nvd0_display.c 28.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright 2011 Red Hat Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * Authors: Ben Skeggs
 */

25
#include <linux/dma-mapping.h>
26

27
#include "drmP.h"
28
#include "drm_crtc_helper.h"
29 30 31 32 33

#include "nouveau_drv.h"
#include "nouveau_connector.h"
#include "nouveau_encoder.h"
#include "nouveau_crtc.h"
34
#include "nouveau_fb.h"
35

36 37
#define MEM_SYNC 0xe0000001
#define MEM_VRAM 0xe0010000
38
#include "nouveau_dma.h"
39

40 41
struct nvd0_display {
	struct nouveau_gpuobj *mem;
42 43 44 45
	struct {
		dma_addr_t handle;
		u32 *ptr;
	} evo[1];
46 47 48 49 50 51 52 53 54
};

static struct nvd0_display *
nvd0_display(struct drm_device *dev)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	return dev_priv->engine.display.priv;
}

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
static int
evo_icmd(struct drm_device *dev, int id, u32 mthd, u32 data)
{
	int ret = 0;
	nv_mask(dev, 0x610700 + (id * 0x10), 0x00000001, 0x00000001);
	nv_wr32(dev, 0x610704 + (id * 0x10), data);
	nv_mask(dev, 0x610704 + (id * 0x10), 0x80000ffc, 0x80000000 | mthd);
	if (!nv_wait(dev, 0x610704 + (id * 0x10), 0x80000000, 0x00000000))
		ret = -EBUSY;
	nv_mask(dev, 0x610700 + (id * 0x10), 0x00000001, 0x00000000);
	return ret;
}

static u32 *
evo_wait(struct drm_device *dev, int id, int nr)
{
	struct nvd0_display *disp = nvd0_display(dev);
	u32 put = nv_rd32(dev, 0x640000 + (id * 0x1000)) / 4;

	if (put + nr >= (PAGE_SIZE / 4)) {
		disp->evo[id].ptr[put] = 0x20000000;

		nv_wr32(dev, 0x640000 + (id * 0x1000), 0x00000000);
		if (!nv_wait(dev, 0x640004 + (id * 0x1000), ~0, 0x00000000)) {
			NV_ERROR(dev, "evo %d dma stalled\n", id);
			return NULL;
		}

		put = 0;
	}

	return disp->evo[id].ptr + put;
}

static void
evo_kick(u32 *push, struct drm_device *dev, int id)
{
	struct nvd0_display *disp = nvd0_display(dev);
	nv_wr32(dev, 0x640000 + (id * 0x1000), (push - disp->evo[id].ptr) << 2);
}

#define evo_mthd(p,m,s) *((p)++) = (((s) << 18) | (m))
#define evo_data(p,d)   *((p)++) = (d)

99 100 101 102 103 104
static struct drm_crtc *
nvd0_display_crtc_get(struct drm_encoder *encoder)
{
	return nouveau_encoder(encoder)->crtc;
}

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
/******************************************************************************
 * CRTC
 *****************************************************************************/
static int
nvd0_crtc_set_dither(struct nouveau_crtc *nv_crtc, bool on, bool update)
{
	struct drm_device *dev = nv_crtc->base.dev;
	u32 *push, mode;

	mode = 0x00000000;
	if (on) {
		/* 0x11: 6bpc dynamic 2x2
		 * 0x13: 8bpc dynamic 2x2
		 * 0x19: 6bpc static 2x2
		 * 0x1b: 8bpc static 2x2
		 * 0x21: 6bpc temporal
		 * 0x23: 8bpc temporal
		 */
		mode = 0x00000011;
	}

	push = evo_wait(dev, 0, 4);
	if (push) {
		evo_mthd(push, 0x0490 + (nv_crtc->index * 0x300), 1);
		evo_data(push, mode);
		if (update) {
			evo_mthd(push, 0x0080, 1);
			evo_data(push, 0x00000000);
		}
		evo_kick(push, dev, 0);
	}

	return 0;
}

static int
nvd0_crtc_set_scale(struct nouveau_crtc *nv_crtc, int type, bool update)
{
	struct drm_display_mode *mode = &nv_crtc->base.mode;
	struct drm_device *dev = nv_crtc->base.dev;
	u32 *push;

	/*XXX: actually handle scaling */

	push = evo_wait(dev, 0, 16);
	if (push) {
		evo_mthd(push, 0x04c0 + (nv_crtc->index * 0x300), 3);
		evo_data(push, (mode->vdisplay << 16) | mode->hdisplay);
		evo_data(push, (mode->vdisplay << 16) | mode->hdisplay);
		evo_data(push, (mode->vdisplay << 16) | mode->hdisplay);
		evo_mthd(push, 0x0494 + (nv_crtc->index * 0x300), 1);
		evo_data(push, 0x00000000);
		evo_mthd(push, 0x04b0 + (nv_crtc->index * 0x300), 1);
		evo_data(push, 0x00000000);
		evo_mthd(push, 0x04b8 + (nv_crtc->index * 0x300), 1);
		evo_data(push, (mode->vdisplay << 16) | mode->hdisplay);
		if (update) {
			evo_mthd(push, 0x0080, 1);
			evo_data(push, 0x00000000);
		}
		evo_kick(push, dev, 0);
	}

	return 0;
}

static int
nvd0_crtc_set_image(struct nouveau_crtc *nv_crtc, struct drm_framebuffer *fb,
		    int x, int y, bool update)
{
	struct nouveau_framebuffer *nvfb = nouveau_framebuffer(fb);
	u32 *push;

	push = evo_wait(fb->dev, 0, 16);
	if (push) {
		evo_mthd(push, 0x0460 + (nv_crtc->index * 0x300), 1);
		evo_data(push, nvfb->nvbo->bo.offset >> 8);
		evo_mthd(push, 0x0468 + (nv_crtc->index * 0x300), 4);
		evo_data(push, (fb->height << 16) | fb->width);
		evo_data(push, nvfb->r_pitch);
		evo_data(push, nvfb->r_format);
186
		evo_data(push, nvfb->r_dma);
187 188 189
		evo_kick(push, fb->dev, 0);
	}

190
	nv_crtc->fb.tile_flags = nvfb->r_dma;
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
	return 0;
}

static void
nvd0_crtc_cursor_show(struct nouveau_crtc *nv_crtc, bool show, bool update)
{
	struct drm_device *dev = nv_crtc->base.dev;
	u32 *push = evo_wait(dev, 0, 16);
	if (push) {
		if (show) {
			evo_mthd(push, 0x0480 + (nv_crtc->index * 0x300), 2);
			evo_data(push, 0x85000000);
			evo_data(push, nv_crtc->cursor.nvbo->bo.offset >> 8);
			evo_mthd(push, 0x048c + (nv_crtc->index * 0x300), 1);
			evo_data(push, MEM_VRAM);
		} else {
			evo_mthd(push, 0x0480 + (nv_crtc->index * 0x300), 1);
			evo_data(push, 0x05000000);
			evo_mthd(push, 0x048c + (nv_crtc->index * 0x300), 1);
			evo_data(push, 0x00000000);
		}

		if (update) {
			evo_mthd(push, 0x0080, 1);
			evo_data(push, 0x00000000);
		}

		evo_kick(push, dev, 0);
	}
}

static void
nvd0_crtc_dpms(struct drm_crtc *crtc, int mode)
{
}

static void
nvd0_crtc_prepare(struct drm_crtc *crtc)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	u32 *push;

	push = evo_wait(crtc->dev, 0, 2);
	if (push) {
		evo_mthd(push, 0x0474 + (nv_crtc->index * 0x300), 1);
		evo_data(push, 0x00000000);
		evo_mthd(push, 0x0440 + (nv_crtc->index * 0x300), 1);
		evo_data(push, 0x03000000);
		evo_mthd(push, 0x045c + (nv_crtc->index * 0x300), 1);
		evo_data(push, 0x00000000);
		evo_kick(push, crtc->dev, 0);
	}

	nvd0_crtc_cursor_show(nv_crtc, false, false);
}

static void
nvd0_crtc_commit(struct drm_crtc *crtc)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	u32 *push;

	push = evo_wait(crtc->dev, 0, 32);
	if (push) {
		evo_mthd(push, 0x0474 + (nv_crtc->index * 0x300), 1);
		evo_data(push, nv_crtc->fb.tile_flags);
		evo_mthd(push, 0x0440 + (nv_crtc->index * 0x300), 4);
		evo_data(push, 0x83000000);
		evo_data(push, nv_crtc->lut.nvbo->bo.offset >> 8);
		evo_data(push, 0x00000000);
		evo_data(push, 0x00000000);
		evo_mthd(push, 0x045c + (nv_crtc->index * 0x300), 1);
		evo_data(push, MEM_VRAM);
		evo_kick(push, crtc->dev, 0);
	}

	nvd0_crtc_cursor_show(nv_crtc, nv_crtc->cursor.visible, true);
}

static bool
nvd0_crtc_mode_fixup(struct drm_crtc *crtc, struct drm_display_mode *mode,
		     struct drm_display_mode *adjusted_mode)
{
	return true;
}

static int
nvd0_crtc_swap_fbs(struct drm_crtc *crtc, struct drm_framebuffer *old_fb)
{
	struct nouveau_framebuffer *nvfb = nouveau_framebuffer(crtc->fb);
	int ret;

	ret = nouveau_bo_pin(nvfb->nvbo, TTM_PL_FLAG_VRAM);
	if (ret)
		return ret;

	if (old_fb) {
		nvfb = nouveau_framebuffer(old_fb);
		nouveau_bo_unpin(nvfb->nvbo);
	}

	return 0;
}

static int
nvd0_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *umode,
		   struct drm_display_mode *mode, int x, int y,
		   struct drm_framebuffer *old_fb)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	struct nouveau_connector *nv_connector;
	u32 htotal = mode->htotal;
	u32 vtotal = mode->vtotal;
	u32 hsyncw = mode->hsync_end - mode->hsync_start - 1;
	u32 vsyncw = mode->vsync_end - mode->vsync_start - 1;
	u32 hfrntp = mode->hsync_start - mode->hdisplay;
	u32 vfrntp = mode->vsync_start - mode->vdisplay;
	u32 hbackp = mode->htotal - mode->hsync_end;
	u32 vbackp = mode->vtotal - mode->vsync_end;
	u32 hss2be = hsyncw + hbackp;
	u32 vss2be = vsyncw + vbackp;
	u32 hss2de = htotal - hfrntp;
	u32 vss2de = vtotal - vfrntp;
	u32 hstart = 0;
	u32 vstart = 0;
	u32 *push;
	int ret;

	ret = nvd0_crtc_swap_fbs(crtc, old_fb);
	if (ret)
		return ret;

	push = evo_wait(crtc->dev, 0, 64);
	if (push) {
		evo_mthd(push, 0x0410 + (nv_crtc->index * 0x300), 5);
		evo_data(push, (vstart << 16) | hstart);
		evo_data(push, (vtotal << 16) | htotal);
		evo_data(push, (vsyncw << 16) | hsyncw);
		evo_data(push, (vss2be << 16) | hss2be);
		evo_data(push, (vss2de << 16) | hss2de);
		evo_mthd(push, 0x042c + (nv_crtc->index * 0x300), 1);
		evo_data(push, 0x00000000); /* ??? */
		evo_mthd(push, 0x0450 + (nv_crtc->index * 0x300), 3);
		evo_data(push, mode->clock * 1000);
		evo_data(push, 0x00200000); /* ??? */
		evo_data(push, mode->clock * 1000);
		evo_mthd(push, 0x0408 + (nv_crtc->index * 0x300), 1);
		evo_data(push, 0x31ec6000); /* ??? */
		evo_kick(push, crtc->dev, 0);
	}

	nv_connector = nouveau_crtc_connector_get(nv_crtc);
	nvd0_crtc_set_dither(nv_crtc, nv_connector->use_dithering, false);
	nvd0_crtc_set_scale(nv_crtc, nv_connector->scaling_mode, false);
	nvd0_crtc_set_image(nv_crtc, crtc->fb, x, y, false);
	return 0;
}

static int
nvd0_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
			struct drm_framebuffer *old_fb)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	int ret;

	ret = nvd0_crtc_swap_fbs(crtc, old_fb);
	if (ret)
		return ret;

	nvd0_crtc_set_image(nv_crtc, crtc->fb, x, y, true);
	return 0;
}

static int
nvd0_crtc_mode_set_base_atomic(struct drm_crtc *crtc,
			       struct drm_framebuffer *fb, int x, int y,
			       enum mode_set_atomic state)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	nvd0_crtc_set_image(nv_crtc, fb, x, y, true);
	return 0;
}

static void
nvd0_crtc_lut_load(struct drm_crtc *crtc)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	void __iomem *lut = nvbo_kmap_obj_iovirtual(nv_crtc->lut.nvbo);
	int i;

	for (i = 0; i < 256; i++) {
		writew(nv_crtc->lut.r[i] >> 2, lut + 8*i + 0);
		writew(nv_crtc->lut.g[i] >> 2, lut + 8*i + 2);
		writew(nv_crtc->lut.b[i] >> 2, lut + 8*i + 4);
	}
}

static int
nvd0_crtc_cursor_set(struct drm_crtc *crtc, struct drm_file *file_priv,
		     uint32_t handle, uint32_t width, uint32_t height)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	struct drm_gem_object *gem;
	struct nouveau_bo *nvbo;
	bool visible = (handle != 0);
	int i, ret = 0;

	if (visible) {
		if (width != 64 || height != 64)
			return -EINVAL;

		gem = drm_gem_object_lookup(dev, file_priv, handle);
		if (unlikely(!gem))
			return -ENOENT;
		nvbo = nouveau_gem_object(gem);

		ret = nouveau_bo_map(nvbo);
		if (ret == 0) {
			for (i = 0; i < 64 * 64; i++) {
				u32 v = nouveau_bo_rd32(nvbo, i);
				nouveau_bo_wr32(nv_crtc->cursor.nvbo, i, v);
			}
			nouveau_bo_unmap(nvbo);
		}

		drm_gem_object_unreference_unlocked(gem);
	}

	if (visible != nv_crtc->cursor.visible) {
		nvd0_crtc_cursor_show(nv_crtc, visible, true);
		nv_crtc->cursor.visible = visible;
	}

	return ret;
}

static int
nvd0_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	const u32 data = (y << 16) | x;

	nv_wr32(crtc->dev, 0x64d084 + (nv_crtc->index * 0x1000), data);
	nv_wr32(crtc->dev, 0x64d080 + (nv_crtc->index * 0x1000), 0x00000000);
	return 0;
}

static void
nvd0_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
		    uint32_t start, uint32_t size)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	u32 end = max(start + size, (u32)256);
	u32 i;

	for (i = start; i < end; i++) {
		nv_crtc->lut.r[i] = r[i];
		nv_crtc->lut.g[i] = g[i];
		nv_crtc->lut.b[i] = b[i];
	}

	nvd0_crtc_lut_load(crtc);
}

static void
nvd0_crtc_destroy(struct drm_crtc *crtc)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	nouveau_bo_unmap(nv_crtc->cursor.nvbo);
	nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
	nouveau_bo_unmap(nv_crtc->lut.nvbo);
	nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo);
	drm_crtc_cleanup(crtc);
	kfree(crtc);
}

static const struct drm_crtc_helper_funcs nvd0_crtc_hfunc = {
	.dpms = nvd0_crtc_dpms,
	.prepare = nvd0_crtc_prepare,
	.commit = nvd0_crtc_commit,
	.mode_fixup = nvd0_crtc_mode_fixup,
	.mode_set = nvd0_crtc_mode_set,
	.mode_set_base = nvd0_crtc_mode_set_base,
	.mode_set_base_atomic = nvd0_crtc_mode_set_base_atomic,
	.load_lut = nvd0_crtc_lut_load,
};

static const struct drm_crtc_funcs nvd0_crtc_func = {
	.cursor_set = nvd0_crtc_cursor_set,
	.cursor_move = nvd0_crtc_cursor_move,
	.gamma_set = nvd0_crtc_gamma_set,
	.set_config = drm_crtc_helper_set_config,
	.destroy = nvd0_crtc_destroy,
};

static int
nvd0_crtc_create(struct drm_device *dev, int index)
{
	struct nouveau_crtc *nv_crtc;
	struct drm_crtc *crtc;
	int ret, i;

	nv_crtc = kzalloc(sizeof(*nv_crtc), GFP_KERNEL);
	if (!nv_crtc)
		return -ENOMEM;

	nv_crtc->index = index;
	nv_crtc->set_dither = nvd0_crtc_set_dither;
	nv_crtc->set_scale = nvd0_crtc_set_scale;
	for (i = 0; i < 256; i++) {
		nv_crtc->lut.r[i] = i << 8;
		nv_crtc->lut.g[i] = i << 8;
		nv_crtc->lut.b[i] = i << 8;
	}

	crtc = &nv_crtc->base;
	drm_crtc_init(dev, crtc, &nvd0_crtc_func);
	drm_crtc_helper_add(crtc, &nvd0_crtc_hfunc);
	drm_mode_crtc_set_gamma_size(crtc, 256);

	ret = nouveau_bo_new(dev, 64 * 64 * 4, 0x100, TTM_PL_FLAG_VRAM,
			     0, 0x0000, &nv_crtc->cursor.nvbo);
	if (!ret) {
		ret = nouveau_bo_pin(nv_crtc->cursor.nvbo, TTM_PL_FLAG_VRAM);
		if (!ret)
			ret = nouveau_bo_map(nv_crtc->cursor.nvbo);
		if (ret)
			nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
	}

	if (ret)
		goto out;

	ret = nouveau_bo_new(dev, 4096, 0x100, TTM_PL_FLAG_VRAM,
			     0, 0x0000, &nv_crtc->lut.nvbo);
	if (!ret) {
		ret = nouveau_bo_pin(nv_crtc->lut.nvbo, TTM_PL_FLAG_VRAM);
		if (!ret)
			ret = nouveau_bo_map(nv_crtc->lut.nvbo);
		if (ret)
			nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo);
	}

	if (ret)
		goto out;

	nvd0_crtc_lut_load(crtc);

out:
	if (ret)
		nvd0_crtc_destroy(crtc);
	return ret;
}

546 547 548 549 550 551 552
/******************************************************************************
 * DAC
 *****************************************************************************/

/******************************************************************************
 * SOR
 *****************************************************************************/
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
static void
nvd0_sor_dpms(struct drm_encoder *encoder, int mode)
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct drm_device *dev = encoder->dev;
	struct drm_encoder *partner;
	int or = nv_encoder->or;
	u32 dpms_ctrl;

	nv_encoder->last_dpms = mode;

	list_for_each_entry(partner, &dev->mode_config.encoder_list, head) {
		struct nouveau_encoder *nv_partner = nouveau_encoder(partner);

		if (partner->encoder_type != DRM_MODE_ENCODER_TMDS)
			continue;

		if (nv_partner != nv_encoder &&
		    nv_partner->dcb->or == nv_encoder->or) {
			if (nv_partner->last_dpms == DRM_MODE_DPMS_ON)
				return;
			break;
		}
	}

	dpms_ctrl  = (mode == DRM_MODE_DPMS_ON);
	dpms_ctrl |= 0x80000000;

	nv_wait(dev, 0x61c004 + (or * 0x0800), 0x80000000, 0x00000000);
	nv_mask(dev, 0x61c004 + (or * 0x0800), 0x80000001, dpms_ctrl);
	nv_wait(dev, 0x61c004 + (or * 0x0800), 0x80000000, 0x00000000);
	nv_wait(dev, 0x61c030 + (or * 0x0800), 0x10000000, 0x00000000);
}

static bool
nvd0_sor_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
		    struct drm_display_mode *adjusted_mode)
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nouveau_connector *nv_connector;

	nv_connector = nouveau_encoder_connector_get(nv_encoder);
	if (nv_connector && nv_connector->native_mode) {
		if (nv_connector->scaling_mode != DRM_MODE_SCALE_NONE) {
			int id = adjusted_mode->base.id;
			*adjusted_mode = *nv_connector->native_mode;
			adjusted_mode->base.id = id;
		}
	}

	return true;
}

static void
nvd0_sor_prepare(struct drm_encoder *encoder)
{
}

static void
nvd0_sor_commit(struct drm_encoder *encoder)
{
}

static void
nvd0_sor_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
		  struct drm_display_mode *adjusted_mode)
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
	u32 mode_ctrl = (1 << nv_crtc->index);
	u32 *push;

	if (nv_encoder->dcb->sorconf.link & 1) {
		if (adjusted_mode->clock < 165000)
			mode_ctrl |= 0x00000100;
		else
			mode_ctrl |= 0x00000500;
	} else {
		mode_ctrl |= 0x00000200;
	}

	nvd0_sor_dpms(encoder, DRM_MODE_DPMS_ON);

	push = evo_wait(encoder->dev, 0, 2);
	if (push) {
		evo_mthd(push, 0x0200 + (nv_encoder->or * 0x20), 1);
		evo_data(push, mode_ctrl);
640
		evo_kick(push, encoder->dev, 0);
641 642 643 644 645 646 647 648 649 650
	}

	nv_encoder->crtc = encoder->crtc;
}

static void
nvd0_sor_disconnect(struct drm_encoder *encoder)
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct drm_device *dev = encoder->dev;
651
	u32 *push;
652 653

	if (nv_encoder->crtc) {
654 655 656
		nvd0_crtc_prepare(nv_encoder->crtc);

		push = evo_wait(dev, 0, 4);
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
		if (push) {
			evo_mthd(push, 0x0200 + (nv_encoder->or * 0x20), 1);
			evo_data(push, 0x00000000);
			evo_mthd(push, 0x0080, 1);
			evo_data(push, 0x00000000);
			evo_kick(push, dev, 0);
		}

		nv_encoder->crtc = NULL;
		nv_encoder->last_dpms = DRM_MODE_DPMS_OFF;
	}
}

static void
nvd0_sor_destroy(struct drm_encoder *encoder)
{
	drm_encoder_cleanup(encoder);
	kfree(encoder);
}

static const struct drm_encoder_helper_funcs nvd0_sor_hfunc = {
	.dpms = nvd0_sor_dpms,
	.mode_fixup = nvd0_sor_mode_fixup,
	.prepare = nvd0_sor_prepare,
	.commit = nvd0_sor_commit,
	.mode_set = nvd0_sor_mode_set,
	.disable = nvd0_sor_disconnect,
	.get_crtc = nvd0_display_crtc_get,
};

static const struct drm_encoder_funcs nvd0_sor_func = {
	.destroy = nvd0_sor_destroy,
};

static int
nvd0_sor_create(struct drm_connector *connector, struct dcb_entry *dcbe)
{
	struct drm_device *dev = connector->dev;
	struct nouveau_encoder *nv_encoder;
	struct drm_encoder *encoder;

	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
	if (!nv_encoder)
		return -ENOMEM;
	nv_encoder->dcb = dcbe;
	nv_encoder->or = ffs(dcbe->or) - 1;
	nv_encoder->last_dpms = DRM_MODE_DPMS_OFF;

	encoder = to_drm_encoder(nv_encoder);
	encoder->possible_crtcs = dcbe->heads;
	encoder->possible_clones = 0;
	drm_encoder_init(dev, encoder, &nvd0_sor_func, DRM_MODE_ENCODER_TMDS);
	drm_encoder_helper_add(encoder, &nvd0_sor_hfunc);

	drm_mode_connector_attach_encoder(connector, encoder);
	return 0;
}
714 715 716 717

/******************************************************************************
 * IRQ
 *****************************************************************************/
718 719 720
static void
nvd0_display_unk1_handler(struct drm_device *dev)
{
721 722
	NV_INFO(dev, "PDISP: 1 0x%08x 0x%08x 0x%08x\n", nv_rd32(dev, 0x6101d0),
		nv_rd32(dev, 0x6101d4), nv_rd32(dev, 0x6109d4));
723 724 725 726 727 728 729 730 731

	nv_wr32(dev, 0x6101d4, 0x00000000);
	nv_wr32(dev, 0x6109d4, 0x00000000);
	nv_wr32(dev, 0x6101d0, 0x80000000);
}

static void
nvd0_display_unk2_handler(struct drm_device *dev)
{
732 733
	NV_INFO(dev, "PDISP: 2 0x%08x 0x%08x 0x%08x\n", nv_rd32(dev, 0x6101d0),
		nv_rd32(dev, 0x6101d4), nv_rd32(dev, 0x6109d4));
734 735 736 737 738 739 740 741 742

	nv_wr32(dev, 0x6101d4, 0x00000000);
	nv_wr32(dev, 0x6109d4, 0x00000000);
	nv_wr32(dev, 0x6101d0, 0x80000000);
}

static void
nvd0_display_unk4_handler(struct drm_device *dev)
{
743 744
	NV_INFO(dev, "PDISP: 4 0x%08x 0x%08x 0x%08x\n", nv_rd32(dev, 0x6101d0),
		nv_rd32(dev, 0x6101d4), nv_rd32(dev, 0x6109d4));
745 746 747 748 749 750

	nv_wr32(dev, 0x6101d4, 0x00000000);
	nv_wr32(dev, 0x6109d4, 0x00000000);
	nv_wr32(dev, 0x6101d0, 0x80000000);
}

751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
static void
nvd0_display_intr(struct drm_device *dev)
{
	u32 intr = nv_rd32(dev, 0x610088);

	if (intr & 0x00000002) {
		u32 stat = nv_rd32(dev, 0x61009c);
		int chid = ffs(stat) - 1;
		if (chid >= 0) {
			u32 mthd = nv_rd32(dev, 0x6101f0 + (chid * 12));
			u32 data = nv_rd32(dev, 0x6101f4 + (chid * 12));
			u32 unkn = nv_rd32(dev, 0x6101f8 + (chid * 12));

			NV_INFO(dev, "EvoCh: chid %d mthd 0x%04x data 0x%08x "
				     "0x%08x 0x%08x\n",
				chid, (mthd & 0x0000ffc), data, mthd, unkn);
			nv_wr32(dev, 0x61009c, (1 << chid));
			nv_wr32(dev, 0x6101f0 + (chid * 12), 0x90000000);
		}

		intr &= ~0x00000002;
	}

774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
	if (intr & 0x00100000) {
		u32 stat = nv_rd32(dev, 0x6100ac);

		if (stat & 0x00000007) {
			nv_wr32(dev, 0x6100ac, (stat & 0x00000007));

			if (stat & 0x00000001)
				nvd0_display_unk1_handler(dev);
			if (stat & 0x00000002)
				nvd0_display_unk2_handler(dev);
			if (stat & 0x00000004)
				nvd0_display_unk4_handler(dev);
			stat &= ~0x00000007;
		}

		if (stat) {
			NV_INFO(dev, "PDISP: unknown intr24 0x%08x\n", stat);
			nv_wr32(dev, 0x6100ac, stat);
		}

		intr &= ~0x00100000;
	}

797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
	if (intr & 0x01000000) {
		u32 stat = nv_rd32(dev, 0x6100bc);
		nv_wr32(dev, 0x6100bc, stat);
		intr &= ~0x01000000;
	}

	if (intr & 0x02000000) {
		u32 stat = nv_rd32(dev, 0x6108bc);
		nv_wr32(dev, 0x6108bc, stat);
		intr &= ~0x02000000;
	}

	if (intr)
		NV_INFO(dev, "PDISP: unknown intr 0x%08x\n", intr);
}
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845

/******************************************************************************
 * Init
 *****************************************************************************/
static void
nvd0_display_fini(struct drm_device *dev)
{
	int i;

	/* fini cursors */
	for (i = 14; i >= 13; i--) {
		if (!(nv_rd32(dev, 0x610490 + (i * 0x10)) & 0x00000001))
			continue;

		nv_mask(dev, 0x610490 + (i * 0x10), 0x00000001, 0x00000000);
		nv_wait(dev, 0x610490 + (i * 0x10), 0x00010000, 0x00000000);
		nv_mask(dev, 0x610090, 1 << i, 0x00000000);
		nv_mask(dev, 0x6100a0, 1 << i, 0x00000000);
	}

	/* fini master */
	if (nv_rd32(dev, 0x610490) & 0x00000010) {
		nv_mask(dev, 0x610490, 0x00000010, 0x00000000);
		nv_mask(dev, 0x610490, 0x00000003, 0x00000000);
		nv_wait(dev, 0x610490, 0x80000000, 0x00000000);
		nv_mask(dev, 0x610090, 0x00000001, 0x00000000);
		nv_mask(dev, 0x6100a0, 0x00000001, 0x00000000);
	}
}

int
nvd0_display_init(struct drm_device *dev)
{
	struct nvd0_display *disp = nvd0_display(dev);
846
	u32 *push;
847 848
	int i;

849 850 851 852 853 854 855 856 857 858 859 860 861
	if (nv_rd32(dev, 0x6100ac) & 0x00000100) {
		nv_wr32(dev, 0x6100ac, 0x00000100);
		nv_mask(dev, 0x6194e8, 0x00000001, 0x00000000);
		if (!nv_wait(dev, 0x6194e8, 0x00000002, 0x00000000)) {
			NV_ERROR(dev, "PDISP: 0x6194e8 0x%08x\n",
				 nv_rd32(dev, 0x6194e8));
			return -EBUSY;
		}
	}

	/* nfi what these are exactly, i do know that SOR_MODE_CTRL won't
	 * work at all unless you do the SOR part below.
	 */
862 863 864 865 866 867 868 869 870 871
	for (i = 0; i < 3; i++) {
		u32 dac = nv_rd32(dev, 0x61a000 + (i * 0x800));
		nv_wr32(dev, 0x6101c0 + (i * 0x800), dac);
	}

	for (i = 0; i < 4; i++) {
		u32 sor = nv_rd32(dev, 0x61c000 + (i * 0x800));
		nv_wr32(dev, 0x6301c4 + (i * 0x800), sor);
	}

872 873 874 875 876 877 878
	for (i = 0; i < 2; i++) {
		u32 crtc0 = nv_rd32(dev, 0x616104 + (i * 0x800));
		u32 crtc1 = nv_rd32(dev, 0x616108 + (i * 0x800));
		u32 crtc2 = nv_rd32(dev, 0x61610c + (i * 0x800));
		nv_wr32(dev, 0x6101b4 + (i * 0x800), crtc0);
		nv_wr32(dev, 0x6101b8 + (i * 0x800), crtc1);
		nv_wr32(dev, 0x6101bc + (i * 0x800), crtc2);
879 880
	}

881
	/* point at our hash table / objects, enable interrupts */
882
	nv_wr32(dev, 0x610010, (disp->mem->vinst >> 8) | 9);
883
	nv_mask(dev, 0x6100b0, 0x00000307, 0x00000307);
884 885

	/* init master */
886
	nv_wr32(dev, 0x610494, (disp->evo[0].handle >> 8) | 3);
887
	nv_wr32(dev, 0x610498, 0x00010000);
888
	nv_wr32(dev, 0x61049c, 0x00000001);
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
	nv_mask(dev, 0x610490, 0x00000010, 0x00000010);
	nv_wr32(dev, 0x640000, 0x00000000);
	nv_wr32(dev, 0x610490, 0x01000013);
	if (!nv_wait(dev, 0x610490, 0x80000000, 0x00000000)) {
		NV_ERROR(dev, "PDISP: master 0x%08x\n",
			 nv_rd32(dev, 0x610490));
		return -EBUSY;
	}
	nv_mask(dev, 0x610090, 0x00000001, 0x00000001);
	nv_mask(dev, 0x6100a0, 0x00000001, 0x00000001);

	/* init cursors */
	for (i = 13; i <= 14; i++) {
		nv_wr32(dev, 0x610490 + (i * 0x10), 0x00000001);
		if (!nv_wait(dev, 0x610490 + (i * 0x10), 0x00010000, 0x00010000)) {
			NV_ERROR(dev, "PDISP: curs%d 0x%08x\n", i,
				 nv_rd32(dev, 0x610490 + (i * 0x10)));
			return -EBUSY;
		}

		nv_mask(dev, 0x610090, 1 << i, 1 << i);
		nv_mask(dev, 0x6100a0, 1 << i, 1 << i);
	}

913 914 915 916 917 918 919 920 921 922 923 924 925
	push = evo_wait(dev, 0, 32);
	if (!push)
		return -EBUSY;
	evo_mthd(push, 0x0088, 1);
	evo_data(push, MEM_SYNC);
	evo_mthd(push, 0x0084, 1);
	evo_data(push, 0x00000000);
	evo_mthd(push, 0x0084, 1);
	evo_data(push, 0x80000000);
	evo_mthd(push, 0x008c, 1);
	evo_data(push, 0x00000000);
	evo_kick(push, dev, 0);

926 927 928 929 930 931 932 933
	return 0;
}

void
nvd0_display_destroy(struct drm_device *dev)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	struct nvd0_display *disp = nvd0_display(dev);
934
	struct pci_dev *pdev = dev->pdev;
935 936 937

	nvd0_display_fini(dev);

938
	pci_free_consistent(pdev, PAGE_SIZE, disp->evo[0].ptr, disp->evo[0].handle);
939
	nouveau_gpuobj_ref(NULL, &disp->mem);
940
	nouveau_irq_unregister(dev, 26);
941 942

	dev_priv->engine.display.priv = NULL;
943 944 945 946 947 948 949
	kfree(disp);
}

int
nvd0_display_create(struct drm_device *dev)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
950
	struct nouveau_instmem_engine *pinstmem = &dev_priv->engine.instmem;
951 952
	struct dcb_table *dcb = &dev_priv->vbios.dcb;
	struct drm_connector *connector, *tmp;
953
	struct pci_dev *pdev = dev->pdev;
954
	struct nvd0_display *disp;
955 956
	struct dcb_entry *dcbe;
	int ret, i;
957 958 959 960 961 962

	disp = kzalloc(sizeof(*disp), GFP_KERNEL);
	if (!disp)
		return -ENOMEM;
	dev_priv->engine.display.priv = disp;

963 964 965 966 967 968 969
	/* create crtc objects to represent the hw heads */
	for (i = 0; i < 2; i++) {
		ret = nvd0_crtc_create(dev, i);
		if (ret)
			goto out;
	}

970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
	/* create encoder/connector objects based on VBIOS DCB table */
	for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) {
		connector = nouveau_connector_create(dev, dcbe->connector);
		if (IS_ERR(connector))
			continue;

		if (dcbe->location != DCB_LOC_ON_CHIP) {
			NV_WARN(dev, "skipping off-chip encoder %d/%d\n",
				dcbe->type, ffs(dcbe->or) - 1);
			continue;
		}

		switch (dcbe->type) {
		case OUTPUT_TMDS:
			nvd0_sor_create(connector, dcbe);
			break;
		default:
			NV_WARN(dev, "skipping unsupported encoder %d/%d\n",
				dcbe->type, ffs(dcbe->or) - 1);
			continue;
		}
	}

	/* cull any connectors we created that don't have an encoder */
	list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) {
		if (connector->encoder_ids[0])
			continue;

		NV_WARN(dev, "%s has no encoders, removing\n",
			drm_get_connector_name(connector));
		connector->funcs->destroy(connector);
	}

1003 1004 1005
	/* setup interrupt handling */
	nouveau_irq_register(dev, 26, nvd0_display_intr);

1006
	/* hash table and dma objects for the memory areas we care about */
1007 1008
	ret = nouveau_gpuobj_new(dev, NULL, 0x4000, 0x10000,
				 NVOBJ_FLAG_ZERO_ALLOC, &disp->mem);
1009 1010 1011
	if (ret)
		goto out;

1012 1013 1014 1015 1016 1017 1018 1019 1020
	nv_wo32(disp->mem, 0x1000, 0x00000049);
	nv_wo32(disp->mem, 0x1004, (disp->mem->vinst + 0x2000) >> 8);
	nv_wo32(disp->mem, 0x1008, (disp->mem->vinst + 0x2fff) >> 8);
	nv_wo32(disp->mem, 0x100c, 0x00000000);
	nv_wo32(disp->mem, 0x1010, 0x00000000);
	nv_wo32(disp->mem, 0x1014, 0x00000000);
	nv_wo32(disp->mem, 0x0000, MEM_SYNC);
	nv_wo32(disp->mem, 0x0004, (0x1000 << 9) | 0x00000001);

1021
	nv_wo32(disp->mem, 0x1020, 0x00000049);
1022 1023 1024 1025 1026 1027 1028 1029
	nv_wo32(disp->mem, 0x1024, 0x00000000);
	nv_wo32(disp->mem, 0x1028, (dev_priv->vram_size - 1) >> 8);
	nv_wo32(disp->mem, 0x102c, 0x00000000);
	nv_wo32(disp->mem, 0x1030, 0x00000000);
	nv_wo32(disp->mem, 0x1034, 0x00000000);
	nv_wo32(disp->mem, 0x0008, MEM_VRAM);
	nv_wo32(disp->mem, 0x000c, (0x1020 << 9) | 0x00000001);

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
	nv_wo32(disp->mem, 0x1040, 0x00000009);
	nv_wo32(disp->mem, 0x1044, 0x00000000);
	nv_wo32(disp->mem, 0x1048, (dev_priv->vram_size - 1) >> 8);
	nv_wo32(disp->mem, 0x104c, 0x00000000);
	nv_wo32(disp->mem, 0x1050, 0x00000000);
	nv_wo32(disp->mem, 0x1054, 0x00000000);
	nv_wo32(disp->mem, 0x0010, NvEvoVRAM_LP);
	nv_wo32(disp->mem, 0x0014, (0x1040 << 9) | 0x00000001);

	nv_wo32(disp->mem, 0x1060, 0x0fe00009);
	nv_wo32(disp->mem, 0x1064, 0x00000000);
	nv_wo32(disp->mem, 0x1068, (dev_priv->vram_size - 1) >> 8);
	nv_wo32(disp->mem, 0x106c, 0x00000000);
	nv_wo32(disp->mem, 0x1070, 0x00000000);
	nv_wo32(disp->mem, 0x1074, 0x00000000);
	nv_wo32(disp->mem, 0x0018, NvEvoFB32);
	nv_wo32(disp->mem, 0x001c, (0x1060 << 9) | 0x00000001);

1048 1049
	pinstmem->flush(dev);

1050 1051 1052 1053 1054 1055 1056 1057
	/* push buffers for evo channels */
	disp->evo[0].ptr =
		pci_alloc_consistent(pdev, PAGE_SIZE, &disp->evo[0].handle);
	if (!disp->evo[0].ptr) {
		ret = -ENOMEM;
		goto out;
	}

1058 1059 1060 1061 1062 1063 1064 1065 1066
	ret = nvd0_display_init(dev);
	if (ret)
		goto out;

out:
	if (ret)
		nvd0_display_destroy(dev);
	return ret;
}