info.bpc * 3)
			mode = DITHERING_MODE_DYNAMIC2X2;
	} else {
		mode = nv_connector->dithering_mode;
	}

	if (nv_connector->dithering_depth == DITHERING_DEPTH_AUTO) {
		if (connector->display_info.bpc >= 8)
			mode |= DITHERING_DEPTH_8BPC;
	} else {
		mode |= nv_connector->dithering_depth;
387 388
	}

389 390 391 392 393
	if (dev_priv->card_type < NV_E0)
		mthd = 0x0490 + (nv_crtc->index * 0x0300);
	else
		mthd = 0x04a0 + (nv_crtc->index * 0x0300);

394
	push = evo_wait(dev, EVO_MASTER, 4);
395
	if (push) {
396
		evo_mthd(push, mthd, 1);
397 398 399 400 401
		evo_data(push, mode);
		if (update) {
			evo_mthd(push, 0x0080, 1);
			evo_data(push, 0x00000000);
		}
402
		evo_kick(push, dev, EVO_MASTER);
403 404 405 406 407 408
	}

	return 0;
}

static int
409
nvd0_crtc_set_scale(struct nouveau_crtc *nv_crtc, bool update)
410
{
411
	struct drm_display_mode *omode, *umode = &nv_crtc->base.mode;
412
	struct drm_device *dev = nv_crtc->base.dev;
413
	struct drm_crtc *crtc = &nv_crtc->base;
B
Ben Skeggs 已提交
414
	struct nouveau_connector *nv_connector;
415 416
	int mode = DRM_MODE_SCALE_NONE;
	u32 oX, oY, *push;
B
Ben Skeggs 已提交
417

418 419 420
	/* start off at the resolution we programmed the crtc for, this
	 * effectively handles NONE/FULL scaling
	 */
B
Ben Skeggs 已提交
421
	nv_connector = nouveau_crtc_connector_get(nv_crtc);
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
	if (nv_connector && nv_connector->native_mode)
		mode = nv_connector->scaling_mode;

	if (mode != DRM_MODE_SCALE_NONE)
		omode = nv_connector->native_mode;
	else
		omode = umode;

	oX = omode->hdisplay;
	oY = omode->vdisplay;
	if (omode->flags & DRM_MODE_FLAG_DBLSCAN)
		oY *= 2;

	/* add overscan compensation if necessary, will keep the aspect
	 * ratio the same as the backend mode unless overridden by the
	 * user setting both hborder and vborder properties.
	 */
	if (nv_connector && ( nv_connector->underscan == UNDERSCAN_ON ||
			     (nv_connector->underscan == UNDERSCAN_AUTO &&
			      nv_connector->edid &&
			      drm_detect_hdmi_monitor(nv_connector->edid)))) {
		u32 bX = nv_connector->underscan_hborder;
		u32 bY = nv_connector->underscan_vborder;
		u32 aspect = (oY << 19) / oX;

		if (bX) {
			oX -= (bX * 2);
			if (bY) oY -= (bY * 2);
			else    oY  = ((oX * aspect) + (aspect / 2)) >> 19;
		} else {
			oX -= (oX >> 4) + 32;
			if (bY) oY -= (bY * 2);
			else    oY  = ((oX * aspect) + (aspect / 2)) >> 19;
		}
	}

	/* handle CENTER/ASPECT scaling, taking into account the areas
	 * removed already for overscan compensation
	 */
	switch (mode) {
	case DRM_MODE_SCALE_CENTER:
		oX = min((u32)umode->hdisplay, oX);
		oY = min((u32)umode->vdisplay, oY);
		/* fall-through */
	case DRM_MODE_SCALE_ASPECT:
		if (oY < oX) {
			u32 aspect = (umode->hdisplay << 19) / umode->vdisplay;
			oX = ((oY * aspect) + (aspect / 2)) >> 19;
		} else {
			u32 aspect = (umode->vdisplay << 19) / umode->hdisplay;
			oY = ((oX * aspect) + (aspect / 2)) >> 19;
B
Ben Skeggs 已提交
473
		}
474 475 476
		break;
	default:
		break;
B
Ben Skeggs 已提交
477
	}
478

479
	push = evo_wait(dev, EVO_MASTER, 8);
480 481
	if (push) {
		evo_mthd(push, 0x04c0 + (nv_crtc->index * 0x300), 3);
482 483 484
		evo_data(push, (oY << 16) | oX);
		evo_data(push, (oY << 16) | oX);
		evo_data(push, (oY << 16) | oX);
485 486 487
		evo_mthd(push, 0x0494 + (nv_crtc->index * 0x300), 1);
		evo_data(push, 0x00000000);
		evo_mthd(push, 0x04b8 + (nv_crtc->index * 0x300), 1);
488
		evo_data(push, (umode->vdisplay << 16) | umode->hdisplay);
489
		evo_kick(push, dev, EVO_MASTER);
490
		if (update) {
491 492
			nvd0_display_flip_stop(crtc);
			nvd0_display_flip_next(crtc, crtc->fb, NULL, 1);
493 494 495 496 497 498 499 500 501 502 503 504 505
		}
	}

	return 0;
}

static int
nvd0_crtc_set_image(struct nouveau_crtc *nv_crtc, struct drm_framebuffer *fb,
		    int x, int y, bool update)
{
	struct nouveau_framebuffer *nvfb = nouveau_framebuffer(fb);
	u32 *push;

506
	push = evo_wait(fb->dev, EVO_MASTER, 16);
507 508 509 510 511 512 513
	if (push) {
		evo_mthd(push, 0x0460 + (nv_crtc->index * 0x300), 1);
		evo_data(push, nvfb->nvbo->bo.offset >> 8);
		evo_mthd(push, 0x0468 + (nv_crtc->index * 0x300), 4);
		evo_data(push, (fb->height << 16) | fb->width);
		evo_data(push, nvfb->r_pitch);
		evo_data(push, nvfb->r_format);
514
		evo_data(push, nvfb->r_dma);
515 516
		evo_mthd(push, 0x04b0 + (nv_crtc->index * 0x300), 1);
		evo_data(push, (y << 16) | x);
517 518 519 520
		if (update) {
			evo_mthd(push, 0x0080, 1);
			evo_data(push, 0x00000000);
		}
521
		evo_kick(push, fb->dev, EVO_MASTER);
522 523
	}

524
	nv_crtc->fb.tile_flags = nvfb->r_dma;
525 526 527 528 529 530 531
	return 0;
}

static void
nvd0_crtc_cursor_show(struct nouveau_crtc *nv_crtc, bool show, bool update)
{
	struct drm_device *dev = nv_crtc->base.dev;
532
	u32 *push = evo_wait(dev, EVO_MASTER, 16);
533 534 535 536 537 538
	if (push) {
		if (show) {
			evo_mthd(push, 0x0480 + (nv_crtc->index * 0x300), 2);
			evo_data(push, 0x85000000);
			evo_data(push, nv_crtc->cursor.nvbo->bo.offset >> 8);
			evo_mthd(push, 0x048c + (nv_crtc->index * 0x300), 1);
539
			evo_data(push, NvEvoVRAM);
540 541 542 543 544 545 546 547 548 549 550 551
		} else {
			evo_mthd(push, 0x0480 + (nv_crtc->index * 0x300), 1);
			evo_data(push, 0x05000000);
			evo_mthd(push, 0x048c + (nv_crtc->index * 0x300), 1);
			evo_data(push, 0x00000000);
		}

		if (update) {
			evo_mthd(push, 0x0080, 1);
			evo_data(push, 0x00000000);
		}

552
		evo_kick(push, dev, EVO_MASTER);
553 554 555 556 557 558 559 560 561 562 563 564 565 566
	}
}

static void
nvd0_crtc_dpms(struct drm_crtc *crtc, int mode)
{
}

static void
nvd0_crtc_prepare(struct drm_crtc *crtc)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	u32 *push;

567 568
	nvd0_display_flip_stop(crtc);

569
	push = evo_wait(crtc->dev, EVO_MASTER, 2);
570 571 572 573 574 575 576
	if (push) {
		evo_mthd(push, 0x0474 + (nv_crtc->index * 0x300), 1);
		evo_data(push, 0x00000000);
		evo_mthd(push, 0x0440 + (nv_crtc->index * 0x300), 1);
		evo_data(push, 0x03000000);
		evo_mthd(push, 0x045c + (nv_crtc->index * 0x300), 1);
		evo_data(push, 0x00000000);
577
		evo_kick(push, crtc->dev, EVO_MASTER);
578 579 580 581 582 583 584 585 586 587 588
	}

	nvd0_crtc_cursor_show(nv_crtc, false, false);
}

static void
nvd0_crtc_commit(struct drm_crtc *crtc)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	u32 *push;

589
	push = evo_wait(crtc->dev, EVO_MASTER, 32);
590 591 592 593 594 595 596 597 598
	if (push) {
		evo_mthd(push, 0x0474 + (nv_crtc->index * 0x300), 1);
		evo_data(push, nv_crtc->fb.tile_flags);
		evo_mthd(push, 0x0440 + (nv_crtc->index * 0x300), 4);
		evo_data(push, 0x83000000);
		evo_data(push, nv_crtc->lut.nvbo->bo.offset >> 8);
		evo_data(push, 0x00000000);
		evo_data(push, 0x00000000);
		evo_mthd(push, 0x045c + (nv_crtc->index * 0x300), 1);
599
		evo_data(push, NvEvoVRAM);
600 601
		evo_mthd(push, 0x0430 + (nv_crtc->index * 0x300), 1);
		evo_data(push, 0xffffff00);
602
		evo_kick(push, crtc->dev, EVO_MASTER);
603 604
	}

605
	nvd0_crtc_cursor_show(nv_crtc, nv_crtc->cursor.visible, true);
606
	nvd0_display_flip_next(crtc, crtc->fb, NULL, 1);
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
}

static bool
nvd0_crtc_mode_fixup(struct drm_crtc *crtc, struct drm_display_mode *mode,
		     struct drm_display_mode *adjusted_mode)
{
	return true;
}

static int
nvd0_crtc_swap_fbs(struct drm_crtc *crtc, struct drm_framebuffer *old_fb)
{
	struct nouveau_framebuffer *nvfb = nouveau_framebuffer(crtc->fb);
	int ret;

	ret = nouveau_bo_pin(nvfb->nvbo, TTM_PL_FLAG_VRAM);
	if (ret)
		return ret;

	if (old_fb) {
		nvfb = nouveau_framebuffer(old_fb);
		nouveau_bo_unpin(nvfb->nvbo);
	}

	return 0;
}

static int
nvd0_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *umode,
		   struct drm_display_mode *mode, int x, int y,
		   struct drm_framebuffer *old_fb)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	struct nouveau_connector *nv_connector;
641 642 643 644 645
	u32 ilace = (mode->flags & DRM_MODE_FLAG_INTERLACE) ? 2 : 1;
	u32 vscan = (mode->flags & DRM_MODE_FLAG_DBLSCAN) ? 2 : 1;
	u32 hactive, hsynce, hbackp, hfrontp, hblanke, hblanks;
	u32 vactive, vsynce, vbackp, vfrontp, vblanke, vblanks;
	u32 vblan2e = 0, vblan2s = 1;
646
	u32 *push;
647 648
	int ret;

649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
	hactive = mode->htotal;
	hsynce  = mode->hsync_end - mode->hsync_start - 1;
	hbackp  = mode->htotal - mode->hsync_end;
	hblanke = hsynce + hbackp;
	hfrontp = mode->hsync_start - mode->hdisplay;
	hblanks = mode->htotal - hfrontp - 1;

	vactive = mode->vtotal * vscan / ilace;
	vsynce  = ((mode->vsync_end - mode->vsync_start) * vscan / ilace) - 1;
	vbackp  = (mode->vtotal - mode->vsync_end) * vscan / ilace;
	vblanke = vsynce + vbackp;
	vfrontp = (mode->vsync_start - mode->vdisplay) * vscan / ilace;
	vblanks = vactive - vfrontp - 1;
	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
		vblan2e = vactive + vsynce + vbackp;
		vblan2s = vblan2e + (mode->vdisplay * vscan / ilace);
		vactive = (vactive * 2) + 1;
	}

668 669 670 671
	ret = nvd0_crtc_swap_fbs(crtc, old_fb);
	if (ret)
		return ret;

672
	push = evo_wait(crtc->dev, EVO_MASTER, 64);
673
	if (push) {
674
		evo_mthd(push, 0x0410 + (nv_crtc->index * 0x300), 6);
675
		evo_data(push, 0x00000000);
676 677 678 679 680
		evo_data(push, (vactive << 16) | hactive);
		evo_data(push, ( vsynce << 16) | hsynce);
		evo_data(push, (vblanke << 16) | hblanke);
		evo_data(push, (vblanks << 16) | hblanks);
		evo_data(push, (vblan2e << 16) | vblan2s);
681 682 683 684 685 686
		evo_mthd(push, 0x042c + (nv_crtc->index * 0x300), 1);
		evo_data(push, 0x00000000); /* ??? */
		evo_mthd(push, 0x0450 + (nv_crtc->index * 0x300), 3);
		evo_data(push, mode->clock * 1000);
		evo_data(push, 0x00200000); /* ??? */
		evo_data(push, mode->clock * 1000);
687 688 689
		evo_mthd(push, 0x04d0 + (nv_crtc->index * 0x300), 2);
		evo_data(push, 0x00000311);
		evo_data(push, 0x00000100);
690
		evo_kick(push, crtc->dev, EVO_MASTER);
691 692 693
	}

	nv_connector = nouveau_crtc_connector_get(nv_crtc);
694 695
	nvd0_crtc_set_dither(nv_crtc, false);
	nvd0_crtc_set_scale(nv_crtc, false);
696 697 698 699 700 701 702 703 704 705 706
	nvd0_crtc_set_image(nv_crtc, crtc->fb, x, y, false);
	return 0;
}

static int
nvd0_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
			struct drm_framebuffer *old_fb)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	int ret;

707 708 709 710 711
	if (!crtc->fb) {
		NV_DEBUG_KMS(crtc->dev, "No FB bound\n");
		return 0;
	}

712 713 714 715
	ret = nvd0_crtc_swap_fbs(crtc, old_fb);
	if (ret)
		return ret;

716
	nvd0_display_flip_stop(crtc);
717
	nvd0_crtc_set_image(nv_crtc, crtc->fb, x, y, true);
718
	nvd0_display_flip_next(crtc, crtc->fb, NULL, 1);
719 720 721 722 723 724 725 726 727
	return 0;
}

static int
nvd0_crtc_mode_set_base_atomic(struct drm_crtc *crtc,
			       struct drm_framebuffer *fb, int x, int y,
			       enum mode_set_atomic state)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
728
	nvd0_display_flip_stop(crtc);
729 730 731 732 733 734 735 736 737 738 739 740
	nvd0_crtc_set_image(nv_crtc, fb, x, y, true);
	return 0;
}

static void
nvd0_crtc_lut_load(struct drm_crtc *crtc)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	void __iomem *lut = nvbo_kmap_obj_iovirtual(nv_crtc->lut.nvbo);
	int i;

	for (i = 0; i < 256; i++) {
741 742 743
		writew(0x6000 + (nv_crtc->lut.r[i] >> 2), lut + (i * 0x20) + 0);
		writew(0x6000 + (nv_crtc->lut.g[i] >> 2), lut + (i * 0x20) + 2);
		writew(0x6000 + (nv_crtc->lut.b[i] >> 2), lut + (i * 0x20) + 4);
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
	}
}

static int
nvd0_crtc_cursor_set(struct drm_crtc *crtc, struct drm_file *file_priv,
		     uint32_t handle, uint32_t width, uint32_t height)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	struct drm_gem_object *gem;
	struct nouveau_bo *nvbo;
	bool visible = (handle != 0);
	int i, ret = 0;

	if (visible) {
		if (width != 64 || height != 64)
			return -EINVAL;

		gem = drm_gem_object_lookup(dev, file_priv, handle);
		if (unlikely(!gem))
			return -ENOENT;
		nvbo = nouveau_gem_object(gem);

		ret = nouveau_bo_map(nvbo);
		if (ret == 0) {
			for (i = 0; i < 64 * 64; i++) {
				u32 v = nouveau_bo_rd32(nvbo, i);
				nouveau_bo_wr32(nv_crtc->cursor.nvbo, i, v);
			}
			nouveau_bo_unmap(nvbo);
		}

		drm_gem_object_unreference_unlocked(gem);
	}

	if (visible != nv_crtc->cursor.visible) {
		nvd0_crtc_cursor_show(nv_crtc, visible, true);
		nv_crtc->cursor.visible = visible;
	}

	return ret;
}

static int
nvd0_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
791
	int ch = EVO_CURS(nv_crtc->index);
792

793 794
	evo_piow(crtc->dev, ch, 0x0084, (y << 16) | x);
	evo_piow(crtc->dev, ch, 0x0080, 0x00000000);
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
	return 0;
}

static void
nvd0_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
		    uint32_t start, uint32_t size)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	u32 end = max(start + size, (u32)256);
	u32 i;

	for (i = start; i < end; i++) {
		nv_crtc->lut.r[i] = r[i];
		nv_crtc->lut.g[i] = g[i];
		nv_crtc->lut.b[i] = b[i];
	}

	nvd0_crtc_lut_load(crtc);
}

static void
nvd0_crtc_destroy(struct drm_crtc *crtc)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	nouveau_bo_unmap(nv_crtc->cursor.nvbo);
	nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
	nouveau_bo_unmap(nv_crtc->lut.nvbo);
	nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo);
	drm_crtc_cleanup(crtc);
	kfree(crtc);
}

static const struct drm_crtc_helper_funcs nvd0_crtc_hfunc = {
	.dpms = nvd0_crtc_dpms,
	.prepare = nvd0_crtc_prepare,
	.commit = nvd0_crtc_commit,
	.mode_fixup = nvd0_crtc_mode_fixup,
	.mode_set = nvd0_crtc_mode_set,
	.mode_set_base = nvd0_crtc_mode_set_base,
	.mode_set_base_atomic = nvd0_crtc_mode_set_base_atomic,
	.load_lut = nvd0_crtc_lut_load,
};

static const struct drm_crtc_funcs nvd0_crtc_func = {
	.cursor_set = nvd0_crtc_cursor_set,
	.cursor_move = nvd0_crtc_cursor_move,
	.gamma_set = nvd0_crtc_gamma_set,
	.set_config = drm_crtc_helper_set_config,
	.destroy = nvd0_crtc_destroy,
844
	.page_flip = nouveau_crtc_page_flip,
845 846
};

847 848 849 850 851 852 853 854 855 856
static void
nvd0_cursor_set_pos(struct nouveau_crtc *nv_crtc, int x, int y)
{
}

static void
nvd0_cursor_set_offset(struct nouveau_crtc *nv_crtc, uint32_t offset)
{
}

857 858 859 860 861 862 863 864 865 866 867 868 869 870
static int
nvd0_crtc_create(struct drm_device *dev, int index)
{
	struct nouveau_crtc *nv_crtc;
	struct drm_crtc *crtc;
	int ret, i;

	nv_crtc = kzalloc(sizeof(*nv_crtc), GFP_KERNEL);
	if (!nv_crtc)
		return -ENOMEM;

	nv_crtc->index = index;
	nv_crtc->set_dither = nvd0_crtc_set_dither;
	nv_crtc->set_scale = nvd0_crtc_set_scale;
871 872
	nv_crtc->cursor.set_offset = nvd0_cursor_set_offset;
	nv_crtc->cursor.set_pos = nvd0_cursor_set_pos;
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
	for (i = 0; i < 256; i++) {
		nv_crtc->lut.r[i] = i << 8;
		nv_crtc->lut.g[i] = i << 8;
		nv_crtc->lut.b[i] = i << 8;
	}

	crtc = &nv_crtc->base;
	drm_crtc_init(dev, crtc, &nvd0_crtc_func);
	drm_crtc_helper_add(crtc, &nvd0_crtc_hfunc);
	drm_mode_crtc_set_gamma_size(crtc, 256);

	ret = nouveau_bo_new(dev, 64 * 64 * 4, 0x100, TTM_PL_FLAG_VRAM,
			     0, 0x0000, &nv_crtc->cursor.nvbo);
	if (!ret) {
		ret = nouveau_bo_pin(nv_crtc->cursor.nvbo, TTM_PL_FLAG_VRAM);
		if (!ret)
			ret = nouveau_bo_map(nv_crtc->cursor.nvbo);
		if (ret)
			nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
	}

	if (ret)
		goto out;

897
	ret = nouveau_bo_new(dev, 8192, 0x100, TTM_PL_FLAG_VRAM,
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
			     0, 0x0000, &nv_crtc->lut.nvbo);
	if (!ret) {
		ret = nouveau_bo_pin(nv_crtc->lut.nvbo, TTM_PL_FLAG_VRAM);
		if (!ret)
			ret = nouveau_bo_map(nv_crtc->lut.nvbo);
		if (ret)
			nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo);
	}

	if (ret)
		goto out;

	nvd0_crtc_lut_load(crtc);

out:
	if (ret)
		nvd0_crtc_destroy(crtc);
	return ret;
}

918 919 920
/******************************************************************************
 * DAC
 *****************************************************************************/
B
Ben Skeggs 已提交
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
static void
nvd0_dac_dpms(struct drm_encoder *encoder, int mode)
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct drm_device *dev = encoder->dev;
	int or = nv_encoder->or;
	u32 dpms_ctrl;

	dpms_ctrl = 0x80000000;
	if (mode == DRM_MODE_DPMS_STANDBY || mode == DRM_MODE_DPMS_OFF)
		dpms_ctrl |= 0x00000001;
	if (mode == DRM_MODE_DPMS_SUSPEND || mode == DRM_MODE_DPMS_OFF)
		dpms_ctrl |= 0x00000004;

	nv_wait(dev, 0x61a004 + (or * 0x0800), 0x80000000, 0x00000000);
	nv_mask(dev, 0x61a004 + (or * 0x0800), 0xc000007f, dpms_ctrl);
	nv_wait(dev, 0x61a004 + (or * 0x0800), 0x80000000, 0x00000000);
}

static bool
nvd0_dac_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
		    struct drm_display_mode *adjusted_mode)
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nouveau_connector *nv_connector;

	nv_connector = nouveau_encoder_connector_get(nv_encoder);
	if (nv_connector && nv_connector->native_mode) {
		if (nv_connector->scaling_mode != DRM_MODE_SCALE_NONE) {
			int id = adjusted_mode->base.id;
			*adjusted_mode = *nv_connector->native_mode;
			adjusted_mode->base.id = id;
		}
	}

	return true;
}

static void
nvd0_dac_commit(struct drm_encoder *encoder)
{
}

static void
nvd0_dac_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
		  struct drm_display_mode *adjusted_mode)
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
970 971 972 973 974 975 976 977 978 979 980
	u32 syncs, magic, *push;

	syncs = 0x00000001;
	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
		syncs |= 0x00000008;
	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
		syncs |= 0x00000010;

	magic = 0x31ec6000 | (nv_crtc->index << 25);
	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
		magic |= 0x00000001;
B
Ben Skeggs 已提交
981 982 983

	nvd0_dac_dpms(encoder, DRM_MODE_DPMS_ON);

984
	push = evo_wait(encoder->dev, EVO_MASTER, 8);
B
Ben Skeggs 已提交
985
	if (push) {
986 987 988 989
		evo_mthd(push, 0x0404 + (nv_crtc->index * 0x300), 2);
		evo_data(push, syncs);
		evo_data(push, magic);
		evo_mthd(push, 0x0180 + (nv_encoder->or * 0x020), 2);
B
Ben Skeggs 已提交
990
		evo_data(push, 1 << nv_crtc->index);
991
		evo_data(push, 0x00ff);
992
		evo_kick(push, encoder->dev, EVO_MASTER);
B
Ben Skeggs 已提交
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
	}

	nv_encoder->crtc = encoder->crtc;
}

static void
nvd0_dac_disconnect(struct drm_encoder *encoder)
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct drm_device *dev = encoder->dev;
	u32 *push;

	if (nv_encoder->crtc) {
		nvd0_crtc_prepare(nv_encoder->crtc);

1008
		push = evo_wait(dev, EVO_MASTER, 4);
B
Ben Skeggs 已提交
1009 1010 1011 1012 1013
		if (push) {
			evo_mthd(push, 0x0180 + (nv_encoder->or * 0x20), 1);
			evo_data(push, 0x00000000);
			evo_mthd(push, 0x0080, 1);
			evo_data(push, 0x00000000);
1014
			evo_kick(push, dev, EVO_MASTER);
B
Ben Skeggs 已提交
1015 1016 1017 1018 1019 1020
		}

		nv_encoder->crtc = NULL;
	}
}

1021 1022 1023
static enum drm_connector_status
nvd0_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector)
{
B
Ben Skeggs 已提交
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
	enum drm_connector_status status = connector_status_disconnected;
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct drm_device *dev = encoder->dev;
	int or = nv_encoder->or;
	u32 load;

	nv_wr32(dev, 0x61a00c + (or * 0x800), 0x00100000);
	udelay(9500);
	nv_wr32(dev, 0x61a00c + (or * 0x800), 0x80000000);

	load = nv_rd32(dev, 0x61a00c + (or * 0x800));
	if ((load & 0x38000000) == 0x38000000)
		status = connector_status_connected;

	nv_wr32(dev, 0x61a00c + (or * 0x800), 0x00000000);
	return status;
1040 1041
}

B
Ben Skeggs 已提交
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
static void
nvd0_dac_destroy(struct drm_encoder *encoder)
{
	drm_encoder_cleanup(encoder);
	kfree(encoder);
}

static const struct drm_encoder_helper_funcs nvd0_dac_hfunc = {
	.dpms = nvd0_dac_dpms,
	.mode_fixup = nvd0_dac_mode_fixup,
1052
	.prepare = nvd0_dac_disconnect,
B
Ben Skeggs 已提交
1053 1054 1055 1056
	.commit = nvd0_dac_commit,
	.mode_set = nvd0_dac_mode_set,
	.disable = nvd0_dac_disconnect,
	.get_crtc = nvd0_display_crtc_get,
1057
	.detect = nvd0_dac_detect
B
Ben Skeggs 已提交
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
};

static const struct drm_encoder_funcs nvd0_dac_func = {
	.destroy = nvd0_dac_destroy,
};

static int
nvd0_dac_create(struct drm_connector *connector, struct dcb_entry *dcbe)
{
	struct drm_device *dev = connector->dev;
	struct nouveau_encoder *nv_encoder;
	struct drm_encoder *encoder;

	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
	if (!nv_encoder)
		return -ENOMEM;
	nv_encoder->dcb = dcbe;
	nv_encoder->or = ffs(dcbe->or) - 1;

	encoder = to_drm_encoder(nv_encoder);
	encoder->possible_crtcs = dcbe->heads;
	encoder->possible_clones = 0;
	drm_encoder_init(dev, encoder, &nvd0_dac_func, DRM_MODE_ENCODER_DAC);
	drm_encoder_helper_add(encoder, &nvd0_dac_hfunc);

	drm_mode_connector_attach_encoder(connector, encoder);
	return 0;
}
1086

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
/******************************************************************************
 * Audio
 *****************************************************************************/
static void
nvd0_audio_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode)
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nouveau_connector *nv_connector;
	struct drm_device *dev = encoder->dev;
	int i, or = nv_encoder->or * 0x30;

	nv_connector = nouveau_encoder_connector_get(nv_encoder);
	if (!drm_detect_monitor_audio(nv_connector->edid))
		return;

	nv_mask(dev, 0x10ec10 + or, 0x80000003, 0x80000001);

	drm_edid_to_eld(&nv_connector->base, nv_connector->edid);
	if (nv_connector->base.eld[0]) {
		u8 *eld = nv_connector->base.eld;

		for (i = 0; i < eld[2] * 4; i++)
			nv_wr32(dev, 0x10ec00 + or, (i << 8) | eld[i]);
		for (i = eld[2] * 4; i < 0x60; i++)
			nv_wr32(dev, 0x10ec00 + or, (i << 8) | 0x00);

		nv_mask(dev, 0x10ec10 + or, 0x80000002, 0x80000002);
	}
}

static void
nvd0_audio_disconnect(struct drm_encoder *encoder)
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct drm_device *dev = encoder->dev;
	int or = nv_encoder->or * 0x30;

	nv_mask(dev, 0x10ec10 + or, 0x80000003, 0x80000000);
}

/******************************************************************************
 * HDMI
 *****************************************************************************/
static void
nvd0_hdmi_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode)
{
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
	struct nouveau_connector *nv_connector;
	struct drm_device *dev = encoder->dev;
	int head = nv_crtc->index * 0x800;
	u32 rekey = 56; /* binary driver, and tegra constant */
	u32 max_ac_packet;

	nv_connector = nouveau_encoder_connector_get(nv_encoder);
	if (!drm_detect_hdmi_monitor(nv_connector->edid))
		return;

	max_ac_packet  = mode->htotal - mode->hdisplay;
	max_ac_packet -= rekey;
	max_ac_packet -= 18; /* constant from tegra */
	max_ac_packet /= 32;

	/* AVI InfoFrame */
	nv_mask(dev, 0x616714 + head, 0x00000001, 0x00000000);
	nv_wr32(dev, 0x61671c + head, 0x000d0282);
	nv_wr32(dev, 0x616720 + head, 0x0000006f);
	nv_wr32(dev, 0x616724 + head, 0x00000000);
	nv_wr32(dev, 0x616728 + head, 0x00000000);
	nv_wr32(dev, 0x61672c + head, 0x00000000);
	nv_mask(dev, 0x616714 + head, 0x00000001, 0x00000001);

	/* ??? InfoFrame? */
	nv_mask(dev, 0x6167a4 + head, 0x00000001, 0x00000000);
	nv_wr32(dev, 0x6167ac + head, 0x00000010);
	nv_mask(dev, 0x6167a4 + head, 0x00000001, 0x00000001);

	/* HDMI_CTRL */
	nv_mask(dev, 0x616798 + head, 0x401f007f, 0x40000000 | rekey |
						  max_ac_packet << 16);

B
Ben Skeggs 已提交
1168 1169 1170
	/* NFI, audio doesn't work without it though.. */
	nv_mask(dev, 0x616548 + head, 0x00000070, 0x00000000);

1171 1172 1173 1174 1175 1176
	nvd0_audio_mode_set(encoder, mode);
}

static void
nvd0_hdmi_disconnect(struct drm_encoder *encoder)
{
1177 1178 1179 1180 1181
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nouveau_crtc *nv_crtc = nouveau_crtc(nv_encoder->crtc);
	struct drm_device *dev = encoder->dev;
	int head = nv_crtc->index * 0x800;

1182
	nvd0_audio_disconnect(encoder);
1183 1184 1185 1186

	nv_mask(dev, 0x616798 + head, 0x40000000, 0x00000000);
	nv_mask(dev, 0x6167a4 + head, 0x00000001, 0x00000000);
	nv_mask(dev, 0x616714 + head, 0x00000001, 0x00000000);
1187 1188
}

1189 1190 1191
/******************************************************************************
 * SOR
 *****************************************************************************/
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
static inline u32
nvd0_sor_dp_lane_map(struct drm_device *dev, struct dcb_entry *dcb, u8 lane)
{
	static const u8 nvd0[] = { 16, 8, 0, 24 };
	return nvd0[lane];
}

static void
nvd0_sor_dp_train_set(struct drm_device *dev, struct dcb_entry *dcb, u8 pattern)
{
	const u32 or = ffs(dcb->or) - 1, link = !(dcb->sorconf.link & 1);
	const u32 loff = (or * 0x800) + (link * 0x80);
	nv_mask(dev, 0x61c110 + loff, 0x0f0f0f0f, 0x01010101 * pattern);
}

static void
nvd0_sor_dp_train_adj(struct drm_device *dev, struct dcb_entry *dcb,
		      u8 lane, u8 swing, u8 preem)
{
	const u32 or = ffs(dcb->or) - 1, link = !(dcb->sorconf.link & 1);
	const u32 loff = (or * 0x800) + (link * 0x80);
	u32 shift = nvd0_sor_dp_lane_map(dev, dcb, lane);
	u32 mask = 0x000000ff << shift;
	u8 *table, *entry, *config = NULL;

	switch (swing) {
	case 0: preem += 0; break;
	case 1: preem += 4; break;
	case 2: preem += 7; break;
	case 3: preem += 9; break;
	}

	table = nouveau_dp_bios_data(dev, dcb, &entry);
	if (table) {
		if (table[0] == 0x30) {
			config  = entry + table[4];
			config += table[5] * preem;
1229 1230 1231 1232 1233
		} else
		if (table[0] == 0x40) {
			config  = table + table[1];
			config += table[2] * table[3];
			config += table[6] * preem;
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
		}
	}

	if (!config) {
		NV_ERROR(dev, "PDISP: unsupported DP table for chipset\n");
		return;
	}

	nv_mask(dev, 0x61c118 + loff, mask, config[1] << shift);
	nv_mask(dev, 0x61c120 + loff, mask, config[2] << shift);
	nv_mask(dev, 0x61c130 + loff, 0x0000ff00, config[3] << 8);
	nv_mask(dev, 0x61c13c + loff, 0x00000000, 0x00000000);
}

static void
nvd0_sor_dp_link_set(struct drm_device *dev, struct dcb_entry *dcb, int crtc,
		     int link_nr, u32 link_bw, bool enhframe)
{
	const u32 or = ffs(dcb->or) - 1, link = !(dcb->sorconf.link & 1);
	const u32 loff = (or * 0x800) + (link * 0x80);
	const u32 soff = (or * 0x800);
	u32 dpctrl = nv_rd32(dev, 0x61c10c + loff) & ~0x001f4000;
	u32 clksor = nv_rd32(dev, 0x612300 + soff) & ~0x007c0000;
	u32 script = 0x0000, lane_mask = 0;
	u8 *table, *entry;
	int i;

	link_bw /= 27000;

	table = nouveau_dp_bios_data(dev, dcb, &entry);
	if (table) {
		if      (table[0] == 0x30) entry = ROMPTR(dev, entry[10]);
1266
		else if (table[0] == 0x40) entry = ROMPTR(dev, entry[9]);
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
		else                       entry = NULL;

		while (entry) {
			if (entry[0] >= link_bw)
				break;
			entry += 3;
		}

		nouveau_bios_run_init_table(dev, script, dcb, crtc);
	}

	clksor |= link_bw << 18;
	dpctrl |= ((1 << link_nr) - 1) << 16;
	if (enhframe)
		dpctrl |= 0x00004000;

	for (i = 0; i < link_nr; i++)
		lane_mask |= 1 << (nvd0_sor_dp_lane_map(dev, dcb, i) >> 3);

	nv_wr32(dev, 0x612300 + soff, clksor);
	nv_wr32(dev, 0x61c10c + loff, dpctrl);
	nv_mask(dev, 0x61c130 + loff, 0x0000000f, lane_mask);
}

static void
nvd0_sor_dp_link_get(struct drm_device *dev, struct dcb_entry *dcb,
		     u32 *link_nr, u32 *link_bw)
{
	const u32 or = ffs(dcb->or) - 1, link = !(dcb->sorconf.link & 1);
	const u32 loff = (or * 0x800) + (link * 0x80);
	const u32 soff = (or * 0x800);
	u32 dpctrl = nv_rd32(dev, 0x61c10c + loff) & 0x000f0000;
	u32 clksor = nv_rd32(dev, 0x612300 + soff);

	if      (dpctrl > 0x00030000) *link_nr = 4;
	else if (dpctrl > 0x00010000) *link_nr = 2;
	else			      *link_nr = 1;

	*link_bw  = (clksor & 0x007c0000) >> 18;
	*link_bw *= 27000;
}

static void
nvd0_sor_dp_calc_tu(struct drm_device *dev, struct dcb_entry *dcb,
		    u32 crtc, u32 datarate)
{
	const u32 symbol = 100000;
	const u32 TU = 64;
	u32 link_nr, link_bw;
	u64 ratio, value;

	nvd0_sor_dp_link_get(dev, dcb, &link_nr, &link_bw);

	ratio  = datarate;
	ratio *= symbol;
	do_div(ratio, link_nr * link_bw);

	value  = (symbol - ratio) * TU;
	value *= ratio;
	do_div(value, symbol);
	do_div(value, symbol);

	value += 5;
	value |= 0x08000000;

	nv_wr32(dev, 0x616610 + (crtc * 0x800), value);
}

1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
static void
nvd0_sor_dpms(struct drm_encoder *encoder, int mode)
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct drm_device *dev = encoder->dev;
	struct drm_encoder *partner;
	int or = nv_encoder->or;
	u32 dpms_ctrl;

	nv_encoder->last_dpms = mode;

	list_for_each_entry(partner, &dev->mode_config.encoder_list, head) {
		struct nouveau_encoder *nv_partner = nouveau_encoder(partner);

		if (partner->encoder_type != DRM_MODE_ENCODER_TMDS)
			continue;

		if (nv_partner != nv_encoder &&
1353
		    nv_partner->dcb->or == nv_encoder->dcb->or) {
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
			if (nv_partner->last_dpms == DRM_MODE_DPMS_ON)
				return;
			break;
		}
	}

	dpms_ctrl  = (mode == DRM_MODE_DPMS_ON);
	dpms_ctrl |= 0x80000000;

	nv_wait(dev, 0x61c004 + (or * 0x0800), 0x80000000, 0x00000000);
	nv_mask(dev, 0x61c004 + (or * 0x0800), 0x80000001, dpms_ctrl);
	nv_wait(dev, 0x61c004 + (or * 0x0800), 0x80000000, 0x00000000);
	nv_wait(dev, 0x61c030 + (or * 0x0800), 0x10000000, 0x00000000);
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376

	if (nv_encoder->dcb->type == OUTPUT_DP) {
		struct dp_train_func func = {
			.link_set = nvd0_sor_dp_link_set,
			.train_set = nvd0_sor_dp_train_set,
			.train_adj = nvd0_sor_dp_train_adj
		};

		nouveau_dp_dpms(encoder, mode, nv_encoder->dp.datarate, &func);
	}
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
}

static bool
nvd0_sor_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
		    struct drm_display_mode *adjusted_mode)
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nouveau_connector *nv_connector;

	nv_connector = nouveau_encoder_connector_get(nv_encoder);
	if (nv_connector && nv_connector->native_mode) {
		if (nv_connector->scaling_mode != DRM_MODE_SCALE_NONE) {
			int id = adjusted_mode->base.id;
			*adjusted_mode = *nv_connector->native_mode;
			adjusted_mode->base.id = id;
		}
	}

	return true;
}

1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
static void
nvd0_sor_disconnect(struct drm_encoder *encoder)
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct drm_device *dev = encoder->dev;
	u32 *push;

	if (nv_encoder->crtc) {
		nvd0_crtc_prepare(nv_encoder->crtc);

		push = evo_wait(dev, EVO_MASTER, 4);
		if (push) {
			evo_mthd(push, 0x0200 + (nv_encoder->or * 0x20), 1);
			evo_data(push, 0x00000000);
			evo_mthd(push, 0x0080, 1);
			evo_data(push, 0x00000000);
			evo_kick(push, dev, EVO_MASTER);
		}

		nvd0_hdmi_disconnect(encoder);

		nv_encoder->crtc = NULL;
		nv_encoder->last_dpms = DRM_MODE_DPMS_OFF;
	}
}

1424 1425 1426
static void
nvd0_sor_prepare(struct drm_encoder *encoder)
{
1427 1428 1429
	nvd0_sor_disconnect(encoder);
	if (nouveau_encoder(encoder)->dcb->type == OUTPUT_DP)
		evo_sync(encoder->dev, EVO_MASTER);
1430 1431 1432 1433 1434 1435 1436 1437
}

static void
nvd0_sor_commit(struct drm_encoder *encoder)
{
}

static void
1438 1439
nvd0_sor_mode_set(struct drm_encoder *encoder, struct drm_display_mode *umode,
		  struct drm_display_mode *mode)
1440
{
1441 1442
	struct drm_device *dev = encoder->dev;
	struct drm_nouveau_private *dev_priv = dev->dev_private;
1443 1444
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
1445 1446
	struct nouveau_connector *nv_connector;
	struct nvbios *bios = &dev_priv->vbios;
1447
	u32 mode_ctrl = (1 << nv_crtc->index);
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
	u32 syncs, magic, *push;
	u32 or_config;

	syncs = 0x00000001;
	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
		syncs |= 0x00000008;
	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
		syncs |= 0x00000010;

	magic = 0x31ec6000 | (nv_crtc->index << 25);
	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
		magic |= 0x00000001;
1460

1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
	nv_connector = nouveau_encoder_connector_get(nv_encoder);
	switch (nv_encoder->dcb->type) {
	case OUTPUT_TMDS:
		if (nv_encoder->dcb->sorconf.link & 1) {
			if (mode->clock < 165000)
				mode_ctrl |= 0x00000100;
			else
				mode_ctrl |= 0x00000500;
		} else {
			mode_ctrl |= 0x00000200;
		}

		or_config = (mode_ctrl & 0x00000f00) >> 8;
		if (mode->clock >= 165000)
			or_config |= 0x0100;
1476 1477

		nvd0_hdmi_mode_set(encoder, mode);
1478 1479 1480 1481 1482 1483 1484 1485 1486
		break;
	case OUTPUT_LVDS:
		or_config = (mode_ctrl & 0x00000f00) >> 8;
		if (bios->fp_no_ddc) {
			if (bios->fp.dual_link)
				or_config |= 0x0100;
			if (bios->fp.if_is_24bit)
				or_config |= 0x0200;
		} else {
1487
			if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) {
1488 1489 1490 1491 1492 1493
				if (((u8 *)nv_connector->edid)[121] == 2)
					or_config |= 0x0100;
			} else
			if (mode->clock >= bios->fp.duallink_transition_clk) {
				or_config |= 0x0100;
			}
1494

1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
			if (or_config & 0x0100) {
				if (bios->fp.strapless_is_24bit & 2)
					or_config |= 0x0200;
			} else {
				if (bios->fp.strapless_is_24bit & 1)
					or_config |= 0x0200;
			}

			if (nv_connector->base.display_info.bpc == 8)
				or_config |= 0x0200;

		}
		break;
1508
	case OUTPUT_DP:
1509
		if (nv_connector->base.display_info.bpc == 6) {
1510
			nv_encoder->dp.datarate = mode->clock * 18 / 8;
1511 1512
			syncs |= 0x00000140;
		} else {
1513
			nv_encoder->dp.datarate = mode->clock * 24 / 8;
1514 1515
			syncs |= 0x00000180;
		}
1516 1517 1518 1519 1520 1521 1522 1523

		if (nv_encoder->dcb->sorconf.link & 1)
			mode_ctrl |= 0x00000800;
		else
			mode_ctrl |= 0x00000900;

		or_config = (mode_ctrl & 0x00000f00) >> 8;
		break;
1524 1525 1526 1527
	default:
		BUG_ON(1);
		break;
	}
1528

1529 1530
	nvd0_sor_dpms(encoder, DRM_MODE_DPMS_ON);

1531 1532 1533 1534 1535
	if (nv_encoder->dcb->type == OUTPUT_DP) {
		nvd0_sor_dp_calc_tu(dev, nv_encoder->dcb, nv_crtc->index,
					 nv_encoder->dp.datarate);
	}

1536
	push = evo_wait(dev, EVO_MASTER, 8);
1537
	if (push) {
1538 1539 1540 1541
		evo_mthd(push, 0x0404 + (nv_crtc->index * 0x300), 2);
		evo_data(push, syncs);
		evo_data(push, magic);
		evo_mthd(push, 0x0200 + (nv_encoder->or * 0x020), 2);
1542
		evo_data(push, mode_ctrl);
1543
		evo_data(push, or_config);
1544
		evo_kick(push, dev, EVO_MASTER);
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
	}

	nv_encoder->crtc = encoder->crtc;
}

static void
nvd0_sor_destroy(struct drm_encoder *encoder)
{
	drm_encoder_cleanup(encoder);
	kfree(encoder);
}

static const struct drm_encoder_helper_funcs nvd0_sor_hfunc = {
	.dpms = nvd0_sor_dpms,
	.mode_fixup = nvd0_sor_mode_fixup,
	.prepare = nvd0_sor_prepare,
	.commit = nvd0_sor_commit,
	.mode_set = nvd0_sor_mode_set,
	.disable = nvd0_sor_disconnect,
	.get_crtc = nvd0_display_crtc_get,
};

static const struct drm_encoder_funcs nvd0_sor_func = {
	.destroy = nvd0_sor_destroy,
};

static int
nvd0_sor_create(struct drm_connector *connector, struct dcb_entry *dcbe)
{
	struct drm_device *dev = connector->dev;
	struct nouveau_encoder *nv_encoder;
	struct drm_encoder *encoder;

	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
	if (!nv_encoder)
		return -ENOMEM;
	nv_encoder->dcb = dcbe;
	nv_encoder->or = ffs(dcbe->or) - 1;
	nv_encoder->last_dpms = DRM_MODE_DPMS_OFF;

	encoder = to_drm_encoder(nv_encoder);
	encoder->possible_crtcs = dcbe->heads;
	encoder->possible_clones = 0;
	drm_encoder_init(dev, encoder, &nvd0_sor_func, DRM_MODE_ENCODER_TMDS);
	drm_encoder_helper_add(encoder, &nvd0_sor_hfunc);

	drm_mode_connector_attach_encoder(connector, encoder);
	return 0;
}
1594 1595 1596 1597

/******************************************************************************
 * IRQ
 *****************************************************************************/
1598 1599 1600 1601
static struct dcb_entry *
lookup_dcb(struct drm_device *dev, int id, u32 mc)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
1602
	int type, or, i, link = -1;
1603 1604 1605 1606 1607

	if (id < 4) {
		type = OUTPUT_ANALOG;
		or   = id;
	} else {
1608
		switch (mc & 0x00000f00) {
1609 1610 1611 1612 1613 1614
		case 0x00000000: link = 0; type = OUTPUT_LVDS; break;
		case 0x00000100: link = 0; type = OUTPUT_TMDS; break;
		case 0x00000200: link = 1; type = OUTPUT_TMDS; break;
		case 0x00000500: link = 0; type = OUTPUT_TMDS; break;
		case 0x00000800: link = 0; type = OUTPUT_DP; break;
		case 0x00000900: link = 1; type = OUTPUT_DP; break;
1615
		default:
1616
			NV_ERROR(dev, "PDISP: unknown SOR mc 0x%08x\n", mc);
1617 1618 1619 1620
			return NULL;
		}

		or = id - 4;
1621 1622 1623 1624
	}

	for (i = 0; i < dev_priv->vbios.dcb.entries; i++) {
		struct dcb_entry *dcb = &dev_priv->vbios.dcb.entry[i];
1625 1626
		if (dcb->type == type && (dcb->or & (1 << or)) &&
		    (link < 0 || link == !(dcb->sorconf.link & 1)))
1627 1628 1629
			return dcb;
	}

1630
	NV_ERROR(dev, "PDISP: DCB for %d/0x%08x not found\n", id, mc);
1631 1632 1633
	return NULL;
}

1634
static void
1635
nvd0_display_unk1_handler(struct drm_device *dev, u32 crtc, u32 mask)
1636
{
1637 1638 1639
	struct dcb_entry *dcb;
	int i;

1640
	for (i = 0; mask && i < 8; i++) {
1641
		u32 mcc = nv_rd32(dev, 0x640180 + (i * 0x20));
1642 1643
		if (!(mcc & (1 << crtc)))
			continue;
1644

1645 1646 1647
		dcb = lookup_dcb(dev, i, mcc);
		if (!dcb)
			continue;
1648 1649

		nouveau_bios_run_display_table(dev, 0x0000, -1, dcb, crtc);
1650
	}
1651

1652 1653 1654 1655 1656 1657
	nv_wr32(dev, 0x6101d4, 0x00000000);
	nv_wr32(dev, 0x6109d4, 0x00000000);
	nv_wr32(dev, 0x6101d0, 0x80000000);
}

static void
1658
nvd0_display_unk2_handler(struct drm_device *dev, u32 crtc, u32 mask)
1659
{
1660
	struct dcb_entry *dcb;
1661
	u32 or, tmp, pclk;
1662
	int i;
1663

1664 1665 1666 1667 1668 1669 1670 1671
	for (i = 0; mask && i < 8; i++) {
		u32 mcc = nv_rd32(dev, 0x640180 + (i * 0x20));
		if (!(mcc & (1 << crtc)))
			continue;

		dcb = lookup_dcb(dev, i, mcc);
		if (!dcb)
			continue;
1672

1673
		nouveau_bios_run_display_table(dev, 0x0000, -2, dcb, crtc);
1674
	}
1675

1676
	pclk = nv_rd32(dev, 0x660450 + (crtc * 0x300)) / 1000;
1677 1678 1679
	NV_DEBUG_KMS(dev, "PDISP: crtc %d pclk %d mask 0x%08x\n",
			  crtc, pclk, mask);
	if (pclk && (mask & 0x00010000)) {
1680 1681
		nv50_crtc_set_clock(dev, crtc, pclk);
	}
1682

1683 1684 1685 1686 1687
	for (i = 0; mask && i < 8; i++) {
		u32 mcp = nv_rd32(dev, 0x660180 + (i * 0x20));
		u32 cfg = nv_rd32(dev, 0x660184 + (i * 0x20));
		if (!(mcp & (1 << crtc)))
			continue;
1688

1689 1690 1691 1692
		dcb = lookup_dcb(dev, i, mcp);
		if (!dcb)
			continue;
		or = ffs(dcb->or) - 1;
1693

1694 1695 1696 1697 1698 1699 1700 1701 1702
		nouveau_bios_run_display_table(dev, cfg, pclk, dcb, crtc);

		nv_wr32(dev, 0x612200 + (crtc * 0x800), 0x00000000);
		switch (dcb->type) {
		case OUTPUT_ANALOG:
			nv_wr32(dev, 0x612280 + (or * 0x800), 0x00000000);
			break;
		case OUTPUT_TMDS:
		case OUTPUT_LVDS:
1703
		case OUTPUT_DP:
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
			if (cfg & 0x00000100)
				tmp = 0x00000101;
			else
				tmp = 0x00000000;

			nv_mask(dev, 0x612300 + (or * 0x800), 0x00000707, tmp);
			break;
		default:
			break;
		}
1714 1715 1716 1717

		break;
	}

1718 1719 1720 1721 1722 1723
	nv_wr32(dev, 0x6101d4, 0x00000000);
	nv_wr32(dev, 0x6109d4, 0x00000000);
	nv_wr32(dev, 0x6101d0, 0x80000000);
}

static void
1724
nvd0_display_unk4_handler(struct drm_device *dev, u32 crtc, u32 mask)
1725
{
1726
	struct dcb_entry *dcb;
1727
	int pclk, i;
1728

1729
	pclk = nv_rd32(dev, 0x660450 + (crtc * 0x300)) / 1000;
1730

1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
	for (i = 0; mask && i < 8; i++) {
		u32 mcp = nv_rd32(dev, 0x660180 + (i * 0x20));
		u32 cfg = nv_rd32(dev, 0x660184 + (i * 0x20));
		if (!(mcp & (1 << crtc)))
			continue;

		dcb = lookup_dcb(dev, i, mcp);
		if (!dcb)
			continue;

		nouveau_bios_run_display_table(dev, cfg, -pclk, dcb, crtc);
	}
1743

1744 1745 1746 1747 1748
	nv_wr32(dev, 0x6101d4, 0x00000000);
	nv_wr32(dev, 0x6109d4, 0x00000000);
	nv_wr32(dev, 0x6101d0, 0x80000000);
}

1749 1750 1751 1752 1753
static void
nvd0_display_bh(unsigned long data)
{
	struct drm_device *dev = (struct drm_device *)data;
	struct nvd0_display *disp = nvd0_display(dev);
1754
	u32 mask = 0, crtc = ~0;
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
	int i;

	if (drm_debug & (DRM_UT_DRIVER | DRM_UT_KMS)) {
		NV_INFO(dev, "PDISP: modeset req %d\n", disp->modeset);
		NV_INFO(dev, " STAT: 0x%08x 0x%08x 0x%08x\n",
			 nv_rd32(dev, 0x6101d0),
			 nv_rd32(dev, 0x6101d4), nv_rd32(dev, 0x6109d4));
		for (i = 0; i < 8; i++) {
			NV_INFO(dev, " %s%d: 0x%08x 0x%08x\n",
				i < 4 ? "DAC" : "SOR", i,
				nv_rd32(dev, 0x640180 + (i * 0x20)),
				nv_rd32(dev, 0x660180 + (i * 0x20)));
		}
	}

1770 1771
	while (!mask && ++crtc < dev->mode_config.num_crtc)
		mask = nv_rd32(dev, 0x6101d4 + (crtc * 0x800));
1772

1773
	if (disp->modeset & 0x00000001)
1774
		nvd0_display_unk1_handler(dev, crtc, mask);
1775
	if (disp->modeset & 0x00000002)
1776
		nvd0_display_unk2_handler(dev, crtc, mask);
1777
	if (disp->modeset & 0x00000004)
1778
		nvd0_display_unk4_handler(dev, crtc, mask);
1779 1780
}

1781 1782 1783
static void
nvd0_display_intr(struct drm_device *dev)
{
1784
	struct nvd0_display *disp = nvd0_display(dev);
1785
	u32 intr = nv_rd32(dev, 0x610088);
1786
	int i;
1787

1788 1789 1790 1791 1792 1793
	if (intr & 0x00000001) {
		u32 stat = nv_rd32(dev, 0x61008c);
		nv_wr32(dev, 0x61008c, stat);
		intr &= ~0x00000001;
	}

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
	if (intr & 0x00000002) {
		u32 stat = nv_rd32(dev, 0x61009c);
		int chid = ffs(stat) - 1;
		if (chid >= 0) {
			u32 mthd = nv_rd32(dev, 0x6101f0 + (chid * 12));
			u32 data = nv_rd32(dev, 0x6101f4 + (chid * 12));
			u32 unkn = nv_rd32(dev, 0x6101f8 + (chid * 12));

			NV_INFO(dev, "EvoCh: chid %d mthd 0x%04x data 0x%08x "
				     "0x%08x 0x%08x\n",
				chid, (mthd & 0x0000ffc), data, mthd, unkn);
			nv_wr32(dev, 0x61009c, (1 << chid));
			nv_wr32(dev, 0x6101f0 + (chid * 12), 0x90000000);
		}

		intr &= ~0x00000002;
	}

1812 1813 1814 1815
	if (intr & 0x00100000) {
		u32 stat = nv_rd32(dev, 0x6100ac);

		if (stat & 0x00000007) {
1816
			disp->modeset = stat;
1817
			tasklet_schedule(&disp->tasklet);
1818

1819
			nv_wr32(dev, 0x6100ac, (stat & 0x00000007));
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
			stat &= ~0x00000007;
		}

		if (stat) {
			NV_INFO(dev, "PDISP: unknown intr24 0x%08x\n", stat);
			nv_wr32(dev, 0x6100ac, stat);
		}

		intr &= ~0x00100000;
	}

1831 1832 1833 1834 1835 1836 1837
	for (i = 0; i < dev->mode_config.num_crtc; i++) {
		u32 mask = 0x01000000 << i;
		if (intr & mask) {
			u32 stat = nv_rd32(dev, 0x6100bc + (i * 0x800));
			nv_wr32(dev, 0x6100bc + (i * 0x800), stat);
			intr &= ~mask;
		}
1838 1839 1840 1841 1842
	}

	if (intr)
		NV_INFO(dev, "PDISP: unknown intr 0x%08x\n", intr);
}
1843 1844 1845 1846

/******************************************************************************
 * Init
 *****************************************************************************/
1847
void
1848 1849 1850 1851
nvd0_display_fini(struct drm_device *dev)
{
	int i;

1852
	/* fini cursors + overlays + flips */
1853 1854
	for (i = 1; i >= 0; i--) {
		evo_fini_pio(dev, EVO_CURS(i));
1855 1856
		evo_fini_pio(dev, EVO_OIMM(i));
		evo_fini_dma(dev, EVO_OVLY(i));
1857
		evo_fini_dma(dev, EVO_FLIP(i));
1858 1859 1860
	}

	/* fini master */
1861
	evo_fini_dma(dev, EVO_MASTER);
1862 1863 1864 1865 1866 1867
}

int
nvd0_display_init(struct drm_device *dev)
{
	struct nvd0_display *disp = nvd0_display(dev);
1868
	int ret, i;
1869
	u32 *push;
1870

1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
	if (nv_rd32(dev, 0x6100ac) & 0x00000100) {
		nv_wr32(dev, 0x6100ac, 0x00000100);
		nv_mask(dev, 0x6194e8, 0x00000001, 0x00000000);
		if (!nv_wait(dev, 0x6194e8, 0x00000002, 0x00000000)) {
			NV_ERROR(dev, "PDISP: 0x6194e8 0x%08x\n",
				 nv_rd32(dev, 0x6194e8));
			return -EBUSY;
		}
	}

	/* nfi what these are exactly, i do know that SOR_MODE_CTRL won't
	 * work at all unless you do the SOR part below.
	 */
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
	for (i = 0; i < 3; i++) {
		u32 dac = nv_rd32(dev, 0x61a000 + (i * 0x800));
		nv_wr32(dev, 0x6101c0 + (i * 0x800), dac);
	}

	for (i = 0; i < 4; i++) {
		u32 sor = nv_rd32(dev, 0x61c000 + (i * 0x800));
		nv_wr32(dev, 0x6301c4 + (i * 0x800), sor);
	}

1894
	for (i = 0; i < dev->mode_config.num_crtc; i++) {
1895 1896 1897 1898 1899 1900
		u32 crtc0 = nv_rd32(dev, 0x616104 + (i * 0x800));
		u32 crtc1 = nv_rd32(dev, 0x616108 + (i * 0x800));
		u32 crtc2 = nv_rd32(dev, 0x61610c + (i * 0x800));
		nv_wr32(dev, 0x6101b4 + (i * 0x800), crtc0);
		nv_wr32(dev, 0x6101b8 + (i * 0x800), crtc1);
		nv_wr32(dev, 0x6101bc + (i * 0x800), crtc2);
1901 1902
	}

1903
	/* point at our hash table / objects, enable interrupts */
1904
	nv_wr32(dev, 0x610010, (disp->mem->vinst >> 8) | 9);
1905
	nv_mask(dev, 0x6100b0, 0x00000307, 0x00000307);
1906 1907

	/* init master */
1908 1909 1910
	ret = evo_init_dma(dev, EVO_MASTER);
	if (ret)
		goto error;
1911

1912
	/* init flips + overlays + cursors */
1913
	for (i = 0; i < dev->mode_config.num_crtc; i++) {
1914
		if ((ret = evo_init_dma(dev, EVO_FLIP(i))) ||
1915 1916
		    (ret = evo_init_dma(dev, EVO_OVLY(i))) ||
		    (ret = evo_init_pio(dev, EVO_OIMM(i))) ||
1917 1918
		    (ret = evo_init_pio(dev, EVO_CURS(i))))
			goto error;
1919 1920
	}

1921
	push = evo_wait(dev, EVO_MASTER, 32);
1922 1923 1924 1925
	if (!push) {
		ret = -EBUSY;
		goto error;
	}
1926
	evo_mthd(push, 0x0088, 1);
1927
	evo_data(push, NvEvoSync);
1928 1929 1930 1931 1932 1933
	evo_mthd(push, 0x0084, 1);
	evo_data(push, 0x00000000);
	evo_mthd(push, 0x0084, 1);
	evo_data(push, 0x80000000);
	evo_mthd(push, 0x008c, 1);
	evo_data(push, 0x00000000);
1934
	evo_kick(push, dev, EVO_MASTER);
1935

1936 1937 1938 1939
error:
	if (ret)
		nvd0_display_fini(dev);
	return ret;
1940 1941 1942 1943 1944 1945 1946
}

void
nvd0_display_destroy(struct drm_device *dev)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	struct nvd0_display *disp = nvd0_display(dev);
1947
	struct pci_dev *pdev = dev->pdev;
1948 1949
	int i;

1950
	for (i = 0; i < EVO_DMA_NR; i++) {
1951 1952
		struct evo *evo = &disp->evo[i];
		pci_free_consistent(pdev, PAGE_SIZE, evo->ptr, evo->handle);
1953
	}
1954 1955

	nouveau_gpuobj_ref(NULL, &disp->mem);
1956 1957
	nouveau_bo_unmap(disp->sync);
	nouveau_bo_ref(NULL, &disp->sync);
1958
	nouveau_irq_unregister(dev, 26);
1959 1960

	dev_priv->engine.display.priv = NULL;
1961 1962 1963 1964 1965 1966 1967
	kfree(disp);
}

int
nvd0_display_create(struct drm_device *dev)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
1968
	struct nouveau_instmem_engine *pinstmem = &dev_priv->engine.instmem;
1969 1970
	struct dcb_table *dcb = &dev_priv->vbios.dcb;
	struct drm_connector *connector, *tmp;
1971
	struct pci_dev *pdev = dev->pdev;
1972
	struct nvd0_display *disp;
1973
	struct dcb_entry *dcbe;
1974
	int crtcs, ret, i;
1975 1976 1977 1978 1979 1980

	disp = kzalloc(sizeof(*disp), GFP_KERNEL);
	if (!disp)
		return -ENOMEM;
	dev_priv->engine.display.priv = disp;

1981
	/* create crtc objects to represent the hw heads */
1982 1983
	crtcs = nv_rd32(dev, 0x022448);
	for (i = 0; i < crtcs; i++) {
1984 1985 1986 1987 1988
		ret = nvd0_crtc_create(dev, i);
		if (ret)
			goto out;
	}

1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
	/* create encoder/connector objects based on VBIOS DCB table */
	for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) {
		connector = nouveau_connector_create(dev, dcbe->connector);
		if (IS_ERR(connector))
			continue;

		if (dcbe->location != DCB_LOC_ON_CHIP) {
			NV_WARN(dev, "skipping off-chip encoder %d/%d\n",
				dcbe->type, ffs(dcbe->or) - 1);
			continue;
		}

		switch (dcbe->type) {
		case OUTPUT_TMDS:
2003
		case OUTPUT_LVDS:
2004
		case OUTPUT_DP:
2005 2006
			nvd0_sor_create(connector, dcbe);
			break;
B
Ben Skeggs 已提交
2007 2008 2009
		case OUTPUT_ANALOG:
			nvd0_dac_create(connector, dcbe);
			break;
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
		default:
			NV_WARN(dev, "skipping unsupported encoder %d/%d\n",
				dcbe->type, ffs(dcbe->or) - 1);
			continue;
		}
	}

	/* cull any connectors we created that don't have an encoder */
	list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) {
		if (connector->encoder_ids[0])
			continue;

		NV_WARN(dev, "%s has no encoders, removing\n",
			drm_get_connector_name(connector));
		connector->funcs->destroy(connector);
	}

2027
	/* setup interrupt handling */
2028
	tasklet_init(&disp->tasklet, nvd0_display_bh, (unsigned long)dev);
2029 2030
	nouveau_irq_register(dev, 26, nvd0_display_intr);

2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
	/* small shared memory area we use for notifiers and semaphores */
	ret = nouveau_bo_new(dev, 4096, 0x1000, TTM_PL_FLAG_VRAM,
			     0, 0x0000, &disp->sync);
	if (!ret) {
		ret = nouveau_bo_pin(disp->sync, TTM_PL_FLAG_VRAM);
		if (!ret)
			ret = nouveau_bo_map(disp->sync);
		if (ret)
			nouveau_bo_ref(NULL, &disp->sync);
	}

	if (ret)
		goto out;

2045
	/* hash table and dma objects for the memory areas we care about */
2046 2047
	ret = nouveau_gpuobj_new(dev, NULL, 0x4000, 0x10000,
				 NVOBJ_FLAG_ZERO_ALLOC, &disp->mem);
2048 2049 2050
	if (ret)
		goto out;

2051
	/* create evo dma channels */
2052
	for (i = 0; i < EVO_DMA_NR; i++) {
2053
		struct evo *evo = &disp->evo[i];
2054
		u64 offset = disp->sync->bo.offset;
2055 2056 2057 2058
		u32 dmao = 0x1000 + (i * 0x100);
		u32 hash = 0x0000 + (i * 0x040);

		evo->idx = i;
2059
		evo->sem.offset = EVO_SYNC(evo->idx, 0x00);
2060 2061
		evo->ptr = pci_alloc_consistent(pdev, PAGE_SIZE, &evo->handle);
		if (!evo->ptr) {
2062 2063 2064
			ret = -ENOMEM;
			goto out;
		}
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104

		nv_wo32(disp->mem, dmao + 0x00, 0x00000049);
		nv_wo32(disp->mem, dmao + 0x04, (offset + 0x0000) >> 8);
		nv_wo32(disp->mem, dmao + 0x08, (offset + 0x0fff) >> 8);
		nv_wo32(disp->mem, dmao + 0x0c, 0x00000000);
		nv_wo32(disp->mem, dmao + 0x10, 0x00000000);
		nv_wo32(disp->mem, dmao + 0x14, 0x00000000);
		nv_wo32(disp->mem, hash + 0x00, NvEvoSync);
		nv_wo32(disp->mem, hash + 0x04, 0x00000001 | (i << 27) |
						((dmao + 0x00) << 9));

		nv_wo32(disp->mem, dmao + 0x20, 0x00000049);
		nv_wo32(disp->mem, dmao + 0x24, 0x00000000);
		nv_wo32(disp->mem, dmao + 0x28, (dev_priv->vram_size - 1) >> 8);
		nv_wo32(disp->mem, dmao + 0x2c, 0x00000000);
		nv_wo32(disp->mem, dmao + 0x30, 0x00000000);
		nv_wo32(disp->mem, dmao + 0x34, 0x00000000);
		nv_wo32(disp->mem, hash + 0x08, NvEvoVRAM);
		nv_wo32(disp->mem, hash + 0x0c, 0x00000001 | (i << 27) |
						((dmao + 0x20) << 9));

		nv_wo32(disp->mem, dmao + 0x40, 0x00000009);
		nv_wo32(disp->mem, dmao + 0x44, 0x00000000);
		nv_wo32(disp->mem, dmao + 0x48, (dev_priv->vram_size - 1) >> 8);
		nv_wo32(disp->mem, dmao + 0x4c, 0x00000000);
		nv_wo32(disp->mem, dmao + 0x50, 0x00000000);
		nv_wo32(disp->mem, dmao + 0x54, 0x00000000);
		nv_wo32(disp->mem, hash + 0x10, NvEvoVRAM_LP);
		nv_wo32(disp->mem, hash + 0x14, 0x00000001 | (i << 27) |
						((dmao + 0x40) << 9));

		nv_wo32(disp->mem, dmao + 0x60, 0x0fe00009);
		nv_wo32(disp->mem, dmao + 0x64, 0x00000000);
		nv_wo32(disp->mem, dmao + 0x68, (dev_priv->vram_size - 1) >> 8);
		nv_wo32(disp->mem, dmao + 0x6c, 0x00000000);
		nv_wo32(disp->mem, dmao + 0x70, 0x00000000);
		nv_wo32(disp->mem, dmao + 0x74, 0x00000000);
		nv_wo32(disp->mem, hash + 0x18, NvEvoFB32);
		nv_wo32(disp->mem, hash + 0x1c, 0x00000001 | (i << 27) |
						((dmao + 0x60) << 9));
2105 2106
	}

2107 2108
	pinstmem->flush(dev);

2109 2110 2111 2112 2113
out:
	if (ret)
		nvd0_display_destroy(dev);
	return ret;
}