stmmac_main.c 62.0 KB
Newer Older
1 2 3 4
/*******************************************************************************
  This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
  ST Ethernet IPs are built around a Synopsys IP Core.

5
	Copyright(C) 2007-2011 STMicroelectronics Ltd
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>

  Documentation available at:
	http://www.stlinux.com
  Support available at:
	https://bugzilla.stlinux.com/
*******************************************************************************/

31
#include <linux/clk.h>
32 33 34 35 36 37 38 39 40
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/skbuff.h>
#include <linux/ethtool.h>
#include <linux/if_ether.h>
#include <linux/crc32.h>
#include <linux/mii.h>
41
#include <linux/if.h>
42 43
#include <linux/if_vlan.h>
#include <linux/dma-mapping.h>
44
#include <linux/slab.h>
45
#include <linux/prefetch.h>
46 47 48 49
#ifdef CONFIG_STMMAC_DEBUG_FS
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#endif
50
#include "stmmac.h"
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

#undef STMMAC_DEBUG
/*#define STMMAC_DEBUG*/
#ifdef STMMAC_DEBUG
#define DBG(nlevel, klevel, fmt, args...) \
		((void)(netif_msg_##nlevel(priv) && \
		printk(KERN_##klevel fmt, ## args)))
#else
#define DBG(nlevel, klevel, fmt, args...) do { } while (0)
#endif

#undef STMMAC_RX_DEBUG
/*#define STMMAC_RX_DEBUG*/
#ifdef STMMAC_RX_DEBUG
#define RX_DBG(fmt, args...)  printk(fmt, ## args)
#else
#define RX_DBG(fmt, args...)  do { } while (0)
#endif

#undef STMMAC_XMIT_DEBUG
/*#define STMMAC_XMIT_DEBUG*/
#ifdef STMMAC_TX_DEBUG
#define TX_DBG(fmt, args...)  printk(fmt, ## args)
#else
#define TX_DBG(fmt, args...)  do { } while (0)
#endif

#define STMMAC_ALIGN(x)	L1_CACHE_ALIGN(x)
#define JUMBO_LEN	9000

/* Module parameters */
#define TX_TIMEO 5000 /* default 5 seconds */
static int watchdog = TX_TIMEO;
module_param(watchdog, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds");

static int debug = -1;		/* -1: default, 0: no output, 16:  all */
module_param(debug, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(debug, "Message Level (0: no output, 16: all)");

91
int phyaddr = -1;
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
module_param(phyaddr, int, S_IRUGO);
MODULE_PARM_DESC(phyaddr, "Physical device address");

#define DMA_TX_SIZE 256
static int dma_txsize = DMA_TX_SIZE;
module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");

#define DMA_RX_SIZE 256
static int dma_rxsize = DMA_RX_SIZE;
module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");

static int flow_ctrl = FLOW_OFF;
module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");

static int pause = PAUSE_TIME;
module_param(pause, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(pause, "Flow Control Pause Time");

#define TC_DEFAULT 64
static int tc = TC_DEFAULT;
module_param(tc, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(tc, "DMA threshold control value");

#define DMA_BUFFER_SIZE	BUF_SIZE_2KiB
static int buf_sz = DMA_BUFFER_SIZE;
module_param(buf_sz, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(buf_sz, "DMA buffer size");

static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);

127 128 129 130 131 132
#define STMMAC_DEFAULT_LPI_TIMER	1000
static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
module_param(eee_timer, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
#define STMMAC_LPI_TIMER(x) (jiffies + msecs_to_jiffies(x))

133 134
static irqreturn_t stmmac_interrupt(int irq, void *dev_id);

135 136 137 138 139
#ifdef CONFIG_STMMAC_DEBUG_FS
static int stmmac_init_fs(struct net_device *dev);
static void stmmac_exit_fs(void);
#endif

140 141
#define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
/**
 * stmmac_verify_args - verify the driver parameters.
 * Description: it verifies if some wrong parameter is passed to the driver.
 * Note that wrong parameters are replaced with the default values.
 */
static void stmmac_verify_args(void)
{
	if (unlikely(watchdog < 0))
		watchdog = TX_TIMEO;
	if (unlikely(dma_rxsize < 0))
		dma_rxsize = DMA_RX_SIZE;
	if (unlikely(dma_txsize < 0))
		dma_txsize = DMA_TX_SIZE;
	if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
		buf_sz = DMA_BUFFER_SIZE;
	if (unlikely(flow_ctrl > 1))
		flow_ctrl = FLOW_AUTO;
	else if (likely(flow_ctrl < 0))
		flow_ctrl = FLOW_OFF;
	if (unlikely((pause < 0) || (pause > 0xffff)))
		pause = PAUSE_TIME;
163 164
	if (eee_timer < 0)
		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
165 166
}

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
static void stmmac_clk_csr_set(struct stmmac_priv *priv)
{
	u32 clk_rate;

	clk_rate = clk_get_rate(priv->stmmac_clk);

	/* Platform provided default clk_csr would be assumed valid
	 * for all other cases except for the below mentioned ones. */
	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
		if (clk_rate < CSR_F_35M)
			priv->clk_csr = STMMAC_CSR_20_35M;
		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
			priv->clk_csr = STMMAC_CSR_35_60M;
		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
			priv->clk_csr = STMMAC_CSR_60_100M;
		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
			priv->clk_csr = STMMAC_CSR_100_150M;
		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
			priv->clk_csr = STMMAC_CSR_150_250M;
		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
			priv->clk_csr = STMMAC_CSR_250_300M;
	} /* For values higher than the IEEE 802.3 specified frequency
	   * we can not estimate the proper divider as it is not known
	   * the frequency of clk_csr_i. So we do not change the default
	   * divider. */
}

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
#if defined(STMMAC_XMIT_DEBUG) || defined(STMMAC_RX_DEBUG)
static void print_pkt(unsigned char *buf, int len)
{
	int j;
	pr_info("len = %d byte, buf addr: 0x%p", len, buf);
	for (j = 0; j < len; j++) {
		if ((j % 16) == 0)
			pr_info("\n %03x:", j);
		pr_info(" %02x", buf[j]);
	}
	pr_info("\n");
}
#endif

/* minimum number of free TX descriptors required to wake up TX process */
#define STMMAC_TX_THRESH(x)	(x->dma_tx_size/4)

static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
{
	return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
}

216 217 218 219 220 221 222 223 224 225 226 227
/* On some ST platforms, some HW system configuraton registers have to be
 * set according to the link speed negotiated.
 */
static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
{
	struct phy_device *phydev = priv->phydev;

	if (likely(priv->plat->fix_mac_speed))
		priv->plat->fix_mac_speed(priv->plat->bsp_priv,
					  phydev->speed);
}

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
{
	/* Check and enter in LPI mode */
	if ((priv->dirty_tx == priv->cur_tx) &&
	    (priv->tx_path_in_lpi_mode == false))
		priv->hw->mac->set_eee_mode(priv->ioaddr);
}

void stmmac_disable_eee_mode(struct stmmac_priv *priv)
{
	/* Exit and disable EEE in case of we are are in LPI state. */
	priv->hw->mac->reset_eee_mode(priv->ioaddr);
	del_timer_sync(&priv->eee_ctrl_timer);
	priv->tx_path_in_lpi_mode = false;
}

/**
 * stmmac_eee_ctrl_timer
 * @arg : data hook
 * Description:
 *  If there is no data transfer and if we are not in LPI state,
 *  then MAC Transmitter can be moved to LPI state.
 */
static void stmmac_eee_ctrl_timer(unsigned long arg)
{
	struct stmmac_priv *priv = (struct stmmac_priv *)arg;

	stmmac_enable_eee_mode(priv);
	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_TIMER(eee_timer));
}

/**
 * stmmac_eee_init
 * @priv: private device pointer
 * Description:
 *  If the EEE support has been enabled while configuring the driver,
 *  if the GMAC actually supports the EEE (from the HW cap reg) and the
 *  phy can also manage EEE, so enable the LPI state and start the timer
 *  to verify if the tx path can enter in LPI state.
 */
bool stmmac_eee_init(struct stmmac_priv *priv)
{
	bool ret = false;

	/* MAC core supports the EEE feature. */
	if (priv->dma_cap.eee) {
		/* Check if the PHY supports EEE */
		if (phy_init_eee(priv->phydev, 1))
			goto out;

		priv->eee_active = 1;
		init_timer(&priv->eee_ctrl_timer);
		priv->eee_ctrl_timer.function = stmmac_eee_ctrl_timer;
		priv->eee_ctrl_timer.data = (unsigned long)priv;
		priv->eee_ctrl_timer.expires = STMMAC_LPI_TIMER(eee_timer);
		add_timer(&priv->eee_ctrl_timer);

		priv->hw->mac->set_eee_timer(priv->ioaddr,
					     STMMAC_DEFAULT_LIT_LS_TIMER,
					     priv->tx_lpi_timer);

		pr_info("stmmac: Energy-Efficient Ethernet initialized\n");

		ret = true;
	}
out:
	return ret;
}

static void stmmac_eee_adjust(struct stmmac_priv *priv)
{
	/* When the EEE has been already initialised we have to
	 * modify the PLS bit in the LPI ctrl & status reg according
	 * to the PHY link status. For this reason.
	 */
	if (priv->eee_enabled)
		priv->hw->mac->set_eee_pls(priv->ioaddr, priv->phydev->link);
}

307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
/**
 * stmmac_adjust_link
 * @dev: net device structure
 * Description: it adjusts the link parameters.
 */
static void stmmac_adjust_link(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	struct phy_device *phydev = priv->phydev;
	unsigned long flags;
	int new_state = 0;
	unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;

	if (phydev == NULL)
		return;

	DBG(probe, DEBUG, "stmmac_adjust_link: called.  address %d link %d\n",
	    phydev->addr, phydev->link);

	spin_lock_irqsave(&priv->lock, flags);
327

328
	if (phydev->link) {
329
		u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
330 331 332 333 334 335

		/* Now we make sure that we can be in full duplex mode.
		 * If not, we operate in half-duplex mode. */
		if (phydev->duplex != priv->oldduplex) {
			new_state = 1;
			if (!(phydev->duplex))
336
				ctrl &= ~priv->hw->link.duplex;
337
			else
338
				ctrl |= priv->hw->link.duplex;
339 340 341 342
			priv->oldduplex = phydev->duplex;
		}
		/* Flow Control operation */
		if (phydev->pause)
343
			priv->hw->mac->flow_ctrl(priv->ioaddr, phydev->duplex,
344
						 fc, pause_time);
345 346 347 348 349

		if (phydev->speed != priv->speed) {
			new_state = 1;
			switch (phydev->speed) {
			case 1000:
350
				if (likely(priv->plat->has_gmac))
351
					ctrl &= ~priv->hw->link.port;
352
					stmmac_hw_fix_mac_speed(priv);
353 354 355
				break;
			case 100:
			case 10:
356
				if (priv->plat->has_gmac) {
357
					ctrl |= priv->hw->link.port;
358
					if (phydev->speed == SPEED_100) {
359
						ctrl |= priv->hw->link.speed;
360
					} else {
361
						ctrl &= ~(priv->hw->link.speed);
362 363
					}
				} else {
364
					ctrl &= ~priv->hw->link.port;
365
				}
366
				stmmac_hw_fix_mac_speed(priv);
367 368 369 370 371 372 373 374 375 376 377
				break;
			default:
				if (netif_msg_link(priv))
					pr_warning("%s: Speed (%d) is not 10"
				       " or 100!\n", dev->name, phydev->speed);
				break;
			}

			priv->speed = phydev->speed;
		}

378
		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393

		if (!priv->oldlink) {
			new_state = 1;
			priv->oldlink = 1;
		}
	} else if (priv->oldlink) {
		new_state = 1;
		priv->oldlink = 0;
		priv->speed = 0;
		priv->oldduplex = -1;
	}

	if (new_state && netif_msg_link(priv))
		phy_print_status(phydev);

394 395
	stmmac_eee_adjust(priv);

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
	spin_unlock_irqrestore(&priv->lock, flags);

	DBG(probe, DEBUG, "stmmac_adjust_link: exiting\n");
}

/**
 * stmmac_init_phy - PHY initialization
 * @dev: net device structure
 * Description: it initializes the driver's PHY state, and attaches the PHY
 * to the mac driver.
 *  Return value:
 *  0 on success
 */
static int stmmac_init_phy(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	struct phy_device *phydev;
413
	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
414
	char bus_id[MII_BUS_ID_SIZE];
415
	int interface = priv->plat->interface;
416 417 418 419
	priv->oldlink = 0;
	priv->speed = 0;
	priv->oldduplex = -1;

420 421 422 423 424 425 426
	if (priv->plat->phy_bus_name)
		snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
				priv->plat->phy_bus_name, priv->plat->bus_id);
	else
		snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
				priv->plat->bus_id);

427
	snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
428
		 priv->plat->phy_addr);
429
	pr_debug("stmmac_init_phy:  trying to attach to %s\n", phy_id_fmt);
430

431
	phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, interface);
432 433 434 435 436 437

	if (IS_ERR(phydev)) {
		pr_err("%s: Could not attach to PHY\n", dev->name);
		return PTR_ERR(phydev);
	}

438
	/* Stop Advertising 1000BASE Capability if interface is not GMII */
439 440 441 442
	if ((interface == PHY_INTERFACE_MODE_MII) ||
	    (interface == PHY_INTERFACE_MODE_RMII))
		phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
					 SUPPORTED_1000baseT_Full);
443

444 445 446 447 448 449 450 451 452 453 454 455
	/*
	 * Broken HW is sometimes missing the pull-up resistor on the
	 * MDIO line, which results in reads to non-existent devices returning
	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
	 * device as well.
	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
	 */
	if (phydev->phy_id == 0) {
		phy_disconnect(phydev);
		return -ENODEV;
	}
	pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
456
		 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486

	priv->phydev = phydev;

	return 0;
}

/**
 * display_ring
 * @p: pointer to the ring.
 * @size: size of the ring.
 * Description: display all the descriptors within the ring.
 */
static void display_ring(struct dma_desc *p, int size)
{
	struct tmp_s {
		u64 a;
		unsigned int b;
		unsigned int c;
	};
	int i;
	for (i = 0; i < size; i++) {
		struct tmp_s *x = (struct tmp_s *)(p + i);
		pr_info("\t%d [0x%x]: DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
		       i, (unsigned int)virt_to_phys(&p[i]),
		       (unsigned int)(x->a), (unsigned int)((x->a) >> 32),
		       x->b, x->c);
		pr_info("\n");
	}
}

487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
static int stmmac_set_bfsize(int mtu, int bufsize)
{
	int ret = bufsize;

	if (mtu >= BUF_SIZE_4KiB)
		ret = BUF_SIZE_8KiB;
	else if (mtu >= BUF_SIZE_2KiB)
		ret = BUF_SIZE_4KiB;
	else if (mtu >= DMA_BUFFER_SIZE)
		ret = BUF_SIZE_2KiB;
	else
		ret = DMA_BUFFER_SIZE;

	return ret;
}

503 504 505 506
/**
 * init_dma_desc_rings - init the RX/TX descriptor rings
 * @dev: net device structure
 * Description:  this function initializes the DMA RX/TX descriptors
507 508
 * and allocates the socket buffers. It suppors the chained and ring
 * modes.
509 510 511 512 513 514 515 516
 */
static void init_dma_desc_rings(struct net_device *dev)
{
	int i;
	struct stmmac_priv *priv = netdev_priv(dev);
	struct sk_buff *skb;
	unsigned int txsize = priv->dma_tx_size;
	unsigned int rxsize = priv->dma_rx_size;
517 518 519
	unsigned int bfsize;
	int dis_ic = 0;
	int des3_as_data_buf = 0;
520

521 522 523 524 525 526
	/* Set the max buffer size according to the DESC mode
	 * and the MTU. Note that RING mode allows 16KiB bsize. */
	bfsize = priv->hw->ring->set_16kib_bfsize(dev->mtu);

	if (bfsize == BUF_SIZE_16KiB)
		des3_as_data_buf = 1;
527
	else
528
		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555

	DBG(probe, INFO, "stmmac: txsize %d, rxsize %d, bfsize %d\n",
	    txsize, rxsize, bfsize);

	priv->rx_skbuff_dma = kmalloc(rxsize * sizeof(dma_addr_t), GFP_KERNEL);
	priv->rx_skbuff =
	    kmalloc(sizeof(struct sk_buff *) * rxsize, GFP_KERNEL);
	priv->dma_rx =
	    (struct dma_desc *)dma_alloc_coherent(priv->device,
						  rxsize *
						  sizeof(struct dma_desc),
						  &priv->dma_rx_phy,
						  GFP_KERNEL);
	priv->tx_skbuff = kmalloc(sizeof(struct sk_buff *) * txsize,
				       GFP_KERNEL);
	priv->dma_tx =
	    (struct dma_desc *)dma_alloc_coherent(priv->device,
						  txsize *
						  sizeof(struct dma_desc),
						  &priv->dma_tx_phy,
						  GFP_KERNEL);

	if ((priv->dma_rx == NULL) || (priv->dma_tx == NULL)) {
		pr_err("%s:ERROR allocating the DMA Tx/Rx desc\n", __func__);
		return;
	}

556
	DBG(probe, INFO, "stmmac (%s) DMA desc: virt addr (Rx %p, "
557 558 559 560 561 562 563 564 565 566 567
	    "Tx %p)\n\tDMA phy addr (Rx 0x%08x, Tx 0x%08x)\n",
	    dev->name, priv->dma_rx, priv->dma_tx,
	    (unsigned int)priv->dma_rx_phy, (unsigned int)priv->dma_tx_phy);

	/* RX INITIALIZATION */
	DBG(probe, INFO, "stmmac: SKB addresses:\n"
			 "skb\t\tskb data\tdma data\n");

	for (i = 0; i < rxsize; i++) {
		struct dma_desc *p = priv->dma_rx + i;

568 569
		skb = __netdev_alloc_skb(dev, bfsize + NET_IP_ALIGN,
					 GFP_KERNEL);
570 571 572 573
		if (unlikely(skb == NULL)) {
			pr_err("%s: Rx init fails; skb is NULL\n", __func__);
			break;
		}
574
		skb_reserve(skb, NET_IP_ALIGN);
575 576 577 578 579
		priv->rx_skbuff[i] = skb;
		priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
						bfsize, DMA_FROM_DEVICE);

		p->des2 = priv->rx_skbuff_dma[i];
580 581 582

		priv->hw->ring->init_desc3(des3_as_data_buf, p);

583 584 585 586 587 588 589 590 591 592 593 594 595
		DBG(probe, INFO, "[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
			priv->rx_skbuff[i]->data, priv->rx_skbuff_dma[i]);
	}
	priv->cur_rx = 0;
	priv->dirty_rx = (unsigned int)(i - rxsize);
	priv->dma_buf_sz = bfsize;
	buf_sz = bfsize;

	/* TX INITIALIZATION */
	for (i = 0; i < txsize; i++) {
		priv->tx_skbuff[i] = NULL;
		priv->dma_tx[i].des2 = 0;
	}
596 597 598 599 600 601

	/* In case of Chained mode this sets the des3 to the next
	 * element in the chain */
	priv->hw->ring->init_dma_chain(priv->dma_rx, priv->dma_rx_phy, rxsize);
	priv->hw->ring->init_dma_chain(priv->dma_tx, priv->dma_tx_phy, txsize);

602 603 604
	priv->dirty_tx = 0;
	priv->cur_tx = 0;

605 606
	if (priv->use_riwt)
		dis_ic = 1;
607
	/* Clear the Rx/Tx descriptors */
608 609
	priv->hw->desc->init_rx_desc(priv->dma_rx, rxsize, dis_ic);
	priv->hw->desc->init_tx_desc(priv->dma_tx, txsize);
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641

	if (netif_msg_hw(priv)) {
		pr_info("RX descriptor ring:\n");
		display_ring(priv->dma_rx, rxsize);
		pr_info("TX descriptor ring:\n");
		display_ring(priv->dma_tx, txsize);
	}
}

static void dma_free_rx_skbufs(struct stmmac_priv *priv)
{
	int i;

	for (i = 0; i < priv->dma_rx_size; i++) {
		if (priv->rx_skbuff[i]) {
			dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
					 priv->dma_buf_sz, DMA_FROM_DEVICE);
			dev_kfree_skb_any(priv->rx_skbuff[i]);
		}
		priv->rx_skbuff[i] = NULL;
	}
}

static void dma_free_tx_skbufs(struct stmmac_priv *priv)
{
	int i;

	for (i = 0; i < priv->dma_tx_size; i++) {
		if (priv->tx_skbuff[i] != NULL) {
			struct dma_desc *p = priv->dma_tx + i;
			if (p->des2)
				dma_unmap_single(priv->device, p->des2,
642 643
						 priv->hw->desc->get_tx_len(p),
						 DMA_TO_DEVICE);
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
			dev_kfree_skb_any(priv->tx_skbuff[i]);
			priv->tx_skbuff[i] = NULL;
		}
	}
}

static void free_dma_desc_resources(struct stmmac_priv *priv)
{
	/* Release the DMA TX/RX socket buffers */
	dma_free_rx_skbufs(priv);
	dma_free_tx_skbufs(priv);

	/* Free the region of consistent memory previously allocated for
	 * the DMA */
	dma_free_coherent(priv->device,
			  priv->dma_tx_size * sizeof(struct dma_desc),
			  priv->dma_tx, priv->dma_tx_phy);
	dma_free_coherent(priv->device,
			  priv->dma_rx_size * sizeof(struct dma_desc),
			  priv->dma_rx, priv->dma_rx_phy);
	kfree(priv->rx_skbuff_dma);
	kfree(priv->rx_skbuff);
	kfree(priv->tx_skbuff);
}

/**
 *  stmmac_dma_operation_mode - HW DMA operation mode
 *  @priv : pointer to the private device structure.
 *  Description: it sets the DMA operation mode: tx/rx DMA thresholds
673
 *  or Store-And-Forward capability.
674 675 676
 */
static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
{
677 678 679 680 681
	if (likely(priv->plat->force_sf_dma_mode ||
		((priv->plat->tx_coe) && (!priv->no_csum_insertion)))) {
		/*
		 * In case of GMAC, SF mode can be enabled
		 * to perform the TX COE in HW. This depends on:
682 683 684 685 686 687 688 689 690
		 * 1) TX COE if actually supported
		 * 2) There is no bugged Jumbo frame support
		 *    that needs to not insert csum in the TDES.
		 */
		priv->hw->dma->dma_mode(priv->ioaddr,
					SF_DMA_MODE, SF_DMA_MODE);
		tc = SF_DMA_MODE;
	} else
		priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
691 692 693
}

/**
694 695
 * stmmac_tx_clean:
 * @priv: private data pointer
696 697
 * Description: it reclaims resources after transmission completes.
 */
698
static void stmmac_tx_clean(struct stmmac_priv *priv)
699 700 701
{
	unsigned int txsize = priv->dma_tx_size;

702 703
	spin_lock(&priv->tx_lock);

704 705
	priv->xstats.tx_clean++;

706 707 708 709 710 711 712
	while (priv->dirty_tx != priv->cur_tx) {
		int last;
		unsigned int entry = priv->dirty_tx % txsize;
		struct sk_buff *skb = priv->tx_skbuff[entry];
		struct dma_desc *p = priv->dma_tx + entry;

		/* Check if the descriptor is owned by the DMA. */
713
		if (priv->hw->desc->get_tx_owner(p))
714 715 716
			break;

		/* Verify tx error by looking at the last segment */
717
		last = priv->hw->desc->get_tx_ls(p);
718 719
		if (likely(last)) {
			int tx_error =
720 721
				priv->hw->desc->tx_status(&priv->dev->stats,
							  &priv->xstats, p,
722
							  priv->ioaddr);
723 724 725 726 727 728 729 730 731 732 733
			if (likely(tx_error == 0)) {
				priv->dev->stats.tx_packets++;
				priv->xstats.tx_pkt_n++;
			} else
				priv->dev->stats.tx_errors++;
		}
		TX_DBG("%s: curr %d, dirty %d\n", __func__,
			priv->cur_tx, priv->dirty_tx);

		if (likely(p->des2))
			dma_unmap_single(priv->device, p->des2,
734
					 priv->hw->desc->get_tx_len(p),
735
					 DMA_TO_DEVICE);
736
		priv->hw->ring->clean_desc3(p);
737 738

		if (likely(skb != NULL)) {
E
Eric Dumazet 已提交
739
			dev_kfree_skb(skb);
740 741 742
			priv->tx_skbuff[entry] = NULL;
		}

743
		priv->hw->desc->release_tx_desc(p);
744

745
		priv->dirty_tx++;
746 747 748 749 750 751 752 753 754 755 756
	}
	if (unlikely(netif_queue_stopped(priv->dev) &&
		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
		netif_tx_lock(priv->dev);
		if (netif_queue_stopped(priv->dev) &&
		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
			TX_DBG("%s: restart transmit\n", __func__);
			netif_wake_queue(priv->dev);
		}
		netif_tx_unlock(priv->dev);
	}
757 758 759 760 761

	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
		stmmac_enable_eee_mode(priv);
		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_TIMER(eee_timer));
	}
762
	spin_unlock(&priv->tx_lock);
763 764
}

765
static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
766
{
767
	priv->hw->dma->enable_dma_irq(priv->ioaddr);
768 769
}

770
static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
771
{
772
	priv->hw->dma->disable_dma_irq(priv->ioaddr);
773 774 775 776 777 778 779 780 781 782 783 784 785
}


/**
 * stmmac_tx_err:
 * @priv: pointer to the private device structure
 * Description: it cleans the descriptors and restarts the transmission
 * in case of errors.
 */
static void stmmac_tx_err(struct stmmac_priv *priv)
{
	netif_stop_queue(priv->dev);

786
	priv->hw->dma->stop_tx(priv->ioaddr);
787
	dma_free_tx_skbufs(priv);
788
	priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
789 790
	priv->dirty_tx = 0;
	priv->cur_tx = 0;
791
	priv->hw->dma->start_tx(priv->ioaddr);
792 793 794 795 796

	priv->dev->stats.tx_errors++;
	netif_wake_queue(priv->dev);
}

797 798 799 800
static void stmmac_dma_interrupt(struct stmmac_priv *priv)
{
	int status;

801
	status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
802 803 804 805 806 807 808
	if (likely((status & handle_rx)) || (status & handle_tx)) {
		if (likely(napi_schedule_prep(&priv->napi))) {
			stmmac_disable_dma_irq(priv);
			__napi_schedule(&priv->napi);
		}
	}
	if (unlikely(status & tx_hard_error_bump_tc)) {
809 810 811
		/* Try to bump up the dma threshold on this failure */
		if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
			tc += 64;
812
			priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
813
			priv->xstats.threshold = tc;
814
		}
815 816
	} else if (unlikely(status == tx_hard_error))
		stmmac_tx_err(priv);
817 818
}

819 820 821 822 823
static void stmmac_mmc_setup(struct stmmac_priv *priv)
{
	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;

G
Giuseppe CAVALLARO 已提交
824 825
	/* Mask MMC irq, counters are managed in SW and registers
	 * are cleared on each READ eventually. */
826
	dwmac_mmc_intr_all_mask(priv->ioaddr);
G
Giuseppe CAVALLARO 已提交
827 828 829 830 831

	if (priv->dma_cap.rmon) {
		dwmac_mmc_ctrl(priv->ioaddr, mode);
		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
	} else
832
		pr_info(" No MAC Management Counters available\n");
833 834
}

835 836 837 838 839 840 841 842 843 844
static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
{
	u32 hwid = priv->hw->synopsys_uid;

	/* Only check valid Synopsys Id because old MAC chips
	 * have no HW registers where get the ID */
	if (likely(hwid)) {
		u32 uid = ((hwid & 0x0000ff00) >> 8);
		u32 synid = (hwid & 0x000000ff);

845
		pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
846 847 848 849 850 851
			uid, synid);

		return synid;
	}
	return 0;
}
852

853 854
/**
 * stmmac_selec_desc_mode
855 856 857
 * @priv : private structure
 * Description: select the Enhanced/Alternate or Normal descriptors
 */
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
{
	if (priv->plat->enh_desc) {
		pr_info(" Enhanced/Alternate descriptors\n");
		priv->hw->desc = &enh_desc_ops;
	} else {
		pr_info(" Normal descriptors\n");
		priv->hw->desc = &ndesc_ops;
	}
}

/**
 * stmmac_get_hw_features
 * @priv : private device pointer
 * Description:
 *  new GMAC chip generations have a new register to indicate the
 *  presence of the optional feature/functions.
 *  This can be also used to override the value passed through the
 *  platform and necessary for old MAC10/100 and GMAC chips.
877 878 879
 */
static int stmmac_get_hw_features(struct stmmac_priv *priv)
{
880
	u32 hw_cap = 0;
881

882 883
	if (priv->hw->dma->get_hw_feature) {
		hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
884

885 886 887 888 889 890 891 892 893 894 895 896
		priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
		priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
		priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
		priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
		priv->dma_cap.multi_addr =
			(hw_cap & DMA_HW_FEAT_ADDMACADRSEL) >> 5;
		priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
		priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
		priv->dma_cap.pmt_remote_wake_up =
			(hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
		priv->dma_cap.pmt_magic_frame =
			(hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
897
		/* MMC */
898
		priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
899
		/* IEEE 1588-2002*/
900 901
		priv->dma_cap.time_stamp =
			(hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
902
		/* IEEE 1588-2008*/
903 904
		priv->dma_cap.atime_stamp =
			(hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
905
		/* 802.3az - Energy-Efficient Ethernet (EEE) */
906 907
		priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
		priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
908
		/* TX and RX csum */
909 910 911 912 913 914 915
		priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
		priv->dma_cap.rx_coe_type1 =
			(hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
		priv->dma_cap.rx_coe_type2 =
			(hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
		priv->dma_cap.rxfifo_over_2048 =
			(hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
916
		/* TX and RX number of channels */
917 918 919 920
		priv->dma_cap.number_rx_channel =
			(hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
		priv->dma_cap.number_tx_channel =
			(hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
921
		/* Alternate (enhanced) DESC mode*/
922 923
		priv->dma_cap.enh_desc =
			(hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
924
	}
925 926 927 928

	return hw_cap;
}

929 930 931 932 933 934 935 936 937
static void stmmac_check_ether_addr(struct stmmac_priv *priv)
{
	/* verify if the MAC address is valid, in case of failures it
	 * generates a random MAC address */
	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
		priv->hw->mac->get_umac_addr((void __iomem *)
					     priv->dev->base_addr,
					     priv->dev->dev_addr, 0);
		if  (!is_valid_ether_addr(priv->dev->dev_addr))
938
			eth_hw_addr_random(priv->dev);
939 940 941 942 943
	}
	pr_warning("%s: device MAC address %pM\n", priv->dev->name,
						   priv->dev->dev_addr);
}

944 945 946
static int stmmac_init_dma_engine(struct stmmac_priv *priv)
{
	int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
947
	int mixed_burst = 0;
948 949 950 951 952 953 954

	/* Some DMA parameters can be passed from the platform;
	 * in case of these are not passed we keep a default
	 * (good for all the chips) and init the DMA! */
	if (priv->plat->dma_cfg) {
		pbl = priv->plat->dma_cfg->pbl;
		fixed_burst = priv->plat->dma_cfg->fixed_burst;
955
		mixed_burst = priv->plat->dma_cfg->mixed_burst;
956 957 958
		burst_len = priv->plat->dma_cfg->burst_len;
	}

959
	return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
960 961 962 963
				   burst_len, priv->dma_tx_phy,
				   priv->dma_rx_phy);
}

964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
/**
 * stmmac_tx_timer:
 * @data: data pointer
 * Description:
 * This is the timer handler to directly invoke the stmmac_tx_clean.
 */
static void stmmac_tx_timer(unsigned long data)
{
	struct stmmac_priv *priv = (struct stmmac_priv *)data;

	stmmac_tx_clean(priv);
}

/**
 * stmmac_tx_timer:
 * @priv: private data structure
 * Description:
 * This inits the transmit coalesce parameters: i.e. timer rate,
 * timer handler and default threshold used for enabling the
 * interrupt on completion bit.
 */
static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
{
	priv->tx_coal_frames = STMMAC_TX_FRAMES;
	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
	init_timer(&priv->txtimer);
	priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
	priv->txtimer.data = (unsigned long)priv;
	priv->txtimer.function = stmmac_tx_timer;
	add_timer(&priv->txtimer);
}

996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
/**
 *  stmmac_open - open entry point of the driver
 *  @dev : pointer to the device structure.
 *  Description:
 *  This function is the open entry point of the driver.
 *  Return value:
 *  0 on success and an appropriate (-)ve integer as defined in errno.h
 *  file on failure.
 */
static int stmmac_open(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	int ret;

1010
	clk_prepare_enable(priv->stmmac_clk);
1011 1012 1013

	stmmac_check_ether_addr(priv);

1014 1015 1016 1017 1018
	ret = stmmac_init_phy(dev);
	if (unlikely(ret)) {
		pr_err("%s: Cannot attach to PHY (error: %d)\n", __func__, ret);
		goto open_error;
	}
1019 1020 1021 1022 1023 1024 1025 1026

	/* Create and initialize the TX/RX descriptors chains. */
	priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
	priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
	init_dma_desc_rings(dev);

	/* DMA initialization and SW reset */
1027
	ret = stmmac_init_dma_engine(priv);
1028
	if (ret < 0) {
1029
		pr_err("%s: DMA initialization failed\n", __func__);
1030
		goto open_error;
1031 1032 1033
	}

	/* Copy the MAC addr into the HW  */
1034
	priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
1035

1036
	/* If required, perform hw setup of the bus. */
1037 1038
	if (priv->plat->bus_setup)
		priv->plat->bus_setup(priv->ioaddr);
1039

1040
	/* Initialize the MAC Core */
1041
	priv->hw->mac->core_init(priv->ioaddr);
1042

1043 1044 1045 1046 1047 1048 1049 1050 1051
	/* Request the IRQ lines */
	ret = request_irq(dev->irq, stmmac_interrupt,
			 IRQF_SHARED, dev->name, dev);
	if (unlikely(ret < 0)) {
		pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
		       __func__, dev->irq, ret);
		goto open_error;
	}

1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
	/* Request the Wake IRQ in case of another line is used for WoL */
	if (priv->wol_irq != dev->irq) {
		ret = request_irq(priv->wol_irq, stmmac_interrupt,
				  IRQF_SHARED, dev->name, dev);
		if (unlikely(ret < 0)) {
			pr_err("%s: ERROR: allocating the ext WoL IRQ %d "
			       "(error: %d)\n",	__func__, priv->wol_irq, ret);
			goto open_error_wolirq;
		}
	}

1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
	/* Request the IRQ lines */
	if (priv->lpi_irq != -ENXIO) {
		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
				  dev->name, dev);
		if (unlikely(ret < 0)) {
			pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
			       __func__, priv->lpi_irq, ret);
			goto open_error_lpiirq;
		}
	}

1074
	/* Enable the MAC Rx/Tx */
1075
	stmmac_set_mac(priv->ioaddr, true);
1076 1077 1078 1079 1080 1081 1082 1083

	/* Set the HW DMA mode and the COE */
	stmmac_dma_operation_mode(priv);

	/* Extra statistics */
	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
	priv->xstats.threshold = tc;

G
Giuseppe CAVALLARO 已提交
1084
	stmmac_mmc_setup(priv);
1085

1086 1087 1088
#ifdef CONFIG_STMMAC_DEBUG_FS
	ret = stmmac_init_fs(dev);
	if (ret < 0)
1089
		pr_warning("%s: failed debugFS registration\n", __func__);
1090
#endif
1091 1092
	/* Start the ball rolling... */
	DBG(probe, DEBUG, "%s: DMA RX/TX processes started...\n", dev->name);
1093 1094
	priv->hw->dma->start_tx(priv->ioaddr);
	priv->hw->dma->start_rx(priv->ioaddr);
1095 1096 1097

	/* Dump DMA/MAC registers */
	if (netif_msg_hw(priv)) {
1098 1099
		priv->hw->mac->dump_regs(priv->ioaddr);
		priv->hw->dma->dump_regs(priv->ioaddr);
1100 1101 1102 1103 1104
	}

	if (priv->phydev)
		phy_start(priv->phydev);

1105 1106 1107
	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS_TIMER;
	priv->eee_enabled = stmmac_eee_init(priv);

1108 1109
	stmmac_init_tx_coalesce(priv);

1110 1111 1112 1113 1114
	if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
		priv->rx_riwt = MAX_DMA_RIWT;
		priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
	}

1115 1116
	napi_enable(&priv->napi);
	netif_start_queue(dev);
1117

1118
	return 0;
1119

1120 1121 1122 1123
open_error_lpiirq:
	if (priv->wol_irq != dev->irq)
		free_irq(priv->wol_irq, dev);

1124 1125 1126
open_error_wolirq:
	free_irq(dev->irq, dev);

1127 1128 1129 1130
open_error:
	if (priv->phydev)
		phy_disconnect(priv->phydev);

1131
	clk_disable_unprepare(priv->stmmac_clk);
1132

1133
	return ret;
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
}

/**
 *  stmmac_release - close entry point of the driver
 *  @dev : device pointer.
 *  Description:
 *  This is the stop entry point of the driver.
 */
static int stmmac_release(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);

1146 1147 1148
	if (priv->eee_enabled)
		del_timer_sync(&priv->eee_ctrl_timer);

1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
	/* Stop and disconnect the PHY */
	if (priv->phydev) {
		phy_stop(priv->phydev);
		phy_disconnect(priv->phydev);
		priv->phydev = NULL;
	}

	netif_stop_queue(dev);

	napi_disable(&priv->napi);

1160 1161
	del_timer_sync(&priv->txtimer);

1162 1163
	/* Free the IRQ lines */
	free_irq(dev->irq, dev);
1164 1165
	if (priv->wol_irq != dev->irq)
		free_irq(priv->wol_irq, dev);
1166 1167
	if (priv->lpi_irq != -ENXIO)
		free_irq(priv->lpi_irq, dev);
1168 1169

	/* Stop TX/RX DMA and clear the descriptors */
1170 1171
	priv->hw->dma->stop_tx(priv->ioaddr);
	priv->hw->dma->stop_rx(priv->ioaddr);
1172 1173 1174 1175

	/* Release and free the Rx/Tx resources */
	free_dma_desc_resources(priv);

1176
	/* Disable the MAC Rx/Tx */
1177
	stmmac_set_mac(priv->ioaddr, false);
1178 1179 1180

	netif_carrier_off(dev);

1181 1182 1183
#ifdef CONFIG_STMMAC_DEBUG_FS
	stmmac_exit_fs();
#endif
1184
	clk_disable_unprepare(priv->stmmac_clk);
1185

1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
	return 0;
}

/**
 *  stmmac_xmit:
 *  @skb : the socket buffer
 *  @dev : device pointer
 *  Description : Tx entry point of the driver.
 */
static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	unsigned int txsize = priv->dma_tx_size;
	unsigned int entry;
	int i, csum_insertion = 0;
	int nfrags = skb_shinfo(skb)->nr_frags;
	struct dma_desc *desc, *first;
1203
	unsigned int nopaged_len = skb_headlen(skb);
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214

	if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
		if (!netif_queue_stopped(dev)) {
			netif_stop_queue(dev);
			/* This is a hard error, log it. */
			pr_err("%s: BUG! Tx Ring full when queue awake\n",
				__func__);
		}
		return NETDEV_TX_BUSY;
	}

1215 1216
	spin_lock(&priv->tx_lock);

1217 1218 1219
	if (priv->tx_path_in_lpi_mode)
		stmmac_disable_eee_mode(priv);

1220 1221 1222 1223
	entry = priv->cur_tx % txsize;

#ifdef STMMAC_XMIT_DEBUG
	if ((skb->len > ETH_FRAME_LEN) || nfrags)
1224 1225 1226 1227 1228 1229 1230
		pr_debug("stmmac xmit: [entry %d]\n"
			 "\tskb addr %p - len: %d - nopaged_len: %d\n"
			 "\tn_frags: %d - ip_summed: %d - %s gso\n"
			 "\ttx_count_frames %d\n", entry,
			 skb, skb->len, nopaged_len, nfrags, skb->ip_summed,
			 !skb_is_gso(skb) ? "isn't" : "is",
			 priv->tx_count_frames);
1231 1232
#endif

1233
	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1234 1235 1236 1237 1238 1239

	desc = priv->dma_tx + entry;
	first = desc;

#ifdef STMMAC_XMIT_DEBUG
	if ((nfrags > 0) || (skb->len > ETH_FRAME_LEN))
1240 1241 1242
		pr_debug("\tskb len: %d, nopaged_len: %d,\n"
			 "\t\tn_frags: %d, ip_summed: %d\n",
			 skb->len, nopaged_len, nfrags, skb->ip_summed);
1243 1244
#endif
	priv->tx_skbuff[entry] = skb;
1245 1246 1247

	if (priv->hw->ring->is_jumbo_frm(skb->len, priv->plat->enh_desc)) {
		entry = priv->hw->ring->jumbo_frm(priv, skb, csum_insertion);
1248 1249 1250 1251
		desc = priv->dma_tx + entry;
	} else {
		desc->des2 = dma_map_single(priv->device, skb->data,
					nopaged_len, DMA_TO_DEVICE);
1252 1253
		priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
						csum_insertion);
1254 1255 1256
	}

	for (i = 0; i < nfrags; i++) {
E
Eric Dumazet 已提交
1257 1258
		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
		int len = skb_frag_size(frag);
1259 1260 1261 1262 1263

		entry = (++priv->cur_tx) % txsize;
		desc = priv->dma_tx + entry;

		TX_DBG("\t[entry %d] segment len: %d\n", entry, len);
1264 1265
		desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
					      DMA_TO_DEVICE);
1266
		priv->tx_skbuff[entry] = NULL;
1267
		priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion);
1268
		wmb();
1269
		priv->hw->desc->set_tx_owner(desc);
1270
		wmb();
1271 1272
	}

1273
	/* Finalize the latest segment. */
1274
	priv->hw->desc->close_tx_desc(desc);
1275

1276
	wmb();
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
	/* According to the coalesce parameter the IC bit for the latest
	 * segment could be reset and the timer re-started to invoke the
	 * stmmac_tx function. This approach takes care about the fragments.
	 */
	priv->tx_count_frames += nfrags + 1;
	if (priv->tx_coal_frames > priv->tx_count_frames) {
		priv->hw->desc->clear_tx_ic(desc);
		priv->xstats.tx_reset_ic_bit++;
		TX_DBG("\t[entry %d]: tx_count_frames %d\n", entry,
		       priv->tx_count_frames);
		mod_timer(&priv->txtimer,
			  STMMAC_COAL_TIMER(priv->tx_coal_timer));
	} else
		priv->tx_count_frames = 0;
1291

1292
	/* To avoid raise condition */
1293
	priv->hw->desc->set_tx_owner(first);
1294
	wmb();
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315

	priv->cur_tx++;

#ifdef STMMAC_XMIT_DEBUG
	if (netif_msg_pktdata(priv)) {
		pr_info("stmmac xmit: current=%d, dirty=%d, entry=%d, "
		       "first=%p, nfrags=%d\n",
		       (priv->cur_tx % txsize), (priv->dirty_tx % txsize),
		       entry, first, nfrags);
		display_ring(priv->dma_tx, txsize);
		pr_info(">>> frame to be transmitted: ");
		print_pkt(skb->data, skb->len);
	}
#endif
	if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
		TX_DBG("%s: stop transmitted packets\n", __func__);
		netif_stop_queue(dev);
	}

	dev->stats.tx_bytes += skb->len;

1316 1317
	skb_tx_timestamp(skb);

1318 1319
	priv->hw->dma->enable_dma_transmission(priv->ioaddr);

1320 1321
	spin_unlock(&priv->tx_lock);

1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
	return NETDEV_TX_OK;
}

static inline void stmmac_rx_refill(struct stmmac_priv *priv)
{
	unsigned int rxsize = priv->dma_rx_size;
	int bfsize = priv->dma_buf_sz;
	struct dma_desc *p = priv->dma_rx;

	for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
		unsigned int entry = priv->dirty_rx % rxsize;
		if (likely(priv->rx_skbuff[entry] == NULL)) {
			struct sk_buff *skb;

E
Eric Dumazet 已提交
1336
			skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346

			if (unlikely(skb == NULL))
				break;

			priv->rx_skbuff[entry] = skb;
			priv->rx_skbuff_dma[entry] =
			    dma_map_single(priv->device, skb->data, bfsize,
					   DMA_FROM_DEVICE);

			(p + entry)->des2 = priv->rx_skbuff_dma[entry];
1347 1348 1349 1350

			if (unlikely(priv->plat->has_gmac))
				priv->hw->ring->refill_desc3(bfsize, p + entry);

1351 1352
			RX_DBG(KERN_INFO "\trefill entry #%d\n", entry);
		}
1353
		wmb();
1354
		priv->hw->desc->set_rx_owner(p + entry);
1355
		wmb();
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
	}
}

static int stmmac_rx(struct stmmac_priv *priv, int limit)
{
	unsigned int rxsize = priv->dma_rx_size;
	unsigned int entry = priv->cur_rx % rxsize;
	unsigned int next_entry;
	unsigned int count = 0;
	struct dma_desc *p = priv->dma_rx + entry;
	struct dma_desc *p_next;

#ifdef STMMAC_RX_DEBUG
	if (netif_msg_hw(priv)) {
		pr_debug(">>> stmmac_rx: descriptor ring:\n");
		display_ring(priv->dma_rx, rxsize);
	}
#endif
1374
	while (!priv->hw->desc->get_rx_owner(p)) {
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
		int status;

		if (count >= limit)
			break;

		count++;

		next_entry = (++priv->cur_rx) % rxsize;
		p_next = priv->dma_rx + next_entry;
		prefetch(p_next);

		/* read the status of the incoming frame */
1387 1388
		status = (priv->hw->desc->rx_status(&priv->dev->stats,
						    &priv->xstats, p));
1389 1390 1391 1392
		if (unlikely(status == discard_frame))
			priv->dev->stats.rx_errors++;
		else {
			struct sk_buff *skb;
1393
			int frame_len;
1394

1395 1396
			frame_len = priv->hw->desc->get_rx_frame_len(p,
					priv->plat->rx_coe);
1397 1398 1399 1400
			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
			 * Type frames (LLC/LLC-SNAP) */
			if (unlikely(status != llc_snap))
				frame_len -= ETH_FCS_LEN;
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
#ifdef STMMAC_RX_DEBUG
			if (frame_len > ETH_FRAME_LEN)
				pr_debug("\tRX frame size %d, COE status: %d\n",
					frame_len, status);

			if (netif_msg_hw(priv))
				pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
					p, entry, p->des2);
#endif
			skb = priv->rx_skbuff[entry];
			if (unlikely(!skb)) {
				pr_err("%s: Inconsistent Rx descriptor chain\n",
					priv->dev->name);
				priv->dev->stats.rx_dropped++;
				break;
			}
			prefetch(skb->data - NET_IP_ALIGN);
			priv->rx_skbuff[entry] = NULL;

			skb_put(skb, frame_len);
			dma_unmap_single(priv->device,
					 priv->rx_skbuff_dma[entry],
					 priv->dma_buf_sz, DMA_FROM_DEVICE);
#ifdef STMMAC_RX_DEBUG
			if (netif_msg_pktdata(priv)) {
				pr_info(" frame received (%dbytes)", frame_len);
				print_pkt(skb->data, frame_len);
			}
#endif
			skb->protocol = eth_type_trans(skb, priv->dev);

1432
			if (unlikely(!priv->plat->rx_coe))
1433
				skb_checksum_none_assert(skb);
1434
			else
1435
				skb->ip_summed = CHECKSUM_UNNECESSARY;
1436 1437

			napi_gro_receive(&priv->napi, skb);
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458

			priv->dev->stats.rx_packets++;
			priv->dev->stats.rx_bytes += frame_len;
		}
		entry = next_entry;
		p = p_next;	/* use prefetched values */
	}

	stmmac_rx_refill(priv);

	priv->xstats.rx_pkt_n += count;

	return count;
}

/**
 *  stmmac_poll - stmmac poll method (NAPI)
 *  @napi : pointer to the napi structure.
 *  @budget : maximum number of packets that the current CPU can receive from
 *	      all interfaces.
 *  Description :
1459
 *  To look at the incoming frames and clear the tx resources.
1460 1461 1462 1463 1464 1465
 */
static int stmmac_poll(struct napi_struct *napi, int budget)
{
	struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
	int work_done = 0;

1466 1467
	priv->xstats.napi_poll++;
	stmmac_tx_clean(priv);
1468

1469
	work_done = stmmac_rx(priv, budget);
1470 1471
	if (work_done < budget) {
		napi_complete(napi);
1472
		stmmac_enable_dma_irq(priv);
1473 1474 1475 1476 1477 1478 1479 1480
	}
	return work_done;
}

/**
 *  stmmac_tx_timeout
 *  @dev : Pointer to net device structure
 *  Description: this function is called when a packet transmission fails to
1481
 *   complete within a reasonable time. The driver will mark the error in the
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
 *   netdev structure and arrange for the device to be reset to a sane state
 *   in order to transmit a new packet.
 */
static void stmmac_tx_timeout(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);

	/* Clear Tx resources and restart transmitting again */
	stmmac_tx_err(priv);
}

/* Configuration changes (passed on by ifconfig) */
static int stmmac_config(struct net_device *dev, struct ifmap *map)
{
	if (dev->flags & IFF_UP)	/* can't act on a running interface */
		return -EBUSY;

	/* Don't allow changing the I/O address */
	if (map->base_addr != dev->base_addr) {
		pr_warning("%s: can't change I/O address\n", dev->name);
		return -EOPNOTSUPP;
	}

	/* Don't allow changing the IRQ */
	if (map->irq != dev->irq) {
		pr_warning("%s: can't change IRQ number %d\n",
		       dev->name, dev->irq);
		return -EOPNOTSUPP;
	}

	/* ignore other fields */
	return 0;
}

/**
1517
 *  stmmac_set_rx_mode - entry point for multicast addressing
1518 1519 1520 1521 1522 1523 1524
 *  @dev : pointer to the device structure
 *  Description:
 *  This function is a driver entry point which gets called by the kernel
 *  whenever multicast addresses must be enabled/disabled.
 *  Return value:
 *  void.
 */
1525
static void stmmac_set_rx_mode(struct net_device *dev)
1526 1527 1528 1529
{
	struct stmmac_priv *priv = netdev_priv(dev);

	spin_lock(&priv->lock);
1530
	priv->hw->mac->set_filter(dev, priv->synopsys_id);
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
	spin_unlock(&priv->lock);
}

/**
 *  stmmac_change_mtu - entry point to change MTU size for the device.
 *  @dev : device pointer.
 *  @new_mtu : the new MTU size for the device.
 *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
 *  to drive packet transmission. Ethernet has an MTU of 1500 octets
 *  (ETH_DATA_LEN). This value can be changed with ifconfig.
 *  Return value:
 *  0 on success and an appropriate (-)ve integer as defined in errno.h
 *  file on failure.
 */
static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	int max_mtu;

	if (netif_running(dev)) {
		pr_err("%s: must be stopped to change its MTU\n", dev->name);
		return -EBUSY;
	}

1555
	if (priv->plat->enh_desc)
1556 1557
		max_mtu = JUMBO_LEN;
	else
1558
		max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
1559 1560 1561 1562 1563 1564

	if ((new_mtu < 46) || (new_mtu > max_mtu)) {
		pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
		return -EINVAL;
	}

1565 1566 1567 1568 1569 1570
	dev->mtu = new_mtu;
	netdev_update_features(dev);

	return 0;
}

1571 1572
static netdev_features_t stmmac_fix_features(struct net_device *dev,
	netdev_features_t features)
1573 1574 1575
{
	struct stmmac_priv *priv = netdev_priv(dev);

1576
	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
1577
		features &= ~NETIF_F_RXCSUM;
1578 1579
	else if (priv->plat->rx_coe == STMMAC_RX_COE_TYPE1)
		features &= ~NETIF_F_IPV6_CSUM;
1580 1581 1582
	if (!priv->plat->tx_coe)
		features &= ~NETIF_F_ALL_CSUM;

1583 1584 1585 1586
	/* Some GMAC devices have a bugged Jumbo frame support that
	 * needs to have the Tx COE disabled for oversized frames
	 * (due to limited buffer sizes). In this case we disable
	 * the TX csum insertionin the TDES and not use SF. */
1587 1588
	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
		features &= ~NETIF_F_ALL_CSUM;
1589

1590
	return features;
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
}

static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
{
	struct net_device *dev = (struct net_device *)dev_id;
	struct stmmac_priv *priv = netdev_priv(dev);

	if (unlikely(!dev)) {
		pr_err("%s: invalid dev pointer\n", __func__);
		return IRQ_NONE;
	}

1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
	/* To handle GMAC own interrupts */
	if (priv->plat->has_gmac) {
		int status = priv->hw->mac->host_irq_status((void __iomem *)
							    dev->base_addr);
		if (unlikely(status)) {
			if (status & core_mmc_tx_irq)
				priv->xstats.mmc_tx_irq_n++;
			if (status & core_mmc_rx_irq)
				priv->xstats.mmc_rx_irq_n++;
			if (status & core_mmc_rx_csum_offload_irq)
				priv->xstats.mmc_rx_csum_offload_irq_n++;
			if (status & core_irq_receive_pmt_irq)
				priv->xstats.irq_receive_pmt_irq_n++;

			/* For LPI we need to save the tx status */
			if (status & core_irq_tx_path_in_lpi_mode) {
				priv->xstats.irq_tx_path_in_lpi_mode_n++;
				priv->tx_path_in_lpi_mode = true;
			}
			if (status & core_irq_tx_path_exit_lpi_mode) {
				priv->xstats.irq_tx_path_exit_lpi_mode_n++;
				priv->tx_path_in_lpi_mode = false;
			}
			if (status & core_irq_rx_path_in_lpi_mode)
				priv->xstats.irq_rx_path_in_lpi_mode_n++;
			if (status & core_irq_rx_path_exit_lpi_mode)
				priv->xstats.irq_rx_path_exit_lpi_mode_n++;
		}
	}
1632

1633
	/* To handle DMA interrupts */
1634
	stmmac_dma_interrupt(priv);
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662

	return IRQ_HANDLED;
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/* Polling receive - used by NETCONSOLE and other diagnostic tools
 * to allow network I/O with interrupts disabled. */
static void stmmac_poll_controller(struct net_device *dev)
{
	disable_irq(dev->irq);
	stmmac_interrupt(dev->irq, dev);
	enable_irq(dev->irq);
}
#endif

/**
 *  stmmac_ioctl - Entry point for the Ioctl
 *  @dev: Device pointer.
 *  @rq: An IOCTL specefic structure, that can contain a pointer to
 *  a proprietary structure used to pass information to the driver.
 *  @cmd: IOCTL command
 *  Description:
 *  Currently there are no special functionality supported in IOCTL, just the
 *  phy_mii_ioctl(...) can be invoked.
 */
static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
	struct stmmac_priv *priv = netdev_priv(dev);
1663
	int ret;
1664 1665 1666 1667

	if (!netif_running(dev))
		return -EINVAL;

1668 1669 1670 1671 1672
	if (!priv->phydev)
		return -EINVAL;

	ret = phy_mii_ioctl(priv->phydev, rq, cmd);

1673 1674 1675
	return ret;
}

1676 1677 1678
#ifdef CONFIG_STMMAC_DEBUG_FS
static struct dentry *stmmac_fs_dir;
static struct dentry *stmmac_rings_status;
1679
static struct dentry *stmmac_dma_cap;
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729

static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
{
	struct tmp_s {
		u64 a;
		unsigned int b;
		unsigned int c;
	};
	int i;
	struct net_device *dev = seq->private;
	struct stmmac_priv *priv = netdev_priv(dev);

	seq_printf(seq, "=======================\n");
	seq_printf(seq, " RX descriptor ring\n");
	seq_printf(seq, "=======================\n");

	for (i = 0; i < priv->dma_rx_size; i++) {
		struct tmp_s *x = (struct tmp_s *)(priv->dma_rx + i);
		seq_printf(seq, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
			   i, (unsigned int)(x->a),
			   (unsigned int)((x->a) >> 32), x->b, x->c);
		seq_printf(seq, "\n");
	}

	seq_printf(seq, "\n");
	seq_printf(seq, "=======================\n");
	seq_printf(seq, "  TX descriptor ring\n");
	seq_printf(seq, "=======================\n");

	for (i = 0; i < priv->dma_tx_size; i++) {
		struct tmp_s *x = (struct tmp_s *)(priv->dma_tx + i);
		seq_printf(seq, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
			   i, (unsigned int)(x->a),
			   (unsigned int)((x->a) >> 32), x->b, x->c);
		seq_printf(seq, "\n");
	}

	return 0;
}

static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
{
	return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
}

static const struct file_operations stmmac_rings_status_fops = {
	.owner = THIS_MODULE,
	.open = stmmac_sysfs_ring_open,
	.read = seq_read,
	.llseek = seq_lseek,
1730
	.release = single_release,
1731 1732
};

1733 1734 1735 1736 1737
static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
{
	struct net_device *dev = seq->private;
	struct stmmac_priv *priv = netdev_priv(dev);

1738
	if (!priv->hw_cap_support) {
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
		seq_printf(seq, "DMA HW features not supported\n");
		return 0;
	}

	seq_printf(seq, "==============================\n");
	seq_printf(seq, "\tDMA HW features\n");
	seq_printf(seq, "==============================\n");

	seq_printf(seq, "\t10/100 Mbps %s\n",
		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
	seq_printf(seq, "\t1000 Mbps %s\n",
		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
	seq_printf(seq, "\tHalf duple %s\n",
		   (priv->dma_cap.half_duplex) ? "Y" : "N");
	seq_printf(seq, "\tHash Filter: %s\n",
		   (priv->dma_cap.hash_filter) ? "Y" : "N");
	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
		   (priv->dma_cap.multi_addr) ? "Y" : "N");
	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
		   (priv->dma_cap.pcs) ? "Y" : "N");
	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
	seq_printf(seq, "\tPMT Remote wake up: %s\n",
		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
	seq_printf(seq, "\tPMT Magic Frame: %s\n",
		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
	seq_printf(seq, "\tRMON module: %s\n",
		   (priv->dma_cap.rmon) ? "Y" : "N");
	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
		   (priv->dma_cap.time_stamp) ? "Y" : "N");
	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
		   (priv->dma_cap.eee) ? "Y" : "N");
	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
		   (priv->dma_cap.tx_coe) ? "Y" : "N");
	seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
		   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
	seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
		   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
		   priv->dma_cap.number_rx_channel);
	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
		   priv->dma_cap.number_tx_channel);
	seq_printf(seq, "\tEnhanced descriptors: %s\n",
		   (priv->dma_cap.enh_desc) ? "Y" : "N");

	return 0;
}

static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
{
	return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
}

static const struct file_operations stmmac_dma_cap_fops = {
	.owner = THIS_MODULE,
	.open = stmmac_sysfs_dma_cap_open,
	.read = seq_read,
	.llseek = seq_lseek,
1802
	.release = single_release,
1803 1804
};

1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
static int stmmac_init_fs(struct net_device *dev)
{
	/* Create debugfs entries */
	stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);

	if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
		pr_err("ERROR %s, debugfs create directory failed\n",
		       STMMAC_RESOURCE_NAME);

		return -ENOMEM;
	}

	/* Entry to report DMA RX/TX rings */
	stmmac_rings_status = debugfs_create_file("descriptors_status",
					   S_IRUGO, stmmac_fs_dir, dev,
					   &stmmac_rings_status_fops);

	if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) {
		pr_info("ERROR creating stmmac ring debugfs file\n");
		debugfs_remove(stmmac_fs_dir);

		return -ENOMEM;
	}

1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
	/* Entry to report the DMA HW features */
	stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir,
					     dev, &stmmac_dma_cap_fops);

	if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) {
		pr_info("ERROR creating stmmac MMC debugfs file\n");
		debugfs_remove(stmmac_rings_status);
		debugfs_remove(stmmac_fs_dir);

		return -ENOMEM;
	}

1841 1842 1843 1844 1845 1846
	return 0;
}

static void stmmac_exit_fs(void)
{
	debugfs_remove(stmmac_rings_status);
1847
	debugfs_remove(stmmac_dma_cap);
1848 1849 1850 1851
	debugfs_remove(stmmac_fs_dir);
}
#endif /* CONFIG_STMMAC_DEBUG_FS */

1852 1853 1854 1855 1856
static const struct net_device_ops stmmac_netdev_ops = {
	.ndo_open = stmmac_open,
	.ndo_start_xmit = stmmac_xmit,
	.ndo_stop = stmmac_release,
	.ndo_change_mtu = stmmac_change_mtu,
1857
	.ndo_fix_features = stmmac_fix_features,
1858
	.ndo_set_rx_mode = stmmac_set_rx_mode,
1859 1860 1861 1862 1863 1864 1865 1866 1867
	.ndo_tx_timeout = stmmac_tx_timeout,
	.ndo_do_ioctl = stmmac_ioctl,
	.ndo_set_config = stmmac_config,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = stmmac_poll_controller,
#endif
	.ndo_set_mac_address = eth_mac_addr,
};

1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
/**
 *  stmmac_hw_init - Init the MAC device
 *  @priv : pointer to the private device structure.
 *  Description: this function detects which MAC device
 *  (GMAC/MAC10-100) has to attached, checks the HW capability
 *  (if supported) and sets the driver's features (for example
 *  to use the ring or chaine mode or support the normal/enh
 *  descriptor structure).
 */
static int stmmac_hw_init(struct stmmac_priv *priv)
{
	int ret = 0;
	struct mac_device_info *mac;

	/* Identify the MAC HW device */
1883 1884
	if (priv->plat->has_gmac) {
		priv->dev->priv_flags |= IFF_UNICAST_FLT;
1885
		mac = dwmac1000_setup(priv->ioaddr);
1886
	} else {
1887
		mac = dwmac100_setup(priv->ioaddr);
1888
	}
1889 1890 1891 1892 1893 1894 1895 1896 1897
	if (!mac)
		return -ENOMEM;

	priv->hw = mac;

	/* To use the chained or ring mode */
	priv->hw->ring = &ring_mode_ops;

	/* Get and dump the chip ID */
1898
	priv->synopsys_id = stmmac_get_synopsys_id(priv);
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911

	/* Get the HW capability (new GMAC newer than 3.50a) */
	priv->hw_cap_support = stmmac_get_hw_features(priv);
	if (priv->hw_cap_support) {
		pr_info(" DMA HW capability register supported");

		/* We can override some gmac/dma configuration fields: e.g.
		 * enh_desc, tx_coe (e.g. that are passed through the
		 * platform) with the values from the HW capability
		 * register (if supported).
		 */
		priv->plat->enh_desc = priv->dma_cap.enh_desc;
		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
1912 1913 1914 1915 1916 1917 1918 1919

		priv->plat->tx_coe = priv->dma_cap.tx_coe;

		if (priv->dma_cap.rx_coe_type2)
			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
		else if (priv->dma_cap.rx_coe_type1)
			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;

1920 1921 1922 1923 1924 1925
	} else
		pr_info(" No HW DMA feature register supported");

	/* Select the enhnaced/normal descriptor structures */
	stmmac_selec_desc_mode(priv);

1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
	/* Enable the IPC (Checksum Offload) and check if the feature has been
	 * enabled during the core configuration. */
	ret = priv->hw->mac->rx_ipc(priv->ioaddr);
	if (!ret) {
		pr_warning(" RX IPC Checksum Offload not configured.\n");
		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
	}

	if (priv->plat->rx_coe)
		pr_info(" RX Checksum Offload Engine supported (type %d)\n",
			priv->plat->rx_coe);
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
	if (priv->plat->tx_coe)
		pr_info(" TX Checksum insertion supported\n");

	if (priv->plat->pmt) {
		pr_info(" Wake-Up On Lan supported\n");
		device_set_wakeup_capable(priv->device, 1);
	}

	return ret;
}

1948
/**
1949 1950
 * stmmac_dvr_probe
 * @device: device pointer
1951 1952
 * @plat_dat: platform data pointer
 * @addr: iobase memory address
1953 1954
 * Description: this is the main probe function used to
 * call the alloc_etherdev, allocate the priv structure.
1955
 */
1956
struct stmmac_priv *stmmac_dvr_probe(struct device *device,
1957 1958
				     struct plat_stmmacenet_data *plat_dat,
				     void __iomem *addr)
1959 1960
{
	int ret = 0;
1961 1962
	struct net_device *ndev = NULL;
	struct stmmac_priv *priv;
1963

1964
	ndev = alloc_etherdev(sizeof(struct stmmac_priv));
1965
	if (!ndev)
1966 1967 1968 1969 1970 1971 1972
		return NULL;

	SET_NETDEV_DEV(ndev, device);

	priv = netdev_priv(ndev);
	priv->device = device;
	priv->dev = ndev;
1973

1974
	ether_setup(ndev);
1975

1976
	stmmac_set_ethtool_ops(ndev);
1977 1978 1979 1980 1981 1982 1983
	priv->pause = pause;
	priv->plat = plat_dat;
	priv->ioaddr = addr;
	priv->dev->base_addr = (unsigned long)addr;

	/* Verify driver arguments */
	stmmac_verify_args();
1984

1985 1986 1987 1988 1989 1990 1991 1992 1993
	/* Override with kernel parameters if supplied XXX CRS XXX
	 * this needs to have multiple instances */
	if ((phyaddr >= 0) && (phyaddr <= 31))
		priv->plat->phy_addr = phyaddr;

	/* Init MAC and get the capabilities */
	stmmac_hw_init(priv);

	ndev->netdev_ops = &stmmac_netdev_ops;
1994

1995 1996
	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
			    NETIF_F_RXCSUM;
1997 1998
	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
1999 2000
#ifdef STMMAC_VLAN_TAG_USED
	/* Both mac100 and gmac support receive VLAN tag detection */
2001
	ndev->features |= NETIF_F_HW_VLAN_RX;
2002 2003 2004 2005 2006 2007
#endif
	priv->msg_enable = netif_msg_init(debug, default_msg_level);

	if (flow_ctrl)
		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
	/* Rx Watchdog is available in the COREs newer than the 3.40.
	 * In some case, for example on bugged HW this feature
	 * has to be disable and this can be done by passing the
	 * riwt_off field from the platform.
	 */
	if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
		priv->use_riwt = 1;
		pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
	}

2018
	netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2019

2020
	spin_lock_init(&priv->lock);
2021
	spin_lock_init(&priv->tx_lock);
2022

2023
	ret = register_netdev(ndev);
2024
	if (ret) {
2025
		pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2026
		goto error_netdev_register;
2027 2028
	}

2029
	priv->stmmac_clk = clk_get(priv->device, STMMAC_RESOURCE_NAME);
2030
	if (IS_ERR(priv->stmmac_clk)) {
2031
		pr_warning("%s: warning: cannot get CSR clock\n", __func__);
2032 2033
		goto error_clk_get;
	}
2034

2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
	/* If a specific clk_csr value is passed from the platform
	 * this means that the CSR Clock Range selection cannot be
	 * changed at run-time and it is fixed. Viceversa the driver'll try to
	 * set the MDC clock dynamically according to the csr actual
	 * clock input.
	 */
	if (!priv->plat->clk_csr)
		stmmac_clk_csr_set(priv);
	else
		priv->clk_csr = priv->plat->clk_csr;

2046 2047 2048 2049 2050
	/* MDIO bus Registration */
	ret = stmmac_mdio_register(ndev);
	if (ret < 0) {
		pr_debug("%s: MDIO bus (id: %d) registration failed",
			 __func__, priv->plat->bus_id);
2051
		goto error_mdio_register;
2052 2053
	}

2054
	return priv;
2055

2056 2057 2058
error_mdio_register:
	clk_put(priv->stmmac_clk);
error_clk_get:
2059
	unregister_netdev(ndev);
2060 2061
error_netdev_register:
	netif_napi_del(&priv->napi);
2062
	free_netdev(ndev);
2063

2064
	return NULL;
2065 2066 2067 2068
}

/**
 * stmmac_dvr_remove
2069
 * @ndev: net device pointer
2070
 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2071
 * changes the link status, releases the DMA descriptor rings.
2072
 */
2073
int stmmac_dvr_remove(struct net_device *ndev)
2074
{
2075
	struct stmmac_priv *priv = netdev_priv(ndev);
2076 2077 2078

	pr_info("%s:\n\tremoving driver", __func__);

2079 2080
	priv->hw->dma->stop_rx(priv->ioaddr);
	priv->hw->dma->stop_tx(priv->ioaddr);
2081

2082
	stmmac_set_mac(priv->ioaddr, false);
2083
	stmmac_mdio_unregister(ndev);
2084 2085 2086 2087 2088 2089 2090 2091
	netif_carrier_off(ndev);
	unregister_netdev(ndev);
	free_netdev(ndev);

	return 0;
}

#ifdef CONFIG_PM
2092
int stmmac_suspend(struct net_device *ndev)
2093
{
2094
	struct stmmac_priv *priv = netdev_priv(ndev);
2095
	int dis_ic = 0;
2096
	unsigned long flags;
2097

2098
	if (!ndev || !netif_running(ndev))
2099 2100
		return 0;

2101 2102 2103
	if (priv->phydev)
		phy_stop(priv->phydev);

2104
	spin_lock_irqsave(&priv->lock, flags);
2105

2106 2107
	netif_device_detach(ndev);
	netif_stop_queue(ndev);
2108

2109 2110 2111
	if (priv->use_riwt)
		dis_ic = 1;

2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
	napi_disable(&priv->napi);

	/* Stop TX/RX DMA */
	priv->hw->dma->stop_tx(priv->ioaddr);
	priv->hw->dma->stop_rx(priv->ioaddr);
	/* Clear the Rx/Tx descriptors */
	priv->hw->desc->init_rx_desc(priv->dma_rx, priv->dma_rx_size,
				     dis_ic);
	priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);

	/* Enable Power down mode by programming the PMT regs */
	if (device_may_wakeup(priv->device))
		priv->hw->mac->pmt(priv->ioaddr, priv->wolopts);
2125
	else {
2126
		stmmac_set_mac(priv->ioaddr, false);
2127
		/* Disable clock in case of PWM is off */
2128
		clk_disable_unprepare(priv->stmmac_clk);
2129
	}
2130
	spin_unlock_irqrestore(&priv->lock, flags);
2131 2132 2133
	return 0;
}

2134
int stmmac_resume(struct net_device *ndev)
2135
{
2136
	struct stmmac_priv *priv = netdev_priv(ndev);
2137
	unsigned long flags;
2138

2139
	if (!netif_running(ndev))
2140 2141
		return 0;

2142
	spin_lock_irqsave(&priv->lock, flags);
2143

2144 2145 2146 2147 2148
	/* Power Down bit, into the PM register, is cleared
	 * automatically as soon as a magic packet or a Wake-up frame
	 * is received. Anyway, it's better to manually clear
	 * this bit because it can generate problems while resuming
	 * from another devices (e.g. serial console). */
2149
	if (device_may_wakeup(priv->device))
2150
		priv->hw->mac->pmt(priv->ioaddr, 0);
2151 2152
	else
		/* enable the clk prevously disabled */
2153
		clk_prepare_enable(priv->stmmac_clk);
2154

2155
	netif_device_attach(ndev);
2156 2157

	/* Enable the MAC and DMA */
2158
	stmmac_set_mac(priv->ioaddr, true);
2159 2160
	priv->hw->dma->start_tx(priv->ioaddr);
	priv->hw->dma->start_rx(priv->ioaddr);
2161 2162 2163

	napi_enable(&priv->napi);

2164
	netif_start_queue(ndev);
2165

2166
	spin_unlock_irqrestore(&priv->lock, flags);
2167 2168 2169 2170

	if (priv->phydev)
		phy_start(priv->phydev);

2171 2172 2173
	return 0;
}

2174
int stmmac_freeze(struct net_device *ndev)
2175 2176 2177 2178 2179 2180 2181
{
	if (!ndev || !netif_running(ndev))
		return 0;

	return stmmac_release(ndev);
}

2182
int stmmac_restore(struct net_device *ndev)
2183 2184 2185 2186 2187 2188 2189
{
	if (!ndev || !netif_running(ndev))
		return 0;

	return stmmac_open(ndev);
}
#endif /* CONFIG_PM */
2190

2191 2192 2193
/* Driver can be configured w/ and w/ both PCI and Platf drivers
 * depending on the configuration selected.
 */
2194 2195
static int __init stmmac_init(void)
{
2196
	int ret;
2197

2198 2199 2200 2201 2202 2203
	ret = stmmac_register_platform();
	if (ret)
		goto err;
	ret = stmmac_register_pci();
	if (ret)
		goto err_pci;
2204
	return 0;
2205 2206 2207 2208 2209
err_pci:
	stmmac_unregister_platform();
err:
	pr_err("stmmac: driver registration failed\n");
	return ret;
2210 2211 2212 2213
}

static void __exit stmmac_exit(void)
{
2214 2215
	stmmac_unregister_platform();
	stmmac_unregister_pci();
2216 2217 2218 2219 2220
}

module_init(stmmac_init);
module_exit(stmmac_exit);

2221 2222 2223 2224 2225 2226 2227 2228
#ifndef MODULE
static int __init stmmac_cmdline_opt(char *str)
{
	char *opt;

	if (!str || !*str)
		return -EINVAL;
	while ((opt = strsep(&str, ",")) != NULL) {
2229
		if (!strncmp(opt, "debug:", 6)) {
2230
			if (kstrtoint(opt + 6, 0, &debug))
2231 2232
				goto err;
		} else if (!strncmp(opt, "phyaddr:", 8)) {
2233
			if (kstrtoint(opt + 8, 0, &phyaddr))
2234 2235
				goto err;
		} else if (!strncmp(opt, "dma_txsize:", 11)) {
2236
			if (kstrtoint(opt + 11, 0, &dma_txsize))
2237 2238
				goto err;
		} else if (!strncmp(opt, "dma_rxsize:", 11)) {
2239
			if (kstrtoint(opt + 11, 0, &dma_rxsize))
2240 2241
				goto err;
		} else if (!strncmp(opt, "buf_sz:", 7)) {
2242
			if (kstrtoint(opt + 7, 0, &buf_sz))
2243 2244
				goto err;
		} else if (!strncmp(opt, "tc:", 3)) {
2245
			if (kstrtoint(opt + 3, 0, &tc))
2246 2247
				goto err;
		} else if (!strncmp(opt, "watchdog:", 9)) {
2248
			if (kstrtoint(opt + 9, 0, &watchdog))
2249 2250
				goto err;
		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
2251
			if (kstrtoint(opt + 10, 0, &flow_ctrl))
2252 2253
				goto err;
		} else if (!strncmp(opt, "pause:", 6)) {
2254
			if (kstrtoint(opt + 6, 0, &pause))
2255
				goto err;
2256 2257 2258
		} else if (!strncmp(opt, "eee_timer:", 6)) {
			if (kstrtoint(opt + 10, 0, &eee_timer))
				goto err;
2259
		}
2260 2261
	}
	return 0;
2262 2263 2264 2265

err:
	pr_err("%s: ERROR broken module parameter conversion", __func__);
	return -EINVAL;
2266 2267 2268 2269
}

__setup("stmmaceth=", stmmac_cmdline_opt);
#endif
2270 2271 2272 2273

MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
MODULE_LICENSE("GPL");