blk-mq.c 54.4 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>
23
#include <linux/crash_dump.h>
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
	unsigned int i;

44
	for (i = 0; i < hctx->ctx_map.size; i++)
45
		if (hctx->ctx_map.map[i].word)
46 47 48 49 50
			return true;

	return false;
}

51 52 53 54 55 56 57 58 59
static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
					      struct blk_mq_ctx *ctx)
{
	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
}

#define CTX_TO_BIT(hctx, ctx)	\
	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))

60 61 62 63 64 65
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
66 67 68 69 70 71 72 73 74 75 76 77
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
	struct blk_align_bitmap *bm = get_bm(hctx, ctx);

	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
78 79
}

80
static int blk_mq_queue_enter(struct request_queue *q, gfp_t gfp)
81
{
82 83
	while (true) {
		int ret;
84

85 86
		if (percpu_ref_tryget_live(&q->mq_usage_counter))
			return 0;
87

88 89 90
		if (!(gfp & __GFP_WAIT))
			return -EBUSY;

91
		ret = wait_event_interruptible(q->mq_freeze_wq,
92 93
				!atomic_read(&q->mq_freeze_depth) ||
				blk_queue_dying(q));
94 95 96 97 98
		if (blk_queue_dying(q))
			return -ENODEV;
		if (ret)
			return ret;
	}
99 100 101 102
}

static void blk_mq_queue_exit(struct request_queue *q)
{
103 104 105 106 107 108 109 110 111
	percpu_ref_put(&q->mq_usage_counter);
}

static void blk_mq_usage_counter_release(struct percpu_ref *ref)
{
	struct request_queue *q =
		container_of(ref, struct request_queue, mq_usage_counter);

	wake_up_all(&q->mq_freeze_wq);
112 113
}

114
void blk_mq_freeze_queue_start(struct request_queue *q)
115
{
116
	int freeze_depth;
117

118 119
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
120
		percpu_ref_kill(&q->mq_usage_counter);
121
		blk_mq_run_hw_queues(q, false);
122
	}
123
}
124
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
125 126 127

static void blk_mq_freeze_queue_wait(struct request_queue *q)
{
128
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
129 130
}

131 132 133 134 135 136 137 138 139
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
void blk_mq_freeze_queue(struct request_queue *q)
{
	blk_mq_freeze_queue_start(q);
	blk_mq_freeze_queue_wait(q);
}
140
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
141

142
void blk_mq_unfreeze_queue(struct request_queue *q)
143
{
144
	int freeze_depth;
145

146 147 148
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
149
		percpu_ref_reinit(&q->mq_usage_counter);
150
		wake_up_all(&q->mq_freeze_wq);
151
	}
152
}
153
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
154

155 156 157 158 159 160 161 162
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
163 164 165 166 167 168 169

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
170 171
}

172 173 174 175 176 177
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

178 179
static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			       struct request *rq, unsigned int rw_flags)
180
{
181 182 183
	if (blk_queue_io_stat(q))
		rw_flags |= REQ_IO_STAT;

184 185 186
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
187
	rq->mq_ctx = ctx;
188
	rq->cmd_flags |= rw_flags;
189 190 191 192 193 194
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
195
	rq->start_time = jiffies;
196 197
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
198
	set_start_time_ns(rq);
199 200 201 202 203 204 205 206 207 208
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;

209 210
	rq->cmd = rq->__cmd;

211 212 213 214 215 216
	rq->extra_len = 0;
	rq->sense_len = 0;
	rq->resid_len = 0;
	rq->sense = NULL;

	INIT_LIST_HEAD(&rq->timeout_list);
217 218
	rq->timeout = 0;

219 220 221 222
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

223 224 225
	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
}

226
static struct request *
227
__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
228 229 230 231
{
	struct request *rq;
	unsigned int tag;

232
	tag = blk_mq_get_tag(data);
233
	if (tag != BLK_MQ_TAG_FAIL) {
234
		rq = data->hctx->tags->rqs[tag];
235

236
		if (blk_mq_tag_busy(data->hctx)) {
237
			rq->cmd_flags = REQ_MQ_INFLIGHT;
238
			atomic_inc(&data->hctx->nr_active);
239 240 241
		}

		rq->tag = tag;
242
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
243 244 245 246 247 248
		return rq;
	}

	return NULL;
}

249 250
struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
		bool reserved)
251
{
252 253
	struct blk_mq_ctx *ctx;
	struct blk_mq_hw_ctx *hctx;
254
	struct request *rq;
255
	struct blk_mq_alloc_data alloc_data;
256
	int ret;
257

258
	ret = blk_mq_queue_enter(q, gfp);
259 260
	if (ret)
		return ERR_PTR(ret);
261

262 263
	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);
264 265
	blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
			reserved, ctx, hctx);
266

267
	rq = __blk_mq_alloc_request(&alloc_data, rw);
268 269 270 271 272 273
	if (!rq && (gfp & __GFP_WAIT)) {
		__blk_mq_run_hw_queue(hctx);
		blk_mq_put_ctx(ctx);

		ctx = blk_mq_get_ctx(q);
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
274 275 276 277
		blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
				hctx);
		rq =  __blk_mq_alloc_request(&alloc_data, rw);
		ctx = alloc_data.ctx;
278 279
	}
	blk_mq_put_ctx(ctx);
K
Keith Busch 已提交
280 281
	if (!rq) {
		blk_mq_queue_exit(q);
282
		return ERR_PTR(-EWOULDBLOCK);
K
Keith Busch 已提交
283
	}
284 285
	return rq;
}
286
EXPORT_SYMBOL(blk_mq_alloc_request);
287 288 289 290 291 292 293

static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
				  struct blk_mq_ctx *ctx, struct request *rq)
{
	const int tag = rq->tag;
	struct request_queue *q = rq->q;

294 295
	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
		atomic_dec(&hctx->nr_active);
296
	rq->cmd_flags = 0;
297

298
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
299
	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
300 301 302
	blk_mq_queue_exit(q);
}

303
void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
304 305 306 307 308
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
	__blk_mq_free_request(hctx, ctx, rq);
309 310 311 312 313 314 315 316 317 318 319

}
EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);

void blk_mq_free_request(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q = rq->q;

	hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
	blk_mq_free_hctx_request(hctx, rq);
320
}
J
Jens Axboe 已提交
321
EXPORT_SYMBOL_GPL(blk_mq_free_request);
322

323
inline void __blk_mq_end_request(struct request *rq, int error)
324
{
M
Ming Lei 已提交
325 326
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
327
	if (rq->end_io) {
328
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
329 330 331
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
332
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
333
	}
334
}
335
EXPORT_SYMBOL(__blk_mq_end_request);
336

337
void blk_mq_end_request(struct request *rq, int error)
338 339 340
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
341
	__blk_mq_end_request(rq, error);
342
}
343
EXPORT_SYMBOL(blk_mq_end_request);
344

345
static void __blk_mq_complete_request_remote(void *data)
346
{
347
	struct request *rq = data;
348

349
	rq->q->softirq_done_fn(rq);
350 351
}

352
static void blk_mq_ipi_complete_request(struct request *rq)
353 354
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
355
	bool shared = false;
356 357
	int cpu;

C
Christoph Hellwig 已提交
358
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
359 360 361
		rq->q->softirq_done_fn(rq);
		return;
	}
362 363

	cpu = get_cpu();
C
Christoph Hellwig 已提交
364 365 366 367
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
368
		rq->csd.func = __blk_mq_complete_request_remote;
369 370
		rq->csd.info = rq;
		rq->csd.flags = 0;
371
		smp_call_function_single_async(ctx->cpu, &rq->csd);
372
	} else {
373
		rq->q->softirq_done_fn(rq);
374
	}
375 376
	put_cpu();
}
377

378 379 380 381 382
void __blk_mq_complete_request(struct request *rq)
{
	struct request_queue *q = rq->q;

	if (!q->softirq_done_fn)
383
		blk_mq_end_request(rq, rq->errors);
384 385 386 387
	else
		blk_mq_ipi_complete_request(rq);
}

388 389 390 391 392 393 394 395
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
396
void blk_mq_complete_request(struct request *rq, int error)
397
{
398 399 400
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
401
		return;
402 403
	if (!blk_mark_rq_complete(rq)) {
		rq->errors = error;
404
		__blk_mq_complete_request(rq);
405
	}
406 407
}
EXPORT_SYMBOL(blk_mq_complete_request);
408

409 410 411 412 413 414
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

415
void blk_mq_start_request(struct request *rq)
416 417 418 419 420
{
	struct request_queue *q = rq->q;

	trace_block_rq_issue(q, rq);

C
Christoph Hellwig 已提交
421
	rq->resid_len = blk_rq_bytes(rq);
C
Christoph Hellwig 已提交
422 423
	if (unlikely(blk_bidi_rq(rq)))
		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
C
Christoph Hellwig 已提交
424

425
	blk_add_timer(rq);
426

427 428 429 430 431 432
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

433 434 435 436 437 438
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
439 440 441 442
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
443 444 445 446 447 448 449 450 451

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
452
}
453
EXPORT_SYMBOL(blk_mq_start_request);
454

455
static void __blk_mq_requeue_request(struct request *rq)
456 457 458 459
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
460

461 462 463 464
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
465 466
}

467 468 469 470 471
void blk_mq_requeue_request(struct request *rq)
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
472
	blk_mq_add_to_requeue_list(rq, true);
473 474 475
}
EXPORT_SYMBOL(blk_mq_requeue_request);

476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
		container_of(work, struct request_queue, requeue_work);
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
			continue;

		rq->cmd_flags &= ~REQ_SOFTBARRIER;
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, true, false, false);
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
		blk_mq_insert_request(rq, false, false, false);
	}

503 504 505 506 507
	/*
	 * Use the start variant of queue running here, so that running
	 * the requeue work will kick stopped queues.
	 */
	blk_mq_start_hw_queues(q);
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
}

void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
		rq->cmd_flags |= REQ_SOFTBARRIER;
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

532 533 534 535 536 537
void blk_mq_cancel_requeue_work(struct request_queue *q)
{
	cancel_work_sync(&q->requeue_work);
}
EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);

538 539 540 541 542 543
void blk_mq_kick_requeue_list(struct request_queue *q)
{
	kblockd_schedule_work(&q->requeue_work);
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

564 565
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
566
	return tags->rqs[tag];
567 568 569
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

570
struct blk_mq_timeout_data {
571 572
	unsigned long next;
	unsigned int next_set;
573 574
};

575
void blk_mq_rq_timed_out(struct request *req, bool reserved)
576
{
577 578
	struct blk_mq_ops *ops = req->q->mq_ops;
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
579 580 581 582 583 584 585 586 587 588

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
589 590
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
591

592
	if (ops->timeout)
593
		ret = ops->timeout(req, reserved);
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
609
}
610

611 612 613 614
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
615

616 617 618 619 620
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		/*
		 * If a request wasn't started before the queue was
		 * marked dying, kill it here or it'll go unnoticed.
		 */
621 622
		if (unlikely(blk_queue_dying(rq->q)))
			blk_mq_complete_request(rq, -EIO);
623
		return;
624
	}
625 626
	if (rq->cmd_flags & REQ_NO_TIMEOUT)
		return;
627

628 629
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
630
			blk_mq_rq_timed_out(rq, reserved);
631 632 633 634
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
635 636
}

637
static void blk_mq_rq_timer(unsigned long priv)
638
{
639 640 641 642 643 644
	struct request_queue *q = (struct request_queue *)priv;
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
645

646
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
647

648 649 650
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
651
	} else {
652 653
		struct blk_mq_hw_ctx *hctx;

654 655 656 657 658
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
659
	}
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

701 702 703 704 705 706 707 708 709
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
{
	struct blk_mq_ctx *ctx;
	int i;

710
	for (i = 0; i < hctx->ctx_map.size; i++) {
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
		unsigned int off, bit;

		if (!bm->word)
			continue;

		bit = 0;
		off = i * hctx->ctx_map.bits_per_word;
		do {
			bit = find_next_bit(&bm->word, bm->depth, bit);
			if (bit >= bm->depth)
				break;

			ctx = hctx->ctxs[bit + off];
			clear_bit(bit, &bm->word);
			spin_lock(&ctx->lock);
			list_splice_tail_init(&ctx->rq_list, list);
			spin_unlock(&ctx->lock);

			bit++;
		} while (1);
	}
}

735 736 737 738 739 740 741 742 743 744 745
/*
 * Run this hardware queue, pulling any software queues mapped to it in.
 * Note that this function currently has various problems around ordering
 * of IO. In particular, we'd like FIFO behaviour on handling existing
 * items on the hctx->dispatch list. Ignore that for now.
 */
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
	LIST_HEAD(rq_list);
746 747
	LIST_HEAD(driver_list);
	struct list_head *dptr;
748
	int queued;
749

750
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
751

752
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
753 754 755 756 757 758 759
		return;

	hctx->run++;

	/*
	 * Touch any software queue that has pending entries.
	 */
760
	flush_busy_ctxs(hctx, &rq_list);
761 762 763 764 765 766 767 768 769 770 771 772

	/*
	 * If we have previous entries on our dispatch list, grab them
	 * and stuff them at the front for more fair dispatch.
	 */
	if (!list_empty_careful(&hctx->dispatch)) {
		spin_lock(&hctx->lock);
		if (!list_empty(&hctx->dispatch))
			list_splice_init(&hctx->dispatch, &rq_list);
		spin_unlock(&hctx->lock);
	}

773 774 775 776 777 778
	/*
	 * Start off with dptr being NULL, so we start the first request
	 * immediately, even if we have more pending.
	 */
	dptr = NULL;

779 780 781
	/*
	 * Now process all the entries, sending them to the driver.
	 */
782
	queued = 0;
783
	while (!list_empty(&rq_list)) {
784
		struct blk_mq_queue_data bd;
785 786 787 788 789
		int ret;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);

790 791 792 793 794
		bd.rq = rq;
		bd.list = dptr;
		bd.last = list_empty(&rq_list);

		ret = q->mq_ops->queue_rq(hctx, &bd);
795 796 797 798 799 800
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
			continue;
		case BLK_MQ_RQ_QUEUE_BUSY:
			list_add(&rq->queuelist, &rq_list);
801
			__blk_mq_requeue_request(rq);
802 803 804 805
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
806
			rq->errors = -EIO;
807
			blk_mq_end_request(rq, rq->errors);
808 809 810 811 812
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
813 814 815 816 817 818 819

		/*
		 * We've done the first request. If we have more than 1
		 * left in the list, set dptr to defer issue.
		 */
		if (!dptr && rq_list.next != rq_list.prev)
			dptr = &driver_list;
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
	}

	if (!queued)
		hctx->dispatched[0]++;
	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
		hctx->dispatched[ilog2(queued) + 1]++;

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
	if (!list_empty(&rq_list)) {
		spin_lock(&hctx->lock);
		list_splice(&rq_list, &hctx->dispatch);
		spin_unlock(&hctx->lock);
835 836 837 838 839 840 841 842 843 844
		/*
		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
		 * it's possible the queue is stopped and restarted again
		 * before this. Queue restart will dispatch requests. And since
		 * requests in rq_list aren't added into hctx->dispatch yet,
		 * the requests in rq_list might get lost.
		 *
		 * blk_mq_run_hw_queue() already checks the STOPPED bit
		 **/
		blk_mq_run_hw_queue(hctx, true);
845 846 847
	}
}

848 849 850 851 852 853 854 855
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
856 857
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
858 859

	if (--hctx->next_cpu_batch <= 0) {
860
		int cpu = hctx->next_cpu, next_cpu;
861 862 863 864 865 866 867

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
868 869

		return cpu;
870 871
	}

872
	return hctx->next_cpu;
873 874
}

875 876
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
877 878
	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
	    !blk_mq_hw_queue_mapped(hctx)))
879 880
		return;

881
	if (!async) {
882 883
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
884
			__blk_mq_run_hw_queue(hctx);
885
			put_cpu();
886 887
			return;
		}
888

889
		put_cpu();
890
	}
891

892 893
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->run_work, 0);
894 895
}

896
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
897 898 899 900 901 902 903
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if ((!blk_mq_hctx_has_pending(hctx) &&
		    list_empty_careful(&hctx->dispatch)) ||
904
		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
905 906
			continue;

907
		blk_mq_run_hw_queue(hctx, async);
908 909
	}
}
910
EXPORT_SYMBOL(blk_mq_run_hw_queues);
911 912 913

void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
914 915
	cancel_delayed_work(&hctx->run_work);
	cancel_delayed_work(&hctx->delay_work);
916 917 918 919
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

920 921 922 923 924 925 926 927 928 929
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

930 931 932
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
933

934
	blk_mq_run_hw_queue(hctx, false);
935 936 937
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

938 939 940 941 942 943 944 945 946 947
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

948
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
949 950 951 952 953 954 955 956 957
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
			continue;

		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
958
		blk_mq_run_hw_queue(hctx, async);
959 960 961 962
	}
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

963
static void blk_mq_run_work_fn(struct work_struct *work)
964 965 966
{
	struct blk_mq_hw_ctx *hctx;

967
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
968

969 970 971
	__blk_mq_run_hw_queue(hctx);
}

972 973 974 975 976 977 978 979 980 981 982 983
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
984 985
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
986

987 988
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
989 990 991
}
EXPORT_SYMBOL(blk_mq_delay_queue);

992
static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
993
				    struct request *rq, bool at_head)
994 995 996
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

997 998
	trace_block_rq_insert(hctx->queue, rq);

999 1000 1001 1002
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1003

1004 1005 1006
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1007 1008
void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
		bool async)
1009
{
1010
	struct request_queue *q = rq->q;
1011
	struct blk_mq_hw_ctx *hctx;
1012 1013 1014 1015 1016
	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;

	current_ctx = blk_mq_get_ctx(q);
	if (!cpu_online(ctx->cpu))
		rq->mq_ctx = ctx = current_ctx;
1017 1018 1019

	hctx = q->mq_ops->map_queue(q, ctx->cpu);

1020 1021 1022
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, at_head);
	spin_unlock(&ctx->lock);
1023 1024 1025

	if (run_queue)
		blk_mq_run_hw_queue(hctx, async);
1026 1027

	blk_mq_put_ctx(current_ctx);
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
}

static void blk_mq_insert_requests(struct request_queue *q,
				     struct blk_mq_ctx *ctx,
				     struct list_head *list,
				     int depth,
				     bool from_schedule)

{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *current_ctx;

	trace_block_unplug(q, depth, !from_schedule);

	current_ctx = blk_mq_get_ctx(q);

	if (!cpu_online(ctx->cpu))
		ctx = current_ctx;
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->mq_ctx = ctx;
1059
		__blk_mq_insert_request(hctx, rq, false);
1060 1061 1062 1063
	}
	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, from_schedule);
1064
	blk_mq_put_ctx(current_ctx);
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
				blk_mq_insert_requests(this_q, this_ctx,
							&ctx_list, depth,
							from_schedule);
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
				       from_schedule);
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1127

1128
	if (blk_do_io_stat(rq))
1129
		blk_account_io_start(rq, 1);
1130 1131
}

1132 1133 1134 1135 1136 1137
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1138 1139 1140
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1141
{
1142
	if (!hctx_allow_merges(hctx)) {
1143 1144 1145 1146 1147 1148 1149
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1150 1151
		struct request_queue *q = hctx->queue;

1152 1153 1154 1155 1156
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1157

1158 1159 1160
		spin_unlock(&ctx->lock);
		__blk_mq_free_request(hctx, ctx, rq);
		return true;
1161
	}
1162
}
1163

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
struct blk_map_ctx {
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
};

static struct request *blk_mq_map_request(struct request_queue *q,
					  struct bio *bio,
					  struct blk_map_ctx *data)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	int rw = bio_data_dir(bio);
1177
	struct blk_mq_alloc_data alloc_data;
1178

1179
	if (unlikely(blk_mq_queue_enter(q, GFP_KERNEL))) {
1180
		bio_io_error(bio);
1181
		return NULL;
1182 1183 1184 1185 1186
	}

	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);

1187
	if (rw_is_sync(bio->bi_rw))
S
Shaohua Li 已提交
1188
		rw |= REQ_SYNC;
1189

1190
	trace_block_getrq(q, bio, rw);
1191 1192 1193
	blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
			hctx);
	rq = __blk_mq_alloc_request(&alloc_data, rw);
1194
	if (unlikely(!rq)) {
1195
		__blk_mq_run_hw_queue(hctx);
1196 1197
		blk_mq_put_ctx(ctx);
		trace_block_sleeprq(q, bio, rw);
1198 1199

		ctx = blk_mq_get_ctx(q);
1200
		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1201 1202 1203 1204 1205
		blk_mq_set_alloc_data(&alloc_data, q,
				__GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
		rq = __blk_mq_alloc_request(&alloc_data, rw);
		ctx = alloc_data.ctx;
		hctx = alloc_data.hctx;
1206 1207 1208
	}

	hctx->queued++;
1209 1210 1211 1212 1213
	data->hctx = hctx;
	data->ctx = ctx;
	return rq;
}

1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
static int blk_mq_direct_issue_request(struct request *rq)
{
	int ret;
	struct request_queue *q = rq->q;
	struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
			rq->mq_ctx->cpu);
	struct blk_mq_queue_data bd = {
		.rq = rq,
		.list = NULL,
		.last = 1
	};

	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
	if (ret == BLK_MQ_RQ_QUEUE_OK)
		return 0;
	else {
		__blk_mq_requeue_request(rq);

		if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
			rq->errors = -EIO;
			blk_mq_end_request(rq, rq->errors);
			return 0;
		}
		return -1;
	}
}

1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
	struct blk_map_ctx data;
	struct request *rq;
1257 1258
	unsigned int request_count = 0;
	struct blk_plug *plug;
1259
	struct request *same_queue_rq = NULL;
1260 1261 1262 1263

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1264
		bio_io_error(bio);
1265 1266 1267
		return;
	}

1268 1269
	blk_queue_split(q, &bio, q->bio_split);

1270
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1271
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1272 1273
		return;

1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
	rq = blk_mq_map_request(q, bio, &data);
	if (unlikely(!rq))
		return;

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

1284
	plug = current->plug;
1285 1286 1287 1288 1289
	/*
	 * If the driver supports defer issued based on 'last', then
	 * queue it up like normal since we can potentially save some
	 * CPU this way.
	 */
1290 1291 1292
	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
		struct request *old_rq = NULL;
1293 1294 1295 1296

		blk_mq_bio_to_request(rq, bio);

		/*
1297 1298 1299
		 * we do limited pluging. If bio can be merged, do merge.
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1300
		 */
1301
		if (plug) {
1302 1303 1304 1305 1306 1307
			/*
			 * The plug list might get flushed before this. If that
			 * happens, same_queue_rq is invalid and plug list is empty
			 **/
			if (same_queue_rq && !list_empty(&plug->mq_list)) {
				old_rq = same_queue_rq;
1308
				list_del_init(&old_rq->queuelist);
1309
			}
1310 1311 1312 1313 1314
			list_add_tail(&rq->queuelist, &plug->mq_list);
		} else /* is_sync */
			old_rq = rq;
		blk_mq_put_ctx(data.ctx);
		if (!old_rq)
1315
			return;
1316 1317 1318 1319
		if (!blk_mq_direct_issue_request(old_rq))
			return;
		blk_mq_insert_request(old_rq, false, true, true);
		return;
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
	}

	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
	blk_mq_put_ctx(data.ctx);
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1343 1344
	struct blk_plug *plug;
	unsigned int request_count = 0;
1345 1346 1347 1348 1349 1350
	struct blk_map_ctx data;
	struct request *rq;

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1351
		bio_io_error(bio);
1352 1353 1354
		return;
	}

1355 1356
	blk_queue_split(q, &bio, q->bio_split);

1357
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1358
	    blk_attempt_plug_merge(q, bio, &request_count, NULL))
1359 1360 1361
		return;

	rq = blk_mq_map_request(q, bio, &data);
1362 1363
	if (unlikely(!rq))
		return;
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
1376 1377 1378 1379 1380 1381 1382 1383
	plug = current->plug;
	if (plug) {
		blk_mq_bio_to_request(rq, bio);
		if (list_empty(&plug->mq_list))
			trace_block_plug(q);
		else if (request_count >= BLK_MAX_REQUEST_COUNT) {
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1384
		}
1385 1386 1387
		list_add_tail(&rq->queuelist, &plug->mq_list);
		blk_mq_put_ctx(data.ctx);
		return;
1388 1389
	}

1390 1391 1392 1393 1394 1395 1396 1397 1398
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1399 1400
	}

1401
	blk_mq_put_ctx(data.ctx);
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
}

/*
 * Default mapping to a software queue, since we use one per CPU.
 */
struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
{
	return q->queue_hw_ctx[q->mq_map[cpu]];
}
EXPORT_SYMBOL(blk_mq_map_queue);

1413 1414
static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
		struct blk_mq_tags *tags, unsigned int hctx_idx)
1415
{
1416
	struct page *page;
1417

1418
	if (tags->rqs && set->ops->exit_request) {
1419
		int i;
1420

1421 1422
		for (i = 0; i < tags->nr_tags; i++) {
			if (!tags->rqs[i])
1423
				continue;
1424 1425
			set->ops->exit_request(set->driver_data, tags->rqs[i],
						hctx_idx, i);
1426
			tags->rqs[i] = NULL;
1427
		}
1428 1429
	}

1430 1431
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1432
		list_del_init(&page->lru);
1433 1434 1435
		__free_pages(page, page->private);
	}

1436
	kfree(tags->rqs);
1437

1438
	blk_mq_free_tags(tags);
1439 1440 1441 1442
}

static size_t order_to_size(unsigned int order)
{
1443
	return (size_t)PAGE_SIZE << order;
1444 1445
}

1446 1447
static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
		unsigned int hctx_idx)
1448
{
1449
	struct blk_mq_tags *tags;
1450 1451 1452
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

1453
	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
S
Shaohua Li 已提交
1454 1455
				set->numa_node,
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1456 1457
	if (!tags)
		return NULL;
1458

1459 1460
	INIT_LIST_HEAD(&tags->page_list);

1461 1462 1463
	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
				 set->numa_node);
1464 1465 1466 1467
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1468 1469 1470 1471 1472

	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1473
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1474
				cache_line_size());
1475
	left = rq_size * set->queue_depth;
1476

1477
	for (i = 0; i < set->queue_depth; ) {
1478 1479 1480 1481 1482 1483 1484 1485 1486
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

		while (left < order_to_size(this_order - 1) && this_order)
			this_order--;

		do {
1487
			page = alloc_pages_node(set->numa_node,
1488
				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1489
				this_order);
1490 1491 1492 1493 1494 1495 1496 1497 1498
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1499
			goto fail;
1500 1501

		page->private = this_order;
1502
		list_add_tail(&page->lru, &tags->page_list);
1503 1504 1505

		p = page_address(page);
		entries_per_page = order_to_size(this_order) / rq_size;
1506
		to_do = min(entries_per_page, set->queue_depth - i);
1507 1508
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
1509 1510 1511 1512
			tags->rqs[i] = p;
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
						tags->rqs[i], hctx_idx, i,
1513 1514
						set->numa_node)) {
					tags->rqs[i] = NULL;
1515
					goto fail;
1516
				}
1517 1518
			}

1519 1520 1521 1522
			p += rq_size;
			i++;
		}
	}
1523
	return tags;
1524

1525 1526 1527
fail:
	blk_mq_free_rq_map(set, tags, hctx_idx);
	return NULL;
1528 1529
}

1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
{
	kfree(bitmap->map);
}

static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
{
	unsigned int bpw = 8, total, num_maps, i;

	bitmap->bits_per_word = bpw;

	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
					GFP_KERNEL, node);
	if (!bitmap->map)
		return -ENOMEM;

	total = nr_cpu_ids;
	for (i = 0; i < num_maps; i++) {
		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
		total -= bitmap->map[i].depth;
	}

	return 0;
}

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
{
	struct request_queue *q = hctx->queue;
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

	/*
	 * Move ctx entries to new CPU, if this one is going away.
	 */
	ctx = __blk_mq_get_ctx(q, cpu);

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
		return NOTIFY_OK;

	ctx = blk_mq_get_ctx(q);
	spin_lock(&ctx->lock);

	while (!list_empty(&tmp)) {
		struct request *rq;

		rq = list_first_entry(&tmp, struct request, queuelist);
		rq->mq_ctx = ctx;
		list_move_tail(&rq->queuelist, &ctx->rq_list);
	}

	hctx = q->mq_ops->map_queue(q, ctx->cpu);
	blk_mq_hctx_mark_pending(hctx, ctx);

	spin_unlock(&ctx->lock);

	blk_mq_run_hw_queue(hctx, true);
	blk_mq_put_ctx(ctx);
	return NOTIFY_OK;
}

static int blk_mq_hctx_notify(void *data, unsigned long action,
			      unsigned int cpu)
{
	struct blk_mq_hw_ctx *hctx = data;

	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
		return blk_mq_hctx_cpu_offline(hctx, cpu);
M
Ming Lei 已提交
1605 1606 1607 1608 1609

	/*
	 * In case of CPU online, tags may be reallocated
	 * in blk_mq_map_swqueue() after mapping is updated.
	 */
1610 1611 1612 1613

	return NOTIFY_OK;
}

1614
/* hctx->ctxs will be freed in queue's release handler */
1615 1616 1617 1618
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1619 1620
	unsigned flush_start_tag = set->queue_depth;

1621 1622
	blk_mq_tag_idle(hctx);

1623 1624 1625 1626 1627
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1628 1629 1630 1631
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1632
	blk_free_flush_queue(hctx->fq);
1633 1634 1635
	blk_mq_free_bitmap(&hctx->ctx_map);
}

M
Ming Lei 已提交
1636 1637 1638 1639 1640 1641 1642 1643 1644
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1645
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1646 1647 1648 1649 1650 1651 1652 1653 1654
	}
}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

1655
	queue_for_each_hw_ctx(q, hctx, i)
M
Ming Lei 已提交
1656 1657 1658
		free_cpumask_var(hctx->cpumask);
}

1659 1660 1661
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1662
{
1663
	int node;
1664
	unsigned flush_start_tag = set->queue_depth;
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
	hctx->flags = set->flags;

	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
					blk_mq_hctx_notify, hctx);
	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);

	hctx->tags = set->tags[hctx_idx];
1683 1684

	/*
1685 1686
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1687
	 */
1688 1689 1690 1691
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1692

1693 1694
	if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
		goto free_ctxs;
1695

1696
	hctx->nr_ctx = 0;
1697

1698 1699 1700
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1701

1702 1703 1704
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
1705

1706 1707 1708 1709 1710
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1711

1712
	return 0;
1713

1714 1715 1716 1717 1718
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1719 1720 1721 1722 1723 1724
 free_bitmap:
	blk_mq_free_bitmap(&hctx->ctx_map);
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1725

1726 1727
	return -1;
}
1728

1729 1730 1731 1732 1733
static int blk_mq_init_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
1734

1735 1736 1737 1738 1739
	/*
	 * Initialize hardware queues
	 */
	queue_for_each_hw_ctx(q, hctx, i) {
		if (blk_mq_init_hctx(q, set, hctx, i))
1740 1741 1742 1743 1744 1745 1746 1747 1748
			break;
	}

	if (i == q->nr_hw_queues)
		return 0;

	/*
	 * Init failed
	 */
M
Ming Lei 已提交
1749
	blk_mq_exit_hw_queues(q, set, i);
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772

	return 1;
}

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

1773 1774
		hctx = q->mq_ops->map_queue(q, i);

1775 1776 1777 1778 1779 1780 1781 1782 1783
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
			hctx->numa_node = cpu_to_node(i);
	}
}

1784 1785
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
1786 1787 1788 1789
{
	unsigned int i;
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
1790
	struct blk_mq_tag_set *set = q->tag_set;
1791

1792 1793 1794 1795 1796
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

1797
	queue_for_each_hw_ctx(q, hctx, i) {
1798
		cpumask_clear(hctx->cpumask);
1799 1800 1801 1802 1803 1804 1805 1806
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
	queue_for_each_ctx(q, ctx, i) {
		/* If the cpu isn't online, the cpu is mapped to first hctx */
1807
		if (!cpumask_test_cpu(i, online_mask))
1808 1809
			continue;

1810
		hctx = q->mq_ops->map_queue(q, i);
1811
		cpumask_set_cpu(i, hctx->cpumask);
1812 1813 1814
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
1815

1816 1817
	mutex_unlock(&q->sysfs_lock);

1818
	queue_for_each_hw_ctx(q, hctx, i) {
1819 1820
		struct blk_mq_ctxmap *map = &hctx->ctx_map;

1821
		/*
1822 1823
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
1824 1825 1826 1827 1828 1829
		 */
		if (!hctx->nr_ctx) {
			if (set->tags[i]) {
				blk_mq_free_rq_map(set, set->tags[i], i);
				set->tags[i] = NULL;
			}
M
Ming Lei 已提交
1830
			hctx->tags = NULL;
1831 1832 1833
			continue;
		}

M
Ming Lei 已提交
1834 1835 1836 1837 1838 1839
		/* unmapped hw queue can be remapped after CPU topo changed */
		if (!set->tags[i])
			set->tags[i] = blk_mq_init_rq_map(set, i);
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

1840 1841 1842 1843 1844
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
1845
		map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1846

1847 1848 1849
		/*
		 * Initialize batch roundrobin counts
		 */
1850 1851 1852
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
1853 1854

	queue_for_each_ctx(q, ctx, i) {
1855
		if (!cpumask_test_cpu(i, online_mask))
1856 1857 1858 1859 1860
			continue;

		hctx = q->mq_ops->map_queue(q, i);
		cpumask_set_cpu(i, hctx->tags->cpumask);
	}
1861 1862
}

1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q;
	bool shared;
	int i;

	if (set->tag_list.next == set->tag_list.prev)
		shared = false;
	else
		shared = true;

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);

		queue_for_each_hw_ctx(q, hctx, i) {
			if (shared)
				hctx->flags |= BLK_MQ_F_TAG_SHARED;
			else
				hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
		}
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
	blk_mq_update_tag_set_depth(set);
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
	list_add_tail(&q->tag_set_list, &set->tag_list);
	blk_mq_update_tag_set_depth(set);
	mutex_unlock(&set->tag_list_lock);
}

1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
1921 1922 1923 1924
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
		kfree(hctx->ctxs);
1925
		kfree(hctx);
1926
	}
1927

1928 1929 1930
	kfree(q->mq_map);
	q->mq_map = NULL;

1931 1932 1933 1934 1935 1936
	kfree(q->queue_hw_ctx);

	/* ctx kobj stays in queue_ctx */
	free_percpu(q->queue_ctx);
}

1937
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
1955 1956
{
	struct blk_mq_hw_ctx **hctxs;
1957
	struct blk_mq_ctx __percpu *ctx;
1958
	unsigned int *map;
1959 1960 1961 1962 1963 1964
	int i;

	ctx = alloc_percpu(struct blk_mq_ctx);
	if (!ctx)
		return ERR_PTR(-ENOMEM);

1965 1966
	hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
			set->numa_node);
1967 1968 1969 1970

	if (!hctxs)
		goto err_percpu;

1971 1972 1973 1974
	map = blk_mq_make_queue_map(set);
	if (!map)
		goto err_map;

1975
	for (i = 0; i < set->nr_hw_queues; i++) {
1976 1977
		int node = blk_mq_hw_queue_to_node(map, i);

1978 1979
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
1980 1981 1982
		if (!hctxs[i])
			goto err_hctxs;

1983 1984
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
						node))
1985 1986
			goto err_hctxs;

1987
		atomic_set(&hctxs[i]->nr_active, 0);
1988
		hctxs[i]->numa_node = node;
1989 1990 1991
		hctxs[i]->queue_num = i;
	}

1992 1993 1994 1995
	/*
	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
	 * See blk_register_queue() for details.
	 */
1996
	if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
1997
			    PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1998
		goto err_hctxs;
1999

2000
	setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
2001
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2002 2003

	q->nr_queues = nr_cpu_ids;
2004
	q->nr_hw_queues = set->nr_hw_queues;
2005
	q->mq_map = map;
2006 2007 2008 2009

	q->queue_ctx = ctx;
	q->queue_hw_ctx = hctxs;

2010
	q->mq_ops = set->ops;
2011
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2012

2013 2014 2015
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2016 2017
	q->sg_reserved_size = INT_MAX;

2018 2019 2020 2021
	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2022 2023 2024 2025 2026
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

2027 2028 2029 2030 2031
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2032 2033
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2034

2035
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2036

2037
	if (blk_mq_init_hw_queues(q, set))
2038
		goto err_hctxs;
2039

2040
	get_online_cpus();
2041 2042
	mutex_lock(&all_q_mutex);

2043
	list_add_tail(&q->all_q_node, &all_q_list);
2044
	blk_mq_add_queue_tag_set(set, q);
2045
	blk_mq_map_swqueue(q, cpu_online_mask);
2046

2047
	mutex_unlock(&all_q_mutex);
2048
	put_online_cpus();
2049

2050
	return q;
2051

2052
err_hctxs:
2053
	kfree(map);
2054
	for (i = 0; i < set->nr_hw_queues; i++) {
2055 2056
		if (!hctxs[i])
			break;
2057
		free_cpumask_var(hctxs[i]->cpumask);
2058
		kfree(hctxs[i]);
2059
	}
2060
err_map:
2061 2062 2063 2064 2065
	kfree(hctxs);
err_percpu:
	free_percpu(ctx);
	return ERR_PTR(-ENOMEM);
}
2066
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2067 2068 2069

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2070
	struct blk_mq_tag_set	*set = q->tag_set;
2071

2072 2073 2074 2075
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

2076 2077
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2078 2079
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
2080

2081
	percpu_ref_exit(&q->mq_usage_counter);
2082 2083 2084
}

/* Basically redo blk_mq_init_queue with queue frozen */
2085 2086
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2087
{
2088
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2089

2090 2091
	blk_mq_sysfs_unregister(q);

2092
	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
2093 2094 2095 2096 2097 2098 2099

	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2100
	blk_mq_map_swqueue(q, online_mask);
2101

2102
	blk_mq_sysfs_register(q);
2103 2104
}

2105 2106
static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
				      unsigned long action, void *hcpu)
2107 2108
{
	struct request_queue *q;
2109 2110 2111 2112 2113 2114 2115
	int cpu = (unsigned long)hcpu;
	/*
	 * New online cpumask which is going to be set in this hotplug event.
	 * Declare this cpumasks as global as cpu-hotplug operation is invoked
	 * one-by-one and dynamically allocating this could result in a failure.
	 */
	static struct cpumask online_new;
2116 2117

	/*
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
	 * Before hotadded cpu starts handling requests, new mappings must
	 * be established.  Otherwise, these requests in hw queue might
	 * never be dispatched.
	 *
	 * For example, there is a single hw queue (hctx) and two CPU queues
	 * (ctx0 for CPU0, and ctx1 for CPU1).
	 *
	 * Now CPU1 is just onlined and a request is inserted into
	 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
	 * still zero.
	 *
	 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
	 * set in pending bitmap and tries to retrieve requests in
	 * hctx->ctxs[0]->rq_list.  But htx->ctxs[0] is a pointer to ctx0,
	 * so the request in ctx1->rq_list is ignored.
2133
	 */
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DEAD:
	case CPU_UP_CANCELED:
		cpumask_copy(&online_new, cpu_online_mask);
		break;
	case CPU_UP_PREPARE:
		cpumask_copy(&online_new, cpu_online_mask);
		cpumask_set_cpu(cpu, &online_new);
		break;
	default:
2144
		return NOTIFY_OK;
2145
	}
2146 2147

	mutex_lock(&all_q_mutex);
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157

	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_start(q);
2158
	list_for_each_entry(q, &all_q_list, all_q_node) {
2159 2160
		blk_mq_freeze_queue_wait(q);

2161 2162 2163 2164 2165 2166 2167
		/*
		 * timeout handler can't touch hw queue during the
		 * reinitialization
		 */
		del_timer_sync(&q->timeout);
	}

2168
	list_for_each_entry(q, &all_q_list, all_q_node)
2169
		blk_mq_queue_reinit(q, &online_new);
2170 2171 2172 2173

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2174 2175 2176 2177
	mutex_unlock(&all_q_mutex);
	return NOTIFY_OK;
}

2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

	for (i = 0; i < set->nr_hw_queues; i++) {
		set->tags[i] = blk_mq_init_rq_map(set, i);
		if (!set->tags[i])
			goto out_unwind;
	}

	return 0;

out_unwind:
	while (--i >= 0)
		blk_mq_free_rq_map(set, set->tags[i], i);

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

K
Keith Busch 已提交
2232 2233 2234 2235 2236 2237
struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
{
	return tags->cpumask;
}
EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);

2238 2239 2240 2241 2242 2243
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2244 2245
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
B
Bart Van Assche 已提交
2246 2247
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2248 2249
	if (!set->nr_hw_queues)
		return -EINVAL;
2250
	if (!set->queue_depth)
2251 2252 2253 2254
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

2255
	if (!set->ops->queue_rq || !set->ops->map_queue)
2256 2257
		return -EINVAL;

2258 2259 2260 2261 2262
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2263

2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}

M
Ming Lei 已提交
2274 2275
	set->tags = kmalloc_node(set->nr_hw_queues *
				 sizeof(struct blk_mq_tags *),
2276 2277
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2278
		return -ENOMEM;
2279

2280 2281
	if (blk_mq_alloc_rq_maps(set))
		goto enomem;
2282

2283 2284 2285
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2286
	return 0;
2287
enomem:
2288 2289
	kfree(set->tags);
	set->tags = NULL;
2290 2291 2292 2293 2294 2295 2296 2297
	return -ENOMEM;
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2298
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2299
		if (set->tags[i]) {
2300
			blk_mq_free_rq_map(set, set->tags[i], i);
K
Keith Busch 已提交
2301 2302
			free_cpumask_var(set->tags[i]->cpumask);
		}
2303 2304
	}

M
Ming Lei 已提交
2305
	kfree(set->tags);
2306
	set->tags = NULL;
2307 2308 2309
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

	if (!set || nr > set->queue_depth)
		return -EINVAL;

	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
		ret = blk_mq_tag_update_depth(hctx->tags, nr);
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

	return ret;
}

2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2342 2343 2344 2345
static int __init blk_mq_init(void)
{
	blk_mq_cpu_init();

2346
	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2347 2348 2349 2350

	return 0;
}
subsys_initcall(blk_mq_init);