stmmac_main.c 63.0 KB
Newer Older
1 2 3 4
/*******************************************************************************
  This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
  ST Ethernet IPs are built around a Synopsys IP Core.

5
	Copyright(C) 2007-2011 STMicroelectronics Ltd
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>

  Documentation available at:
	http://www.stlinux.com
  Support available at:
	https://bugzilla.stlinux.com/
*******************************************************************************/

31
#include <linux/clk.h>
32 33 34 35 36 37 38 39 40
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/skbuff.h>
#include <linux/ethtool.h>
#include <linux/if_ether.h>
#include <linux/crc32.h>
#include <linux/mii.h>
41
#include <linux/if.h>
42 43
#include <linux/if_vlan.h>
#include <linux/dma-mapping.h>
44
#include <linux/slab.h>
45
#include <linux/prefetch.h>
46 47 48 49
#ifdef CONFIG_STMMAC_DEBUG_FS
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#endif
50
#include "stmmac.h"
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

#undef STMMAC_DEBUG
/*#define STMMAC_DEBUG*/
#ifdef STMMAC_DEBUG
#define DBG(nlevel, klevel, fmt, args...) \
		((void)(netif_msg_##nlevel(priv) && \
		printk(KERN_##klevel fmt, ## args)))
#else
#define DBG(nlevel, klevel, fmt, args...) do { } while (0)
#endif

#undef STMMAC_RX_DEBUG
/*#define STMMAC_RX_DEBUG*/
#ifdef STMMAC_RX_DEBUG
#define RX_DBG(fmt, args...)  printk(fmt, ## args)
#else
#define RX_DBG(fmt, args...)  do { } while (0)
#endif

#undef STMMAC_XMIT_DEBUG
/*#define STMMAC_XMIT_DEBUG*/
#ifdef STMMAC_TX_DEBUG
#define TX_DBG(fmt, args...)  printk(fmt, ## args)
#else
#define TX_DBG(fmt, args...)  do { } while (0)
#endif

#define STMMAC_ALIGN(x)	L1_CACHE_ALIGN(x)
#define JUMBO_LEN	9000

/* Module parameters */
#define TX_TIMEO 5000 /* default 5 seconds */
static int watchdog = TX_TIMEO;
module_param(watchdog, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds");

static int debug = -1;		/* -1: default, 0: no output, 16:  all */
module_param(debug, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(debug, "Message Level (0: no output, 16: all)");

91
int phyaddr = -1;
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
module_param(phyaddr, int, S_IRUGO);
MODULE_PARM_DESC(phyaddr, "Physical device address");

#define DMA_TX_SIZE 256
static int dma_txsize = DMA_TX_SIZE;
module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");

#define DMA_RX_SIZE 256
static int dma_rxsize = DMA_RX_SIZE;
module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");

static int flow_ctrl = FLOW_OFF;
module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");

static int pause = PAUSE_TIME;
module_param(pause, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(pause, "Flow Control Pause Time");

#define TC_DEFAULT 64
static int tc = TC_DEFAULT;
module_param(tc, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(tc, "DMA threshold control value");

/* Pay attention to tune this parameter; take care of both
 * hardware capability and network stabitily/performance impact.
 * Many tests showed that ~4ms latency seems to be good enough. */
#ifdef CONFIG_STMMAC_TIMER
#define DEFAULT_PERIODIC_RATE	256
static int tmrate = DEFAULT_PERIODIC_RATE;
module_param(tmrate, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(tmrate, "External timer freq. (default: 256Hz)");
#endif

#define DMA_BUFFER_SIZE	BUF_SIZE_2KiB
static int buf_sz = DMA_BUFFER_SIZE;
module_param(buf_sz, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(buf_sz, "DMA buffer size");

static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);

137 138 139 140 141 142
#define STMMAC_DEFAULT_LPI_TIMER	1000
static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
module_param(eee_timer, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
#define STMMAC_LPI_TIMER(x) (jiffies + msecs_to_jiffies(x))

143 144
static irqreturn_t stmmac_interrupt(int irq, void *dev_id);

145 146 147 148 149
#ifdef CONFIG_STMMAC_DEBUG_FS
static int stmmac_init_fs(struct net_device *dev);
static void stmmac_exit_fs(void);
#endif

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
/**
 * stmmac_verify_args - verify the driver parameters.
 * Description: it verifies if some wrong parameter is passed to the driver.
 * Note that wrong parameters are replaced with the default values.
 */
static void stmmac_verify_args(void)
{
	if (unlikely(watchdog < 0))
		watchdog = TX_TIMEO;
	if (unlikely(dma_rxsize < 0))
		dma_rxsize = DMA_RX_SIZE;
	if (unlikely(dma_txsize < 0))
		dma_txsize = DMA_TX_SIZE;
	if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
		buf_sz = DMA_BUFFER_SIZE;
	if (unlikely(flow_ctrl > 1))
		flow_ctrl = FLOW_AUTO;
	else if (likely(flow_ctrl < 0))
		flow_ctrl = FLOW_OFF;
	if (unlikely((pause < 0) || (pause > 0xffff)))
		pause = PAUSE_TIME;
171 172
	if (eee_timer < 0)
		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
173 174
}

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
static void stmmac_clk_csr_set(struct stmmac_priv *priv)
{
	u32 clk_rate;

	clk_rate = clk_get_rate(priv->stmmac_clk);

	/* Platform provided default clk_csr would be assumed valid
	 * for all other cases except for the below mentioned ones. */
	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
		if (clk_rate < CSR_F_35M)
			priv->clk_csr = STMMAC_CSR_20_35M;
		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
			priv->clk_csr = STMMAC_CSR_35_60M;
		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
			priv->clk_csr = STMMAC_CSR_60_100M;
		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
			priv->clk_csr = STMMAC_CSR_100_150M;
		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
			priv->clk_csr = STMMAC_CSR_150_250M;
		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
			priv->clk_csr = STMMAC_CSR_250_300M;
	} /* For values higher than the IEEE 802.3 specified frequency
	   * we can not estimate the proper divider as it is not known
	   * the frequency of clk_csr_i. So we do not change the default
	   * divider. */
}

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
#if defined(STMMAC_XMIT_DEBUG) || defined(STMMAC_RX_DEBUG)
static void print_pkt(unsigned char *buf, int len)
{
	int j;
	pr_info("len = %d byte, buf addr: 0x%p", len, buf);
	for (j = 0; j < len; j++) {
		if ((j % 16) == 0)
			pr_info("\n %03x:", j);
		pr_info(" %02x", buf[j]);
	}
	pr_info("\n");
}
#endif

/* minimum number of free TX descriptors required to wake up TX process */
#define STMMAC_TX_THRESH(x)	(x->dma_tx_size/4)

static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
{
	return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
}

224 225 226 227 228 229 230 231 232 233 234 235
/* On some ST platforms, some HW system configuraton registers have to be
 * set according to the link speed negotiated.
 */
static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
{
	struct phy_device *phydev = priv->phydev;

	if (likely(priv->plat->fix_mac_speed))
		priv->plat->fix_mac_speed(priv->plat->bsp_priv,
					  phydev->speed);
}

236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
{
	/* Check and enter in LPI mode */
	if ((priv->dirty_tx == priv->cur_tx) &&
	    (priv->tx_path_in_lpi_mode == false))
		priv->hw->mac->set_eee_mode(priv->ioaddr);
}

void stmmac_disable_eee_mode(struct stmmac_priv *priv)
{
	/* Exit and disable EEE in case of we are are in LPI state. */
	priv->hw->mac->reset_eee_mode(priv->ioaddr);
	del_timer_sync(&priv->eee_ctrl_timer);
	priv->tx_path_in_lpi_mode = false;
}

/**
 * stmmac_eee_ctrl_timer
 * @arg : data hook
 * Description:
 *  If there is no data transfer and if we are not in LPI state,
 *  then MAC Transmitter can be moved to LPI state.
 */
static void stmmac_eee_ctrl_timer(unsigned long arg)
{
	struct stmmac_priv *priv = (struct stmmac_priv *)arg;

	stmmac_enable_eee_mode(priv);
	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_TIMER(eee_timer));
}

/**
 * stmmac_eee_init
 * @priv: private device pointer
 * Description:
 *  If the EEE support has been enabled while configuring the driver,
 *  if the GMAC actually supports the EEE (from the HW cap reg) and the
 *  phy can also manage EEE, so enable the LPI state and start the timer
 *  to verify if the tx path can enter in LPI state.
 */
bool stmmac_eee_init(struct stmmac_priv *priv)
{
	bool ret = false;

	/* MAC core supports the EEE feature. */
	if (priv->dma_cap.eee) {
		/* Check if the PHY supports EEE */
		if (phy_init_eee(priv->phydev, 1))
			goto out;

		priv->eee_active = 1;
		init_timer(&priv->eee_ctrl_timer);
		priv->eee_ctrl_timer.function = stmmac_eee_ctrl_timer;
		priv->eee_ctrl_timer.data = (unsigned long)priv;
		priv->eee_ctrl_timer.expires = STMMAC_LPI_TIMER(eee_timer);
		add_timer(&priv->eee_ctrl_timer);

		priv->hw->mac->set_eee_timer(priv->ioaddr,
					     STMMAC_DEFAULT_LIT_LS_TIMER,
					     priv->tx_lpi_timer);

		pr_info("stmmac: Energy-Efficient Ethernet initialized\n");

		ret = true;
	}
out:
	return ret;
}

static void stmmac_eee_adjust(struct stmmac_priv *priv)
{
	/* When the EEE has been already initialised we have to
	 * modify the PLS bit in the LPI ctrl & status reg according
	 * to the PHY link status. For this reason.
	 */
	if (priv->eee_enabled)
		priv->hw->mac->set_eee_pls(priv->ioaddr, priv->phydev->link);
}

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
/**
 * stmmac_adjust_link
 * @dev: net device structure
 * Description: it adjusts the link parameters.
 */
static void stmmac_adjust_link(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	struct phy_device *phydev = priv->phydev;
	unsigned long flags;
	int new_state = 0;
	unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;

	if (phydev == NULL)
		return;

	DBG(probe, DEBUG, "stmmac_adjust_link: called.  address %d link %d\n",
	    phydev->addr, phydev->link);

	spin_lock_irqsave(&priv->lock, flags);
335

336
	if (phydev->link) {
337
		u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
338 339 340 341 342 343

		/* Now we make sure that we can be in full duplex mode.
		 * If not, we operate in half-duplex mode. */
		if (phydev->duplex != priv->oldduplex) {
			new_state = 1;
			if (!(phydev->duplex))
344
				ctrl &= ~priv->hw->link.duplex;
345
			else
346
				ctrl |= priv->hw->link.duplex;
347 348 349 350
			priv->oldduplex = phydev->duplex;
		}
		/* Flow Control operation */
		if (phydev->pause)
351
			priv->hw->mac->flow_ctrl(priv->ioaddr, phydev->duplex,
352
						 fc, pause_time);
353 354 355 356 357

		if (phydev->speed != priv->speed) {
			new_state = 1;
			switch (phydev->speed) {
			case 1000:
358
				if (likely(priv->plat->has_gmac))
359
					ctrl &= ~priv->hw->link.port;
360
					stmmac_hw_fix_mac_speed(priv);
361 362 363
				break;
			case 100:
			case 10:
364
				if (priv->plat->has_gmac) {
365
					ctrl |= priv->hw->link.port;
366
					if (phydev->speed == SPEED_100) {
367
						ctrl |= priv->hw->link.speed;
368
					} else {
369
						ctrl &= ~(priv->hw->link.speed);
370 371
					}
				} else {
372
					ctrl &= ~priv->hw->link.port;
373
				}
374
				stmmac_hw_fix_mac_speed(priv);
375 376 377 378 379 380 381 382 383 384 385
				break;
			default:
				if (netif_msg_link(priv))
					pr_warning("%s: Speed (%d) is not 10"
				       " or 100!\n", dev->name, phydev->speed);
				break;
			}

			priv->speed = phydev->speed;
		}

386
		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401

		if (!priv->oldlink) {
			new_state = 1;
			priv->oldlink = 1;
		}
	} else if (priv->oldlink) {
		new_state = 1;
		priv->oldlink = 0;
		priv->speed = 0;
		priv->oldduplex = -1;
	}

	if (new_state && netif_msg_link(priv))
		phy_print_status(phydev);

402 403
	stmmac_eee_adjust(priv);

404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
	spin_unlock_irqrestore(&priv->lock, flags);

	DBG(probe, DEBUG, "stmmac_adjust_link: exiting\n");
}

/**
 * stmmac_init_phy - PHY initialization
 * @dev: net device structure
 * Description: it initializes the driver's PHY state, and attaches the PHY
 * to the mac driver.
 *  Return value:
 *  0 on success
 */
static int stmmac_init_phy(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	struct phy_device *phydev;
421
	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
422
	char bus_id[MII_BUS_ID_SIZE];
423
	int interface = priv->plat->interface;
424 425 426 427
	priv->oldlink = 0;
	priv->speed = 0;
	priv->oldduplex = -1;

428 429 430 431 432 433 434
	if (priv->plat->phy_bus_name)
		snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
				priv->plat->phy_bus_name, priv->plat->bus_id);
	else
		snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
				priv->plat->bus_id);

435
	snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
436
		 priv->plat->phy_addr);
437
	pr_debug("stmmac_init_phy:  trying to attach to %s\n", phy_id_fmt);
438

439 440
	phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, 0,
			     interface);
441 442 443 444 445 446

	if (IS_ERR(phydev)) {
		pr_err("%s: Could not attach to PHY\n", dev->name);
		return PTR_ERR(phydev);
	}

447
	/* Stop Advertising 1000BASE Capability if interface is not GMII */
448 449 450 451
	if ((interface == PHY_INTERFACE_MODE_MII) ||
	    (interface == PHY_INTERFACE_MODE_RMII))
		phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
					 SUPPORTED_1000baseT_Full);
452

453 454 455 456 457 458 459 460 461 462 463 464
	/*
	 * Broken HW is sometimes missing the pull-up resistor on the
	 * MDIO line, which results in reads to non-existent devices returning
	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
	 * device as well.
	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
	 */
	if (phydev->phy_id == 0) {
		phy_disconnect(phydev);
		return -ENODEV;
	}
	pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
465
		 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495

	priv->phydev = phydev;

	return 0;
}

/**
 * display_ring
 * @p: pointer to the ring.
 * @size: size of the ring.
 * Description: display all the descriptors within the ring.
 */
static void display_ring(struct dma_desc *p, int size)
{
	struct tmp_s {
		u64 a;
		unsigned int b;
		unsigned int c;
	};
	int i;
	for (i = 0; i < size; i++) {
		struct tmp_s *x = (struct tmp_s *)(p + i);
		pr_info("\t%d [0x%x]: DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
		       i, (unsigned int)virt_to_phys(&p[i]),
		       (unsigned int)(x->a), (unsigned int)((x->a) >> 32),
		       x->b, x->c);
		pr_info("\n");
	}
}

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
static int stmmac_set_bfsize(int mtu, int bufsize)
{
	int ret = bufsize;

	if (mtu >= BUF_SIZE_4KiB)
		ret = BUF_SIZE_8KiB;
	else if (mtu >= BUF_SIZE_2KiB)
		ret = BUF_SIZE_4KiB;
	else if (mtu >= DMA_BUFFER_SIZE)
		ret = BUF_SIZE_2KiB;
	else
		ret = DMA_BUFFER_SIZE;

	return ret;
}

512 513 514 515
/**
 * init_dma_desc_rings - init the RX/TX descriptor rings
 * @dev: net device structure
 * Description:  this function initializes the DMA RX/TX descriptors
516 517
 * and allocates the socket buffers. It suppors the chained and ring
 * modes.
518 519 520 521 522 523 524 525
 */
static void init_dma_desc_rings(struct net_device *dev)
{
	int i;
	struct stmmac_priv *priv = netdev_priv(dev);
	struct sk_buff *skb;
	unsigned int txsize = priv->dma_tx_size;
	unsigned int rxsize = priv->dma_rx_size;
526 527 528
	unsigned int bfsize;
	int dis_ic = 0;
	int des3_as_data_buf = 0;
529

530 531 532 533 534 535
	/* Set the max buffer size according to the DESC mode
	 * and the MTU. Note that RING mode allows 16KiB bsize. */
	bfsize = priv->hw->ring->set_16kib_bfsize(dev->mtu);

	if (bfsize == BUF_SIZE_16KiB)
		des3_as_data_buf = 1;
536
	else
537
		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
538

539 540 541 542 543
#ifdef CONFIG_STMMAC_TIMER
	/* Disable interrupts on completion for the reception if timer is on */
	if (likely(priv->tm->enable))
		dis_ic = 1;
#endif
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570

	DBG(probe, INFO, "stmmac: txsize %d, rxsize %d, bfsize %d\n",
	    txsize, rxsize, bfsize);

	priv->rx_skbuff_dma = kmalloc(rxsize * sizeof(dma_addr_t), GFP_KERNEL);
	priv->rx_skbuff =
	    kmalloc(sizeof(struct sk_buff *) * rxsize, GFP_KERNEL);
	priv->dma_rx =
	    (struct dma_desc *)dma_alloc_coherent(priv->device,
						  rxsize *
						  sizeof(struct dma_desc),
						  &priv->dma_rx_phy,
						  GFP_KERNEL);
	priv->tx_skbuff = kmalloc(sizeof(struct sk_buff *) * txsize,
				       GFP_KERNEL);
	priv->dma_tx =
	    (struct dma_desc *)dma_alloc_coherent(priv->device,
						  txsize *
						  sizeof(struct dma_desc),
						  &priv->dma_tx_phy,
						  GFP_KERNEL);

	if ((priv->dma_rx == NULL) || (priv->dma_tx == NULL)) {
		pr_err("%s:ERROR allocating the DMA Tx/Rx desc\n", __func__);
		return;
	}

571
	DBG(probe, INFO, "stmmac (%s) DMA desc: virt addr (Rx %p, "
572 573 574 575 576 577 578 579 580 581 582
	    "Tx %p)\n\tDMA phy addr (Rx 0x%08x, Tx 0x%08x)\n",
	    dev->name, priv->dma_rx, priv->dma_tx,
	    (unsigned int)priv->dma_rx_phy, (unsigned int)priv->dma_tx_phy);

	/* RX INITIALIZATION */
	DBG(probe, INFO, "stmmac: SKB addresses:\n"
			 "skb\t\tskb data\tdma data\n");

	for (i = 0; i < rxsize; i++) {
		struct dma_desc *p = priv->dma_rx + i;

583 584
		skb = __netdev_alloc_skb(dev, bfsize + NET_IP_ALIGN,
					 GFP_KERNEL);
585 586 587 588
		if (unlikely(skb == NULL)) {
			pr_err("%s: Rx init fails; skb is NULL\n", __func__);
			break;
		}
589
		skb_reserve(skb, NET_IP_ALIGN);
590 591 592 593 594
		priv->rx_skbuff[i] = skb;
		priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
						bfsize, DMA_FROM_DEVICE);

		p->des2 = priv->rx_skbuff_dma[i];
595 596 597

		priv->hw->ring->init_desc3(des3_as_data_buf, p);

598 599 600 601 602 603 604 605 606 607 608 609 610
		DBG(probe, INFO, "[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
			priv->rx_skbuff[i]->data, priv->rx_skbuff_dma[i]);
	}
	priv->cur_rx = 0;
	priv->dirty_rx = (unsigned int)(i - rxsize);
	priv->dma_buf_sz = bfsize;
	buf_sz = bfsize;

	/* TX INITIALIZATION */
	for (i = 0; i < txsize; i++) {
		priv->tx_skbuff[i] = NULL;
		priv->dma_tx[i].des2 = 0;
	}
611 612 613 614 615 616

	/* In case of Chained mode this sets the des3 to the next
	 * element in the chain */
	priv->hw->ring->init_dma_chain(priv->dma_rx, priv->dma_rx_phy, rxsize);
	priv->hw->ring->init_dma_chain(priv->dma_tx, priv->dma_tx_phy, txsize);

617 618 619 620
	priv->dirty_tx = 0;
	priv->cur_tx = 0;

	/* Clear the Rx/Tx descriptors */
621 622
	priv->hw->desc->init_rx_desc(priv->dma_rx, rxsize, dis_ic);
	priv->hw->desc->init_tx_desc(priv->dma_tx, txsize);
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654

	if (netif_msg_hw(priv)) {
		pr_info("RX descriptor ring:\n");
		display_ring(priv->dma_rx, rxsize);
		pr_info("TX descriptor ring:\n");
		display_ring(priv->dma_tx, txsize);
	}
}

static void dma_free_rx_skbufs(struct stmmac_priv *priv)
{
	int i;

	for (i = 0; i < priv->dma_rx_size; i++) {
		if (priv->rx_skbuff[i]) {
			dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
					 priv->dma_buf_sz, DMA_FROM_DEVICE);
			dev_kfree_skb_any(priv->rx_skbuff[i]);
		}
		priv->rx_skbuff[i] = NULL;
	}
}

static void dma_free_tx_skbufs(struct stmmac_priv *priv)
{
	int i;

	for (i = 0; i < priv->dma_tx_size; i++) {
		if (priv->tx_skbuff[i] != NULL) {
			struct dma_desc *p = priv->dma_tx + i;
			if (p->des2)
				dma_unmap_single(priv->device, p->des2,
655 656
						 priv->hw->desc->get_tx_len(p),
						 DMA_TO_DEVICE);
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
			dev_kfree_skb_any(priv->tx_skbuff[i]);
			priv->tx_skbuff[i] = NULL;
		}
	}
}

static void free_dma_desc_resources(struct stmmac_priv *priv)
{
	/* Release the DMA TX/RX socket buffers */
	dma_free_rx_skbufs(priv);
	dma_free_tx_skbufs(priv);

	/* Free the region of consistent memory previously allocated for
	 * the DMA */
	dma_free_coherent(priv->device,
			  priv->dma_tx_size * sizeof(struct dma_desc),
			  priv->dma_tx, priv->dma_tx_phy);
	dma_free_coherent(priv->device,
			  priv->dma_rx_size * sizeof(struct dma_desc),
			  priv->dma_rx, priv->dma_rx_phy);
	kfree(priv->rx_skbuff_dma);
	kfree(priv->rx_skbuff);
	kfree(priv->tx_skbuff);
}

/**
 *  stmmac_dma_operation_mode - HW DMA operation mode
 *  @priv : pointer to the private device structure.
 *  Description: it sets the DMA operation mode: tx/rx DMA thresholds
686
 *  or Store-And-Forward capability.
687 688 689
 */
static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
{
690 691 692 693 694
	if (likely(priv->plat->force_sf_dma_mode ||
		((priv->plat->tx_coe) && (!priv->no_csum_insertion)))) {
		/*
		 * In case of GMAC, SF mode can be enabled
		 * to perform the TX COE in HW. This depends on:
695 696 697 698 699 700 701 702 703
		 * 1) TX COE if actually supported
		 * 2) There is no bugged Jumbo frame support
		 *    that needs to not insert csum in the TDES.
		 */
		priv->hw->dma->dma_mode(priv->ioaddr,
					SF_DMA_MODE, SF_DMA_MODE);
		tc = SF_DMA_MODE;
	} else
		priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
704 705 706 707 708 709 710 711 712 713 714
}

/**
 * stmmac_tx:
 * @priv: private driver structure
 * Description: it reclaims resources after transmission completes.
 */
static void stmmac_tx(struct stmmac_priv *priv)
{
	unsigned int txsize = priv->dma_tx_size;

715 716
	spin_lock(&priv->tx_lock);

717 718 719 720 721 722 723
	while (priv->dirty_tx != priv->cur_tx) {
		int last;
		unsigned int entry = priv->dirty_tx % txsize;
		struct sk_buff *skb = priv->tx_skbuff[entry];
		struct dma_desc *p = priv->dma_tx + entry;

		/* Check if the descriptor is owned by the DMA. */
724
		if (priv->hw->desc->get_tx_owner(p))
725 726 727
			break;

		/* Verify tx error by looking at the last segment */
728
		last = priv->hw->desc->get_tx_ls(p);
729 730
		if (likely(last)) {
			int tx_error =
731 732
				priv->hw->desc->tx_status(&priv->dev->stats,
							  &priv->xstats, p,
733
							  priv->ioaddr);
734 735 736 737 738 739 740 741 742 743 744
			if (likely(tx_error == 0)) {
				priv->dev->stats.tx_packets++;
				priv->xstats.tx_pkt_n++;
			} else
				priv->dev->stats.tx_errors++;
		}
		TX_DBG("%s: curr %d, dirty %d\n", __func__,
			priv->cur_tx, priv->dirty_tx);

		if (likely(p->des2))
			dma_unmap_single(priv->device, p->des2,
745
					 priv->hw->desc->get_tx_len(p),
746
					 DMA_TO_DEVICE);
747
		priv->hw->ring->clean_desc3(p);
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764

		if (likely(skb != NULL)) {
			/*
			 * If there's room in the queue (limit it to size)
			 * we add this skb back into the pool,
			 * if it's the right size.
			 */
			if ((skb_queue_len(&priv->rx_recycle) <
				priv->dma_rx_size) &&
				skb_recycle_check(skb, priv->dma_buf_sz))
				__skb_queue_head(&priv->rx_recycle, skb);
			else
				dev_kfree_skb(skb);

			priv->tx_skbuff[entry] = NULL;
		}

765
		priv->hw->desc->release_tx_desc(p);
766

767
		priv->dirty_tx++;
768 769 770 771 772 773 774 775 776 777 778
	}
	if (unlikely(netif_queue_stopped(priv->dev) &&
		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
		netif_tx_lock(priv->dev);
		if (netif_queue_stopped(priv->dev) &&
		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
			TX_DBG("%s: restart transmit\n", __func__);
			netif_wake_queue(priv->dev);
		}
		netif_tx_unlock(priv->dev);
	}
779 780 781 782 783

	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
		stmmac_enable_eee_mode(priv);
		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_TIMER(eee_timer));
	}
784
	spin_unlock(&priv->tx_lock);
785 786 787 788
}

static inline void stmmac_enable_irq(struct stmmac_priv *priv)
{
789 790 791 792
#ifdef CONFIG_STMMAC_TIMER
	if (likely(priv->tm->enable))
		priv->tm->timer_start(tmrate);
	else
793
#endif
794
		priv->hw->dma->enable_dma_irq(priv->ioaddr);
795 796 797 798
}

static inline void stmmac_disable_irq(struct stmmac_priv *priv)
{
799 800 801 802
#ifdef CONFIG_STMMAC_TIMER
	if (likely(priv->tm->enable))
		priv->tm->timer_stop();
	else
803
#endif
804
		priv->hw->dma->disable_dma_irq(priv->ioaddr);
805 806 807 808 809 810 811
}

static int stmmac_has_work(struct stmmac_priv *priv)
{
	unsigned int has_work = 0;
	int rxret, tx_work = 0;

812
	rxret = priv->hw->desc->get_rx_owner(priv->dma_rx +
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
		(priv->cur_rx % priv->dma_rx_size));

	if (priv->dirty_tx != priv->cur_tx)
		tx_work = 1;

	if (likely(!rxret || tx_work))
		has_work = 1;

	return has_work;
}

static inline void _stmmac_schedule(struct stmmac_priv *priv)
{
	if (likely(stmmac_has_work(priv))) {
		stmmac_disable_irq(priv);
		napi_schedule(&priv->napi);
	}
}

#ifdef CONFIG_STMMAC_TIMER
void stmmac_schedule(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);

	priv->xstats.sched_timer_n++;

	_stmmac_schedule(priv);
}

static void stmmac_no_timer_started(unsigned int x)
{;
};

static void stmmac_no_timer_stopped(void)
{;
};
#endif

/**
 * stmmac_tx_err:
 * @priv: pointer to the private device structure
 * Description: it cleans the descriptors and restarts the transmission
 * in case of errors.
 */
static void stmmac_tx_err(struct stmmac_priv *priv)
{
	netif_stop_queue(priv->dev);

861
	priv->hw->dma->stop_tx(priv->ioaddr);
862
	dma_free_tx_skbufs(priv);
863
	priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
864 865
	priv->dirty_tx = 0;
	priv->cur_tx = 0;
866
	priv->hw->dma->start_tx(priv->ioaddr);
867 868 869 870 871 872

	priv->dev->stats.tx_errors++;
	netif_wake_queue(priv->dev);
}


873 874 875 876
static void stmmac_dma_interrupt(struct stmmac_priv *priv)
{
	int status;

877
	status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
878 879 880 881 882 883 884
	if (likely(status == handle_tx_rx))
		_stmmac_schedule(priv);

	else if (unlikely(status == tx_hard_error_bump_tc)) {
		/* Try to bump up the dma threshold on this failure */
		if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
			tc += 64;
885
			priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
886
			priv->xstats.threshold = tc;
887
		}
888 889
	} else if (unlikely(status == tx_hard_error))
		stmmac_tx_err(priv);
890 891
}

892 893 894 895 896
static void stmmac_mmc_setup(struct stmmac_priv *priv)
{
	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;

G
Giuseppe CAVALLARO 已提交
897 898
	/* Mask MMC irq, counters are managed in SW and registers
	 * are cleared on each READ eventually. */
899
	dwmac_mmc_intr_all_mask(priv->ioaddr);
G
Giuseppe CAVALLARO 已提交
900 901 902 903 904

	if (priv->dma_cap.rmon) {
		dwmac_mmc_ctrl(priv->ioaddr, mode);
		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
	} else
905
		pr_info(" No MAC Management Counters available\n");
906 907
}

908 909 910 911 912 913 914 915 916 917
static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
{
	u32 hwid = priv->hw->synopsys_uid;

	/* Only check valid Synopsys Id because old MAC chips
	 * have no HW registers where get the ID */
	if (likely(hwid)) {
		u32 uid = ((hwid & 0x0000ff00) >> 8);
		u32 synid = (hwid & 0x000000ff);

918
		pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
919 920 921 922 923 924
			uid, synid);

		return synid;
	}
	return 0;
}
925

926 927
/**
 * stmmac_selec_desc_mode
928 929 930
 * @priv : private structure
 * Description: select the Enhanced/Alternate or Normal descriptors
 */
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
{
	if (priv->plat->enh_desc) {
		pr_info(" Enhanced/Alternate descriptors\n");
		priv->hw->desc = &enh_desc_ops;
	} else {
		pr_info(" Normal descriptors\n");
		priv->hw->desc = &ndesc_ops;
	}
}

/**
 * stmmac_get_hw_features
 * @priv : private device pointer
 * Description:
 *  new GMAC chip generations have a new register to indicate the
 *  presence of the optional feature/functions.
 *  This can be also used to override the value passed through the
 *  platform and necessary for old MAC10/100 and GMAC chips.
950 951 952
 */
static int stmmac_get_hw_features(struct stmmac_priv *priv)
{
953
	u32 hw_cap = 0;
954

955 956
	if (priv->hw->dma->get_hw_feature) {
		hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
957

958 959 960 961 962 963 964 965 966 967 968 969
		priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
		priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
		priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
		priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
		priv->dma_cap.multi_addr =
			(hw_cap & DMA_HW_FEAT_ADDMACADRSEL) >> 5;
		priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
		priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
		priv->dma_cap.pmt_remote_wake_up =
			(hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
		priv->dma_cap.pmt_magic_frame =
			(hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
970
		/* MMC */
971
		priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
972
		/* IEEE 1588-2002*/
973 974
		priv->dma_cap.time_stamp =
			(hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
975
		/* IEEE 1588-2008*/
976 977
		priv->dma_cap.atime_stamp =
			(hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
978
		/* 802.3az - Energy-Efficient Ethernet (EEE) */
979 980
		priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
		priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
981
		/* TX and RX csum */
982 983 984 985 986 987 988
		priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
		priv->dma_cap.rx_coe_type1 =
			(hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
		priv->dma_cap.rx_coe_type2 =
			(hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
		priv->dma_cap.rxfifo_over_2048 =
			(hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
989
		/* TX and RX number of channels */
990 991 992 993
		priv->dma_cap.number_rx_channel =
			(hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
		priv->dma_cap.number_tx_channel =
			(hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
994
		/* Alternate (enhanced) DESC mode*/
995 996
		priv->dma_cap.enh_desc =
			(hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
997

998
	}
999 1000 1001 1002

	return hw_cap;
}

1003 1004 1005 1006 1007 1008 1009 1010 1011
static void stmmac_check_ether_addr(struct stmmac_priv *priv)
{
	/* verify if the MAC address is valid, in case of failures it
	 * generates a random MAC address */
	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
		priv->hw->mac->get_umac_addr((void __iomem *)
					     priv->dev->base_addr,
					     priv->dev->dev_addr, 0);
		if  (!is_valid_ether_addr(priv->dev->dev_addr))
1012
			eth_hw_addr_random(priv->dev);
1013 1014 1015 1016 1017
	}
	pr_warning("%s: device MAC address %pM\n", priv->dev->name,
						   priv->dev->dev_addr);
}

1018 1019 1020
static int stmmac_init_dma_engine(struct stmmac_priv *priv)
{
	int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
1021
	int mixed_burst = 0;
1022 1023 1024 1025 1026 1027 1028

	/* Some DMA parameters can be passed from the platform;
	 * in case of these are not passed we keep a default
	 * (good for all the chips) and init the DMA! */
	if (priv->plat->dma_cfg) {
		pbl = priv->plat->dma_cfg->pbl;
		fixed_burst = priv->plat->dma_cfg->fixed_burst;
1029
		mixed_burst = priv->plat->dma_cfg->mixed_burst;
1030 1031 1032
		burst_len = priv->plat->dma_cfg->burst_len;
	}

1033
	return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1034 1035 1036 1037
				   burst_len, priv->dma_tx_phy,
				   priv->dma_rx_phy);
}

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
/**
 *  stmmac_open - open entry point of the driver
 *  @dev : pointer to the device structure.
 *  Description:
 *  This function is the open entry point of the driver.
 *  Return value:
 *  0 on success and an appropriate (-)ve integer as defined in errno.h
 *  file on failure.
 */
static int stmmac_open(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	int ret;

#ifdef CONFIG_STMMAC_TIMER
1053
	priv->tm = kzalloc(sizeof(struct stmmac_timer *), GFP_KERNEL);
1054 1055
	if (unlikely(priv->tm == NULL))
		return -ENOMEM;
1056

1057 1058
	priv->tm->freq = tmrate;

1059 1060
	/* Test if the external timer can be actually used.
	 * In case of failure continue without timer. */
1061
	if (unlikely((stmmac_open_ext_timer(dev, priv->tm)) < 0)) {
1062
		pr_warning("stmmaceth: cannot attach the external timer.\n");
1063 1064 1065
		priv->tm->freq = 0;
		priv->tm->timer_start = stmmac_no_timer_started;
		priv->tm->timer_stop = stmmac_no_timer_stopped;
1066 1067
	} else
		priv->tm->enable = 1;
1068
#endif
1069
	clk_enable(priv->stmmac_clk);
1070 1071 1072

	stmmac_check_ether_addr(priv);

1073 1074 1075 1076 1077
	ret = stmmac_init_phy(dev);
	if (unlikely(ret)) {
		pr_err("%s: Cannot attach to PHY (error: %d)\n", __func__, ret);
		goto open_error;
	}
1078 1079 1080 1081 1082 1083 1084 1085

	/* Create and initialize the TX/RX descriptors chains. */
	priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
	priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
	init_dma_desc_rings(dev);

	/* DMA initialization and SW reset */
1086
	ret = stmmac_init_dma_engine(priv);
1087
	if (ret < 0) {
1088
		pr_err("%s: DMA initialization failed\n", __func__);
1089
		goto open_error;
1090 1091 1092
	}

	/* Copy the MAC addr into the HW  */
1093
	priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
1094

1095
	/* If required, perform hw setup of the bus. */
1096 1097
	if (priv->plat->bus_setup)
		priv->plat->bus_setup(priv->ioaddr);
1098

1099
	/* Initialize the MAC Core */
1100
	priv->hw->mac->core_init(priv->ioaddr);
1101

1102 1103 1104 1105 1106 1107 1108 1109 1110
	/* Request the IRQ lines */
	ret = request_irq(dev->irq, stmmac_interrupt,
			 IRQF_SHARED, dev->name, dev);
	if (unlikely(ret < 0)) {
		pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
		       __func__, dev->irq, ret);
		goto open_error;
	}

1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
	/* Request the Wake IRQ in case of another line is used for WoL */
	if (priv->wol_irq != dev->irq) {
		ret = request_irq(priv->wol_irq, stmmac_interrupt,
				  IRQF_SHARED, dev->name, dev);
		if (unlikely(ret < 0)) {
			pr_err("%s: ERROR: allocating the ext WoL IRQ %d "
			       "(error: %d)\n",	__func__, priv->wol_irq, ret);
			goto open_error_wolirq;
		}
	}

1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
	/* Request the IRQ lines */
	if (priv->lpi_irq != -ENXIO) {
		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
				  dev->name, dev);
		if (unlikely(ret < 0)) {
			pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
			       __func__, priv->lpi_irq, ret);
			goto open_error_lpiirq;
		}
	}

1133
	/* Enable the MAC Rx/Tx */
1134
	stmmac_set_mac(priv->ioaddr, true);
1135 1136 1137 1138 1139 1140 1141 1142

	/* Set the HW DMA mode and the COE */
	stmmac_dma_operation_mode(priv);

	/* Extra statistics */
	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
	priv->xstats.threshold = tc;

G
Giuseppe CAVALLARO 已提交
1143
	stmmac_mmc_setup(priv);
1144

1145 1146 1147
#ifdef CONFIG_STMMAC_DEBUG_FS
	ret = stmmac_init_fs(dev);
	if (ret < 0)
1148
		pr_warning("%s: failed debugFS registration\n", __func__);
1149
#endif
1150 1151
	/* Start the ball rolling... */
	DBG(probe, DEBUG, "%s: DMA RX/TX processes started...\n", dev->name);
1152 1153
	priv->hw->dma->start_tx(priv->ioaddr);
	priv->hw->dma->start_rx(priv->ioaddr);
1154 1155 1156 1157

#ifdef CONFIG_STMMAC_TIMER
	priv->tm->timer_start(tmrate);
#endif
1158

1159 1160
	/* Dump DMA/MAC registers */
	if (netif_msg_hw(priv)) {
1161 1162
		priv->hw->mac->dump_regs(priv->ioaddr);
		priv->hw->dma->dump_regs(priv->ioaddr);
1163 1164 1165 1166 1167
	}

	if (priv->phydev)
		phy_start(priv->phydev);

1168 1169 1170
	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS_TIMER;
	priv->eee_enabled = stmmac_eee_init(priv);

1171 1172 1173
	napi_enable(&priv->napi);
	skb_queue_head_init(&priv->rx_recycle);
	netif_start_queue(dev);
1174

1175
	return 0;
1176

1177 1178 1179 1180
open_error_lpiirq:
	if (priv->wol_irq != dev->irq)
		free_irq(priv->wol_irq, dev);

1181 1182 1183
open_error_wolirq:
	free_irq(dev->irq, dev);

1184 1185 1186 1187 1188 1189 1190
open_error:
#ifdef CONFIG_STMMAC_TIMER
	kfree(priv->tm);
#endif
	if (priv->phydev)
		phy_disconnect(priv->phydev);

1191
	clk_disable(priv->stmmac_clk);
1192

1193
	return ret;
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
}

/**
 *  stmmac_release - close entry point of the driver
 *  @dev : device pointer.
 *  Description:
 *  This is the stop entry point of the driver.
 */
static int stmmac_release(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);

1206 1207 1208
	if (priv->eee_enabled)
		del_timer_sync(&priv->eee_ctrl_timer);

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
	/* Stop and disconnect the PHY */
	if (priv->phydev) {
		phy_stop(priv->phydev);
		phy_disconnect(priv->phydev);
		priv->phydev = NULL;
	}

	netif_stop_queue(dev);

#ifdef CONFIG_STMMAC_TIMER
	/* Stop and release the timer */
	stmmac_close_ext_timer();
	if (priv->tm != NULL)
		kfree(priv->tm);
#endif
	napi_disable(&priv->napi);
	skb_queue_purge(&priv->rx_recycle);

	/* Free the IRQ lines */
	free_irq(dev->irq, dev);
1229 1230
	if (priv->wol_irq != dev->irq)
		free_irq(priv->wol_irq, dev);
1231 1232
	if (priv->lpi_irq != -ENXIO)
		free_irq(priv->lpi_irq, dev);
1233 1234

	/* Stop TX/RX DMA and clear the descriptors */
1235 1236
	priv->hw->dma->stop_tx(priv->ioaddr);
	priv->hw->dma->stop_rx(priv->ioaddr);
1237 1238 1239 1240

	/* Release and free the Rx/Tx resources */
	free_dma_desc_resources(priv);

1241
	/* Disable the MAC Rx/Tx */
1242
	stmmac_set_mac(priv->ioaddr, false);
1243 1244 1245

	netif_carrier_off(dev);

1246 1247 1248
#ifdef CONFIG_STMMAC_DEBUG_FS
	stmmac_exit_fs();
#endif
1249
	clk_disable(priv->stmmac_clk);
1250

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
	return 0;
}

/**
 *  stmmac_xmit:
 *  @skb : the socket buffer
 *  @dev : device pointer
 *  Description : Tx entry point of the driver.
 */
static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	unsigned int txsize = priv->dma_tx_size;
	unsigned int entry;
	int i, csum_insertion = 0;
	int nfrags = skb_shinfo(skb)->nr_frags;
	struct dma_desc *desc, *first;
1268
	unsigned int nopaged_len = skb_headlen(skb);
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

	if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
		if (!netif_queue_stopped(dev)) {
			netif_stop_queue(dev);
			/* This is a hard error, log it. */
			pr_err("%s: BUG! Tx Ring full when queue awake\n",
				__func__);
		}
		return NETDEV_TX_BUSY;
	}

1280 1281
	spin_lock(&priv->tx_lock);

1282 1283 1284
	if (priv->tx_path_in_lpi_mode)
		stmmac_disable_eee_mode(priv);

1285 1286 1287 1288 1289 1290 1291
	entry = priv->cur_tx % txsize;

#ifdef STMMAC_XMIT_DEBUG
	if ((skb->len > ETH_FRAME_LEN) || nfrags)
		pr_info("stmmac xmit:\n"
		       "\tskb addr %p - len: %d - nopaged_len: %d\n"
		       "\tn_frags: %d - ip_summed: %d - %s gso\n",
1292
		       skb, skb->len, nopaged_len, nfrags, skb->ip_summed,
1293 1294 1295
		       !skb_is_gso(skb) ? "isn't" : "is");
#endif

1296
	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1297 1298 1299 1300 1301 1302 1303 1304

	desc = priv->dma_tx + entry;
	first = desc;

#ifdef STMMAC_XMIT_DEBUG
	if ((nfrags > 0) || (skb->len > ETH_FRAME_LEN))
		pr_debug("stmmac xmit: skb len: %d, nopaged_len: %d,\n"
		       "\t\tn_frags: %d, ip_summed: %d\n",
1305
		       skb->len, nopaged_len, nfrags, skb->ip_summed);
1306 1307
#endif
	priv->tx_skbuff[entry] = skb;
1308 1309 1310

	if (priv->hw->ring->is_jumbo_frm(skb->len, priv->plat->enh_desc)) {
		entry = priv->hw->ring->jumbo_frm(priv, skb, csum_insertion);
1311 1312 1313 1314
		desc = priv->dma_tx + entry;
	} else {
		desc->des2 = dma_map_single(priv->device, skb->data,
					nopaged_len, DMA_TO_DEVICE);
1315 1316
		priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
						csum_insertion);
1317 1318 1319
	}

	for (i = 0; i < nfrags; i++) {
E
Eric Dumazet 已提交
1320 1321
		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
		int len = skb_frag_size(frag);
1322 1323 1324 1325 1326

		entry = (++priv->cur_tx) % txsize;
		desc = priv->dma_tx + entry;

		TX_DBG("\t[entry %d] segment len: %d\n", entry, len);
1327 1328
		desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
					      DMA_TO_DEVICE);
1329
		priv->tx_skbuff[entry] = NULL;
1330
		priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion);
1331
		wmb();
1332
		priv->hw->desc->set_tx_owner(desc);
1333
		wmb();
1334 1335 1336
	}

	/* Interrupt on completition only for the latest segment */
1337
	priv->hw->desc->close_tx_desc(desc);
1338

1339
#ifdef CONFIG_STMMAC_TIMER
1340 1341
	/* Clean IC while using timer */
	if (likely(priv->tm->enable))
1342
		priv->hw->desc->clear_tx_ic(desc);
1343
#endif
1344 1345 1346

	wmb();

1347
	/* To avoid raise condition */
1348
	priv->hw->desc->set_tx_owner(first);
1349
	wmb();
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370

	priv->cur_tx++;

#ifdef STMMAC_XMIT_DEBUG
	if (netif_msg_pktdata(priv)) {
		pr_info("stmmac xmit: current=%d, dirty=%d, entry=%d, "
		       "first=%p, nfrags=%d\n",
		       (priv->cur_tx % txsize), (priv->dirty_tx % txsize),
		       entry, first, nfrags);
		display_ring(priv->dma_tx, txsize);
		pr_info(">>> frame to be transmitted: ");
		print_pkt(skb->data, skb->len);
	}
#endif
	if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
		TX_DBG("%s: stop transmitted packets\n", __func__);
		netif_stop_queue(dev);
	}

	dev->stats.tx_bytes += skb->len;

1371 1372
	skb_tx_timestamp(skb);

1373 1374
	priv->hw->dma->enable_dma_transmission(priv->ioaddr);

1375 1376
	spin_unlock(&priv->tx_lock);

1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
	return NETDEV_TX_OK;
}

static inline void stmmac_rx_refill(struct stmmac_priv *priv)
{
	unsigned int rxsize = priv->dma_rx_size;
	int bfsize = priv->dma_buf_sz;
	struct dma_desc *p = priv->dma_rx;

	for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
		unsigned int entry = priv->dirty_rx % rxsize;
		if (likely(priv->rx_skbuff[entry] == NULL)) {
			struct sk_buff *skb;

			skb = __skb_dequeue(&priv->rx_recycle);
			if (skb == NULL)
				skb = netdev_alloc_skb_ip_align(priv->dev,
								bfsize);

			if (unlikely(skb == NULL))
				break;

			priv->rx_skbuff[entry] = skb;
			priv->rx_skbuff_dma[entry] =
			    dma_map_single(priv->device, skb->data, bfsize,
					   DMA_FROM_DEVICE);

			(p + entry)->des2 = priv->rx_skbuff_dma[entry];
1405 1406 1407 1408

			if (unlikely(priv->plat->has_gmac))
				priv->hw->ring->refill_desc3(bfsize, p + entry);

1409 1410
			RX_DBG(KERN_INFO "\trefill entry #%d\n", entry);
		}
1411
		wmb();
1412
		priv->hw->desc->set_rx_owner(p + entry);
1413
		wmb();
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
	}
}

static int stmmac_rx(struct stmmac_priv *priv, int limit)
{
	unsigned int rxsize = priv->dma_rx_size;
	unsigned int entry = priv->cur_rx % rxsize;
	unsigned int next_entry;
	unsigned int count = 0;
	struct dma_desc *p = priv->dma_rx + entry;
	struct dma_desc *p_next;

#ifdef STMMAC_RX_DEBUG
	if (netif_msg_hw(priv)) {
		pr_debug(">>> stmmac_rx: descriptor ring:\n");
		display_ring(priv->dma_rx, rxsize);
	}
#endif
1432
	while (!priv->hw->desc->get_rx_owner(p)) {
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
		int status;

		if (count >= limit)
			break;

		count++;

		next_entry = (++priv->cur_rx) % rxsize;
		p_next = priv->dma_rx + next_entry;
		prefetch(p_next);

		/* read the status of the incoming frame */
1445 1446
		status = (priv->hw->desc->rx_status(&priv->dev->stats,
						    &priv->xstats, p));
1447 1448 1449 1450
		if (unlikely(status == discard_frame))
			priv->dev->stats.rx_errors++;
		else {
			struct sk_buff *skb;
1451
			int frame_len;
1452

1453 1454
			frame_len = priv->hw->desc->get_rx_frame_len(p,
					priv->plat->rx_coe);
1455 1456 1457 1458
			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
			 * Type frames (LLC/LLC-SNAP) */
			if (unlikely(status != llc_snap))
				frame_len -= ETH_FCS_LEN;
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
#ifdef STMMAC_RX_DEBUG
			if (frame_len > ETH_FRAME_LEN)
				pr_debug("\tRX frame size %d, COE status: %d\n",
					frame_len, status);

			if (netif_msg_hw(priv))
				pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
					p, entry, p->des2);
#endif
			skb = priv->rx_skbuff[entry];
			if (unlikely(!skb)) {
				pr_err("%s: Inconsistent Rx descriptor chain\n",
					priv->dev->name);
				priv->dev->stats.rx_dropped++;
				break;
			}
			prefetch(skb->data - NET_IP_ALIGN);
			priv->rx_skbuff[entry] = NULL;

			skb_put(skb, frame_len);
			dma_unmap_single(priv->device,
					 priv->rx_skbuff_dma[entry],
					 priv->dma_buf_sz, DMA_FROM_DEVICE);
#ifdef STMMAC_RX_DEBUG
			if (netif_msg_pktdata(priv)) {
				pr_info(" frame received (%dbytes)", frame_len);
				print_pkt(skb->data, frame_len);
			}
#endif
			skb->protocol = eth_type_trans(skb, priv->dev);

1490
			if (unlikely(!priv->plat->rx_coe)) {
1491
				/* No RX COE for old mac10/100 devices */
1492
				skb_checksum_none_assert(skb);
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
				netif_receive_skb(skb);
			} else {
				skb->ip_summed = CHECKSUM_UNNECESSARY;
				napi_gro_receive(&priv->napi, skb);
			}

			priv->dev->stats.rx_packets++;
			priv->dev->stats.rx_bytes += frame_len;
		}
		entry = next_entry;
		p = p_next;	/* use prefetched values */
	}

	stmmac_rx_refill(priv);

	priv->xstats.rx_pkt_n += count;

	return count;
}

/**
 *  stmmac_poll - stmmac poll method (NAPI)
 *  @napi : pointer to the napi structure.
 *  @budget : maximum number of packets that the current CPU can receive from
 *	      all interfaces.
 *  Description :
 *   This function implements the the reception process.
 *   Also it runs the TX completion thread
 */
static int stmmac_poll(struct napi_struct *napi, int budget)
{
	struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
	int work_done = 0;

	priv->xstats.poll_n++;
	stmmac_tx(priv);
	work_done = stmmac_rx(priv, budget);

	if (work_done < budget) {
		napi_complete(napi);
		stmmac_enable_irq(priv);
	}
	return work_done;
}

/**
 *  stmmac_tx_timeout
 *  @dev : Pointer to net device structure
 *  Description: this function is called when a packet transmission fails to
 *   complete within a reasonable tmrate. The driver will mark the error in the
 *   netdev structure and arrange for the device to be reset to a sane state
 *   in order to transmit a new packet.
 */
static void stmmac_tx_timeout(struct net_device *dev)
{
	struct stmmac_priv *priv = netdev_priv(dev);

	/* Clear Tx resources and restart transmitting again */
	stmmac_tx_err(priv);
}

/* Configuration changes (passed on by ifconfig) */
static int stmmac_config(struct net_device *dev, struct ifmap *map)
{
	if (dev->flags & IFF_UP)	/* can't act on a running interface */
		return -EBUSY;

	/* Don't allow changing the I/O address */
	if (map->base_addr != dev->base_addr) {
		pr_warning("%s: can't change I/O address\n", dev->name);
		return -EOPNOTSUPP;
	}

	/* Don't allow changing the IRQ */
	if (map->irq != dev->irq) {
		pr_warning("%s: can't change IRQ number %d\n",
		       dev->name, dev->irq);
		return -EOPNOTSUPP;
	}

	/* ignore other fields */
	return 0;
}

/**
1578
 *  stmmac_set_rx_mode - entry point for multicast addressing
1579 1580 1581 1582 1583 1584 1585
 *  @dev : pointer to the device structure
 *  Description:
 *  This function is a driver entry point which gets called by the kernel
 *  whenever multicast addresses must be enabled/disabled.
 *  Return value:
 *  void.
 */
1586
static void stmmac_set_rx_mode(struct net_device *dev)
1587 1588 1589 1590
{
	struct stmmac_priv *priv = netdev_priv(dev);

	spin_lock(&priv->lock);
1591
	priv->hw->mac->set_filter(dev, priv->synopsys_id);
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
	spin_unlock(&priv->lock);
}

/**
 *  stmmac_change_mtu - entry point to change MTU size for the device.
 *  @dev : device pointer.
 *  @new_mtu : the new MTU size for the device.
 *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
 *  to drive packet transmission. Ethernet has an MTU of 1500 octets
 *  (ETH_DATA_LEN). This value can be changed with ifconfig.
 *  Return value:
 *  0 on success and an appropriate (-)ve integer as defined in errno.h
 *  file on failure.
 */
static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
{
	struct stmmac_priv *priv = netdev_priv(dev);
	int max_mtu;

	if (netif_running(dev)) {
		pr_err("%s: must be stopped to change its MTU\n", dev->name);
		return -EBUSY;
	}

1616
	if (priv->plat->enh_desc)
1617 1618
		max_mtu = JUMBO_LEN;
	else
1619
		max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
1620 1621 1622 1623 1624 1625

	if ((new_mtu < 46) || (new_mtu > max_mtu)) {
		pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
		return -EINVAL;
	}

1626 1627 1628 1629 1630 1631
	dev->mtu = new_mtu;
	netdev_update_features(dev);

	return 0;
}

1632 1633
static netdev_features_t stmmac_fix_features(struct net_device *dev,
	netdev_features_t features)
1634 1635 1636
{
	struct stmmac_priv *priv = netdev_priv(dev);

1637
	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
1638
		features &= ~NETIF_F_RXCSUM;
1639 1640
	else if (priv->plat->rx_coe == STMMAC_RX_COE_TYPE1)
		features &= ~NETIF_F_IPV6_CSUM;
1641 1642 1643
	if (!priv->plat->tx_coe)
		features &= ~NETIF_F_ALL_CSUM;

1644 1645 1646 1647
	/* Some GMAC devices have a bugged Jumbo frame support that
	 * needs to have the Tx COE disabled for oversized frames
	 * (due to limited buffer sizes). In this case we disable
	 * the TX csum insertionin the TDES and not use SF. */
1648 1649
	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
		features &= ~NETIF_F_ALL_CSUM;
1650

1651
	return features;
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
}

static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
{
	struct net_device *dev = (struct net_device *)dev_id;
	struct stmmac_priv *priv = netdev_priv(dev);

	if (unlikely(!dev)) {
		pr_err("%s: invalid dev pointer\n", __func__);
		return IRQ_NONE;
	}

1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
	/* To handle GMAC own interrupts */
	if (priv->plat->has_gmac) {
		int status = priv->hw->mac->host_irq_status((void __iomem *)
							    dev->base_addr);
		if (unlikely(status)) {
			if (status & core_mmc_tx_irq)
				priv->xstats.mmc_tx_irq_n++;
			if (status & core_mmc_rx_irq)
				priv->xstats.mmc_rx_irq_n++;
			if (status & core_mmc_rx_csum_offload_irq)
				priv->xstats.mmc_rx_csum_offload_irq_n++;
			if (status & core_irq_receive_pmt_irq)
				priv->xstats.irq_receive_pmt_irq_n++;

			/* For LPI we need to save the tx status */
			if (status & core_irq_tx_path_in_lpi_mode) {
				priv->xstats.irq_tx_path_in_lpi_mode_n++;
				priv->tx_path_in_lpi_mode = true;
			}
			if (status & core_irq_tx_path_exit_lpi_mode) {
				priv->xstats.irq_tx_path_exit_lpi_mode_n++;
				priv->tx_path_in_lpi_mode = false;
			}
			if (status & core_irq_rx_path_in_lpi_mode)
				priv->xstats.irq_rx_path_in_lpi_mode_n++;
			if (status & core_irq_rx_path_exit_lpi_mode)
				priv->xstats.irq_rx_path_exit_lpi_mode_n++;
		}
	}
1693

1694
	/* To handle DMA interrupts */
1695
	stmmac_dma_interrupt(priv);
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723

	return IRQ_HANDLED;
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/* Polling receive - used by NETCONSOLE and other diagnostic tools
 * to allow network I/O with interrupts disabled. */
static void stmmac_poll_controller(struct net_device *dev)
{
	disable_irq(dev->irq);
	stmmac_interrupt(dev->irq, dev);
	enable_irq(dev->irq);
}
#endif

/**
 *  stmmac_ioctl - Entry point for the Ioctl
 *  @dev: Device pointer.
 *  @rq: An IOCTL specefic structure, that can contain a pointer to
 *  a proprietary structure used to pass information to the driver.
 *  @cmd: IOCTL command
 *  Description:
 *  Currently there are no special functionality supported in IOCTL, just the
 *  phy_mii_ioctl(...) can be invoked.
 */
static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
	struct stmmac_priv *priv = netdev_priv(dev);
1724
	int ret;
1725 1726 1727 1728

	if (!netif_running(dev))
		return -EINVAL;

1729 1730 1731 1732 1733
	if (!priv->phydev)
		return -EINVAL;

	ret = phy_mii_ioctl(priv->phydev, rq, cmd);

1734 1735 1736
	return ret;
}

1737 1738 1739
#ifdef CONFIG_STMMAC_DEBUG_FS
static struct dentry *stmmac_fs_dir;
static struct dentry *stmmac_rings_status;
1740
static struct dentry *stmmac_dma_cap;
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790

static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
{
	struct tmp_s {
		u64 a;
		unsigned int b;
		unsigned int c;
	};
	int i;
	struct net_device *dev = seq->private;
	struct stmmac_priv *priv = netdev_priv(dev);

	seq_printf(seq, "=======================\n");
	seq_printf(seq, " RX descriptor ring\n");
	seq_printf(seq, "=======================\n");

	for (i = 0; i < priv->dma_rx_size; i++) {
		struct tmp_s *x = (struct tmp_s *)(priv->dma_rx + i);
		seq_printf(seq, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
			   i, (unsigned int)(x->a),
			   (unsigned int)((x->a) >> 32), x->b, x->c);
		seq_printf(seq, "\n");
	}

	seq_printf(seq, "\n");
	seq_printf(seq, "=======================\n");
	seq_printf(seq, "  TX descriptor ring\n");
	seq_printf(seq, "=======================\n");

	for (i = 0; i < priv->dma_tx_size; i++) {
		struct tmp_s *x = (struct tmp_s *)(priv->dma_tx + i);
		seq_printf(seq, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
			   i, (unsigned int)(x->a),
			   (unsigned int)((x->a) >> 32), x->b, x->c);
		seq_printf(seq, "\n");
	}

	return 0;
}

static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
{
	return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
}

static const struct file_operations stmmac_rings_status_fops = {
	.owner = THIS_MODULE,
	.open = stmmac_sysfs_ring_open,
	.read = seq_read,
	.llseek = seq_lseek,
1791
	.release = single_release,
1792 1793
};

1794 1795 1796 1797 1798
static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
{
	struct net_device *dev = seq->private;
	struct stmmac_priv *priv = netdev_priv(dev);

1799
	if (!priv->hw_cap_support) {
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
		seq_printf(seq, "DMA HW features not supported\n");
		return 0;
	}

	seq_printf(seq, "==============================\n");
	seq_printf(seq, "\tDMA HW features\n");
	seq_printf(seq, "==============================\n");

	seq_printf(seq, "\t10/100 Mbps %s\n",
		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
	seq_printf(seq, "\t1000 Mbps %s\n",
		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
	seq_printf(seq, "\tHalf duple %s\n",
		   (priv->dma_cap.half_duplex) ? "Y" : "N");
	seq_printf(seq, "\tHash Filter: %s\n",
		   (priv->dma_cap.hash_filter) ? "Y" : "N");
	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
		   (priv->dma_cap.multi_addr) ? "Y" : "N");
	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
		   (priv->dma_cap.pcs) ? "Y" : "N");
	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
	seq_printf(seq, "\tPMT Remote wake up: %s\n",
		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
	seq_printf(seq, "\tPMT Magic Frame: %s\n",
		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
	seq_printf(seq, "\tRMON module: %s\n",
		   (priv->dma_cap.rmon) ? "Y" : "N");
	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
		   (priv->dma_cap.time_stamp) ? "Y" : "N");
	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
		   (priv->dma_cap.eee) ? "Y" : "N");
	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
		   (priv->dma_cap.tx_coe) ? "Y" : "N");
	seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
		   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
	seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
		   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
		   priv->dma_cap.number_rx_channel);
	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
		   priv->dma_cap.number_tx_channel);
	seq_printf(seq, "\tEnhanced descriptors: %s\n",
		   (priv->dma_cap.enh_desc) ? "Y" : "N");

	return 0;
}

static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
{
	return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
}

static const struct file_operations stmmac_dma_cap_fops = {
	.owner = THIS_MODULE,
	.open = stmmac_sysfs_dma_cap_open,
	.read = seq_read,
	.llseek = seq_lseek,
1863
	.release = single_release,
1864 1865
};

1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
static int stmmac_init_fs(struct net_device *dev)
{
	/* Create debugfs entries */
	stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);

	if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
		pr_err("ERROR %s, debugfs create directory failed\n",
		       STMMAC_RESOURCE_NAME);

		return -ENOMEM;
	}

	/* Entry to report DMA RX/TX rings */
	stmmac_rings_status = debugfs_create_file("descriptors_status",
					   S_IRUGO, stmmac_fs_dir, dev,
					   &stmmac_rings_status_fops);

	if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) {
		pr_info("ERROR creating stmmac ring debugfs file\n");
		debugfs_remove(stmmac_fs_dir);

		return -ENOMEM;
	}

1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
	/* Entry to report the DMA HW features */
	stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir,
					     dev, &stmmac_dma_cap_fops);

	if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) {
		pr_info("ERROR creating stmmac MMC debugfs file\n");
		debugfs_remove(stmmac_rings_status);
		debugfs_remove(stmmac_fs_dir);

		return -ENOMEM;
	}

1902 1903 1904 1905 1906 1907
	return 0;
}

static void stmmac_exit_fs(void)
{
	debugfs_remove(stmmac_rings_status);
1908
	debugfs_remove(stmmac_dma_cap);
1909 1910 1911 1912
	debugfs_remove(stmmac_fs_dir);
}
#endif /* CONFIG_STMMAC_DEBUG_FS */

1913 1914 1915 1916 1917
static const struct net_device_ops stmmac_netdev_ops = {
	.ndo_open = stmmac_open,
	.ndo_start_xmit = stmmac_xmit,
	.ndo_stop = stmmac_release,
	.ndo_change_mtu = stmmac_change_mtu,
1918
	.ndo_fix_features = stmmac_fix_features,
1919
	.ndo_set_rx_mode = stmmac_set_rx_mode,
1920 1921 1922 1923 1924 1925 1926 1927 1928
	.ndo_tx_timeout = stmmac_tx_timeout,
	.ndo_do_ioctl = stmmac_ioctl,
	.ndo_set_config = stmmac_config,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller = stmmac_poll_controller,
#endif
	.ndo_set_mac_address = eth_mac_addr,
};

1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
/**
 *  stmmac_hw_init - Init the MAC device
 *  @priv : pointer to the private device structure.
 *  Description: this function detects which MAC device
 *  (GMAC/MAC10-100) has to attached, checks the HW capability
 *  (if supported) and sets the driver's features (for example
 *  to use the ring or chaine mode or support the normal/enh
 *  descriptor structure).
 */
static int stmmac_hw_init(struct stmmac_priv *priv)
{
	int ret = 0;
	struct mac_device_info *mac;

	/* Identify the MAC HW device */
1944 1945
	if (priv->plat->has_gmac) {
		priv->dev->priv_flags |= IFF_UNICAST_FLT;
1946
		mac = dwmac1000_setup(priv->ioaddr);
1947
	} else {
1948
		mac = dwmac100_setup(priv->ioaddr);
1949
	}
1950 1951 1952 1953 1954 1955 1956 1957 1958
	if (!mac)
		return -ENOMEM;

	priv->hw = mac;

	/* To use the chained or ring mode */
	priv->hw->ring = &ring_mode_ops;

	/* Get and dump the chip ID */
1959
	priv->synopsys_id = stmmac_get_synopsys_id(priv);
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972

	/* Get the HW capability (new GMAC newer than 3.50a) */
	priv->hw_cap_support = stmmac_get_hw_features(priv);
	if (priv->hw_cap_support) {
		pr_info(" DMA HW capability register supported");

		/* We can override some gmac/dma configuration fields: e.g.
		 * enh_desc, tx_coe (e.g. that are passed through the
		 * platform) with the values from the HW capability
		 * register (if supported).
		 */
		priv->plat->enh_desc = priv->dma_cap.enh_desc;
		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
1973 1974 1975 1976 1977 1978 1979 1980

		priv->plat->tx_coe = priv->dma_cap.tx_coe;

		if (priv->dma_cap.rx_coe_type2)
			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
		else if (priv->dma_cap.rx_coe_type1)
			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;

1981 1982 1983 1984 1985 1986
	} else
		pr_info(" No HW DMA feature register supported");

	/* Select the enhnaced/normal descriptor structures */
	stmmac_selec_desc_mode(priv);

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
	/* Enable the IPC (Checksum Offload) and check if the feature has been
	 * enabled during the core configuration. */
	ret = priv->hw->mac->rx_ipc(priv->ioaddr);
	if (!ret) {
		pr_warning(" RX IPC Checksum Offload not configured.\n");
		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
	}

	if (priv->plat->rx_coe)
		pr_info(" RX Checksum Offload Engine supported (type %d)\n",
			priv->plat->rx_coe);
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
	if (priv->plat->tx_coe)
		pr_info(" TX Checksum insertion supported\n");

	if (priv->plat->pmt) {
		pr_info(" Wake-Up On Lan supported\n");
		device_set_wakeup_capable(priv->device, 1);
	}

	return ret;
}

2009
/**
2010 2011
 * stmmac_dvr_probe
 * @device: device pointer
2012 2013
 * @plat_dat: platform data pointer
 * @addr: iobase memory address
2014 2015
 * Description: this is the main probe function used to
 * call the alloc_etherdev, allocate the priv structure.
2016
 */
2017
struct stmmac_priv *stmmac_dvr_probe(struct device *device,
2018 2019
				     struct plat_stmmacenet_data *plat_dat,
				     void __iomem *addr)
2020 2021
{
	int ret = 0;
2022 2023
	struct net_device *ndev = NULL;
	struct stmmac_priv *priv;
2024

2025
	ndev = alloc_etherdev(sizeof(struct stmmac_priv));
2026
	if (!ndev)
2027 2028 2029 2030 2031 2032 2033
		return NULL;

	SET_NETDEV_DEV(ndev, device);

	priv = netdev_priv(ndev);
	priv->device = device;
	priv->dev = ndev;
2034

2035
	ether_setup(ndev);
2036

2037
	stmmac_set_ethtool_ops(ndev);
2038 2039 2040 2041 2042 2043 2044
	priv->pause = pause;
	priv->plat = plat_dat;
	priv->ioaddr = addr;
	priv->dev->base_addr = (unsigned long)addr;

	/* Verify driver arguments */
	stmmac_verify_args();
2045

2046 2047 2048 2049 2050 2051 2052 2053 2054
	/* Override with kernel parameters if supplied XXX CRS XXX
	 * this needs to have multiple instances */
	if ((phyaddr >= 0) && (phyaddr <= 31))
		priv->plat->phy_addr = phyaddr;

	/* Init MAC and get the capabilities */
	stmmac_hw_init(priv);

	ndev->netdev_ops = &stmmac_netdev_ops;
2055

2056 2057
	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
			    NETIF_F_RXCSUM;
2058 2059
	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2060 2061
#ifdef STMMAC_VLAN_TAG_USED
	/* Both mac100 and gmac support receive VLAN tag detection */
2062
	ndev->features |= NETIF_F_HW_VLAN_RX;
2063 2064 2065 2066 2067 2068
#endif
	priv->msg_enable = netif_msg_init(debug, default_msg_level);

	if (flow_ctrl)
		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */

2069
	netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2070

2071
	spin_lock_init(&priv->lock);
2072
	spin_lock_init(&priv->tx_lock);
2073

2074
	ret = register_netdev(ndev);
2075
	if (ret) {
2076
		pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2077
		goto error_netdev_register;
2078 2079
	}

2080
	priv->stmmac_clk = clk_get(priv->device, STMMAC_RESOURCE_NAME);
2081
	if (IS_ERR(priv->stmmac_clk)) {
2082
		pr_warning("%s: warning: cannot get CSR clock\n", __func__);
2083 2084
		goto error_clk_get;
	}
2085

2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
	/* If a specific clk_csr value is passed from the platform
	 * this means that the CSR Clock Range selection cannot be
	 * changed at run-time and it is fixed. Viceversa the driver'll try to
	 * set the MDC clock dynamically according to the csr actual
	 * clock input.
	 */
	if (!priv->plat->clk_csr)
		stmmac_clk_csr_set(priv);
	else
		priv->clk_csr = priv->plat->clk_csr;

2097 2098 2099 2100 2101
	/* MDIO bus Registration */
	ret = stmmac_mdio_register(ndev);
	if (ret < 0) {
		pr_debug("%s: MDIO bus (id: %d) registration failed",
			 __func__, priv->plat->bus_id);
2102
		goto error_mdio_register;
2103 2104
	}

2105
	return priv;
2106

2107 2108 2109
error_mdio_register:
	clk_put(priv->stmmac_clk);
error_clk_get:
2110
	unregister_netdev(ndev);
2111 2112
error_netdev_register:
	netif_napi_del(&priv->napi);
2113
	free_netdev(ndev);
2114

2115
	return NULL;
2116 2117 2118 2119
}

/**
 * stmmac_dvr_remove
2120
 * @ndev: net device pointer
2121
 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2122
 * changes the link status, releases the DMA descriptor rings.
2123
 */
2124
int stmmac_dvr_remove(struct net_device *ndev)
2125
{
2126
	struct stmmac_priv *priv = netdev_priv(ndev);
2127 2128 2129

	pr_info("%s:\n\tremoving driver", __func__);

2130 2131
	priv->hw->dma->stop_rx(priv->ioaddr);
	priv->hw->dma->stop_tx(priv->ioaddr);
2132

2133
	stmmac_set_mac(priv->ioaddr, false);
2134
	stmmac_mdio_unregister(ndev);
2135 2136 2137 2138 2139 2140 2141 2142
	netif_carrier_off(ndev);
	unregister_netdev(ndev);
	free_netdev(ndev);

	return 0;
}

#ifdef CONFIG_PM
2143
int stmmac_suspend(struct net_device *ndev)
2144
{
2145
	struct stmmac_priv *priv = netdev_priv(ndev);
2146
	int dis_ic = 0;
2147
	unsigned long flags;
2148

2149
	if (!ndev || !netif_running(ndev))
2150 2151
		return 0;

2152 2153 2154
	if (priv->phydev)
		phy_stop(priv->phydev);

2155
	spin_lock_irqsave(&priv->lock, flags);
2156

2157 2158
	netif_device_detach(ndev);
	netif_stop_queue(ndev);
2159 2160

#ifdef CONFIG_STMMAC_TIMER
2161 2162 2163
	priv->tm->timer_stop();
	if (likely(priv->tm->enable))
		dis_ic = 1;
2164
#endif
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
	napi_disable(&priv->napi);

	/* Stop TX/RX DMA */
	priv->hw->dma->stop_tx(priv->ioaddr);
	priv->hw->dma->stop_rx(priv->ioaddr);
	/* Clear the Rx/Tx descriptors */
	priv->hw->desc->init_rx_desc(priv->dma_rx, priv->dma_rx_size,
				     dis_ic);
	priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);

	/* Enable Power down mode by programming the PMT regs */
	if (device_may_wakeup(priv->device))
		priv->hw->mac->pmt(priv->ioaddr, priv->wolopts);
2178
	else {
2179
		stmmac_set_mac(priv->ioaddr, false);
2180
		/* Disable clock in case of PWM is off */
2181
		clk_disable(priv->stmmac_clk);
2182
	}
2183
	spin_unlock_irqrestore(&priv->lock, flags);
2184 2185 2186
	return 0;
}

2187
int stmmac_resume(struct net_device *ndev)
2188
{
2189
	struct stmmac_priv *priv = netdev_priv(ndev);
2190
	unsigned long flags;
2191

2192
	if (!netif_running(ndev))
2193 2194
		return 0;

2195
	spin_lock_irqsave(&priv->lock, flags);
2196

2197 2198 2199 2200 2201
	/* Power Down bit, into the PM register, is cleared
	 * automatically as soon as a magic packet or a Wake-up frame
	 * is received. Anyway, it's better to manually clear
	 * this bit because it can generate problems while resuming
	 * from another devices (e.g. serial console). */
2202
	if (device_may_wakeup(priv->device))
2203
		priv->hw->mac->pmt(priv->ioaddr, 0);
2204 2205
	else
		/* enable the clk prevously disabled */
2206
		clk_enable(priv->stmmac_clk);
2207

2208
	netif_device_attach(ndev);
2209 2210

	/* Enable the MAC and DMA */
2211
	stmmac_set_mac(priv->ioaddr, true);
2212 2213
	priv->hw->dma->start_tx(priv->ioaddr);
	priv->hw->dma->start_rx(priv->ioaddr);
2214 2215

#ifdef CONFIG_STMMAC_TIMER
2216 2217
	if (likely(priv->tm->enable))
		priv->tm->timer_start(tmrate);
2218 2219 2220
#endif
	napi_enable(&priv->napi);

2221
	netif_start_queue(ndev);
2222

2223
	spin_unlock_irqrestore(&priv->lock, flags);
2224 2225 2226 2227

	if (priv->phydev)
		phy_start(priv->phydev);

2228 2229 2230
	return 0;
}

2231
int stmmac_freeze(struct net_device *ndev)
2232 2233 2234 2235 2236 2237 2238
{
	if (!ndev || !netif_running(ndev))
		return 0;

	return stmmac_release(ndev);
}

2239
int stmmac_restore(struct net_device *ndev)
2240 2241 2242 2243 2244 2245 2246
{
	if (!ndev || !netif_running(ndev))
		return 0;

	return stmmac_open(ndev);
}
#endif /* CONFIG_PM */
2247

2248 2249 2250
/* Driver can be configured w/ and w/ both PCI and Platf drivers
 * depending on the configuration selected.
 */
2251 2252
static int __init stmmac_init(void)
{
2253 2254
	int err_plt = 0;
	int err_pci = 0;
2255

2256 2257
	err_plt = stmmac_register_platform();
	err_pci = stmmac_register_pci();
2258

2259 2260 2261
	if ((err_pci) && (err_plt)) {
		pr_err("stmmac: driver registration failed\n");
		return -EINVAL;
2262 2263
	}

2264
	return 0;
2265 2266 2267 2268
}

static void __exit stmmac_exit(void)
{
2269 2270
	stmmac_unregister_platform();
	stmmac_unregister_pci();
2271 2272 2273 2274 2275
}

module_init(stmmac_init);
module_exit(stmmac_exit);

2276 2277 2278 2279 2280 2281 2282 2283
#ifndef MODULE
static int __init stmmac_cmdline_opt(char *str)
{
	char *opt;

	if (!str || !*str)
		return -EINVAL;
	while ((opt = strsep(&str, ",")) != NULL) {
2284
		if (!strncmp(opt, "debug:", 6)) {
2285
			if (kstrtoint(opt + 6, 0, &debug))
2286 2287
				goto err;
		} else if (!strncmp(opt, "phyaddr:", 8)) {
2288
			if (kstrtoint(opt + 8, 0, &phyaddr))
2289 2290
				goto err;
		} else if (!strncmp(opt, "dma_txsize:", 11)) {
2291
			if (kstrtoint(opt + 11, 0, &dma_txsize))
2292 2293
				goto err;
		} else if (!strncmp(opt, "dma_rxsize:", 11)) {
2294
			if (kstrtoint(opt + 11, 0, &dma_rxsize))
2295 2296
				goto err;
		} else if (!strncmp(opt, "buf_sz:", 7)) {
2297
			if (kstrtoint(opt + 7, 0, &buf_sz))
2298 2299
				goto err;
		} else if (!strncmp(opt, "tc:", 3)) {
2300
			if (kstrtoint(opt + 3, 0, &tc))
2301 2302
				goto err;
		} else if (!strncmp(opt, "watchdog:", 9)) {
2303
			if (kstrtoint(opt + 9, 0, &watchdog))
2304 2305
				goto err;
		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
2306
			if (kstrtoint(opt + 10, 0, &flow_ctrl))
2307 2308
				goto err;
		} else if (!strncmp(opt, "pause:", 6)) {
2309
			if (kstrtoint(opt + 6, 0, &pause))
2310
				goto err;
2311 2312 2313
		} else if (!strncmp(opt, "eee_timer:", 6)) {
			if (kstrtoint(opt + 10, 0, &eee_timer))
				goto err;
2314
#ifdef CONFIG_STMMAC_TIMER
2315
		} else if (!strncmp(opt, "tmrate:", 7)) {
2316
			if (kstrtoint(opt + 7, 0, &tmrate))
2317
				goto err;
2318
#endif
2319
		}
2320 2321
	}
	return 0;
2322 2323 2324 2325

err:
	pr_err("%s: ERROR broken module parameter conversion", __func__);
	return -EINVAL;
2326 2327 2328 2329
}

__setup("stmmaceth=", stmmac_cmdline_opt);
#endif
2330 2331 2332 2333

MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
MODULE_LICENSE("GPL");