stmmac_main.c 54.7 KB
Newer Older
1 2 3 4
/*******************************************************************************
  This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
  ST Ethernet IPs are built around a Synopsys IP Core.

5
	Copyright(C) 2007-2011 STMicroelectronics Ltd
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>

  Documentation available at:
	http://www.stlinux.com
  Support available at:
	https://bugzilla.stlinux.com/
*******************************************************************************/

#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/skbuff.h>
#include <linux/ethtool.h>
#include <linux/if_ether.h>
#include <linux/crc32.h>
#include <linux/mii.h>
40
#include <linux/if.h>
41 42
#include <linux/if_vlan.h>
#include <linux/dma-mapping.h>
43
#include <linux/slab.h>
44
#include <linux/prefetch.h>
45 46 47 48
#ifdef CONFIG_STMMAC_DEBUG_FS
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#endif
49
#include "stmmac.h"
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89

#undef STMMAC_DEBUG
/*#define STMMAC_DEBUG*/
#ifdef STMMAC_DEBUG
#define DBG(nlevel, klevel, fmt, args...) \
		((void)(netif_msg_##nlevel(priv) && \
		printk(KERN_##klevel fmt, ## args)))
#else
#define DBG(nlevel, klevel, fmt, args...) do { } while (0)
#endif

#undef STMMAC_RX_DEBUG
/*#define STMMAC_RX_DEBUG*/
#ifdef STMMAC_RX_DEBUG
#define RX_DBG(fmt, args...)  printk(fmt, ## args)
#else
#define RX_DBG(fmt, args...)  do { } while (0)
#endif

#undef STMMAC_XMIT_DEBUG
/*#define STMMAC_XMIT_DEBUG*/
#ifdef STMMAC_TX_DEBUG
#define TX_DBG(fmt, args...)  printk(fmt, ## args)
#else
#define TX_DBG(fmt, args...)  do { } while (0)
#endif

#define STMMAC_ALIGN(x)	L1_CACHE_ALIGN(x)
#define JUMBO_LEN	9000

/* Module parameters */
#define TX_TIMEO 5000 /* default 5 seconds */
static int watchdog = TX_TIMEO;
module_param(watchdog, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds");

static int debug = -1;		/* -1: default, 0: no output, 16:  all */
module_param(debug, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(debug, "Message Level (0: no output, 16: all)");

90
int phyaddr = -1;
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
module_param(phyaddr, int, S_IRUGO);
MODULE_PARM_DESC(phyaddr, "Physical device address");

#define DMA_TX_SIZE 256
static int dma_txsize = DMA_TX_SIZE;
module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");

#define DMA_RX_SIZE 256
static int dma_rxsize = DMA_RX_SIZE;
module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");

static int flow_ctrl = FLOW_OFF;
module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");

static int pause = PAUSE_TIME;
module_param(pause, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(pause, "Flow Control Pause Time");

#define TC_DEFAULT 64
static int tc = TC_DEFAULT;
module_param(tc, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(tc, "DMA threshold control value");

/* Pay attention to tune this parameter; take care of both
 * hardware capability and network stabitily/performance impact.
 * Many tests showed that ~4ms latency seems to be good enough. */
#ifdef CONFIG_STMMAC_TIMER
#define DEFAULT_PERIODIC_RATE	256
static int tmrate = DEFAULT_PERIODIC_RATE;
module_param(tmrate, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(tmrate, "External timer freq. (default: 256Hz)");
#endif

#define DMA_BUFFER_SIZE	BUF_SIZE_2KiB
static int buf_sz = DMA_BUFFER_SIZE;
module_param(buf_sz, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(buf_sz, "DMA buffer size");

static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);

static irqreturn_t stmmac_interrupt(int irq, void *dev_id);

138 139 140 141 142
#ifdef CONFIG_STMMAC_DEBUG_FS
static int stmmac_init_fs(struct net_device *dev);
static void stmmac_exit_fs(void);
#endif

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
/**
 * stmmac_verify_args - verify the driver parameters.
 * Description: it verifies if some wrong parameter is passed to the driver.
 * Note that wrong parameters are replaced with the default values.
 */
static void stmmac_verify_args(void)
{
	if (unlikely(watchdog < 0))
		watchdog = TX_TIMEO;
	if (unlikely(dma_rxsize < 0))
		dma_rxsize = DMA_RX_SIZE;
	if (unlikely(dma_txsize < 0))
		dma_txsize = DMA_TX_SIZE;
	if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
		buf_sz = DMA_BUFFER_SIZE;
	if (unlikely(flow_ctrl > 1))
		flow_ctrl = FLOW_AUTO;
	else if (likely(flow_ctrl < 0))
		flow_ctrl = FLOW_OFF;
	if (unlikely((pause < 0) || (pause > 0xffff)))
		pause = PAUSE_TIME;
}

#if defined(STMMAC_XMIT_DEBUG) || defined(STMMAC_RX_DEBUG)
static void print_pkt(unsigned char *buf, int len)
{
	int j;
	pr_info("len = %d byte, buf addr: 0x%p", len, buf);
	for (j = 0; j < len; j++) {
		if ((j % 16) == 0)
			pr_info("\n %03x:", j);
		pr_info(" %02x", buf[j]);
	}
	pr_info("\n");
}
#endif

/* minimum number of free TX descriptors required to wake up TX process */
#define STMMAC_TX_THRESH(x)	(x->dma_tx_size/4)

static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
{
	return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
}

188 189 190 191 192 193 194 195 196 197 198 199
/* On some ST platforms, some HW system configuraton registers have to be
 * set according to the link speed negotiated.
 */
static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
{
	struct phy_device *phydev = priv->phydev;

	if (likely(priv->plat->fix_mac_speed))
		priv->plat->fix_mac_speed(priv->plat->bsp_priv,
					  phydev->speed);
}

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
/**
 * stmmac_adjust_link
 * @dev: net device structure
 * Description: it adjusts the link parameters.
 */
static void stmmac_adjust_link(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	struct phy_device *phydev = priv->phydev;
	unsigned long flags;
	int new_state = 0;
	unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;

	if (phydev == NULL)
		return;

	DBG(probe, DEBUG, "stmmac_adjust_link: called.  address %d link %d\n",
	    phydev->addr, phydev->link);

	spin_lock_irqsave(&priv->lock, flags);
	if (phydev->link) {
221
		u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
222 223 224 225 226 227

		/* Now we make sure that we can be in full duplex mode.
		 * If not, we operate in half-duplex mode. */
		if (phydev->duplex != priv->oldduplex) {
			new_state = 1;
			if (!(phydev->duplex))
228
				ctrl &= ~priv->hw->link.duplex;
229
			else
230
				ctrl |= priv->hw->link.duplex;
231 232 233 234
			priv->oldduplex = phydev->duplex;
		}
		/* Flow Control operation */
		if (phydev->pause)
235
			priv->hw->mac->flow_ctrl(priv->ioaddr, phydev->duplex,
236
						 fc, pause_time);
237 238 239 240 241

		if (phydev->speed != priv->speed) {
			new_state = 1;
			switch (phydev->speed) {
			case 1000:
242
				if (likely(priv->plat->has_gmac))
243
					ctrl &= ~priv->hw->link.port;
244
				stmmac_hw_fix_mac_speed(priv);
245 246 247
				break;
			case 100:
			case 10:
248
				if (priv->plat->has_gmac) {
249
					ctrl |= priv->hw->link.port;
250
					if (phydev->speed == SPEED_100) {
251
						ctrl |= priv->hw->link.speed;
252
					} else {
253
						ctrl &= ~(priv->hw->link.speed);
254 255
					}
				} else {
256
					ctrl &= ~priv->hw->link.port;
257
				}
258
				stmmac_hw_fix_mac_speed(priv);
259 260 261 262 263 264 265 266 267 268 269
				break;
			default:
				if (netif_msg_link(priv))
					pr_warning("%s: Speed (%d) is not 10"
				       " or 100!\n", dev->name, phydev->speed);
				break;
			}

			priv->speed = phydev->speed;
		}

270
		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302

		if (!priv->oldlink) {
			new_state = 1;
			priv->oldlink = 1;
		}
	} else if (priv->oldlink) {
		new_state = 1;
		priv->oldlink = 0;
		priv->speed = 0;
		priv->oldduplex = -1;
	}

	if (new_state && netif_msg_link(priv))
		phy_print_status(phydev);

	spin_unlock_irqrestore(&priv->lock, flags);

	DBG(probe, DEBUG, "stmmac_adjust_link: exiting\n");
}

/**
 * stmmac_init_phy - PHY initialization
 * @dev: net device structure
 * Description: it initializes the driver's PHY state, and attaches the PHY
 * to the mac driver.
 *  Return value:
 *  0 on success
 */
static int stmmac_init_phy(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	struct phy_device *phydev;
303 304
	char phy_id[MII_BUS_ID_SIZE + 3];
	char bus_id[MII_BUS_ID_SIZE];
305
	int interface = priv->plat->interface;
306 307 308 309
	priv->oldlink = 0;
	priv->speed = 0;
	priv->oldduplex = -1;

310
	snprintf(bus_id, MII_BUS_ID_SIZE, "%x", priv->plat->bus_id);
311
	snprintf(phy_id, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
312
		 priv->plat->phy_addr);
313 314
	pr_debug("stmmac_init_phy:  trying to attach to %s\n", phy_id);

315
	phydev = phy_connect(dev, phy_id, &stmmac_adjust_link, 0, interface);
316 317 318 319 320 321

	if (IS_ERR(phydev)) {
		pr_err("%s: Could not attach to PHY\n", dev->name);
		return PTR_ERR(phydev);
	}

322
	/* Stop Advertising 1000BASE Capability if interface is not GMII */
323 324 325 326
	if ((interface == PHY_INTERFACE_MODE_MII) ||
	    (interface == PHY_INTERFACE_MODE_RMII))
		phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
					 SUPPORTED_1000baseT_Full);
327

328 329 330 331 332 333 334 335 336 337 338 339
	/*
	 * Broken HW is sometimes missing the pull-up resistor on the
	 * MDIO line, which results in reads to non-existent devices returning
	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
	 * device as well.
	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
	 */
	if (phydev->phy_id == 0) {
		phy_disconnect(phydev);
		return -ENODEV;
	}
	pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
340
		 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370

	priv->phydev = phydev;

	return 0;
}

/**
 * display_ring
 * @p: pointer to the ring.
 * @size: size of the ring.
 * Description: display all the descriptors within the ring.
 */
static void display_ring(struct dma_desc *p, int size)
{
	struct tmp_s {
		u64 a;
		unsigned int b;
		unsigned int c;
	};
	int i;
	for (i = 0; i < size; i++) {
		struct tmp_s *x = (struct tmp_s *)(p + i);
		pr_info("\t%d [0x%x]: DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
		       i, (unsigned int)virt_to_phys(&p[i]),
		       (unsigned int)(x->a), (unsigned int)((x->a) >> 32),
		       x->b, x->c);
		pr_info("\n");
	}
}

371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
static int stmmac_set_bfsize(int mtu, int bufsize)
{
	int ret = bufsize;

	if (mtu >= BUF_SIZE_4KiB)
		ret = BUF_SIZE_8KiB;
	else if (mtu >= BUF_SIZE_2KiB)
		ret = BUF_SIZE_4KiB;
	else if (mtu >= DMA_BUFFER_SIZE)
		ret = BUF_SIZE_2KiB;
	else
		ret = DMA_BUFFER_SIZE;

	return ret;
}

387 388 389 390
/**
 * init_dma_desc_rings - init the RX/TX descriptor rings
 * @dev: net device structure
 * Description:  this function initializes the DMA RX/TX descriptors
391 392
 * and allocates the socket buffers. It suppors the chained and ring
 * modes.
393 394 395 396 397 398 399 400
 */
static void init_dma_desc_rings(struct net_device *dev)
{
	int i;
	struct stmmac_priv *priv = netdev_priv(dev);
	struct sk_buff *skb;
	unsigned int txsize = priv->dma_tx_size;
	unsigned int rxsize = priv->dma_rx_size;
401 402 403
	unsigned int bfsize;
	int dis_ic = 0;
	int des3_as_data_buf = 0;
404

405 406 407 408 409 410
	/* Set the max buffer size according to the DESC mode
	 * and the MTU. Note that RING mode allows 16KiB bsize. */
	bfsize = priv->hw->ring->set_16kib_bfsize(dev->mtu);

	if (bfsize == BUF_SIZE_16KiB)
		des3_as_data_buf = 1;
411
	else
412
		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
413

414 415 416 417 418
#ifdef CONFIG_STMMAC_TIMER
	/* Disable interrupts on completion for the reception if timer is on */
	if (likely(priv->tm->enable))
		dis_ic = 1;
#endif
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445

	DBG(probe, INFO, "stmmac: txsize %d, rxsize %d, bfsize %d\n",
	    txsize, rxsize, bfsize);

	priv->rx_skbuff_dma = kmalloc(rxsize * sizeof(dma_addr_t), GFP_KERNEL);
	priv->rx_skbuff =
	    kmalloc(sizeof(struct sk_buff *) * rxsize, GFP_KERNEL);
	priv->dma_rx =
	    (struct dma_desc *)dma_alloc_coherent(priv->device,
						  rxsize *
						  sizeof(struct dma_desc),
						  &priv->dma_rx_phy,
						  GFP_KERNEL);
	priv->tx_skbuff = kmalloc(sizeof(struct sk_buff *) * txsize,
				       GFP_KERNEL);
	priv->dma_tx =
	    (struct dma_desc *)dma_alloc_coherent(priv->device,
						  txsize *
						  sizeof(struct dma_desc),
						  &priv->dma_tx_phy,
						  GFP_KERNEL);

	if ((priv->dma_rx == NULL) || (priv->dma_tx == NULL)) {
		pr_err("%s:ERROR allocating the DMA Tx/Rx desc\n", __func__);
		return;
	}

446
	DBG(probe, INFO, "stmmac (%s) DMA desc: virt addr (Rx %p, "
447 448 449 450 451 452 453 454 455 456 457
	    "Tx %p)\n\tDMA phy addr (Rx 0x%08x, Tx 0x%08x)\n",
	    dev->name, priv->dma_rx, priv->dma_tx,
	    (unsigned int)priv->dma_rx_phy, (unsigned int)priv->dma_tx_phy);

	/* RX INITIALIZATION */
	DBG(probe, INFO, "stmmac: SKB addresses:\n"
			 "skb\t\tskb data\tdma data\n");

	for (i = 0; i < rxsize; i++) {
		struct dma_desc *p = priv->dma_rx + i;

458 459
		skb = __netdev_alloc_skb(dev, bfsize + NET_IP_ALIGN,
					 GFP_KERNEL);
460 461 462 463
		if (unlikely(skb == NULL)) {
			pr_err("%s: Rx init fails; skb is NULL\n", __func__);
			break;
		}
464
		skb_reserve(skb, NET_IP_ALIGN);
465 466 467 468 469
		priv->rx_skbuff[i] = skb;
		priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
						bfsize, DMA_FROM_DEVICE);

		p->des2 = priv->rx_skbuff_dma[i];
470 471 472

		priv->hw->ring->init_desc3(des3_as_data_buf, p);

473 474 475 476 477 478 479 480 481 482 483 484 485
		DBG(probe, INFO, "[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
			priv->rx_skbuff[i]->data, priv->rx_skbuff_dma[i]);
	}
	priv->cur_rx = 0;
	priv->dirty_rx = (unsigned int)(i - rxsize);
	priv->dma_buf_sz = bfsize;
	buf_sz = bfsize;

	/* TX INITIALIZATION */
	for (i = 0; i < txsize; i++) {
		priv->tx_skbuff[i] = NULL;
		priv->dma_tx[i].des2 = 0;
	}
486 487 488 489 490 491

	/* In case of Chained mode this sets the des3 to the next
	 * element in the chain */
	priv->hw->ring->init_dma_chain(priv->dma_rx, priv->dma_rx_phy, rxsize);
	priv->hw->ring->init_dma_chain(priv->dma_tx, priv->dma_tx_phy, txsize);

492 493 494 495
	priv->dirty_tx = 0;
	priv->cur_tx = 0;

	/* Clear the Rx/Tx descriptors */
496 497
	priv->hw->desc->init_rx_desc(priv->dma_rx, rxsize, dis_ic);
	priv->hw->desc->init_tx_desc(priv->dma_tx, txsize);
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529

	if (netif_msg_hw(priv)) {
		pr_info("RX descriptor ring:\n");
		display_ring(priv->dma_rx, rxsize);
		pr_info("TX descriptor ring:\n");
		display_ring(priv->dma_tx, txsize);
	}
}

static void dma_free_rx_skbufs(struct stmmac_priv *priv)
{
	int i;

	for (i = 0; i < priv->dma_rx_size; i++) {
		if (priv->rx_skbuff[i]) {
			dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
					 priv->dma_buf_sz, DMA_FROM_DEVICE);
			dev_kfree_skb_any(priv->rx_skbuff[i]);
		}
		priv->rx_skbuff[i] = NULL;
	}
}

static void dma_free_tx_skbufs(struct stmmac_priv *priv)
{
	int i;

	for (i = 0; i < priv->dma_tx_size; i++) {
		if (priv->tx_skbuff[i] != NULL) {
			struct dma_desc *p = priv->dma_tx + i;
			if (p->des2)
				dma_unmap_single(priv->device, p->des2,
530 531
						 priv->hw->desc->get_tx_len(p),
						 DMA_TO_DEVICE);
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
			dev_kfree_skb_any(priv->tx_skbuff[i]);
			priv->tx_skbuff[i] = NULL;
		}
	}
}

static void free_dma_desc_resources(struct stmmac_priv *priv)
{
	/* Release the DMA TX/RX socket buffers */
	dma_free_rx_skbufs(priv);
	dma_free_tx_skbufs(priv);

	/* Free the region of consistent memory previously allocated for
	 * the DMA */
	dma_free_coherent(priv->device,
			  priv->dma_tx_size * sizeof(struct dma_desc),
			  priv->dma_tx, priv->dma_tx_phy);
	dma_free_coherent(priv->device,
			  priv->dma_rx_size * sizeof(struct dma_desc),
			  priv->dma_rx, priv->dma_rx_phy);
	kfree(priv->rx_skbuff_dma);
	kfree(priv->rx_skbuff);
	kfree(priv->tx_skbuff);
}

/**
 *  stmmac_dma_operation_mode - HW DMA operation mode
 *  @priv : pointer to the private device structure.
 *  Description: it sets the DMA operation mode: tx/rx DMA thresholds
561
 *  or Store-And-Forward capability.
562 563 564
 */
static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
{
565 566 567 568 569
	if (likely(priv->plat->force_sf_dma_mode ||
		((priv->plat->tx_coe) && (!priv->no_csum_insertion)))) {
		/*
		 * In case of GMAC, SF mode can be enabled
		 * to perform the TX COE in HW. This depends on:
570 571 572 573 574 575 576 577 578
		 * 1) TX COE if actually supported
		 * 2) There is no bugged Jumbo frame support
		 *    that needs to not insert csum in the TDES.
		 */
		priv->hw->dma->dma_mode(priv->ioaddr,
					SF_DMA_MODE, SF_DMA_MODE);
		tc = SF_DMA_MODE;
	} else
		priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
579 580 581 582 583 584 585 586 587 588 589
}

/**
 * stmmac_tx:
 * @priv: private driver structure
 * Description: it reclaims resources after transmission completes.
 */
static void stmmac_tx(struct stmmac_priv *priv)
{
	unsigned int txsize = priv->dma_tx_size;

590 591
	spin_lock(&priv->tx_lock);

592 593 594 595 596 597 598
	while (priv->dirty_tx != priv->cur_tx) {
		int last;
		unsigned int entry = priv->dirty_tx % txsize;
		struct sk_buff *skb = priv->tx_skbuff[entry];
		struct dma_desc *p = priv->dma_tx + entry;

		/* Check if the descriptor is owned by the DMA. */
599
		if (priv->hw->desc->get_tx_owner(p))
600 601 602
			break;

		/* Verify tx error by looking at the last segment */
603
		last = priv->hw->desc->get_tx_ls(p);
604 605
		if (likely(last)) {
			int tx_error =
606 607
				priv->hw->desc->tx_status(&priv->dev->stats,
							  &priv->xstats, p,
608
							  priv->ioaddr);
609 610 611 612 613 614 615 616 617 618 619
			if (likely(tx_error == 0)) {
				priv->dev->stats.tx_packets++;
				priv->xstats.tx_pkt_n++;
			} else
				priv->dev->stats.tx_errors++;
		}
		TX_DBG("%s: curr %d, dirty %d\n", __func__,
			priv->cur_tx, priv->dirty_tx);

		if (likely(p->des2))
			dma_unmap_single(priv->device, p->des2,
620
					 priv->hw->desc->get_tx_len(p),
621
					 DMA_TO_DEVICE);
622
		priv->hw->ring->clean_desc3(p);
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639

		if (likely(skb != NULL)) {
			/*
			 * If there's room in the queue (limit it to size)
			 * we add this skb back into the pool,
			 * if it's the right size.
			 */
			if ((skb_queue_len(&priv->rx_recycle) <
				priv->dma_rx_size) &&
				skb_recycle_check(skb, priv->dma_buf_sz))
				__skb_queue_head(&priv->rx_recycle, skb);
			else
				dev_kfree_skb(skb);

			priv->tx_skbuff[entry] = NULL;
		}

640
		priv->hw->desc->release_tx_desc(p);
641 642 643 644 645 646 647 648 649 650 651 652 653

		entry = (++priv->dirty_tx) % txsize;
	}
	if (unlikely(netif_queue_stopped(priv->dev) &&
		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
		netif_tx_lock(priv->dev);
		if (netif_queue_stopped(priv->dev) &&
		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
			TX_DBG("%s: restart transmit\n", __func__);
			netif_wake_queue(priv->dev);
		}
		netif_tx_unlock(priv->dev);
	}
654
	spin_unlock(&priv->tx_lock);
655 656 657 658
}

static inline void stmmac_enable_irq(struct stmmac_priv *priv)
{
659 660 661 662
#ifdef CONFIG_STMMAC_TIMER
	if (likely(priv->tm->enable))
		priv->tm->timer_start(tmrate);
	else
663
#endif
664
		priv->hw->dma->enable_dma_irq(priv->ioaddr);
665 666 667 668
}

static inline void stmmac_disable_irq(struct stmmac_priv *priv)
{
669 670 671 672
#ifdef CONFIG_STMMAC_TIMER
	if (likely(priv->tm->enable))
		priv->tm->timer_stop();
	else
673
#endif
674
		priv->hw->dma->disable_dma_irq(priv->ioaddr);
675 676 677 678 679 680 681
}

static int stmmac_has_work(struct stmmac_priv *priv)
{
	unsigned int has_work = 0;
	int rxret, tx_work = 0;

682
	rxret = priv->hw->desc->get_rx_owner(priv->dma_rx +
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
		(priv->cur_rx % priv->dma_rx_size));

	if (priv->dirty_tx != priv->cur_tx)
		tx_work = 1;

	if (likely(!rxret || tx_work))
		has_work = 1;

	return has_work;
}

static inline void _stmmac_schedule(struct stmmac_priv *priv)
{
	if (likely(stmmac_has_work(priv))) {
		stmmac_disable_irq(priv);
		napi_schedule(&priv->napi);
	}
}

#ifdef CONFIG_STMMAC_TIMER
void stmmac_schedule(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);

	priv->xstats.sched_timer_n++;

	_stmmac_schedule(priv);
}

static void stmmac_no_timer_started(unsigned int x)
{;
};

static void stmmac_no_timer_stopped(void)
{;
};
#endif

/**
 * stmmac_tx_err:
 * @priv: pointer to the private device structure
 * Description: it cleans the descriptors and restarts the transmission
 * in case of errors.
 */
static void stmmac_tx_err(struct stmmac_priv *priv)
{
	netif_stop_queue(priv->dev);

731
	priv->hw->dma->stop_tx(priv->ioaddr);
732
	dma_free_tx_skbufs(priv);
733
	priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
734 735
	priv->dirty_tx = 0;
	priv->cur_tx = 0;
736
	priv->hw->dma->start_tx(priv->ioaddr);
737 738 739 740 741 742

	priv->dev->stats.tx_errors++;
	netif_wake_queue(priv->dev);
}


743 744 745 746
static void stmmac_dma_interrupt(struct stmmac_priv *priv)
{
	int status;

747
	status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
748 749 750 751 752 753 754
	if (likely(status == handle_tx_rx))
		_stmmac_schedule(priv);

	else if (unlikely(status == tx_hard_error_bump_tc)) {
		/* Try to bump up the dma threshold on this failure */
		if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
			tc += 64;
755
			priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
756
			priv->xstats.threshold = tc;
757
		}
758 759
	} else if (unlikely(status == tx_hard_error))
		stmmac_tx_err(priv);
760 761
}

762 763 764 765 766
static void stmmac_mmc_setup(struct stmmac_priv *priv)
{
	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;

G
Giuseppe CAVALLARO 已提交
767 768
	/* Mask MMC irq, counters are managed in SW and registers
	 * are cleared on each READ eventually. */
769
	dwmac_mmc_intr_all_mask(priv->ioaddr);
G
Giuseppe CAVALLARO 已提交
770 771 772 773 774 775

	if (priv->dma_cap.rmon) {
		dwmac_mmc_ctrl(priv->ioaddr, mode);
		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
	} else
		pr_info(" No MAC Management Counters available");
776 777
}

778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
{
	u32 hwid = priv->hw->synopsys_uid;

	/* Only check valid Synopsys Id because old MAC chips
	 * have no HW registers where get the ID */
	if (likely(hwid)) {
		u32 uid = ((hwid & 0x0000ff00) >> 8);
		u32 synid = (hwid & 0x000000ff);

		pr_info("STMMAC - user ID: 0x%x, Synopsys ID: 0x%x\n",
			uid, synid);

		return synid;
	}
	return 0;
}
795

796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
/**
 * stmmac_selec_desc_mode
 * @dev : device pointer
 * Description: select the Enhanced/Alternate or Normal descriptors */
static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
{
	if (priv->plat->enh_desc) {
		pr_info(" Enhanced/Alternate descriptors\n");
		priv->hw->desc = &enh_desc_ops;
	} else {
		pr_info(" Normal descriptors\n");
		priv->hw->desc = &ndesc_ops;
	}
}

/**
 * stmmac_get_hw_features
 * @priv : private device pointer
 * Description:
 *  new GMAC chip generations have a new register to indicate the
 *  presence of the optional feature/functions.
 *  This can be also used to override the value passed through the
 *  platform and necessary for old MAC10/100 and GMAC chips.
819 820 821
 */
static int stmmac_get_hw_features(struct stmmac_priv *priv)
{
822
	u32 hw_cap = 0;
823

824 825
	if (priv->hw->dma->get_hw_feature) {
		hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
826

827 828 829 830 831 832 833 834 835 836 837 838
		priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
		priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
		priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
		priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
		priv->dma_cap.multi_addr =
			(hw_cap & DMA_HW_FEAT_ADDMACADRSEL) >> 5;
		priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
		priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
		priv->dma_cap.pmt_remote_wake_up =
			(hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
		priv->dma_cap.pmt_magic_frame =
			(hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
839
		/* MMC */
840
		priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
841
		/* IEEE 1588-2002*/
842 843
		priv->dma_cap.time_stamp =
			(hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
844
		/* IEEE 1588-2008*/
845 846
		priv->dma_cap.atime_stamp =
			(hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
847
		/* 802.3az - Energy-Efficient Ethernet (EEE) */
848 849
		priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
		priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
850
		/* TX and RX csum */
851 852 853 854 855 856 857
		priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
		priv->dma_cap.rx_coe_type1 =
			(hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
		priv->dma_cap.rx_coe_type2 =
			(hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
		priv->dma_cap.rxfifo_over_2048 =
			(hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
858
		/* TX and RX number of channels */
859 860 861 862
		priv->dma_cap.number_rx_channel =
			(hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
		priv->dma_cap.number_tx_channel =
			(hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
863
		/* Alternate (enhanced) DESC mode*/
864 865
		priv->dma_cap.enh_desc =
			(hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
866

867
	}
868 869 870 871

	return hw_cap;
}

872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
/**
 * stmmac_mac_device_setup
 * @dev : device pointer
 * Description: this is to attach the GMAC or MAC 10/100
 * main core structures that will be completed during the
 * open step.
 */
static int stmmac_mac_device_setup(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);

	struct mac_device_info *device;

	if (priv->plat->has_gmac)
		device = dwmac1000_setup(priv->ioaddr);
	else
		device = dwmac100_setup(priv->ioaddr);

	if (!device)
		return -ENOMEM;

	priv->hw = device;
	priv->hw->ring = &ring_mode_ops;

	if (device_can_wakeup(priv->device)) {
		priv->wolopts = WAKE_MAGIC; /* Magic Frame as default */
		enable_irq_wake(priv->wol_irq);
	}

	return 0;
}

static void stmmac_check_ether_addr(struct stmmac_priv *priv)
{
	/* verify if the MAC address is valid, in case of failures it
	 * generates a random MAC address */
	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
		priv->hw->mac->get_umac_addr((void __iomem *)
					     priv->dev->base_addr,
					     priv->dev->dev_addr, 0);
		if  (!is_valid_ether_addr(priv->dev->dev_addr))
			random_ether_addr(priv->dev->dev_addr);
	}
	pr_warning("%s: device MAC address %pM\n", priv->dev->name,
						   priv->dev->dev_addr);
}

919 920 921 922 923 924 925 926 927 928 929 930 931 932
/**
 *  stmmac_open - open entry point of the driver
 *  @dev : pointer to the device structure.
 *  Description:
 *  This function is the open entry point of the driver.
 *  Return value:
 *  0 on success and an appropriate (-)ve integer as defined in errno.h
 *  file on failure.
 */
static int stmmac_open(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	int ret;

933 934 935 936 937 938
	/* MAC HW device setup */
	ret = stmmac_mac_device_setup(dev);
	if (ret < 0)
		return ret;

	stmmac_check_ether_addr(priv);
939 940 941

	stmmac_verify_args();

942 943 944 945 946 947 948 949 950 951 952 953 954
	/* Override with kernel parameters if supplied XXX CRS XXX
	 * this needs to have multiple instances */
	if ((phyaddr >= 0) && (phyaddr <= 31))
		priv->plat->phy_addr = phyaddr;

	/* MDIO bus Registration */
	ret = stmmac_mdio_register(dev);
	if (ret < 0) {
		pr_debug("%s: MDIO bus (id: %d) registration failed",
			 __func__, priv->plat->bus_id);
		return ret;
	}

955
#ifdef CONFIG_STMMAC_TIMER
956
	priv->tm = kzalloc(sizeof(struct stmmac_timer *), GFP_KERNEL);
957
	if (unlikely(priv->tm == NULL)) {
958
		pr_err("%s: ERROR: timer memory alloc failed\n", __func__);
959 960 961 962
		return -ENOMEM;
	}
	priv->tm->freq = tmrate;

963 964
	/* Test if the external timer can be actually used.
	 * In case of failure continue without timer. */
965
	if (unlikely((stmmac_open_ext_timer(dev, priv->tm)) < 0)) {
966
		pr_warning("stmmaceth: cannot attach the external timer.\n");
967 968 969
		priv->tm->freq = 0;
		priv->tm->timer_start = stmmac_no_timer_started;
		priv->tm->timer_stop = stmmac_no_timer_stopped;
970 971
	} else
		priv->tm->enable = 1;
972
#endif
973 974 975 976 977
	ret = stmmac_init_phy(dev);
	if (unlikely(ret)) {
		pr_err("%s: Cannot attach to PHY (error: %d)\n", __func__, ret);
		goto open_error;
	}
978

979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
	stmmac_get_synopsys_id(priv);

	priv->hw_cap_support = stmmac_get_hw_features(priv);

	if (priv->hw_cap_support) {
		pr_info(" Support DMA HW capability register");

		/* We can override some gmac/dma configuration fields: e.g.
		 * enh_desc, tx_coe (e.g. that are passed through the
		 * platform) with the values from the HW capability
		 * register (if supported).
		 */
		priv->plat->enh_desc = priv->dma_cap.enh_desc;
		priv->plat->tx_coe = priv->dma_cap.tx_coe;
		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;

		/* By default disable wol on magic frame if not supported */
		if (!priv->dma_cap.pmt_magic_frame)
			priv->wolopts &= ~WAKE_MAGIC;

	} else
		pr_info(" No HW DMA feature register supported");

	/* Select the enhnaced/normal descriptor structures */
	stmmac_selec_desc_mode(priv);

	/* PMT module is not integrated in all the MAC devices. */
	if (priv->plat->pmt) {
		pr_info(" Remote wake-up capable\n");
		device_set_wakeup_capable(priv->device, 1);
	}

	priv->rx_coe = priv->hw->mac->rx_coe(priv->ioaddr);
	if (priv->rx_coe)
		pr_info(" Checksum Offload Engine supported\n");
	if (priv->plat->tx_coe)
		pr_info(" Checksum insertion supported\n");

1017 1018 1019 1020 1021 1022 1023
	/* Create and initialize the TX/RX descriptors chains. */
	priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
	priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
	init_dma_desc_rings(dev);

	/* DMA initialization and SW reset */
1024 1025 1026
	ret = priv->hw->dma->init(priv->ioaddr, priv->plat->pbl,
				  priv->dma_tx_phy, priv->dma_rx_phy);
	if (ret < 0) {
1027
		pr_err("%s: DMA initialization failed\n", __func__);
1028
		goto open_error;
1029 1030 1031
	}

	/* Copy the MAC addr into the HW  */
1032
	priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
1033
	/* If required, perform hw setup of the bus. */
1034 1035
	if (priv->plat->bus_setup)
		priv->plat->bus_setup(priv->ioaddr);
1036
	/* Initialize the MAC Core */
1037
	priv->hw->mac->core_init(priv->ioaddr);
1038

1039
	netdev_update_features(dev);
1040

1041 1042 1043 1044 1045 1046 1047 1048 1049
	/* Request the IRQ lines */
	ret = request_irq(dev->irq, stmmac_interrupt,
			 IRQF_SHARED, dev->name, dev);
	if (unlikely(ret < 0)) {
		pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
		       __func__, dev->irq, ret);
		goto open_error;
	}

1050
	/* Enable the MAC Rx/Tx */
1051
	stmmac_set_mac(priv->ioaddr, true);
1052 1053 1054 1055 1056 1057 1058 1059

	/* Set the HW DMA mode and the COE */
	stmmac_dma_operation_mode(priv);

	/* Extra statistics */
	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
	priv->xstats.threshold = tc;

G
Giuseppe CAVALLARO 已提交
1060
	stmmac_mmc_setup(priv);
1061

1062 1063 1064 1065 1066
#ifdef CONFIG_STMMAC_DEBUG_FS
	ret = stmmac_init_fs(dev);
	if (ret < 0)
		pr_warning("\tFailed debugFS registration");
#endif
1067 1068
	/* Start the ball rolling... */
	DBG(probe, DEBUG, "%s: DMA RX/TX processes started...\n", dev->name);
1069 1070
	priv->hw->dma->start_tx(priv->ioaddr);
	priv->hw->dma->start_rx(priv->ioaddr);
1071 1072 1073 1074 1075 1076

#ifdef CONFIG_STMMAC_TIMER
	priv->tm->timer_start(tmrate);
#endif
	/* Dump DMA/MAC registers */
	if (netif_msg_hw(priv)) {
1077 1078
		priv->hw->mac->dump_regs(priv->ioaddr);
		priv->hw->dma->dump_regs(priv->ioaddr);
1079 1080 1081 1082 1083 1084 1085 1086
	}

	if (priv->phydev)
		phy_start(priv->phydev);

	napi_enable(&priv->napi);
	skb_queue_head_init(&priv->rx_recycle);
	netif_start_queue(dev);
1087

1088
	return 0;
1089 1090 1091 1092 1093 1094 1095 1096 1097

open_error:
#ifdef CONFIG_STMMAC_TIMER
	kfree(priv->tm);
#endif
	if (priv->phydev)
		phy_disconnect(priv->phydev);

	return ret;
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
}

/**
 *  stmmac_release - close entry point of the driver
 *  @dev : device pointer.
 *  Description:
 *  This is the stop entry point of the driver.
 */
static int stmmac_release(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);

	/* Stop and disconnect the PHY */
	if (priv->phydev) {
		phy_stop(priv->phydev);
		phy_disconnect(priv->phydev);
		priv->phydev = NULL;
	}

	netif_stop_queue(dev);

#ifdef CONFIG_STMMAC_TIMER
	/* Stop and release the timer */
	stmmac_close_ext_timer();
	if (priv->tm != NULL)
		kfree(priv->tm);
#endif
	napi_disable(&priv->napi);
	skb_queue_purge(&priv->rx_recycle);

	/* Free the IRQ lines */
	free_irq(dev->irq, dev);

	/* Stop TX/RX DMA and clear the descriptors */
1132 1133
	priv->hw->dma->stop_tx(priv->ioaddr);
	priv->hw->dma->stop_rx(priv->ioaddr);
1134 1135 1136 1137

	/* Release and free the Rx/Tx resources */
	free_dma_desc_resources(priv);

1138
	/* Disable the MAC Rx/Tx */
1139
	stmmac_set_mac(priv->ioaddr, false);
1140 1141 1142

	netif_carrier_off(dev);

1143 1144 1145 1146 1147
#ifdef CONFIG_STMMAC_DEBUG_FS
	stmmac_exit_fs();
#endif
	stmmac_mdio_unregister(dev);

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
	return 0;
}

/**
 *  stmmac_xmit:
 *  @skb : the socket buffer
 *  @dev : device pointer
 *  Description : Tx entry point of the driver.
 */
static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	unsigned int txsize = priv->dma_tx_size;
	unsigned int entry;
	int i, csum_insertion = 0;
	int nfrags = skb_shinfo(skb)->nr_frags;
	struct dma_desc *desc, *first;
1165
	unsigned int nopaged_len = skb_headlen(skb);
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176

	if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
		if (!netif_queue_stopped(dev)) {
			netif_stop_queue(dev);
			/* This is a hard error, log it. */
			pr_err("%s: BUG! Tx Ring full when queue awake\n",
				__func__);
		}
		return NETDEV_TX_BUSY;
	}

1177 1178
	spin_lock(&priv->tx_lock);

1179 1180 1181 1182 1183 1184 1185
	entry = priv->cur_tx % txsize;

#ifdef STMMAC_XMIT_DEBUG
	if ((skb->len > ETH_FRAME_LEN) || nfrags)
		pr_info("stmmac xmit:\n"
		       "\tskb addr %p - len: %d - nopaged_len: %d\n"
		       "\tn_frags: %d - ip_summed: %d - %s gso\n",
1186
		       skb, skb->len, nopaged_len, nfrags, skb->ip_summed,
1187 1188 1189
		       !skb_is_gso(skb) ? "isn't" : "is");
#endif

1190
	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1191 1192 1193 1194 1195 1196 1197 1198

	desc = priv->dma_tx + entry;
	first = desc;

#ifdef STMMAC_XMIT_DEBUG
	if ((nfrags > 0) || (skb->len > ETH_FRAME_LEN))
		pr_debug("stmmac xmit: skb len: %d, nopaged_len: %d,\n"
		       "\t\tn_frags: %d, ip_summed: %d\n",
1199
		       skb->len, nopaged_len, nfrags, skb->ip_summed);
1200 1201
#endif
	priv->tx_skbuff[entry] = skb;
1202 1203 1204

	if (priv->hw->ring->is_jumbo_frm(skb->len, priv->plat->enh_desc)) {
		entry = priv->hw->ring->jumbo_frm(priv, skb, csum_insertion);
1205 1206 1207 1208
		desc = priv->dma_tx + entry;
	} else {
		desc->des2 = dma_map_single(priv->device, skb->data,
					nopaged_len, DMA_TO_DEVICE);
1209 1210
		priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
						csum_insertion);
1211 1212 1213
	}

	for (i = 0; i < nfrags; i++) {
E
Eric Dumazet 已提交
1214 1215
		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
		int len = skb_frag_size(frag);
1216 1217 1218 1219 1220

		entry = (++priv->cur_tx) % txsize;
		desc = priv->dma_tx + entry;

		TX_DBG("\t[entry %d] segment len: %d\n", entry, len);
1221 1222
		desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
					      DMA_TO_DEVICE);
1223
		priv->tx_skbuff[entry] = NULL;
1224
		priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion);
1225
		wmb();
1226
		priv->hw->desc->set_tx_owner(desc);
1227 1228 1229
	}

	/* Interrupt on completition only for the latest segment */
1230
	priv->hw->desc->close_tx_desc(desc);
1231

1232
#ifdef CONFIG_STMMAC_TIMER
1233 1234
	/* Clean IC while using timer */
	if (likely(priv->tm->enable))
1235
		priv->hw->desc->clear_tx_ic(desc);
1236
#endif
1237 1238 1239

	wmb();

1240
	/* To avoid raise condition */
1241
	priv->hw->desc->set_tx_owner(first);
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262

	priv->cur_tx++;

#ifdef STMMAC_XMIT_DEBUG
	if (netif_msg_pktdata(priv)) {
		pr_info("stmmac xmit: current=%d, dirty=%d, entry=%d, "
		       "first=%p, nfrags=%d\n",
		       (priv->cur_tx % txsize), (priv->dirty_tx % txsize),
		       entry, first, nfrags);
		display_ring(priv->dma_tx, txsize);
		pr_info(">>> frame to be transmitted: ");
		print_pkt(skb->data, skb->len);
	}
#endif
	if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
		TX_DBG("%s: stop transmitted packets\n", __func__);
		netif_stop_queue(dev);
	}

	dev->stats.tx_bytes += skb->len;

1263 1264
	skb_tx_timestamp(skb);

1265 1266
	priv->hw->dma->enable_dma_transmission(priv->ioaddr);

1267 1268
	spin_unlock(&priv->tx_lock);

1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
	return NETDEV_TX_OK;
}

static inline void stmmac_rx_refill(struct stmmac_priv *priv)
{
	unsigned int rxsize = priv->dma_rx_size;
	int bfsize = priv->dma_buf_sz;
	struct dma_desc *p = priv->dma_rx;

	for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
		unsigned int entry = priv->dirty_rx % rxsize;
		if (likely(priv->rx_skbuff[entry] == NULL)) {
			struct sk_buff *skb;

			skb = __skb_dequeue(&priv->rx_recycle);
			if (skb == NULL)
				skb = netdev_alloc_skb_ip_align(priv->dev,
								bfsize);

			if (unlikely(skb == NULL))
				break;

			priv->rx_skbuff[entry] = skb;
			priv->rx_skbuff_dma[entry] =
			    dma_map_single(priv->device, skb->data, bfsize,
					   DMA_FROM_DEVICE);

			(p + entry)->des2 = priv->rx_skbuff_dma[entry];
1297 1298 1299 1300

			if (unlikely(priv->plat->has_gmac))
				priv->hw->ring->refill_desc3(bfsize, p + entry);

1301 1302
			RX_DBG(KERN_INFO "\trefill entry #%d\n", entry);
		}
1303
		wmb();
1304
		priv->hw->desc->set_rx_owner(p + entry);
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
	}
}

static int stmmac_rx(struct stmmac_priv *priv, int limit)
{
	unsigned int rxsize = priv->dma_rx_size;
	unsigned int entry = priv->cur_rx % rxsize;
	unsigned int next_entry;
	unsigned int count = 0;
	struct dma_desc *p = priv->dma_rx + entry;
	struct dma_desc *p_next;

#ifdef STMMAC_RX_DEBUG
	if (netif_msg_hw(priv)) {
		pr_debug(">>> stmmac_rx: descriptor ring:\n");
		display_ring(priv->dma_rx, rxsize);
	}
#endif
	count = 0;
1324
	while (!priv->hw->desc->get_rx_owner(p)) {
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
		int status;

		if (count >= limit)
			break;

		count++;

		next_entry = (++priv->cur_rx) % rxsize;
		p_next = priv->dma_rx + next_entry;
		prefetch(p_next);

		/* read the status of the incoming frame */
1337 1338
		status = (priv->hw->desc->rx_status(&priv->dev->stats,
						    &priv->xstats, p));
1339 1340 1341 1342
		if (unlikely(status == discard_frame))
			priv->dev->stats.rx_errors++;
		else {
			struct sk_buff *skb;
1343
			int frame_len;
1344

1345 1346 1347 1348 1349
			frame_len = priv->hw->desc->get_rx_frame_len(p);
			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
			 * Type frames (LLC/LLC-SNAP) */
			if (unlikely(status != llc_snap))
				frame_len -= ETH_FCS_LEN;
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
#ifdef STMMAC_RX_DEBUG
			if (frame_len > ETH_FRAME_LEN)
				pr_debug("\tRX frame size %d, COE status: %d\n",
					frame_len, status);

			if (netif_msg_hw(priv))
				pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
					p, entry, p->des2);
#endif
			skb = priv->rx_skbuff[entry];
			if (unlikely(!skb)) {
				pr_err("%s: Inconsistent Rx descriptor chain\n",
					priv->dev->name);
				priv->dev->stats.rx_dropped++;
				break;
			}
			prefetch(skb->data - NET_IP_ALIGN);
			priv->rx_skbuff[entry] = NULL;

			skb_put(skb, frame_len);
			dma_unmap_single(priv->device,
					 priv->rx_skbuff_dma[entry],
					 priv->dma_buf_sz, DMA_FROM_DEVICE);
#ifdef STMMAC_RX_DEBUG
			if (netif_msg_pktdata(priv)) {
				pr_info(" frame received (%dbytes)", frame_len);
				print_pkt(skb->data, frame_len);
			}
#endif
			skb->protocol = eth_type_trans(skb, priv->dev);

1381 1382
			if (unlikely(!priv->rx_coe)) {
				/* No RX COE for old mac10/100 devices */
1383
				skb_checksum_none_assert(skb);
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
				netif_receive_skb(skb);
			} else {
				skb->ip_summed = CHECKSUM_UNNECESSARY;
				napi_gro_receive(&priv->napi, skb);
			}

			priv->dev->stats.rx_packets++;
			priv->dev->stats.rx_bytes += frame_len;
		}
		entry = next_entry;
		p = p_next;	/* use prefetched values */
	}

	stmmac_rx_refill(priv);

	priv->xstats.rx_pkt_n += count;

	return count;
}

/**
 *  stmmac_poll - stmmac poll method (NAPI)
 *  @napi : pointer to the napi structure.
 *  @budget : maximum number of packets that the current CPU can receive from
 *	      all interfaces.
 *  Description :
 *   This function implements the the reception process.
 *   Also it runs the TX completion thread
 */
static int stmmac_poll(struct napi_struct *napi, int budget)
{
	struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
	int work_done = 0;

	priv->xstats.poll_n++;
	stmmac_tx(priv);
	work_done = stmmac_rx(priv, budget);

	if (work_done < budget) {
		napi_complete(napi);
		stmmac_enable_irq(priv);
	}
	return work_done;
}

/**
 *  stmmac_tx_timeout
 *  @dev : Pointer to net device structure
 *  Description: this function is called when a packet transmission fails to
 *   complete within a reasonable tmrate. The driver will mark the error in the
 *   netdev structure and arrange for the device to be reset to a sane state
 *   in order to transmit a new packet.
 */
static void stmmac_tx_timeout(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);

	/* Clear Tx resources and restart transmitting again */
	stmmac_tx_err(priv);
}

/* Configuration changes (passed on by ifconfig) */
static int stmmac_config(struct net_device *dev, struct ifmap *map)
{
	if (dev->flags & IFF_UP)	/* can't act on a running interface */
		return -EBUSY;

	/* Don't allow changing the I/O address */
	if (map->base_addr != dev->base_addr) {
		pr_warning("%s: can't change I/O address\n", dev->name);
		return -EOPNOTSUPP;
	}

	/* Don't allow changing the IRQ */
	if (map->irq != dev->irq) {
		pr_warning("%s: can't change IRQ number %d\n",
		       dev->name, dev->irq);
		return -EOPNOTSUPP;
	}

	/* ignore other fields */
	return 0;
}

/**
1469
 *  stmmac_set_rx_mode - entry point for multicast addressing
1470 1471 1472 1473 1474 1475 1476
 *  @dev : pointer to the device structure
 *  Description:
 *  This function is a driver entry point which gets called by the kernel
 *  whenever multicast addresses must be enabled/disabled.
 *  Return value:
 *  void.
 */
1477
static void stmmac_set_rx_mode(struct net_device *dev)
1478 1479 1480 1481
{
	struct stmmac_priv *priv = netdev_priv(dev);

	spin_lock(&priv->lock);
1482
	priv->hw->mac->set_filter(dev);
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
	spin_unlock(&priv->lock);
}

/**
 *  stmmac_change_mtu - entry point to change MTU size for the device.
 *  @dev : device pointer.
 *  @new_mtu : the new MTU size for the device.
 *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
 *  to drive packet transmission. Ethernet has an MTU of 1500 octets
 *  (ETH_DATA_LEN). This value can be changed with ifconfig.
 *  Return value:
 *  0 on success and an appropriate (-)ve integer as defined in errno.h
 *  file on failure.
 */
static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	int max_mtu;

	if (netif_running(dev)) {
		pr_err("%s: must be stopped to change its MTU\n", dev->name);
		return -EBUSY;
	}

1507
	if (priv->plat->enh_desc)
1508 1509
		max_mtu = JUMBO_LEN;
	else
1510
		max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
1511 1512 1513 1514 1515 1516

	if ((new_mtu < 46) || (new_mtu > max_mtu)) {
		pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
		return -EINVAL;
	}

1517 1518 1519 1520 1521 1522
	dev->mtu = new_mtu;
	netdev_update_features(dev);

	return 0;
}

1523 1524
static netdev_features_t stmmac_fix_features(struct net_device *dev,
	netdev_features_t features)
1525 1526 1527 1528 1529 1530 1531 1532
{
	struct stmmac_priv *priv = netdev_priv(dev);

	if (!priv->rx_coe)
		features &= ~NETIF_F_RXCSUM;
	if (!priv->plat->tx_coe)
		features &= ~NETIF_F_ALL_CSUM;

1533 1534 1535 1536
	/* Some GMAC devices have a bugged Jumbo frame support that
	 * needs to have the Tx COE disabled for oversized frames
	 * (due to limited buffer sizes). In this case we disable
	 * the TX csum insertionin the TDES and not use SF. */
1537 1538
	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
		features &= ~NETIF_F_ALL_CSUM;
1539

1540
	return features;
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
}

static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
{
	struct net_device *dev = (struct net_device *)dev_id;
	struct stmmac_priv *priv = netdev_priv(dev);

	if (unlikely(!dev)) {
		pr_err("%s: invalid dev pointer\n", __func__);
		return IRQ_NONE;
	}

1553
	if (priv->plat->has_gmac)
1554
		/* To handle GMAC own interrupts */
1555
		priv->hw->mac->host_irq_status((void __iomem *) dev->base_addr);
1556 1557

	stmmac_dma_interrupt(priv);
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585

	return IRQ_HANDLED;
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/* Polling receive - used by NETCONSOLE and other diagnostic tools
 * to allow network I/O with interrupts disabled. */
static void stmmac_poll_controller(struct net_device *dev)
{
	disable_irq(dev->irq);
	stmmac_interrupt(dev->irq, dev);
	enable_irq(dev->irq);
}
#endif

/**
 *  stmmac_ioctl - Entry point for the Ioctl
 *  @dev: Device pointer.
 *  @rq: An IOCTL specefic structure, that can contain a pointer to
 *  a proprietary structure used to pass information to the driver.
 *  @cmd: IOCTL command
 *  Description:
 *  Currently there are no special functionality supported in IOCTL, just the
 *  phy_mii_ioctl(...) can be invoked.
 */
static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
	struct stmmac_priv *priv = netdev_priv(dev);
1586
	int ret;
1587 1588 1589 1590

	if (!netif_running(dev))
		return -EINVAL;

1591 1592 1593 1594 1595
	if (!priv->phydev)
		return -EINVAL;

	ret = phy_mii_ioctl(priv->phydev, rq, cmd);

1596 1597 1598
	return ret;
}

1599 1600 1601
#ifdef CONFIG_STMMAC_DEBUG_FS
static struct dentry *stmmac_fs_dir;
static struct dentry *stmmac_rings_status;
1602
static struct dentry *stmmac_dma_cap;
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655

static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
{
	struct tmp_s {
		u64 a;
		unsigned int b;
		unsigned int c;
	};
	int i;
	struct net_device *dev = seq->private;
	struct stmmac_priv *priv = netdev_priv(dev);

	seq_printf(seq, "=======================\n");
	seq_printf(seq, " RX descriptor ring\n");
	seq_printf(seq, "=======================\n");

	for (i = 0; i < priv->dma_rx_size; i++) {
		struct tmp_s *x = (struct tmp_s *)(priv->dma_rx + i);
		seq_printf(seq, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
			   i, (unsigned int)(x->a),
			   (unsigned int)((x->a) >> 32), x->b, x->c);
		seq_printf(seq, "\n");
	}

	seq_printf(seq, "\n");
	seq_printf(seq, "=======================\n");
	seq_printf(seq, "  TX descriptor ring\n");
	seq_printf(seq, "=======================\n");

	for (i = 0; i < priv->dma_tx_size; i++) {
		struct tmp_s *x = (struct tmp_s *)(priv->dma_tx + i);
		seq_printf(seq, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
			   i, (unsigned int)(x->a),
			   (unsigned int)((x->a) >> 32), x->b, x->c);
		seq_printf(seq, "\n");
	}

	return 0;
}

static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
{
	return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
}

static const struct file_operations stmmac_rings_status_fops = {
	.owner = THIS_MODULE,
	.open = stmmac_sysfs_ring_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = seq_release,
};

1656 1657 1658 1659 1660
static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
{
	struct net_device *dev = seq->private;
	struct stmmac_priv *priv = netdev_priv(dev);

1661
	if (!priv->hw_cap_support) {
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
		seq_printf(seq, "DMA HW features not supported\n");
		return 0;
	}

	seq_printf(seq, "==============================\n");
	seq_printf(seq, "\tDMA HW features\n");
	seq_printf(seq, "==============================\n");

	seq_printf(seq, "\t10/100 Mbps %s\n",
		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
	seq_printf(seq, "\t1000 Mbps %s\n",
		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
	seq_printf(seq, "\tHalf duple %s\n",
		   (priv->dma_cap.half_duplex) ? "Y" : "N");
	seq_printf(seq, "\tHash Filter: %s\n",
		   (priv->dma_cap.hash_filter) ? "Y" : "N");
	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
		   (priv->dma_cap.multi_addr) ? "Y" : "N");
	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
		   (priv->dma_cap.pcs) ? "Y" : "N");
	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
	seq_printf(seq, "\tPMT Remote wake up: %s\n",
		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
	seq_printf(seq, "\tPMT Magic Frame: %s\n",
		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
	seq_printf(seq, "\tRMON module: %s\n",
		   (priv->dma_cap.rmon) ? "Y" : "N");
	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
		   (priv->dma_cap.time_stamp) ? "Y" : "N");
	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
		   (priv->dma_cap.eee) ? "Y" : "N");
	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
		   (priv->dma_cap.tx_coe) ? "Y" : "N");
	seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
		   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
	seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
		   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
		   priv->dma_cap.number_rx_channel);
	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
		   priv->dma_cap.number_tx_channel);
	seq_printf(seq, "\tEnhanced descriptors: %s\n",
		   (priv->dma_cap.enh_desc) ? "Y" : "N");

	return 0;
}

static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
{
	return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
}

static const struct file_operations stmmac_dma_cap_fops = {
	.owner = THIS_MODULE,
	.open = stmmac_sysfs_dma_cap_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = seq_release,
};

1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
static int stmmac_init_fs(struct net_device *dev)
{
	/* Create debugfs entries */
	stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);

	if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
		pr_err("ERROR %s, debugfs create directory failed\n",
		       STMMAC_RESOURCE_NAME);

		return -ENOMEM;
	}

	/* Entry to report DMA RX/TX rings */
	stmmac_rings_status = debugfs_create_file("descriptors_status",
					   S_IRUGO, stmmac_fs_dir, dev,
					   &stmmac_rings_status_fops);

	if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) {
		pr_info("ERROR creating stmmac ring debugfs file\n");
		debugfs_remove(stmmac_fs_dir);

		return -ENOMEM;
	}

1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
	/* Entry to report the DMA HW features */
	stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir,
					     dev, &stmmac_dma_cap_fops);

	if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) {
		pr_info("ERROR creating stmmac MMC debugfs file\n");
		debugfs_remove(stmmac_rings_status);
		debugfs_remove(stmmac_fs_dir);

		return -ENOMEM;
	}

1764 1765 1766 1767 1768 1769
	return 0;
}

static void stmmac_exit_fs(void)
{
	debugfs_remove(stmmac_rings_status);
1770
	debugfs_remove(stmmac_dma_cap);
1771 1772 1773 1774
	debugfs_remove(stmmac_fs_dir);
}
#endif /* CONFIG_STMMAC_DEBUG_FS */

1775 1776 1777 1778 1779
static const struct net_device_ops stmmac_netdev_ops = {
	.ndo_open = stmmac_open,
	.ndo_start_xmit = stmmac_xmit,
	.ndo_stop = stmmac_release,
	.ndo_change_mtu = stmmac_change_mtu,
1780
	.ndo_fix_features = stmmac_fix_features,
1781
	.ndo_set_rx_mode = stmmac_set_rx_mode,
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
	.ndo_tx_timeout = stmmac_tx_timeout,
	.ndo_do_ioctl = stmmac_ioctl,
	.ndo_set_config = stmmac_config,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = stmmac_poll_controller,
#endif
	.ndo_set_mac_address = eth_mac_addr,
};

/**
1792 1793 1794 1795
 * stmmac_dvr_probe
 * @device: device pointer
 * Description: this is the main probe function used to
 * call the alloc_etherdev, allocate the priv structure.
1796
 */
1797 1798
struct stmmac_priv *stmmac_dvr_probe(struct device *device,
					struct plat_stmmacenet_data *plat_dat)
1799 1800
{
	int ret = 0;
1801 1802
	struct net_device *ndev = NULL;
	struct stmmac_priv *priv;
1803

1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
	ndev = alloc_etherdev(sizeof(struct stmmac_priv));
	if (!ndev) {
		pr_err("%s: ERROR: allocating the device\n", __func__);
		return NULL;
	}

	SET_NETDEV_DEV(ndev, device);

	priv = netdev_priv(ndev);
	priv->device = device;
	priv->dev = ndev;
1815

1816
	ether_setup(ndev);
1817

1818 1819 1820 1821 1822 1823
	ndev->netdev_ops = &stmmac_netdev_ops;
	stmmac_set_ethtool_ops(ndev);

	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
1824 1825
#ifdef STMMAC_VLAN_TAG_USED
	/* Both mac100 and gmac support receive VLAN tag detection */
1826
	ndev->features |= NETIF_F_HW_VLAN_RX;
1827 1828 1829 1830 1831 1832 1833
#endif
	priv->msg_enable = netif_msg_init(debug, default_msg_level);

	if (flow_ctrl)
		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */

	priv->pause = pause;
1834 1835
	priv->plat = plat_dat;
	netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
1836

1837
	spin_lock_init(&priv->lock);
1838
	spin_lock_init(&priv->tx_lock);
1839

1840
	ret = register_netdev(ndev);
1841 1842 1843
	if (ret) {
		pr_err("%s: ERROR %i registering the device\n",
		       __func__, ret);
1844
		goto error;
1845 1846 1847
	}

	DBG(probe, DEBUG, "%s: Scatter/Gather: %s - HW checksums: %s\n",
1848 1849
	    ndev->name, (ndev->features & NETIF_F_SG) ? "on" : "off",
	    (ndev->features & NETIF_F_IP_CSUM) ? "on" : "off");
1850

1851
	return priv;
1852

1853 1854
error:
	netif_napi_del(&priv->napi);
1855

1856 1857
	unregister_netdev(ndev);
	free_netdev(ndev);
1858

1859
	return NULL;
1860 1861 1862 1863
}

/**
 * stmmac_dvr_remove
1864
 * @ndev: net device pointer
1865
 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
1866
 * changes the link status, releases the DMA descriptor rings.
1867
 */
1868
int stmmac_dvr_remove(struct net_device *ndev)
1869
{
1870
	struct stmmac_priv *priv = netdev_priv(ndev);
1871 1872 1873

	pr_info("%s:\n\tremoving driver", __func__);

1874 1875
	priv->hw->dma->stop_rx(priv->ioaddr);
	priv->hw->dma->stop_tx(priv->ioaddr);
1876

1877
	stmmac_set_mac(priv->ioaddr, false);
1878 1879 1880 1881 1882 1883 1884 1885
	netif_carrier_off(ndev);
	unregister_netdev(ndev);
	free_netdev(ndev);

	return 0;
}

#ifdef CONFIG_PM
1886
int stmmac_suspend(struct net_device *ndev)
1887
{
1888
	struct stmmac_priv *priv = netdev_priv(ndev);
1889 1890
	int dis_ic = 0;

1891
	if (!ndev || !netif_running(ndev))
1892 1893
		return 0;

1894 1895 1896
	if (priv->phydev)
		phy_stop(priv->phydev);

1897 1898
	spin_lock(&priv->lock);

1899 1900
	netif_device_detach(ndev);
	netif_stop_queue(ndev);
1901 1902

#ifdef CONFIG_STMMAC_TIMER
1903 1904 1905
	priv->tm->timer_stop();
	if (likely(priv->tm->enable))
		dis_ic = 1;
1906
#endif
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
	napi_disable(&priv->napi);

	/* Stop TX/RX DMA */
	priv->hw->dma->stop_tx(priv->ioaddr);
	priv->hw->dma->stop_rx(priv->ioaddr);
	/* Clear the Rx/Tx descriptors */
	priv->hw->desc->init_rx_desc(priv->dma_rx, priv->dma_rx_size,
				     dis_ic);
	priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);

	/* Enable Power down mode by programming the PMT regs */
	if (device_may_wakeup(priv->device))
		priv->hw->mac->pmt(priv->ioaddr, priv->wolopts);
	else
1921
		stmmac_set_mac(priv->ioaddr, false);
1922 1923 1924 1925 1926

	spin_unlock(&priv->lock);
	return 0;
}

1927
int stmmac_resume(struct net_device *ndev)
1928
{
1929
	struct stmmac_priv *priv = netdev_priv(ndev);
1930

1931
	if (!netif_running(ndev))
1932 1933
		return 0;

1934 1935
	spin_lock(&priv->lock);

1936 1937 1938 1939 1940
	/* Power Down bit, into the PM register, is cleared
	 * automatically as soon as a magic packet or a Wake-up frame
	 * is received. Anyway, it's better to manually clear
	 * this bit because it can generate problems while resuming
	 * from another devices (e.g. serial console). */
1941
	if (device_may_wakeup(priv->device))
1942
		priv->hw->mac->pmt(priv->ioaddr, 0);
1943

1944
	netif_device_attach(ndev);
1945 1946

	/* Enable the MAC and DMA */
1947
	stmmac_set_mac(priv->ioaddr, true);
1948 1949
	priv->hw->dma->start_tx(priv->ioaddr);
	priv->hw->dma->start_rx(priv->ioaddr);
1950 1951

#ifdef CONFIG_STMMAC_TIMER
1952 1953
	if (likely(priv->tm->enable))
		priv->tm->timer_start(tmrate);
1954 1955 1956
#endif
	napi_enable(&priv->napi);

1957
	netif_start_queue(ndev);
1958 1959

	spin_unlock(&priv->lock);
1960 1961 1962 1963

	if (priv->phydev)
		phy_start(priv->phydev);

1964 1965 1966
	return 0;
}

1967
int stmmac_freeze(struct net_device *ndev)
1968 1969 1970 1971 1972 1973 1974
{
	if (!ndev || !netif_running(ndev))
		return 0;

	return stmmac_release(ndev);
}

1975
int stmmac_restore(struct net_device *ndev)
1976 1977 1978 1979 1980 1981 1982
{
	if (!ndev || !netif_running(ndev))
		return 0;

	return stmmac_open(ndev);
}
#endif /* CONFIG_PM */
1983 1984 1985 1986 1987 1988 1989 1990 1991

#ifndef MODULE
static int __init stmmac_cmdline_opt(char *str)
{
	char *opt;

	if (!str || !*str)
		return -EINVAL;
	while ((opt = strsep(&str, ",")) != NULL) {
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
		if (!strncmp(opt, "debug:", 6)) {
			if (strict_strtoul(opt + 6, 0, (unsigned long *)&debug))
				goto err;
		} else if (!strncmp(opt, "phyaddr:", 8)) {
			if (strict_strtoul(opt + 8, 0,
					   (unsigned long *)&phyaddr))
				goto err;
		} else if (!strncmp(opt, "dma_txsize:", 11)) {
			if (strict_strtoul(opt + 11, 0,
					   (unsigned long *)&dma_txsize))
				goto err;
		} else if (!strncmp(opt, "dma_rxsize:", 11)) {
			if (strict_strtoul(opt + 11, 0,
					   (unsigned long *)&dma_rxsize))
				goto err;
		} else if (!strncmp(opt, "buf_sz:", 7)) {
			if (strict_strtoul(opt + 7, 0,
					   (unsigned long *)&buf_sz))
				goto err;
		} else if (!strncmp(opt, "tc:", 3)) {
			if (strict_strtoul(opt + 3, 0, (unsigned long *)&tc))
				goto err;
		} else if (!strncmp(opt, "watchdog:", 9)) {
			if (strict_strtoul(opt + 9, 0,
					   (unsigned long *)&watchdog))
				goto err;
		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
			if (strict_strtoul(opt + 10, 0,
					   (unsigned long *)&flow_ctrl))
				goto err;
		} else if (!strncmp(opt, "pause:", 6)) {
			if (strict_strtoul(opt + 6, 0, (unsigned long *)&pause))
				goto err;
2025
#ifdef CONFIG_STMMAC_TIMER
2026 2027 2028 2029
		} else if (!strncmp(opt, "tmrate:", 7)) {
			if (strict_strtoul(opt + 7, 0,
					   (unsigned long *)&tmrate))
				goto err;
2030
#endif
2031
		}
2032 2033
	}
	return 0;
2034 2035 2036 2037

err:
	pr_err("%s: ERROR broken module parameter conversion", __func__);
	return -EINVAL;
2038 2039 2040 2041
}

__setup("stmmaceth=", stmmac_cmdline_opt);
#endif
2042 2043 2044 2045

MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
MODULE_LICENSE("GPL");