rbtree.c 15.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
  Red Black Trees
  (C) 1999  Andrea Arcangeli <andrea@suse.de>
  (C) 2002  David Woodhouse <dwmw2@infradead.org>
5 6
  (C) 2012  Michel Lespinasse <walken@google.com>

L
Linus Torvalds 已提交
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
  This program is free software; you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation; either version 2 of the License, or
  (at your option) any later version.

  This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with this program; if not, write to the Free Software
  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

  linux/lib/rbtree.c
*/

24
#include <linux/rbtree_augmented.h>
25
#include <linux/export.h>
L
Linus Torvalds 已提交
26

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
/*
 * red-black trees properties:  http://en.wikipedia.org/wiki/Rbtree
 *
 *  1) A node is either red or black
 *  2) The root is black
 *  3) All leaves (NULL) are black
 *  4) Both children of every red node are black
 *  5) Every simple path from root to leaves contains the same number
 *     of black nodes.
 *
 *  4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
 *  consecutive red nodes in a path and every red node is therefore followed by
 *  a black. So if B is the number of black nodes on every simple path (as per
 *  5), then the longest possible path due to 4 is 2B.
 *
 *  We shall indicate color with case, where black nodes are uppercase and red
43 44
 *  nodes will be lowercase. Unknown color nodes shall be drawn as red within
 *  parentheses and have some accompanying text comment.
45 46
 */

47 48 49 50 51
static inline void rb_set_black(struct rb_node *rb)
{
	rb->__rb_parent_color |= RB_BLACK;
}

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
static inline struct rb_node *rb_red_parent(struct rb_node *red)
{
	return (struct rb_node *)red->__rb_parent_color;
}

/*
 * Helper function for rotations:
 * - old's parent and color get assigned to new
 * - old gets assigned new as a parent and 'color' as a color.
 */
static inline void
__rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
			struct rb_root *root, int color)
{
	struct rb_node *parent = rb_parent(old);
	new->__rb_parent_color = old->__rb_parent_color;
	rb_set_parent_color(old, new, color);
69
	__rb_change_child(old, new, parent, root);
70 71
}

72 73 74
static __always_inline void
__rb_insert(struct rb_node *node, struct rb_root *root,
	    void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
L
Linus Torvalds 已提交
75
{
76
	struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;
L
Linus Torvalds 已提交
77

78 79 80 81 82 83 84 85 86
	while (true) {
		/*
		 * Loop invariant: node is red
		 *
		 * If there is a black parent, we are done.
		 * Otherwise, take some corrective action as we don't
		 * want a red root or two consecutive red nodes.
		 */
		if (!parent) {
87
			rb_set_parent_color(node, NULL, RB_BLACK);
88 89 90 91
			break;
		} else if (rb_is_black(parent))
			break;

92 93
		gparent = rb_red_parent(parent);

94 95
		tmp = gparent->rb_right;
		if (parent != tmp) {	/* parent == gparent->rb_left */
96 97 98 99 100 101 102 103
			if (tmp && rb_is_red(tmp)) {
				/*
				 * Case 1 - color flips
				 *
				 *       G            g
				 *      / \          / \
				 *     p   u  -->   P   U
				 *    /            /
104
				 *   n            n
105 106 107 108 109 110 111 112 113 114 115
				 *
				 * However, since g's parent might be red, and
				 * 4) does not allow this, we need to recurse
				 * at g.
				 */
				rb_set_parent_color(tmp, gparent, RB_BLACK);
				rb_set_parent_color(parent, gparent, RB_BLACK);
				node = gparent;
				parent = rb_parent(node);
				rb_set_parent_color(node, parent, RB_RED);
				continue;
L
Linus Torvalds 已提交
116 117
			}

118 119
			tmp = parent->rb_right;
			if (node == tmp) {
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
				/*
				 * Case 2 - left rotate at parent
				 *
				 *      G             G
				 *     / \           / \
				 *    p   U  -->    n   U
				 *     \           /
				 *      n         p
				 *
				 * This still leaves us in violation of 4), the
				 * continuation into Case 3 will fix that.
				 */
				parent->rb_right = tmp = node->rb_left;
				node->rb_left = parent;
				if (tmp)
					rb_set_parent_color(tmp, parent,
							    RB_BLACK);
				rb_set_parent_color(parent, node, RB_RED);
138
				augment_rotate(parent, node);
L
Linus Torvalds 已提交
139
				parent = node;
140
				tmp = node->rb_right;
L
Linus Torvalds 已提交
141 142
			}

143 144 145 146 147 148 149 150 151
			/*
			 * Case 3 - right rotate at gparent
			 *
			 *        G           P
			 *       / \         / \
			 *      p   U  -->  n   g
			 *     /                 \
			 *    n                   U
			 */
152
			gparent->rb_left = tmp;  /* == parent->rb_right */
153 154 155 156
			parent->rb_right = gparent;
			if (tmp)
				rb_set_parent_color(tmp, gparent, RB_BLACK);
			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
157
			augment_rotate(gparent, parent);
158
			break;
L
Linus Torvalds 已提交
159
		} else {
160 161 162 163 164 165 166 167 168
			tmp = gparent->rb_left;
			if (tmp && rb_is_red(tmp)) {
				/* Case 1 - color flips */
				rb_set_parent_color(tmp, gparent, RB_BLACK);
				rb_set_parent_color(parent, gparent, RB_BLACK);
				node = gparent;
				parent = rb_parent(node);
				rb_set_parent_color(node, parent, RB_RED);
				continue;
L
Linus Torvalds 已提交
169 170
			}

171 172
			tmp = parent->rb_left;
			if (node == tmp) {
173 174 175 176 177 178 179
				/* Case 2 - right rotate at parent */
				parent->rb_left = tmp = node->rb_right;
				node->rb_right = parent;
				if (tmp)
					rb_set_parent_color(tmp, parent,
							    RB_BLACK);
				rb_set_parent_color(parent, node, RB_RED);
180
				augment_rotate(parent, node);
L
Linus Torvalds 已提交
181
				parent = node;
182
				tmp = node->rb_left;
L
Linus Torvalds 已提交
183 184
			}

185
			/* Case 3 - left rotate at gparent */
186
			gparent->rb_right = tmp;  /* == parent->rb_left */
187 188 189 190
			parent->rb_left = gparent;
			if (tmp)
				rb_set_parent_color(tmp, gparent, RB_BLACK);
			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
191
			augment_rotate(gparent, parent);
192
			break;
L
Linus Torvalds 已提交
193 194 195 196
		}
	}
}

197 198 199 200 201 202
/*
 * Inline version for rb_erase() use - we want to be able to inline
 * and eliminate the dummy_rotate callback there
 */
static __always_inline void
____rb_erase_color(struct rb_node *parent, struct rb_root *root,
203
	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
L
Linus Torvalds 已提交
204
{
205
	struct rb_node *node = NULL, *sibling, *tmp1, *tmp2;
L
Linus Torvalds 已提交
206

207 208
	while (true) {
		/*
209 210 211 212 213
		 * Loop invariants:
		 * - node is black (or NULL on first iteration)
		 * - node is not the root (parent is not NULL)
		 * - All leaf paths going through parent and node have a
		 *   black node count that is 1 lower than other leaf paths.
214
		 */
215 216
		sibling = parent->rb_right;
		if (node != sibling) {	/* node == parent->rb_left */
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
			if (rb_is_red(sibling)) {
				/*
				 * Case 1 - left rotate at parent
				 *
				 *     P               S
				 *    / \             / \
				 *   N   s    -->    p   Sr
				 *      / \         / \
				 *     Sl  Sr      N   Sl
				 */
				parent->rb_right = tmp1 = sibling->rb_left;
				sibling->rb_left = parent;
				rb_set_parent_color(tmp1, parent, RB_BLACK);
				__rb_rotate_set_parents(parent, sibling, root,
							RB_RED);
232
				augment_rotate(parent, sibling);
233
				sibling = tmp1;
L
Linus Torvalds 已提交
234
			}
235 236 237 238 239 240 241 242 243 244 245 246 247 248
			tmp1 = sibling->rb_right;
			if (!tmp1 || rb_is_black(tmp1)) {
				tmp2 = sibling->rb_left;
				if (!tmp2 || rb_is_black(tmp2)) {
					/*
					 * Case 2 - sibling color flip
					 * (p could be either color here)
					 *
					 *    (p)           (p)
					 *    / \           / \
					 *   N   S    -->  N   s
					 *      / \           / \
					 *     Sl  Sr        Sl  Sr
					 *
249 250 251 252
					 * This leaves us violating 5) which
					 * can be fixed by flipping p to black
					 * if it was red, or by recursing at p.
					 * p is red when coming from Case 1.
253 254 255
					 */
					rb_set_parent_color(sibling, parent,
							    RB_RED);
256 257 258 259 260 261 262 263 264
					if (rb_is_red(parent))
						rb_set_black(parent);
					else {
						node = parent;
						parent = rb_parent(node);
						if (parent)
							continue;
					}
					break;
L
Linus Torvalds 已提交
265
				}
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
				/*
				 * Case 3 - right rotate at sibling
				 * (p could be either color here)
				 *
				 *   (p)           (p)
				 *   / \           / \
				 *  N   S    -->  N   Sl
				 *     / \             \
				 *    sl  Sr            s
				 *                       \
				 *                        Sr
				 */
				sibling->rb_left = tmp1 = tmp2->rb_right;
				tmp2->rb_right = sibling;
				parent->rb_right = tmp2;
				if (tmp1)
					rb_set_parent_color(tmp1, sibling,
							    RB_BLACK);
284
				augment_rotate(sibling, tmp2);
285 286
				tmp1 = sibling;
				sibling = tmp2;
L
Linus Torvalds 已提交
287
			}
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
			/*
			 * Case 4 - left rotate at parent + color flips
			 * (p and sl could be either color here.
			 *  After rotation, p becomes black, s acquires
			 *  p's color, and sl keeps its color)
			 *
			 *      (p)             (s)
			 *      / \             / \
			 *     N   S     -->   P   Sr
			 *        / \         / \
			 *      (sl) sr      N  (sl)
			 */
			parent->rb_right = tmp2 = sibling->rb_left;
			sibling->rb_left = parent;
			rb_set_parent_color(tmp1, sibling, RB_BLACK);
			if (tmp2)
				rb_set_parent(tmp2, parent);
			__rb_rotate_set_parents(parent, sibling, root,
						RB_BLACK);
307
			augment_rotate(parent, sibling);
308
			break;
309
		} else {
310 311 312 313 314 315 316 317
			sibling = parent->rb_left;
			if (rb_is_red(sibling)) {
				/* Case 1 - right rotate at parent */
				parent->rb_left = tmp1 = sibling->rb_right;
				sibling->rb_right = parent;
				rb_set_parent_color(tmp1, parent, RB_BLACK);
				__rb_rotate_set_parents(parent, sibling, root,
							RB_RED);
318
				augment_rotate(parent, sibling);
319
				sibling = tmp1;
L
Linus Torvalds 已提交
320
			}
321 322 323 324 325 326 327
			tmp1 = sibling->rb_left;
			if (!tmp1 || rb_is_black(tmp1)) {
				tmp2 = sibling->rb_right;
				if (!tmp2 || rb_is_black(tmp2)) {
					/* Case 2 - sibling color flip */
					rb_set_parent_color(sibling, parent,
							    RB_RED);
328 329 330 331 332 333 334 335 336
					if (rb_is_red(parent))
						rb_set_black(parent);
					else {
						node = parent;
						parent = rb_parent(node);
						if (parent)
							continue;
					}
					break;
L
Linus Torvalds 已提交
337
				}
338 339 340 341 342 343 344
				/* Case 3 - right rotate at sibling */
				sibling->rb_right = tmp1 = tmp2->rb_left;
				tmp2->rb_left = sibling;
				parent->rb_left = tmp2;
				if (tmp1)
					rb_set_parent_color(tmp1, sibling,
							    RB_BLACK);
345
				augment_rotate(sibling, tmp2);
346 347
				tmp1 = sibling;
				sibling = tmp2;
L
Linus Torvalds 已提交
348
			}
349 350 351 352 353 354 355 356
			/* Case 4 - left rotate at parent + color flips */
			parent->rb_left = tmp2 = sibling->rb_right;
			sibling->rb_right = parent;
			rb_set_parent_color(tmp1, sibling, RB_BLACK);
			if (tmp2)
				rb_set_parent(tmp2, parent);
			__rb_rotate_set_parents(parent, sibling, root,
						RB_BLACK);
357
			augment_rotate(parent, sibling);
358
			break;
L
Linus Torvalds 已提交
359 360 361
		}
	}
}
362 363 364 365 366 367 368

/* Non-inline version for rb_erase_augmented() use */
void __rb_erase_color(struct rb_node *parent, struct rb_root *root,
	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
{
	____rb_erase_color(parent, root, augment_rotate);
}
369
EXPORT_SYMBOL(__rb_erase_color);
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393

/*
 * Non-augmented rbtree manipulation functions.
 *
 * We use dummy augmented callbacks here, and have the compiler optimize them
 * out of the rb_insert_color() and rb_erase() function definitions.
 */

static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {}
static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {}
static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {}

static const struct rb_augment_callbacks dummy_callbacks = {
	dummy_propagate, dummy_copy, dummy_rotate
};

void rb_insert_color(struct rb_node *node, struct rb_root *root)
{
	__rb_insert(node, root, dummy_rotate);
}
EXPORT_SYMBOL(rb_insert_color);

void rb_erase(struct rb_node *node, struct rb_root *root)
{
394 395 396 397
	struct rb_node *rebalance;
	rebalance = __rb_erase_augmented(node, root, &dummy_callbacks);
	if (rebalance)
		____rb_erase_color(rebalance, root, dummy_rotate);
L
Linus Torvalds 已提交
398 399 400
}
EXPORT_SYMBOL(rb_erase);

401 402 403 404 405 406 407 408 409 410 411 412 413 414
/*
 * Augmented rbtree manipulation functions.
 *
 * This instantiates the same __always_inline functions as in the non-augmented
 * case, but this time with user-defined callbacks.
 */

void __rb_insert_augmented(struct rb_node *node, struct rb_root *root,
	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
{
	__rb_insert(node, root, augment_rotate);
}
EXPORT_SYMBOL(__rb_insert_augmented);

L
Linus Torvalds 已提交
415 416 417
/*
 * This function returns the first node (in sort order) of the tree.
 */
418
struct rb_node *rb_first(const struct rb_root *root)
L
Linus Torvalds 已提交
419 420 421 422 423 424 425 426 427 428 429 430
{
	struct rb_node	*n;

	n = root->rb_node;
	if (!n)
		return NULL;
	while (n->rb_left)
		n = n->rb_left;
	return n;
}
EXPORT_SYMBOL(rb_first);

431
struct rb_node *rb_last(const struct rb_root *root)
L
Linus Torvalds 已提交
432 433 434 435 436 437 438 439 440 441 442 443
{
	struct rb_node	*n;

	n = root->rb_node;
	if (!n)
		return NULL;
	while (n->rb_right)
		n = n->rb_right;
	return n;
}
EXPORT_SYMBOL(rb_last);

444
struct rb_node *rb_next(const struct rb_node *node)
L
Linus Torvalds 已提交
445
{
446 447
	struct rb_node *parent;

448
	if (RB_EMPTY_NODE(node))
449 450
		return NULL;

451 452 453 454
	/*
	 * If we have a right-hand child, go down and then left as far
	 * as we can.
	 */
L
Linus Torvalds 已提交
455 456 457 458
	if (node->rb_right) {
		node = node->rb_right; 
		while (node->rb_left)
			node=node->rb_left;
459
		return (struct rb_node *)node;
L
Linus Torvalds 已提交
460 461
	}

462 463 464 465 466 467 468
	/*
	 * No right-hand children. Everything down and left is smaller than us,
	 * so any 'next' node must be in the general direction of our parent.
	 * Go up the tree; any time the ancestor is a right-hand child of its
	 * parent, keep going up. First time it's a left-hand child of its
	 * parent, said parent is our 'next' node.
	 */
469 470
	while ((parent = rb_parent(node)) && node == parent->rb_right)
		node = parent;
L
Linus Torvalds 已提交
471

472
	return parent;
L
Linus Torvalds 已提交
473 474 475
}
EXPORT_SYMBOL(rb_next);

476
struct rb_node *rb_prev(const struct rb_node *node)
L
Linus Torvalds 已提交
477
{
478 479
	struct rb_node *parent;

480
	if (RB_EMPTY_NODE(node))
481 482
		return NULL;

483 484 485 486
	/*
	 * If we have a left-hand child, go down and then right as far
	 * as we can.
	 */
L
Linus Torvalds 已提交
487 488 489 490
	if (node->rb_left) {
		node = node->rb_left; 
		while (node->rb_right)
			node=node->rb_right;
491
		return (struct rb_node *)node;
L
Linus Torvalds 已提交
492 493
	}

494 495 496 497
	/*
	 * No left-hand children. Go up till we find an ancestor which
	 * is a right-hand child of its parent.
	 */
498 499
	while ((parent = rb_parent(node)) && node == parent->rb_left)
		node = parent;
L
Linus Torvalds 已提交
500

501
	return parent;
L
Linus Torvalds 已提交
502 503 504 505 506 507
}
EXPORT_SYMBOL(rb_prev);

void rb_replace_node(struct rb_node *victim, struct rb_node *new,
		     struct rb_root *root)
{
508
	struct rb_node *parent = rb_parent(victim);
L
Linus Torvalds 已提交
509 510

	/* Set the surrounding nodes to point to the replacement */
511
	__rb_change_child(victim, new, parent, root);
L
Linus Torvalds 已提交
512
	if (victim->rb_left)
513
		rb_set_parent(victim->rb_left, new);
L
Linus Torvalds 已提交
514
	if (victim->rb_right)
515
		rb_set_parent(victim->rb_right, new);
L
Linus Torvalds 已提交
516 517 518 519 520

	/* Copy the pointers/colour from the victim to the replacement */
	*new = *victim;
}
EXPORT_SYMBOL(rb_replace_node);
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560

static struct rb_node *rb_left_deepest_node(const struct rb_node *node)
{
	for (;;) {
		if (node->rb_left)
			node = node->rb_left;
		else if (node->rb_right)
			node = node->rb_right;
		else
			return (struct rb_node *)node;
	}
}

struct rb_node *rb_next_postorder(const struct rb_node *node)
{
	const struct rb_node *parent;
	if (!node)
		return NULL;
	parent = rb_parent(node);

	/* If we're sitting on node, we've already seen our children */
	if (parent && node == parent->rb_left && parent->rb_right) {
		/* If we are the parent's left node, go to the parent's right
		 * node then all the way down to the left */
		return rb_left_deepest_node(parent->rb_right);
	} else
		/* Otherwise we are the parent's right node, and the parent
		 * should be next */
		return (struct rb_node *)parent;
}
EXPORT_SYMBOL(rb_next_postorder);

struct rb_node *rb_first_postorder(const struct rb_root *root)
{
	if (!root->rb_node)
		return NULL;

	return rb_left_deepest_node(root->rb_node);
}
EXPORT_SYMBOL(rb_first_postorder);