nvd0_display.c 38.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright 2011 Red Hat Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * Authors: Ben Skeggs
 */

25
#include <linux/dma-mapping.h>
26

27
#include "drmP.h"
28
#include "drm_crtc_helper.h"
29 30 31 32 33

#include "nouveau_drv.h"
#include "nouveau_connector.h"
#include "nouveau_encoder.h"
#include "nouveau_crtc.h"
34
#include "nouveau_dma.h"
35
#include "nouveau_fb.h"
36
#include "nv50_display.h"
37 38 39

struct nvd0_display {
	struct nouveau_gpuobj *mem;
40 41 42 43
	struct {
		dma_addr_t handle;
		u32 *ptr;
	} evo[1];
44 45

	struct tasklet_struct tasklet;
46
	u32 modeset;
47 48 49 50 51 52 53 54 55
};

static struct nvd0_display *
nvd0_display(struct drm_device *dev)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	return dev_priv->engine.display.priv;
}

56
static inline int
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
evo_icmd(struct drm_device *dev, int id, u32 mthd, u32 data)
{
	int ret = 0;
	nv_mask(dev, 0x610700 + (id * 0x10), 0x00000001, 0x00000001);
	nv_wr32(dev, 0x610704 + (id * 0x10), data);
	nv_mask(dev, 0x610704 + (id * 0x10), 0x80000ffc, 0x80000000 | mthd);
	if (!nv_wait(dev, 0x610704 + (id * 0x10), 0x80000000, 0x00000000))
		ret = -EBUSY;
	nv_mask(dev, 0x610700 + (id * 0x10), 0x00000001, 0x00000000);
	return ret;
}

static u32 *
evo_wait(struct drm_device *dev, int id, int nr)
{
	struct nvd0_display *disp = nvd0_display(dev);
	u32 put = nv_rd32(dev, 0x640000 + (id * 0x1000)) / 4;

	if (put + nr >= (PAGE_SIZE / 4)) {
		disp->evo[id].ptr[put] = 0x20000000;

		nv_wr32(dev, 0x640000 + (id * 0x1000), 0x00000000);
		if (!nv_wait(dev, 0x640004 + (id * 0x1000), ~0, 0x00000000)) {
			NV_ERROR(dev, "evo %d dma stalled\n", id);
			return NULL;
		}

		put = 0;
	}

	return disp->evo[id].ptr + put;
}

static void
evo_kick(u32 *push, struct drm_device *dev, int id)
{
	struct nvd0_display *disp = nvd0_display(dev);
	nv_wr32(dev, 0x640000 + (id * 0x1000), (push - disp->evo[id].ptr) << 2);
}

#define evo_mthd(p,m,s) *((p)++) = (((s) << 18) | (m))
#define evo_data(p,d)   *((p)++) = (d)

100 101 102 103 104 105
static struct drm_crtc *
nvd0_display_crtc_get(struct drm_encoder *encoder)
{
	return nouveau_encoder(encoder)->crtc;
}

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
/******************************************************************************
 * CRTC
 *****************************************************************************/
static int
nvd0_crtc_set_dither(struct nouveau_crtc *nv_crtc, bool on, bool update)
{
	struct drm_device *dev = nv_crtc->base.dev;
	u32 *push, mode;

	mode = 0x00000000;
	if (on) {
		/* 0x11: 6bpc dynamic 2x2
		 * 0x13: 8bpc dynamic 2x2
		 * 0x19: 6bpc static 2x2
		 * 0x1b: 8bpc static 2x2
		 * 0x21: 6bpc temporal
		 * 0x23: 8bpc temporal
		 */
		mode = 0x00000011;
	}

	push = evo_wait(dev, 0, 4);
	if (push) {
		evo_mthd(push, 0x0490 + (nv_crtc->index * 0x300), 1);
		evo_data(push, mode);
		if (update) {
			evo_mthd(push, 0x0080, 1);
			evo_data(push, 0x00000000);
		}
		evo_kick(push, dev, 0);
	}

	return 0;
}

static int
nvd0_crtc_set_scale(struct nouveau_crtc *nv_crtc, int type, bool update)
{
	struct drm_display_mode *mode = &nv_crtc->base.mode;
	struct drm_device *dev = nv_crtc->base.dev;
B
Ben Skeggs 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
	struct nouveau_connector *nv_connector;
	u32 *push, outX, outY;

	outX = mode->hdisplay;
	outY = mode->vdisplay;

	nv_connector = nouveau_crtc_connector_get(nv_crtc);
	if (nv_connector && nv_connector->native_mode) {
		struct drm_display_mode *native = nv_connector->native_mode;
		u32 xratio = (native->hdisplay << 19) / mode->hdisplay;
		u32 yratio = (native->vdisplay << 19) / mode->vdisplay;

		switch (type) {
		case DRM_MODE_SCALE_ASPECT:
			if (xratio > yratio) {
				outX = (mode->hdisplay * yratio) >> 19;
				outY = (mode->vdisplay * yratio) >> 19;
			} else {
				outX = (mode->hdisplay * xratio) >> 19;
				outY = (mode->vdisplay * xratio) >> 19;
			}
			break;
		case DRM_MODE_SCALE_FULLSCREEN:
			outX = native->hdisplay;
			outY = native->vdisplay;
			break;
		default:
			break;
		}
	}
176 177 178 179

	push = evo_wait(dev, 0, 16);
	if (push) {
		evo_mthd(push, 0x04c0 + (nv_crtc->index * 0x300), 3);
B
Ben Skeggs 已提交
180 181 182
		evo_data(push, (outY << 16) | outX);
		evo_data(push, (outY << 16) | outX);
		evo_data(push, (outY << 16) | outX);
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
		evo_mthd(push, 0x0494 + (nv_crtc->index * 0x300), 1);
		evo_data(push, 0x00000000);
		evo_mthd(push, 0x04b8 + (nv_crtc->index * 0x300), 1);
		evo_data(push, (mode->vdisplay << 16) | mode->hdisplay);
		if (update) {
			evo_mthd(push, 0x0080, 1);
			evo_data(push, 0x00000000);
		}
		evo_kick(push, dev, 0);
	}

	return 0;
}

static int
nvd0_crtc_set_image(struct nouveau_crtc *nv_crtc, struct drm_framebuffer *fb,
		    int x, int y, bool update)
{
	struct nouveau_framebuffer *nvfb = nouveau_framebuffer(fb);
	u32 *push;

	push = evo_wait(fb->dev, 0, 16);
	if (push) {
		evo_mthd(push, 0x0460 + (nv_crtc->index * 0x300), 1);
		evo_data(push, nvfb->nvbo->bo.offset >> 8);
		evo_mthd(push, 0x0468 + (nv_crtc->index * 0x300), 4);
		evo_data(push, (fb->height << 16) | fb->width);
		evo_data(push, nvfb->r_pitch);
		evo_data(push, nvfb->r_format);
212
		evo_data(push, nvfb->r_dma);
213 214
		evo_mthd(push, 0x04b0 + (nv_crtc->index * 0x300), 1);
		evo_data(push, (y << 16) | x);
215 216 217 218
		if (update) {
			evo_mthd(push, 0x0080, 1);
			evo_data(push, 0x00000000);
		}
219 220 221
		evo_kick(push, fb->dev, 0);
	}

222
	nv_crtc->fb.tile_flags = nvfb->r_dma;
223 224 225 226 227 228 229 230 231 232 233 234 235 236
	return 0;
}

static void
nvd0_crtc_cursor_show(struct nouveau_crtc *nv_crtc, bool show, bool update)
{
	struct drm_device *dev = nv_crtc->base.dev;
	u32 *push = evo_wait(dev, 0, 16);
	if (push) {
		if (show) {
			evo_mthd(push, 0x0480 + (nv_crtc->index * 0x300), 2);
			evo_data(push, 0x85000000);
			evo_data(push, nv_crtc->cursor.nvbo->bo.offset >> 8);
			evo_mthd(push, 0x048c + (nv_crtc->index * 0x300), 1);
237
			evo_data(push, NvEvoVRAM);
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
		} else {
			evo_mthd(push, 0x0480 + (nv_crtc->index * 0x300), 1);
			evo_data(push, 0x05000000);
			evo_mthd(push, 0x048c + (nv_crtc->index * 0x300), 1);
			evo_data(push, 0x00000000);
		}

		if (update) {
			evo_mthd(push, 0x0080, 1);
			evo_data(push, 0x00000000);
		}

		evo_kick(push, dev, 0);
	}
}

static void
nvd0_crtc_dpms(struct drm_crtc *crtc, int mode)
{
}

static void
nvd0_crtc_prepare(struct drm_crtc *crtc)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	u32 *push;

	push = evo_wait(crtc->dev, 0, 2);
	if (push) {
		evo_mthd(push, 0x0474 + (nv_crtc->index * 0x300), 1);
		evo_data(push, 0x00000000);
		evo_mthd(push, 0x0440 + (nv_crtc->index * 0x300), 1);
		evo_data(push, 0x03000000);
		evo_mthd(push, 0x045c + (nv_crtc->index * 0x300), 1);
		evo_data(push, 0x00000000);
		evo_kick(push, crtc->dev, 0);
	}

	nvd0_crtc_cursor_show(nv_crtc, false, false);
}

static void
nvd0_crtc_commit(struct drm_crtc *crtc)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	u32 *push;

	push = evo_wait(crtc->dev, 0, 32);
	if (push) {
		evo_mthd(push, 0x0474 + (nv_crtc->index * 0x300), 1);
		evo_data(push, nv_crtc->fb.tile_flags);
		evo_mthd(push, 0x0440 + (nv_crtc->index * 0x300), 4);
		evo_data(push, 0x83000000);
		evo_data(push, nv_crtc->lut.nvbo->bo.offset >> 8);
		evo_data(push, 0x00000000);
		evo_data(push, 0x00000000);
		evo_mthd(push, 0x045c + (nv_crtc->index * 0x300), 1);
295
		evo_data(push, NvEvoVRAM);
296 297
		evo_mthd(push, 0x0430 + (nv_crtc->index * 0x300), 1);
		evo_data(push, 0xffffff00);
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
		evo_kick(push, crtc->dev, 0);
	}

	nvd0_crtc_cursor_show(nv_crtc, nv_crtc->cursor.visible, true);
}

static bool
nvd0_crtc_mode_fixup(struct drm_crtc *crtc, struct drm_display_mode *mode,
		     struct drm_display_mode *adjusted_mode)
{
	return true;
}

static int
nvd0_crtc_swap_fbs(struct drm_crtc *crtc, struct drm_framebuffer *old_fb)
{
	struct nouveau_framebuffer *nvfb = nouveau_framebuffer(crtc->fb);
	int ret;

	ret = nouveau_bo_pin(nvfb->nvbo, TTM_PL_FLAG_VRAM);
	if (ret)
		return ret;

	if (old_fb) {
		nvfb = nouveau_framebuffer(old_fb);
		nouveau_bo_unpin(nvfb->nvbo);
	}

	return 0;
}

static int
nvd0_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *umode,
		   struct drm_display_mode *mode, int x, int y,
		   struct drm_framebuffer *old_fb)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	struct nouveau_connector *nv_connector;
	u32 htotal = mode->htotal;
	u32 vtotal = mode->vtotal;
	u32 hsyncw = mode->hsync_end - mode->hsync_start - 1;
	u32 vsyncw = mode->vsync_end - mode->vsync_start - 1;
	u32 hfrntp = mode->hsync_start - mode->hdisplay;
	u32 vfrntp = mode->vsync_start - mode->vdisplay;
	u32 hbackp = mode->htotal - mode->hsync_end;
	u32 vbackp = mode->vtotal - mode->vsync_end;
	u32 hss2be = hsyncw + hbackp;
	u32 vss2be = vsyncw + vbackp;
	u32 hss2de = htotal - hfrntp;
	u32 vss2de = vtotal - vfrntp;
348
	u32 syncs, *push;
349 350
	int ret;

351 352 353 354 355 356
	syncs = 0x00000001;
	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
		syncs |= 0x00000008;
	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
		syncs |= 0x00000010;

357 358 359 360 361 362 363
	ret = nvd0_crtc_swap_fbs(crtc, old_fb);
	if (ret)
		return ret;

	push = evo_wait(crtc->dev, 0, 64);
	if (push) {
		evo_mthd(push, 0x0410 + (nv_crtc->index * 0x300), 5);
364
		evo_data(push, 0x00000000);
365 366 367 368 369 370 371 372 373 374
		evo_data(push, (vtotal << 16) | htotal);
		evo_data(push, (vsyncw << 16) | hsyncw);
		evo_data(push, (vss2be << 16) | hss2be);
		evo_data(push, (vss2de << 16) | hss2de);
		evo_mthd(push, 0x042c + (nv_crtc->index * 0x300), 1);
		evo_data(push, 0x00000000); /* ??? */
		evo_mthd(push, 0x0450 + (nv_crtc->index * 0x300), 3);
		evo_data(push, mode->clock * 1000);
		evo_data(push, 0x00200000); /* ??? */
		evo_data(push, mode->clock * 1000);
375 376
		evo_mthd(push, 0x0404 + (nv_crtc->index * 0x300), 1);
		evo_data(push, syncs);
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
		evo_kick(push, crtc->dev, 0);
	}

	nv_connector = nouveau_crtc_connector_get(nv_crtc);
	nvd0_crtc_set_dither(nv_crtc, nv_connector->use_dithering, false);
	nvd0_crtc_set_scale(nv_crtc, nv_connector->scaling_mode, false);
	nvd0_crtc_set_image(nv_crtc, crtc->fb, x, y, false);
	return 0;
}

static int
nvd0_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
			struct drm_framebuffer *old_fb)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	int ret;

394 395 396 397 398
	if (!crtc->fb) {
		NV_DEBUG_KMS(crtc->dev, "No FB bound\n");
		return 0;
	}

399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
	ret = nvd0_crtc_swap_fbs(crtc, old_fb);
	if (ret)
		return ret;

	nvd0_crtc_set_image(nv_crtc, crtc->fb, x, y, true);
	return 0;
}

static int
nvd0_crtc_mode_set_base_atomic(struct drm_crtc *crtc,
			       struct drm_framebuffer *fb, int x, int y,
			       enum mode_set_atomic state)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	nvd0_crtc_set_image(nv_crtc, fb, x, y, true);
	return 0;
}

static void
nvd0_crtc_lut_load(struct drm_crtc *crtc)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	void __iomem *lut = nvbo_kmap_obj_iovirtual(nv_crtc->lut.nvbo);
	int i;

	for (i = 0; i < 256; i++) {
425 426 427
		writew(0x6000 + (nv_crtc->lut.r[i] >> 2), lut + (i * 0x20) + 0);
		writew(0x6000 + (nv_crtc->lut.g[i] >> 2), lut + (i * 0x20) + 2);
		writew(0x6000 + (nv_crtc->lut.b[i] >> 2), lut + (i * 0x20) + 4);
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
	}
}

static int
nvd0_crtc_cursor_set(struct drm_crtc *crtc, struct drm_file *file_priv,
		     uint32_t handle, uint32_t width, uint32_t height)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	struct drm_gem_object *gem;
	struct nouveau_bo *nvbo;
	bool visible = (handle != 0);
	int i, ret = 0;

	if (visible) {
		if (width != 64 || height != 64)
			return -EINVAL;

		gem = drm_gem_object_lookup(dev, file_priv, handle);
		if (unlikely(!gem))
			return -ENOENT;
		nvbo = nouveau_gem_object(gem);

		ret = nouveau_bo_map(nvbo);
		if (ret == 0) {
			for (i = 0; i < 64 * 64; i++) {
				u32 v = nouveau_bo_rd32(nvbo, i);
				nouveau_bo_wr32(nv_crtc->cursor.nvbo, i, v);
			}
			nouveau_bo_unmap(nvbo);
		}

		drm_gem_object_unreference_unlocked(gem);
	}

	if (visible != nv_crtc->cursor.visible) {
		nvd0_crtc_cursor_show(nv_crtc, visible, true);
		nv_crtc->cursor.visible = visible;
	}

	return ret;
}

static int
nvd0_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	const u32 data = (y << 16) | x;

	nv_wr32(crtc->dev, 0x64d084 + (nv_crtc->index * 0x1000), data);
	nv_wr32(crtc->dev, 0x64d080 + (nv_crtc->index * 0x1000), 0x00000000);
	return 0;
}

static void
nvd0_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
		    uint32_t start, uint32_t size)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	u32 end = max(start + size, (u32)256);
	u32 i;

	for (i = start; i < end; i++) {
		nv_crtc->lut.r[i] = r[i];
		nv_crtc->lut.g[i] = g[i];
		nv_crtc->lut.b[i] = b[i];
	}

	nvd0_crtc_lut_load(crtc);
}

static void
nvd0_crtc_destroy(struct drm_crtc *crtc)
{
	struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
	nouveau_bo_unmap(nv_crtc->cursor.nvbo);
	nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
	nouveau_bo_unmap(nv_crtc->lut.nvbo);
	nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo);
	drm_crtc_cleanup(crtc);
	kfree(crtc);
}

static const struct drm_crtc_helper_funcs nvd0_crtc_hfunc = {
	.dpms = nvd0_crtc_dpms,
	.prepare = nvd0_crtc_prepare,
	.commit = nvd0_crtc_commit,
	.mode_fixup = nvd0_crtc_mode_fixup,
	.mode_set = nvd0_crtc_mode_set,
	.mode_set_base = nvd0_crtc_mode_set_base,
	.mode_set_base_atomic = nvd0_crtc_mode_set_base_atomic,
	.load_lut = nvd0_crtc_lut_load,
};

static const struct drm_crtc_funcs nvd0_crtc_func = {
	.cursor_set = nvd0_crtc_cursor_set,
	.cursor_move = nvd0_crtc_cursor_move,
	.gamma_set = nvd0_crtc_gamma_set,
	.set_config = drm_crtc_helper_set_config,
	.destroy = nvd0_crtc_destroy,
};

530 531 532 533 534 535 536 537 538 539
static void
nvd0_cursor_set_pos(struct nouveau_crtc *nv_crtc, int x, int y)
{
}

static void
nvd0_cursor_set_offset(struct nouveau_crtc *nv_crtc, uint32_t offset)
{
}

540 541 542 543 544 545 546 547 548 549 550 551 552 553
static int
nvd0_crtc_create(struct drm_device *dev, int index)
{
	struct nouveau_crtc *nv_crtc;
	struct drm_crtc *crtc;
	int ret, i;

	nv_crtc = kzalloc(sizeof(*nv_crtc), GFP_KERNEL);
	if (!nv_crtc)
		return -ENOMEM;

	nv_crtc->index = index;
	nv_crtc->set_dither = nvd0_crtc_set_dither;
	nv_crtc->set_scale = nvd0_crtc_set_scale;
554 555
	nv_crtc->cursor.set_offset = nvd0_cursor_set_offset;
	nv_crtc->cursor.set_pos = nvd0_cursor_set_pos;
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
	for (i = 0; i < 256; i++) {
		nv_crtc->lut.r[i] = i << 8;
		nv_crtc->lut.g[i] = i << 8;
		nv_crtc->lut.b[i] = i << 8;
	}

	crtc = &nv_crtc->base;
	drm_crtc_init(dev, crtc, &nvd0_crtc_func);
	drm_crtc_helper_add(crtc, &nvd0_crtc_hfunc);
	drm_mode_crtc_set_gamma_size(crtc, 256);

	ret = nouveau_bo_new(dev, 64 * 64 * 4, 0x100, TTM_PL_FLAG_VRAM,
			     0, 0x0000, &nv_crtc->cursor.nvbo);
	if (!ret) {
		ret = nouveau_bo_pin(nv_crtc->cursor.nvbo, TTM_PL_FLAG_VRAM);
		if (!ret)
			ret = nouveau_bo_map(nv_crtc->cursor.nvbo);
		if (ret)
			nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
	}

	if (ret)
		goto out;

580
	ret = nouveau_bo_new(dev, 8192, 0x100, TTM_PL_FLAG_VRAM,
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
			     0, 0x0000, &nv_crtc->lut.nvbo);
	if (!ret) {
		ret = nouveau_bo_pin(nv_crtc->lut.nvbo, TTM_PL_FLAG_VRAM);
		if (!ret)
			ret = nouveau_bo_map(nv_crtc->lut.nvbo);
		if (ret)
			nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo);
	}

	if (ret)
		goto out;

	nvd0_crtc_lut_load(crtc);

out:
	if (ret)
		nvd0_crtc_destroy(crtc);
	return ret;
}

601 602 603
/******************************************************************************
 * DAC
 *****************************************************************************/
B
Ben Skeggs 已提交
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
static void
nvd0_dac_dpms(struct drm_encoder *encoder, int mode)
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct drm_device *dev = encoder->dev;
	int or = nv_encoder->or;
	u32 dpms_ctrl;

	dpms_ctrl = 0x80000000;
	if (mode == DRM_MODE_DPMS_STANDBY || mode == DRM_MODE_DPMS_OFF)
		dpms_ctrl |= 0x00000001;
	if (mode == DRM_MODE_DPMS_SUSPEND || mode == DRM_MODE_DPMS_OFF)
		dpms_ctrl |= 0x00000004;

	nv_wait(dev, 0x61a004 + (or * 0x0800), 0x80000000, 0x00000000);
	nv_mask(dev, 0x61a004 + (or * 0x0800), 0xc000007f, dpms_ctrl);
	nv_wait(dev, 0x61a004 + (or * 0x0800), 0x80000000, 0x00000000);
}

static bool
nvd0_dac_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
		    struct drm_display_mode *adjusted_mode)
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nouveau_connector *nv_connector;

	nv_connector = nouveau_encoder_connector_get(nv_encoder);
	if (nv_connector && nv_connector->native_mode) {
		if (nv_connector->scaling_mode != DRM_MODE_SCALE_NONE) {
			int id = adjusted_mode->base.id;
			*adjusted_mode = *nv_connector->native_mode;
			adjusted_mode->base.id = id;
		}
	}

	return true;
}

static void
nvd0_dac_prepare(struct drm_encoder *encoder)
{
}

static void
nvd0_dac_commit(struct drm_encoder *encoder)
{
}

static void
nvd0_dac_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
		  struct drm_display_mode *adjusted_mode)
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
	u32 *push;

	nvd0_dac_dpms(encoder, DRM_MODE_DPMS_ON);

662
	push = evo_wait(encoder->dev, 0, 4);
B
Ben Skeggs 已提交
663
	if (push) {
664
		evo_mthd(push, 0x0180 + (nv_encoder->or * 0x20), 2);
B
Ben Skeggs 已提交
665
		evo_data(push, 1 << nv_crtc->index);
666
		evo_data(push, 0x00ff);
B
Ben Skeggs 已提交
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
		evo_kick(push, encoder->dev, 0);
	}

	nv_encoder->crtc = encoder->crtc;
}

static void
nvd0_dac_disconnect(struct drm_encoder *encoder)
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct drm_device *dev = encoder->dev;
	u32 *push;

	if (nv_encoder->crtc) {
		nvd0_crtc_prepare(nv_encoder->crtc);

		push = evo_wait(dev, 0, 4);
		if (push) {
			evo_mthd(push, 0x0180 + (nv_encoder->or * 0x20), 1);
			evo_data(push, 0x00000000);
			evo_mthd(push, 0x0080, 1);
			evo_data(push, 0x00000000);
			evo_kick(push, dev, 0);
		}

		nv_encoder->crtc = NULL;
	}
}

696 697 698
static enum drm_connector_status
nvd0_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector)
{
B
Ben Skeggs 已提交
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
	enum drm_connector_status status = connector_status_disconnected;
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct drm_device *dev = encoder->dev;
	int or = nv_encoder->or;
	u32 load;

	nv_wr32(dev, 0x61a00c + (or * 0x800), 0x00100000);
	udelay(9500);
	nv_wr32(dev, 0x61a00c + (or * 0x800), 0x80000000);

	load = nv_rd32(dev, 0x61a00c + (or * 0x800));
	if ((load & 0x38000000) == 0x38000000)
		status = connector_status_connected;

	nv_wr32(dev, 0x61a00c + (or * 0x800), 0x00000000);
	return status;
715 716
}

B
Ben Skeggs 已提交
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
static void
nvd0_dac_destroy(struct drm_encoder *encoder)
{
	drm_encoder_cleanup(encoder);
	kfree(encoder);
}

static const struct drm_encoder_helper_funcs nvd0_dac_hfunc = {
	.dpms = nvd0_dac_dpms,
	.mode_fixup = nvd0_dac_mode_fixup,
	.prepare = nvd0_dac_prepare,
	.commit = nvd0_dac_commit,
	.mode_set = nvd0_dac_mode_set,
	.disable = nvd0_dac_disconnect,
	.get_crtc = nvd0_display_crtc_get,
732
	.detect = nvd0_dac_detect
B
Ben Skeggs 已提交
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
};

static const struct drm_encoder_funcs nvd0_dac_func = {
	.destroy = nvd0_dac_destroy,
};

static int
nvd0_dac_create(struct drm_connector *connector, struct dcb_entry *dcbe)
{
	struct drm_device *dev = connector->dev;
	struct nouveau_encoder *nv_encoder;
	struct drm_encoder *encoder;

	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
	if (!nv_encoder)
		return -ENOMEM;
	nv_encoder->dcb = dcbe;
	nv_encoder->or = ffs(dcbe->or) - 1;

	encoder = to_drm_encoder(nv_encoder);
	encoder->possible_crtcs = dcbe->heads;
	encoder->possible_clones = 0;
	drm_encoder_init(dev, encoder, &nvd0_dac_func, DRM_MODE_ENCODER_DAC);
	drm_encoder_helper_add(encoder, &nvd0_dac_hfunc);

	drm_mode_connector_attach_encoder(connector, encoder);
	return 0;
}
761 762 763 764

/******************************************************************************
 * SOR
 *****************************************************************************/
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
static void
nvd0_sor_dpms(struct drm_encoder *encoder, int mode)
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct drm_device *dev = encoder->dev;
	struct drm_encoder *partner;
	int or = nv_encoder->or;
	u32 dpms_ctrl;

	nv_encoder->last_dpms = mode;

	list_for_each_entry(partner, &dev->mode_config.encoder_list, head) {
		struct nouveau_encoder *nv_partner = nouveau_encoder(partner);

		if (partner->encoder_type != DRM_MODE_ENCODER_TMDS)
			continue;

		if (nv_partner != nv_encoder &&
		    nv_partner->dcb->or == nv_encoder->or) {
			if (nv_partner->last_dpms == DRM_MODE_DPMS_ON)
				return;
			break;
		}
	}

	dpms_ctrl  = (mode == DRM_MODE_DPMS_ON);
	dpms_ctrl |= 0x80000000;

	nv_wait(dev, 0x61c004 + (or * 0x0800), 0x80000000, 0x00000000);
	nv_mask(dev, 0x61c004 + (or * 0x0800), 0x80000001, dpms_ctrl);
	nv_wait(dev, 0x61c004 + (or * 0x0800), 0x80000000, 0x00000000);
	nv_wait(dev, 0x61c030 + (or * 0x0800), 0x10000000, 0x00000000);
}

static bool
nvd0_sor_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
		    struct drm_display_mode *adjusted_mode)
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nouveau_connector *nv_connector;

	nv_connector = nouveau_encoder_connector_get(nv_encoder);
	if (nv_connector && nv_connector->native_mode) {
		if (nv_connector->scaling_mode != DRM_MODE_SCALE_NONE) {
			int id = adjusted_mode->base.id;
			*adjusted_mode = *nv_connector->native_mode;
			adjusted_mode->base.id = id;
		}
	}

	return true;
}

static void
nvd0_sor_prepare(struct drm_encoder *encoder)
{
}

static void
nvd0_sor_commit(struct drm_encoder *encoder)
{
}

static void
829 830
nvd0_sor_mode_set(struct drm_encoder *encoder, struct drm_display_mode *umode,
		  struct drm_display_mode *mode)
831
{
832
	struct drm_nouveau_private *dev_priv = encoder->dev->dev_private;
833 834
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
835 836
	struct nouveau_connector *nv_connector;
	struct nvbios *bios = &dev_priv->vbios;
837
	u32 mode_ctrl = (1 << nv_crtc->index);
838
	u32 *push, or_config;
839

840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
	nv_connector = nouveau_encoder_connector_get(nv_encoder);
	switch (nv_encoder->dcb->type) {
	case OUTPUT_TMDS:
		if (nv_encoder->dcb->sorconf.link & 1) {
			if (mode->clock < 165000)
				mode_ctrl |= 0x00000100;
			else
				mode_ctrl |= 0x00000500;
		} else {
			mode_ctrl |= 0x00000200;
		}

		or_config = (mode_ctrl & 0x00000f00) >> 8;
		if (mode->clock >= 165000)
			or_config |= 0x0100;
		break;
	case OUTPUT_LVDS:
		or_config = (mode_ctrl & 0x00000f00) >> 8;
		if (bios->fp_no_ddc) {
			if (bios->fp.dual_link)
				or_config |= 0x0100;
			if (bios->fp.if_is_24bit)
				or_config |= 0x0200;
		} else {
			if (nv_connector->dcb->type == DCB_CONNECTOR_LVDS_SPWG) {
				if (((u8 *)nv_connector->edid)[121] == 2)
					or_config |= 0x0100;
			} else
			if (mode->clock >= bios->fp.duallink_transition_clk) {
				or_config |= 0x0100;
			}
871

872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
			if (or_config & 0x0100) {
				if (bios->fp.strapless_is_24bit & 2)
					or_config |= 0x0200;
			} else {
				if (bios->fp.strapless_is_24bit & 1)
					or_config |= 0x0200;
			}

			if (nv_connector->base.display_info.bpc == 8)
				or_config |= 0x0200;

		}
		break;
	default:
		BUG_ON(1);
		break;
	}
889

890 891
	nvd0_sor_dpms(encoder, DRM_MODE_DPMS_ON);

892
	push = evo_wait(encoder->dev, 0, 4);
893
	if (push) {
894
		evo_mthd(push, 0x0200 + (nv_encoder->or * 0x20), 2);
895
		evo_data(push, mode_ctrl);
896
		evo_data(push, or_config);
897
		evo_kick(push, encoder->dev, 0);
898 899 900 901 902 903 904 905 906 907
	}

	nv_encoder->crtc = encoder->crtc;
}

static void
nvd0_sor_disconnect(struct drm_encoder *encoder)
{
	struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
	struct drm_device *dev = encoder->dev;
908
	u32 *push;
909 910

	if (nv_encoder->crtc) {
911 912 913
		nvd0_crtc_prepare(nv_encoder->crtc);

		push = evo_wait(dev, 0, 4);
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
		if (push) {
			evo_mthd(push, 0x0200 + (nv_encoder->or * 0x20), 1);
			evo_data(push, 0x00000000);
			evo_mthd(push, 0x0080, 1);
			evo_data(push, 0x00000000);
			evo_kick(push, dev, 0);
		}

		nv_encoder->crtc = NULL;
		nv_encoder->last_dpms = DRM_MODE_DPMS_OFF;
	}
}

static void
nvd0_sor_destroy(struct drm_encoder *encoder)
{
	drm_encoder_cleanup(encoder);
	kfree(encoder);
}

static const struct drm_encoder_helper_funcs nvd0_sor_hfunc = {
	.dpms = nvd0_sor_dpms,
	.mode_fixup = nvd0_sor_mode_fixup,
	.prepare = nvd0_sor_prepare,
	.commit = nvd0_sor_commit,
	.mode_set = nvd0_sor_mode_set,
	.disable = nvd0_sor_disconnect,
	.get_crtc = nvd0_display_crtc_get,
};

static const struct drm_encoder_funcs nvd0_sor_func = {
	.destroy = nvd0_sor_destroy,
};

static int
nvd0_sor_create(struct drm_connector *connector, struct dcb_entry *dcbe)
{
	struct drm_device *dev = connector->dev;
	struct nouveau_encoder *nv_encoder;
	struct drm_encoder *encoder;

	nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
	if (!nv_encoder)
		return -ENOMEM;
	nv_encoder->dcb = dcbe;
	nv_encoder->or = ffs(dcbe->or) - 1;
	nv_encoder->last_dpms = DRM_MODE_DPMS_OFF;

	encoder = to_drm_encoder(nv_encoder);
	encoder->possible_crtcs = dcbe->heads;
	encoder->possible_clones = 0;
	drm_encoder_init(dev, encoder, &nvd0_sor_func, DRM_MODE_ENCODER_TMDS);
	drm_encoder_helper_add(encoder, &nvd0_sor_hfunc);

	drm_mode_connector_attach_encoder(connector, encoder);
	return 0;
}
971 972 973 974

/******************************************************************************
 * IRQ
 *****************************************************************************/
975 976 977 978 979 980 981 982 983 984
static struct dcb_entry *
lookup_dcb(struct drm_device *dev, int id, u32 mc)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	int type, or, i;

	if (id < 4) {
		type = OUTPUT_ANALOG;
		or   = id;
	} else {
985 986 987 988 989 990
		switch (mc & 0x00000f00) {
		case 0x00000000: type = OUTPUT_LVDS; break;
		case 0x00000100: type = OUTPUT_TMDS; break;
		case 0x00000200: type = OUTPUT_TMDS; break;
		case 0x00000500: type = OUTPUT_TMDS; break;
		default:
991
			NV_ERROR(dev, "PDISP: unknown SOR mc 0x%08x\n", mc);
992 993 994 995
			return NULL;
		}

		or = id - 4;
996 997 998 999 1000 1001 1002 1003
	}

	for (i = 0; i < dev_priv->vbios.dcb.entries; i++) {
		struct dcb_entry *dcb = &dev_priv->vbios.dcb.entry[i];
		if (dcb->type == type && (dcb->or & (1 << or)))
			return dcb;
	}

1004
	NV_ERROR(dev, "PDISP: DCB for %d/0x%08x not found\n", id, mc);
1005 1006 1007
	return NULL;
}

1008
static void
1009
nvd0_display_unk1_handler(struct drm_device *dev, u32 crtc, u32 mask)
1010
{
1011 1012 1013
	struct dcb_entry *dcb;
	int i;

1014
	for (i = 0; mask && i < 8; i++) {
1015
		u32 mcc = nv_rd32(dev, 0x640180 + (i * 0x20));
1016 1017
		if (!(mcc & (1 << crtc)))
			continue;
1018

1019 1020 1021
		dcb = lookup_dcb(dev, i, mcc);
		if (!dcb)
			continue;
1022 1023

		nouveau_bios_run_display_table(dev, 0x0000, -1, dcb, crtc);
1024
	}
1025

1026 1027 1028 1029 1030 1031
	nv_wr32(dev, 0x6101d4, 0x00000000);
	nv_wr32(dev, 0x6109d4, 0x00000000);
	nv_wr32(dev, 0x6101d0, 0x80000000);
}

static void
1032
nvd0_display_unk2_handler(struct drm_device *dev, u32 crtc, u32 mask)
1033
{
1034
	struct dcb_entry *dcb;
1035
	u32 or, tmp, pclk;
1036
	int i;
1037

1038 1039 1040 1041 1042 1043 1044 1045
	for (i = 0; mask && i < 8; i++) {
		u32 mcc = nv_rd32(dev, 0x640180 + (i * 0x20));
		if (!(mcc & (1 << crtc)))
			continue;

		dcb = lookup_dcb(dev, i, mcc);
		if (!dcb)
			continue;
1046

1047
		nouveau_bios_run_display_table(dev, 0x0000, -2, dcb, crtc);
1048
	}
1049

1050 1051 1052 1053
	pclk = nv_rd32(dev, 0x660450 + (crtc * 0x300)) / 1000;
	if (mask & 0x00010000) {
		nv50_crtc_set_clock(dev, crtc, pclk);
	}
1054

1055 1056 1057 1058 1059
	for (i = 0; mask && i < 8; i++) {
		u32 mcp = nv_rd32(dev, 0x660180 + (i * 0x20));
		u32 cfg = nv_rd32(dev, 0x660184 + (i * 0x20));
		if (!(mcp & (1 << crtc)))
			continue;
1060

1061 1062 1063 1064
		dcb = lookup_dcb(dev, i, mcp);
		if (!dcb)
			continue;
		or = ffs(dcb->or) - 1;
1065

1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
		nouveau_bios_run_display_table(dev, cfg, pclk, dcb, crtc);

		nv_wr32(dev, 0x612200 + (crtc * 0x800), 0x00000000);
		switch (dcb->type) {
		case OUTPUT_ANALOG:
			nv_wr32(dev, 0x612280 + (or * 0x800), 0x00000000);
			break;
		case OUTPUT_TMDS:
		case OUTPUT_LVDS:
			if (cfg & 0x00000100)
				tmp = 0x00000101;
			else
				tmp = 0x00000000;

			nv_mask(dev, 0x612300 + (or * 0x800), 0x00000707, tmp);
			break;
		default:
			break;
		}
1085 1086 1087 1088

		break;
	}

1089 1090 1091 1092 1093 1094
	nv_wr32(dev, 0x6101d4, 0x00000000);
	nv_wr32(dev, 0x6109d4, 0x00000000);
	nv_wr32(dev, 0x6101d0, 0x80000000);
}

static void
1095
nvd0_display_unk4_handler(struct drm_device *dev, u32 crtc, u32 mask)
1096
{
1097
	struct dcb_entry *dcb;
1098
	int pclk, i;
1099

1100
	pclk = nv_rd32(dev, 0x660450 + (crtc * 0x300)) / 1000;
1101

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
	for (i = 0; mask && i < 8; i++) {
		u32 mcp = nv_rd32(dev, 0x660180 + (i * 0x20));
		u32 cfg = nv_rd32(dev, 0x660184 + (i * 0x20));
		if (!(mcp & (1 << crtc)))
			continue;

		dcb = lookup_dcb(dev, i, mcp);
		if (!dcb)
			continue;

		nouveau_bios_run_display_table(dev, cfg, -pclk, dcb, crtc);
	}
1114

1115 1116 1117 1118 1119
	nv_wr32(dev, 0x6101d4, 0x00000000);
	nv_wr32(dev, 0x6109d4, 0x00000000);
	nv_wr32(dev, 0x6101d0, 0x80000000);
}

1120 1121 1122 1123 1124
static void
nvd0_display_bh(unsigned long data)
{
	struct drm_device *dev = (struct drm_device *)data;
	struct nvd0_display *disp = nvd0_display(dev);
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
	u32 mask, crtc;
	int i;

	if (drm_debug & (DRM_UT_DRIVER | DRM_UT_KMS)) {
		NV_INFO(dev, "PDISP: modeset req %d\n", disp->modeset);
		NV_INFO(dev, " STAT: 0x%08x 0x%08x 0x%08x\n",
			 nv_rd32(dev, 0x6101d0),
			 nv_rd32(dev, 0x6101d4), nv_rd32(dev, 0x6109d4));
		for (i = 0; i < 8; i++) {
			NV_INFO(dev, " %s%d: 0x%08x 0x%08x\n",
				i < 4 ? "DAC" : "SOR", i,
				nv_rd32(dev, 0x640180 + (i * 0x20)),
				nv_rd32(dev, 0x660180 + (i * 0x20)));
		}
	}

	mask = nv_rd32(dev, 0x6101d4);
	crtc = 0;
	if (!mask) {
		mask = nv_rd32(dev, 0x6109d4);
		crtc = 1;
	}
1147

1148
	if (disp->modeset & 0x00000001)
1149
		nvd0_display_unk1_handler(dev, crtc, mask);
1150
	if (disp->modeset & 0x00000002)
1151
		nvd0_display_unk2_handler(dev, crtc, mask);
1152
	if (disp->modeset & 0x00000004)
1153
		nvd0_display_unk4_handler(dev, crtc, mask);
1154 1155
}

1156 1157 1158
static void
nvd0_display_intr(struct drm_device *dev)
{
1159
	struct nvd0_display *disp = nvd0_display(dev);
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
	u32 intr = nv_rd32(dev, 0x610088);

	if (intr & 0x00000002) {
		u32 stat = nv_rd32(dev, 0x61009c);
		int chid = ffs(stat) - 1;
		if (chid >= 0) {
			u32 mthd = nv_rd32(dev, 0x6101f0 + (chid * 12));
			u32 data = nv_rd32(dev, 0x6101f4 + (chid * 12));
			u32 unkn = nv_rd32(dev, 0x6101f8 + (chid * 12));

			NV_INFO(dev, "EvoCh: chid %d mthd 0x%04x data 0x%08x "
				     "0x%08x 0x%08x\n",
				chid, (mthd & 0x0000ffc), data, mthd, unkn);
			nv_wr32(dev, 0x61009c, (1 << chid));
			nv_wr32(dev, 0x6101f0 + (chid * 12), 0x90000000);
		}

		intr &= ~0x00000002;
	}

1180 1181 1182 1183
	if (intr & 0x00100000) {
		u32 stat = nv_rd32(dev, 0x6100ac);

		if (stat & 0x00000007) {
1184
			disp->modeset = stat;
1185
			tasklet_schedule(&disp->tasklet);
1186

1187
			nv_wr32(dev, 0x6100ac, (stat & 0x00000007));
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
			stat &= ~0x00000007;
		}

		if (stat) {
			NV_INFO(dev, "PDISP: unknown intr24 0x%08x\n", stat);
			nv_wr32(dev, 0x6100ac, stat);
		}

		intr &= ~0x00100000;
	}

1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
	if (intr & 0x01000000) {
		u32 stat = nv_rd32(dev, 0x6100bc);
		nv_wr32(dev, 0x6100bc, stat);
		intr &= ~0x01000000;
	}

	if (intr & 0x02000000) {
		u32 stat = nv_rd32(dev, 0x6108bc);
		nv_wr32(dev, 0x6108bc, stat);
		intr &= ~0x02000000;
	}

	if (intr)
		NV_INFO(dev, "PDISP: unknown intr 0x%08x\n", intr);
}
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247

/******************************************************************************
 * Init
 *****************************************************************************/
static void
nvd0_display_fini(struct drm_device *dev)
{
	int i;

	/* fini cursors */
	for (i = 14; i >= 13; i--) {
		if (!(nv_rd32(dev, 0x610490 + (i * 0x10)) & 0x00000001))
			continue;

		nv_mask(dev, 0x610490 + (i * 0x10), 0x00000001, 0x00000000);
		nv_wait(dev, 0x610490 + (i * 0x10), 0x00010000, 0x00000000);
		nv_mask(dev, 0x610090, 1 << i, 0x00000000);
		nv_mask(dev, 0x6100a0, 1 << i, 0x00000000);
	}

	/* fini master */
	if (nv_rd32(dev, 0x610490) & 0x00000010) {
		nv_mask(dev, 0x610490, 0x00000010, 0x00000000);
		nv_mask(dev, 0x610490, 0x00000003, 0x00000000);
		nv_wait(dev, 0x610490, 0x80000000, 0x00000000);
		nv_mask(dev, 0x610090, 0x00000001, 0x00000000);
		nv_mask(dev, 0x6100a0, 0x00000001, 0x00000000);
	}
}

int
nvd0_display_init(struct drm_device *dev)
{
	struct nvd0_display *disp = nvd0_display(dev);
1248
	u32 *push;
1249 1250
	int i;

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
	if (nv_rd32(dev, 0x6100ac) & 0x00000100) {
		nv_wr32(dev, 0x6100ac, 0x00000100);
		nv_mask(dev, 0x6194e8, 0x00000001, 0x00000000);
		if (!nv_wait(dev, 0x6194e8, 0x00000002, 0x00000000)) {
			NV_ERROR(dev, "PDISP: 0x6194e8 0x%08x\n",
				 nv_rd32(dev, 0x6194e8));
			return -EBUSY;
		}
	}

	/* nfi what these are exactly, i do know that SOR_MODE_CTRL won't
	 * work at all unless you do the SOR part below.
	 */
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
	for (i = 0; i < 3; i++) {
		u32 dac = nv_rd32(dev, 0x61a000 + (i * 0x800));
		nv_wr32(dev, 0x6101c0 + (i * 0x800), dac);
	}

	for (i = 0; i < 4; i++) {
		u32 sor = nv_rd32(dev, 0x61c000 + (i * 0x800));
		nv_wr32(dev, 0x6301c4 + (i * 0x800), sor);
	}

1274 1275 1276 1277 1278 1279 1280
	for (i = 0; i < 2; i++) {
		u32 crtc0 = nv_rd32(dev, 0x616104 + (i * 0x800));
		u32 crtc1 = nv_rd32(dev, 0x616108 + (i * 0x800));
		u32 crtc2 = nv_rd32(dev, 0x61610c + (i * 0x800));
		nv_wr32(dev, 0x6101b4 + (i * 0x800), crtc0);
		nv_wr32(dev, 0x6101b8 + (i * 0x800), crtc1);
		nv_wr32(dev, 0x6101bc + (i * 0x800), crtc2);
1281 1282
	}

1283
	/* point at our hash table / objects, enable interrupts */
1284
	nv_wr32(dev, 0x610010, (disp->mem->vinst >> 8) | 9);
1285
	nv_mask(dev, 0x6100b0, 0x00000307, 0x00000307);
1286 1287

	/* init master */
1288
	nv_wr32(dev, 0x610494, (disp->evo[0].handle >> 8) | 3);
1289
	nv_wr32(dev, 0x610498, 0x00010000);
1290
	nv_wr32(dev, 0x61049c, 0x00000001);
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
	nv_mask(dev, 0x610490, 0x00000010, 0x00000010);
	nv_wr32(dev, 0x640000, 0x00000000);
	nv_wr32(dev, 0x610490, 0x01000013);
	if (!nv_wait(dev, 0x610490, 0x80000000, 0x00000000)) {
		NV_ERROR(dev, "PDISP: master 0x%08x\n",
			 nv_rd32(dev, 0x610490));
		return -EBUSY;
	}
	nv_mask(dev, 0x610090, 0x00000001, 0x00000001);
	nv_mask(dev, 0x6100a0, 0x00000001, 0x00000001);

	/* init cursors */
	for (i = 13; i <= 14; i++) {
		nv_wr32(dev, 0x610490 + (i * 0x10), 0x00000001);
		if (!nv_wait(dev, 0x610490 + (i * 0x10), 0x00010000, 0x00010000)) {
			NV_ERROR(dev, "PDISP: curs%d 0x%08x\n", i,
				 nv_rd32(dev, 0x610490 + (i * 0x10)));
			return -EBUSY;
		}

		nv_mask(dev, 0x610090, 1 << i, 1 << i);
		nv_mask(dev, 0x6100a0, 1 << i, 1 << i);
	}

1315 1316 1317 1318
	push = evo_wait(dev, 0, 32);
	if (!push)
		return -EBUSY;
	evo_mthd(push, 0x0088, 1);
1319
	evo_data(push, NvEvoSync);
1320 1321 1322 1323 1324 1325 1326 1327
	evo_mthd(push, 0x0084, 1);
	evo_data(push, 0x00000000);
	evo_mthd(push, 0x0084, 1);
	evo_data(push, 0x80000000);
	evo_mthd(push, 0x008c, 1);
	evo_data(push, 0x00000000);
	evo_kick(push, dev, 0);

1328 1329 1330 1331 1332 1333 1334 1335
	return 0;
}

void
nvd0_display_destroy(struct drm_device *dev)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
	struct nvd0_display *disp = nvd0_display(dev);
1336
	struct pci_dev *pdev = dev->pdev;
1337 1338 1339

	nvd0_display_fini(dev);

1340
	pci_free_consistent(pdev, PAGE_SIZE, disp->evo[0].ptr, disp->evo[0].handle);
1341
	nouveau_gpuobj_ref(NULL, &disp->mem);
1342
	nouveau_irq_unregister(dev, 26);
1343 1344

	dev_priv->engine.display.priv = NULL;
1345 1346 1347 1348 1349 1350 1351
	kfree(disp);
}

int
nvd0_display_create(struct drm_device *dev)
{
	struct drm_nouveau_private *dev_priv = dev->dev_private;
1352
	struct nouveau_instmem_engine *pinstmem = &dev_priv->engine.instmem;
1353 1354
	struct dcb_table *dcb = &dev_priv->vbios.dcb;
	struct drm_connector *connector, *tmp;
1355
	struct pci_dev *pdev = dev->pdev;
1356
	struct nvd0_display *disp;
1357 1358
	struct dcb_entry *dcbe;
	int ret, i;
1359 1360 1361 1362 1363 1364

	disp = kzalloc(sizeof(*disp), GFP_KERNEL);
	if (!disp)
		return -ENOMEM;
	dev_priv->engine.display.priv = disp;

1365 1366 1367 1368 1369 1370 1371
	/* create crtc objects to represent the hw heads */
	for (i = 0; i < 2; i++) {
		ret = nvd0_crtc_create(dev, i);
		if (ret)
			goto out;
	}

1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
	/* create encoder/connector objects based on VBIOS DCB table */
	for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) {
		connector = nouveau_connector_create(dev, dcbe->connector);
		if (IS_ERR(connector))
			continue;

		if (dcbe->location != DCB_LOC_ON_CHIP) {
			NV_WARN(dev, "skipping off-chip encoder %d/%d\n",
				dcbe->type, ffs(dcbe->or) - 1);
			continue;
		}

		switch (dcbe->type) {
		case OUTPUT_TMDS:
1386
		case OUTPUT_LVDS:
1387 1388
			nvd0_sor_create(connector, dcbe);
			break;
B
Ben Skeggs 已提交
1389 1390 1391
		case OUTPUT_ANALOG:
			nvd0_dac_create(connector, dcbe);
			break;
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
		default:
			NV_WARN(dev, "skipping unsupported encoder %d/%d\n",
				dcbe->type, ffs(dcbe->or) - 1);
			continue;
		}
	}

	/* cull any connectors we created that don't have an encoder */
	list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) {
		if (connector->encoder_ids[0])
			continue;

		NV_WARN(dev, "%s has no encoders, removing\n",
			drm_get_connector_name(connector));
		connector->funcs->destroy(connector);
	}

1409
	/* setup interrupt handling */
1410
	tasklet_init(&disp->tasklet, nvd0_display_bh, (unsigned long)dev);
1411 1412
	nouveau_irq_register(dev, 26, nvd0_display_intr);

1413
	/* hash table and dma objects for the memory areas we care about */
1414 1415
	ret = nouveau_gpuobj_new(dev, NULL, 0x4000, 0x10000,
				 NVOBJ_FLAG_ZERO_ALLOC, &disp->mem);
1416 1417 1418
	if (ret)
		goto out;

1419 1420 1421 1422 1423 1424
	nv_wo32(disp->mem, 0x1000, 0x00000049);
	nv_wo32(disp->mem, 0x1004, (disp->mem->vinst + 0x2000) >> 8);
	nv_wo32(disp->mem, 0x1008, (disp->mem->vinst + 0x2fff) >> 8);
	nv_wo32(disp->mem, 0x100c, 0x00000000);
	nv_wo32(disp->mem, 0x1010, 0x00000000);
	nv_wo32(disp->mem, 0x1014, 0x00000000);
1425
	nv_wo32(disp->mem, 0x0000, NvEvoSync);
1426 1427
	nv_wo32(disp->mem, 0x0004, (0x1000 << 9) | 0x00000001);

1428
	nv_wo32(disp->mem, 0x1020, 0x00000049);
1429 1430 1431 1432 1433
	nv_wo32(disp->mem, 0x1024, 0x00000000);
	nv_wo32(disp->mem, 0x1028, (dev_priv->vram_size - 1) >> 8);
	nv_wo32(disp->mem, 0x102c, 0x00000000);
	nv_wo32(disp->mem, 0x1030, 0x00000000);
	nv_wo32(disp->mem, 0x1034, 0x00000000);
1434
	nv_wo32(disp->mem, 0x0008, NvEvoVRAM);
1435 1436
	nv_wo32(disp->mem, 0x000c, (0x1020 << 9) | 0x00000001);

1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
	nv_wo32(disp->mem, 0x1040, 0x00000009);
	nv_wo32(disp->mem, 0x1044, 0x00000000);
	nv_wo32(disp->mem, 0x1048, (dev_priv->vram_size - 1) >> 8);
	nv_wo32(disp->mem, 0x104c, 0x00000000);
	nv_wo32(disp->mem, 0x1050, 0x00000000);
	nv_wo32(disp->mem, 0x1054, 0x00000000);
	nv_wo32(disp->mem, 0x0010, NvEvoVRAM_LP);
	nv_wo32(disp->mem, 0x0014, (0x1040 << 9) | 0x00000001);

	nv_wo32(disp->mem, 0x1060, 0x0fe00009);
	nv_wo32(disp->mem, 0x1064, 0x00000000);
	nv_wo32(disp->mem, 0x1068, (dev_priv->vram_size - 1) >> 8);
	nv_wo32(disp->mem, 0x106c, 0x00000000);
	nv_wo32(disp->mem, 0x1070, 0x00000000);
	nv_wo32(disp->mem, 0x1074, 0x00000000);
	nv_wo32(disp->mem, 0x0018, NvEvoFB32);
	nv_wo32(disp->mem, 0x001c, (0x1060 << 9) | 0x00000001);

1455 1456
	pinstmem->flush(dev);

1457 1458 1459 1460 1461 1462 1463 1464
	/* push buffers for evo channels */
	disp->evo[0].ptr =
		pci_alloc_consistent(pdev, PAGE_SIZE, &disp->evo[0].handle);
	if (!disp->evo[0].ptr) {
		ret = -ENOMEM;
		goto out;
	}

1465 1466 1467 1468 1469 1470 1471 1472 1473
	ret = nvd0_display_init(dev);
	if (ret)
		goto out;

out:
	if (ret)
		nvd0_display_destroy(dev);
	return ret;
}