amd_iommu_init.c 34.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/pci.h>
#include <linux/acpi.h>
#include <linux/gfp.h>
#include <linux/list.h>
24
#include <linux/sysdev.h>
25 26
#include <linux/interrupt.h>
#include <linux/msi.h>
27 28
#include <asm/pci-direct.h>
#include <asm/amd_iommu_types.h>
29
#include <asm/amd_iommu.h>
30
#include <asm/iommu.h>
31
#include <asm/gart.h>
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

/*
 * definitions for the ACPI scanning code
 */
#define IVRS_HEADER_LENGTH 48

#define ACPI_IVHD_TYPE                  0x10
#define ACPI_IVMD_TYPE_ALL              0x20
#define ACPI_IVMD_TYPE                  0x21
#define ACPI_IVMD_TYPE_RANGE            0x22

#define IVHD_DEV_ALL                    0x01
#define IVHD_DEV_SELECT                 0x02
#define IVHD_DEV_SELECT_RANGE_START     0x03
#define IVHD_DEV_RANGE_END              0x04
#define IVHD_DEV_ALIAS                  0x42
#define IVHD_DEV_ALIAS_RANGE            0x43
#define IVHD_DEV_EXT_SELECT             0x46
#define IVHD_DEV_EXT_SELECT_RANGE       0x47

J
Joerg Roedel 已提交
52 53 54 55
#define IVHD_FLAG_HT_TUN_EN_MASK        0x01
#define IVHD_FLAG_PASSPW_EN_MASK        0x02
#define IVHD_FLAG_RESPASSPW_EN_MASK     0x04
#define IVHD_FLAG_ISOC_EN_MASK          0x08
56 57 58 59 60 61 62 63 64 65 66 67 68

#define IVMD_FLAG_EXCL_RANGE            0x08
#define IVMD_FLAG_UNITY_MAP             0x01

#define ACPI_DEVFLAG_INITPASS           0x01
#define ACPI_DEVFLAG_EXTINT             0x02
#define ACPI_DEVFLAG_NMI                0x04
#define ACPI_DEVFLAG_SYSMGT1            0x10
#define ACPI_DEVFLAG_SYSMGT2            0x20
#define ACPI_DEVFLAG_LINT0              0x40
#define ACPI_DEVFLAG_LINT1              0x80
#define ACPI_DEVFLAG_ATSDIS             0x10000000

69 70 71 72 73 74 75 76 77 78 79
/*
 * ACPI table definitions
 *
 * These data structures are laid over the table to parse the important values
 * out of it.
 */

/*
 * structure describing one IOMMU in the ACPI table. Typically followed by one
 * or more ivhd_entrys.
 */
80 81 82 83 84 85 86 87 88 89 90 91
struct ivhd_header {
	u8 type;
	u8 flags;
	u16 length;
	u16 devid;
	u16 cap_ptr;
	u64 mmio_phys;
	u16 pci_seg;
	u16 info;
	u32 reserved;
} __attribute__((packed));

92 93 94 95
/*
 * A device entry describing which devices a specific IOMMU translates and
 * which requestor ids they use.
 */
96 97 98 99 100 101 102
struct ivhd_entry {
	u8 type;
	u16 devid;
	u8 flags;
	u32 ext;
} __attribute__((packed));

103 104 105 106
/*
 * An AMD IOMMU memory definition structure. It defines things like exclusion
 * ranges for devices and regions that should be unity mapped.
 */
107 108 109 110 111 112 113 114 115 116 117
struct ivmd_header {
	u8 type;
	u8 flags;
	u16 length;
	u16 devid;
	u16 aux;
	u64 resv;
	u64 range_start;
	u64 range_length;
} __attribute__((packed));

118 119
bool amd_iommu_dump;

120 121
static int __initdata amd_iommu_detected;

122 123
u16 amd_iommu_last_bdf;			/* largest PCI device id we have
					   to handle */
124
LIST_HEAD(amd_iommu_unity_map);		/* a list of required unity mappings
125 126
					   we find in ACPI */
unsigned amd_iommu_aperture_order = 26; /* size of aperture in power of 2 */
127 128
bool amd_iommu_isolate = true;		/* if true, device isolation is
					   enabled */
129
bool amd_iommu_unmap_flush;		/* if true, flush on every unmap */
130

131
LIST_HEAD(amd_iommu_list);		/* list of all AMD IOMMUs in the
132
					   system */
133

134 135 136 137 138 139
/*
 * Pointer to the device table which is shared by all AMD IOMMUs
 * it is indexed by the PCI device id or the HT unit id and contains
 * information about the domain the device belongs to as well as the
 * page table root pointer.
 */
140
struct dev_table_entry *amd_iommu_dev_table;
141 142 143 144 145 146

/*
 * The alias table is a driver specific data structure which contains the
 * mappings of the PCI device ids to the actual requestor ids on the IOMMU.
 * More than one device can share the same requestor id.
 */
147
u16 *amd_iommu_alias_table;
148 149 150 151 152

/*
 * The rlookup table is used to find the IOMMU which is responsible
 * for a specific device. It is also indexed by the PCI device id.
 */
153
struct amd_iommu **amd_iommu_rlookup_table;
154 155 156 157 158

/*
 * The pd table (protection domain table) is used to find the protection domain
 * data structure a device belongs to. Indexed with the PCI device id too.
 */
159
struct protection_domain **amd_iommu_pd_table;
160 161 162 163 164

/*
 * AMD IOMMU allows up to 2^16 differend protection domains. This is a bitmap
 * to know which ones are already in use.
 */
165 166
unsigned long *amd_iommu_pd_alloc_bitmap;

167 168 169
static u32 dev_table_size;	/* size of the device table */
static u32 alias_table_size;	/* size of the alias table */
static u32 rlookup_table_size;	/* size if the rlookup table */
170

171 172 173 174 175 176
static inline void update_last_devid(u16 devid)
{
	if (devid > amd_iommu_last_bdf)
		amd_iommu_last_bdf = devid;
}

177 178 179 180 181 182 183 184
static inline unsigned long tbl_size(int entry_size)
{
	unsigned shift = PAGE_SHIFT +
			 get_order(amd_iommu_last_bdf * entry_size);

	return 1UL << shift;
}

185 186 187 188 189 190 191 192
/****************************************************************************
 *
 * AMD IOMMU MMIO register space handling functions
 *
 * These functions are used to program the IOMMU device registers in
 * MMIO space required for that driver.
 *
 ****************************************************************************/
193

194 195 196 197
/*
 * This function set the exclusion range in the IOMMU. DMA accesses to the
 * exclusion range are passed through untranslated
 */
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
static void __init iommu_set_exclusion_range(struct amd_iommu *iommu)
{
	u64 start = iommu->exclusion_start & PAGE_MASK;
	u64 limit = (start + iommu->exclusion_length) & PAGE_MASK;
	u64 entry;

	if (!iommu->exclusion_start)
		return;

	entry = start | MMIO_EXCL_ENABLE_MASK;
	memcpy_toio(iommu->mmio_base + MMIO_EXCL_BASE_OFFSET,
			&entry, sizeof(entry));

	entry = limit;
	memcpy_toio(iommu->mmio_base + MMIO_EXCL_LIMIT_OFFSET,
			&entry, sizeof(entry));
}

216
/* Programs the physical address of the device table into the IOMMU hardware */
217 218
static void __init iommu_set_device_table(struct amd_iommu *iommu)
{
219
	u64 entry;
220 221 222 223 224 225 226 227 228

	BUG_ON(iommu->mmio_base == NULL);

	entry = virt_to_phys(amd_iommu_dev_table);
	entry |= (dev_table_size >> 12) - 1;
	memcpy_toio(iommu->mmio_base + MMIO_DEV_TABLE_OFFSET,
			&entry, sizeof(entry));
}

229
/* Generic functions to enable/disable certain features of the IOMMU. */
230 231 232 233 234 235 236 237 238 239 240 241 242
static void __init iommu_feature_enable(struct amd_iommu *iommu, u8 bit)
{
	u32 ctrl;

	ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
	ctrl |= (1 << bit);
	writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
}

static void __init iommu_feature_disable(struct amd_iommu *iommu, u8 bit)
{
	u32 ctrl;

243
	ctrl = readl(iommu->mmio_base + MMIO_CONTROL_OFFSET);
244 245 246 247
	ctrl &= ~(1 << bit);
	writel(ctrl, iommu->mmio_base + MMIO_CONTROL_OFFSET);
}

248
/* Function to enable the hardware */
249
static void __init iommu_enable(struct amd_iommu *iommu)
250
{
251 252
	printk(KERN_INFO "AMD IOMMU: Enabling IOMMU at %s cap 0x%hx\n",
	       dev_name(&iommu->dev->dev), iommu->cap_ptr);
253 254 255 256

	iommu_feature_enable(iommu, CONTROL_IOMMU_EN);
}

J
Joerg Roedel 已提交
257
/* Function to enable IOMMU event logging and event interrupts */
258
static void __init iommu_enable_event_logging(struct amd_iommu *iommu)
J
Joerg Roedel 已提交
259 260 261 262 263
{
	iommu_feature_enable(iommu, CONTROL_EVT_LOG_EN);
	iommu_feature_enable(iommu, CONTROL_EVT_INT_EN);
}

264 265 266 267
/*
 * mapping and unmapping functions for the IOMMU MMIO space. Each AMD IOMMU in
 * the system has one.
 */
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
static u8 * __init iommu_map_mmio_space(u64 address)
{
	u8 *ret;

	if (!request_mem_region(address, MMIO_REGION_LENGTH, "amd_iommu"))
		return NULL;

	ret = ioremap_nocache(address, MMIO_REGION_LENGTH);
	if (ret != NULL)
		return ret;

	release_mem_region(address, MMIO_REGION_LENGTH);

	return NULL;
}

static void __init iommu_unmap_mmio_space(struct amd_iommu *iommu)
{
	if (iommu->mmio_base)
		iounmap(iommu->mmio_base);
	release_mem_region(iommu->mmio_phys, MMIO_REGION_LENGTH);
}

291 292 293 294 295 296 297 298 299
/****************************************************************************
 *
 * The functions below belong to the first pass of AMD IOMMU ACPI table
 * parsing. In this pass we try to find out the highest device id this
 * code has to handle. Upon this information the size of the shared data
 * structures is determined later.
 *
 ****************************************************************************/

300 301 302 303 304 305 306 307
/*
 * This function calculates the length of a given IVHD entry
 */
static inline int ivhd_entry_length(u8 *ivhd)
{
	return 0x04 << (*ivhd >> 6);
}

308 309 310 311
/*
 * This function reads the last device id the IOMMU has to handle from the PCI
 * capability header for this IOMMU
 */
312 313 314 315 316
static int __init find_last_devid_on_pci(int bus, int dev, int fn, int cap_ptr)
{
	u32 cap;

	cap = read_pci_config(bus, dev, fn, cap_ptr+MMIO_RANGE_OFFSET);
317
	update_last_devid(calc_devid(MMIO_GET_BUS(cap), MMIO_GET_LD(cap)));
318 319 320 321

	return 0;
}

322 323 324 325
/*
 * After reading the highest device id from the IOMMU PCI capability header
 * this function looks if there is a higher device id defined in the ACPI table
 */
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
static int __init find_last_devid_from_ivhd(struct ivhd_header *h)
{
	u8 *p = (void *)h, *end = (void *)h;
	struct ivhd_entry *dev;

	p += sizeof(*h);
	end += h->length;

	find_last_devid_on_pci(PCI_BUS(h->devid),
			PCI_SLOT(h->devid),
			PCI_FUNC(h->devid),
			h->cap_ptr);

	while (p < end) {
		dev = (struct ivhd_entry *)p;
		switch (dev->type) {
		case IVHD_DEV_SELECT:
		case IVHD_DEV_RANGE_END:
		case IVHD_DEV_ALIAS:
		case IVHD_DEV_EXT_SELECT:
346
			/* all the above subfield types refer to device ids */
347
			update_last_devid(dev->devid);
348 349 350 351
			break;
		default:
			break;
		}
352
		p += ivhd_entry_length(p);
353 354 355 356 357 358 359
	}

	WARN_ON(p != end);

	return 0;
}

360 361 362 363 364
/*
 * Iterate over all IVHD entries in the ACPI table and find the highest device
 * id which we need to handle. This is the first of three functions which parse
 * the ACPI table. So we check the checksum here.
 */
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
static int __init find_last_devid_acpi(struct acpi_table_header *table)
{
	int i;
	u8 checksum = 0, *p = (u8 *)table, *end = (u8 *)table;
	struct ivhd_header *h;

	/*
	 * Validate checksum here so we don't need to do it when
	 * we actually parse the table
	 */
	for (i = 0; i < table->length; ++i)
		checksum += p[i];
	if (checksum != 0)
		/* ACPI table corrupt */
		return -ENODEV;

	p += IVRS_HEADER_LENGTH;

	end += table->length;
	while (p < end) {
		h = (struct ivhd_header *)p;
		switch (h->type) {
		case ACPI_IVHD_TYPE:
			find_last_devid_from_ivhd(h);
			break;
		default:
			break;
		}
		p += h->length;
	}
	WARN_ON(p != end);

	return 0;
}

400 401 402 403 404 405 406 407 408 409 410 411 412 413
/****************************************************************************
 *
 * The following functions belong the the code path which parses the ACPI table
 * the second time. In this ACPI parsing iteration we allocate IOMMU specific
 * data structures, initialize the device/alias/rlookup table and also
 * basically initialize the hardware.
 *
 ****************************************************************************/

/*
 * Allocates the command buffer. This buffer is per AMD IOMMU. We can
 * write commands to that buffer later and the IOMMU will execute them
 * asynchronously
 */
414 415
static u8 * __init alloc_command_buffer(struct amd_iommu *iommu)
{
416
	u8 *cmd_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
417
			get_order(CMD_BUFFER_SIZE));
418
	u64 entry;
419 420 421 422 423 424 425 426 427 428 429

	if (cmd_buf == NULL)
		return NULL;

	iommu->cmd_buf_size = CMD_BUFFER_SIZE;

	entry = (u64)virt_to_phys(cmd_buf);
	entry |= MMIO_CMD_SIZE_512;
	memcpy_toio(iommu->mmio_base + MMIO_CMD_BUF_OFFSET,
			&entry, sizeof(entry));

430 431 432 433
	/* set head and tail to zero manually */
	writel(0x00, iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	writel(0x00, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);

434 435 436 437 438 439 440
	iommu_feature_enable(iommu, CONTROL_CMDBUF_EN);

	return cmd_buf;
}

static void __init free_command_buffer(struct amd_iommu *iommu)
{
441 442
	free_pages((unsigned long)iommu->cmd_buf,
		   get_order(iommu->cmd_buf_size));
443 444
}

445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
/* allocates the memory where the IOMMU will log its events to */
static u8 * __init alloc_event_buffer(struct amd_iommu *iommu)
{
	u64 entry;
	iommu->evt_buf = (u8 *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
						get_order(EVT_BUFFER_SIZE));

	if (iommu->evt_buf == NULL)
		return NULL;

	entry = (u64)virt_to_phys(iommu->evt_buf) | EVT_LEN_MASK;
	memcpy_toio(iommu->mmio_base + MMIO_EVT_BUF_OFFSET,
		    &entry, sizeof(entry));

	iommu->evt_buf_size = EVT_BUFFER_SIZE;

	return iommu->evt_buf;
}

static void __init free_event_buffer(struct amd_iommu *iommu)
{
	free_pages((unsigned long)iommu->evt_buf, get_order(EVT_BUFFER_SIZE));
}

469
/* sets a specific bit in the device table entry. */
470 471 472 473 474 475 476 477
static void set_dev_entry_bit(u16 devid, u8 bit)
{
	int i = (bit >> 5) & 0x07;
	int _bit = bit & 0x1f;

	amd_iommu_dev_table[devid].data[i] |= (1 << _bit);
}

478 479 480 481 482 483
/* Writes the specific IOMMU for a device into the rlookup table */
static void __init set_iommu_for_device(struct amd_iommu *iommu, u16 devid)
{
	amd_iommu_rlookup_table[devid] = iommu;
}

484 485 486 487
/*
 * This function takes the device specific flags read from the ACPI
 * table and sets up the device table entry with that information
 */
488 489
static void __init set_dev_entry_from_acpi(struct amd_iommu *iommu,
					   u16 devid, u32 flags, u32 ext_flags)
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
{
	if (flags & ACPI_DEVFLAG_INITPASS)
		set_dev_entry_bit(devid, DEV_ENTRY_INIT_PASS);
	if (flags & ACPI_DEVFLAG_EXTINT)
		set_dev_entry_bit(devid, DEV_ENTRY_EINT_PASS);
	if (flags & ACPI_DEVFLAG_NMI)
		set_dev_entry_bit(devid, DEV_ENTRY_NMI_PASS);
	if (flags & ACPI_DEVFLAG_SYSMGT1)
		set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT1);
	if (flags & ACPI_DEVFLAG_SYSMGT2)
		set_dev_entry_bit(devid, DEV_ENTRY_SYSMGT2);
	if (flags & ACPI_DEVFLAG_LINT0)
		set_dev_entry_bit(devid, DEV_ENTRY_LINT0_PASS);
	if (flags & ACPI_DEVFLAG_LINT1)
		set_dev_entry_bit(devid, DEV_ENTRY_LINT1_PASS);

506
	set_iommu_for_device(iommu, devid);
507 508
}

509 510 511 512
/*
 * Reads the device exclusion range from ACPI and initialize IOMMU with
 * it
 */
513 514 515 516 517 518 519 520
static void __init set_device_exclusion_range(u16 devid, struct ivmd_header *m)
{
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!(m->flags & IVMD_FLAG_EXCL_RANGE))
		return;

	if (iommu) {
521 522 523 524 525
		/*
		 * We only can configure exclusion ranges per IOMMU, not
		 * per device. But we can enable the exclusion range per
		 * device. This is done here
		 */
526 527 528 529 530 531
		set_dev_entry_bit(m->devid, DEV_ENTRY_EX);
		iommu->exclusion_start = m->range_start;
		iommu->exclusion_length = m->range_length;
	}
}

532 533 534 535 536
/*
 * This function reads some important data from the IOMMU PCI space and
 * initializes the driver data structure with it. It reads the hardware
 * capabilities and the first/last device entries
 */
537 538 539
static void __init init_iommu_from_pci(struct amd_iommu *iommu)
{
	int cap_ptr = iommu->cap_ptr;
540
	u32 range, misc;
541

542 543 544 545
	pci_read_config_dword(iommu->dev, cap_ptr + MMIO_CAP_HDR_OFFSET,
			      &iommu->cap);
	pci_read_config_dword(iommu->dev, cap_ptr + MMIO_RANGE_OFFSET,
			      &range);
546 547
	pci_read_config_dword(iommu->dev, cap_ptr + MMIO_MISC_OFFSET,
			      &misc);
548

549 550 551 552
	iommu->first_device = calc_devid(MMIO_GET_BUS(range),
					 MMIO_GET_FD(range));
	iommu->last_device = calc_devid(MMIO_GET_BUS(range),
					MMIO_GET_LD(range));
553
	iommu->evt_msi_num = MMIO_MSI_NUM(misc);
554 555
}

556 557 558 559
/*
 * Takes a pointer to an AMD IOMMU entry in the ACPI table and
 * initializes the hardware and our data structures with it.
 */
560 561 562 563 564 565 566
static void __init init_iommu_from_acpi(struct amd_iommu *iommu,
					struct ivhd_header *h)
{
	u8 *p = (u8 *)h;
	u8 *end = p, flags = 0;
	u16 dev_i, devid = 0, devid_start = 0, devid_to = 0;
	u32 ext_flags = 0;
567
	bool alias = false;
568 569 570 571 572 573
	struct ivhd_entry *e;

	/*
	 * First set the recommended feature enable bits from ACPI
	 * into the IOMMU control registers
	 */
J
Joerg Roedel 已提交
574
	h->flags & IVHD_FLAG_HT_TUN_EN_MASK ?
575 576 577
		iommu_feature_enable(iommu, CONTROL_HT_TUN_EN) :
		iommu_feature_disable(iommu, CONTROL_HT_TUN_EN);

J
Joerg Roedel 已提交
578
	h->flags & IVHD_FLAG_PASSPW_EN_MASK ?
579 580 581
		iommu_feature_enable(iommu, CONTROL_PASSPW_EN) :
		iommu_feature_disable(iommu, CONTROL_PASSPW_EN);

J
Joerg Roedel 已提交
582
	h->flags & IVHD_FLAG_RESPASSPW_EN_MASK ?
583 584 585
		iommu_feature_enable(iommu, CONTROL_RESPASSPW_EN) :
		iommu_feature_disable(iommu, CONTROL_RESPASSPW_EN);

J
Joerg Roedel 已提交
586
	h->flags & IVHD_FLAG_ISOC_EN_MASK ?
587 588 589 590 591 592 593 594 595 596 597 598 599 600
		iommu_feature_enable(iommu, CONTROL_ISOC_EN) :
		iommu_feature_disable(iommu, CONTROL_ISOC_EN);

	/*
	 * make IOMMU memory accesses cache coherent
	 */
	iommu_feature_enable(iommu, CONTROL_COHERENT_EN);

	/*
	 * Done. Now parse the device entries
	 */
	p += sizeof(struct ivhd_header);
	end += h->length;

601

602 603 604 605
	while (p < end) {
		e = (struct ivhd_entry *)p;
		switch (e->type) {
		case IVHD_DEV_ALL:
606 607 608 609 610 611 612 613 614 615 616

			DUMP_printk("  DEV_ALL\t\t\t first devid: %02x:%02x.%x"
				    " last device %02x:%02x.%x flags: %02x\n",
				    PCI_BUS(iommu->first_device),
				    PCI_SLOT(iommu->first_device),
				    PCI_FUNC(iommu->first_device),
				    PCI_BUS(iommu->last_device),
				    PCI_SLOT(iommu->last_device),
				    PCI_FUNC(iommu->last_device),
				    e->flags);

617 618
			for (dev_i = iommu->first_device;
					dev_i <= iommu->last_device; ++dev_i)
619 620
				set_dev_entry_from_acpi(iommu, dev_i,
							e->flags, 0);
621 622
			break;
		case IVHD_DEV_SELECT:
623 624 625 626 627 628 629 630

			DUMP_printk("  DEV_SELECT\t\t\t devid: %02x:%02x.%x "
				    "flags: %02x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags);

631
			devid = e->devid;
632
			set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
633 634
			break;
		case IVHD_DEV_SELECT_RANGE_START:
635 636 637 638 639 640 641 642

			DUMP_printk("  DEV_SELECT_RANGE_START\t "
				    "devid: %02x:%02x.%x flags: %02x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags);

643 644 645
			devid_start = e->devid;
			flags = e->flags;
			ext_flags = 0;
646
			alias = false;
647 648
			break;
		case IVHD_DEV_ALIAS:
649 650 651 652 653 654 655 656 657 658 659

			DUMP_printk("  DEV_ALIAS\t\t\t devid: %02x:%02x.%x "
				    "flags: %02x devid_to: %02x:%02x.%x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags,
				    PCI_BUS(e->ext >> 8),
				    PCI_SLOT(e->ext >> 8),
				    PCI_FUNC(e->ext >> 8));

660 661
			devid = e->devid;
			devid_to = e->ext >> 8;
662
			set_dev_entry_from_acpi(iommu, devid, e->flags, 0);
663 664 665
			amd_iommu_alias_table[devid] = devid_to;
			break;
		case IVHD_DEV_ALIAS_RANGE:
666 667 668 669 670 671 672 673 674 675 676 677

			DUMP_printk("  DEV_ALIAS_RANGE\t\t "
				    "devid: %02x:%02x.%x flags: %02x "
				    "devid_to: %02x:%02x.%x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags,
				    PCI_BUS(e->ext >> 8),
				    PCI_SLOT(e->ext >> 8),
				    PCI_FUNC(e->ext >> 8));

678 679 680 681
			devid_start = e->devid;
			flags = e->flags;
			devid_to = e->ext >> 8;
			ext_flags = 0;
682
			alias = true;
683 684
			break;
		case IVHD_DEV_EXT_SELECT:
685 686 687 688 689 690 691 692

			DUMP_printk("  DEV_EXT_SELECT\t\t devid: %02x:%02x.%x "
				    "flags: %02x ext: %08x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags, e->ext);

693
			devid = e->devid;
694 695
			set_dev_entry_from_acpi(iommu, devid, e->flags,
						e->ext);
696 697
			break;
		case IVHD_DEV_EXT_SELECT_RANGE:
698 699 700 701 702 703 704 705

			DUMP_printk("  DEV_EXT_SELECT_RANGE\t devid: "
				    "%02x:%02x.%x flags: %02x ext: %08x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid),
				    e->flags, e->ext);

706 707 708
			devid_start = e->devid;
			flags = e->flags;
			ext_flags = e->ext;
709
			alias = false;
710 711
			break;
		case IVHD_DEV_RANGE_END:
712 713 714 715 716 717

			DUMP_printk("  DEV_RANGE_END\t\t devid: %02x:%02x.%x\n",
				    PCI_BUS(e->devid),
				    PCI_SLOT(e->devid),
				    PCI_FUNC(e->devid));

718 719 720 721
			devid = e->devid;
			for (dev_i = devid_start; dev_i <= devid; ++dev_i) {
				if (alias)
					amd_iommu_alias_table[dev_i] = devid_to;
722
				set_dev_entry_from_acpi(iommu,
723 724 725 726 727 728 729 730
						amd_iommu_alias_table[dev_i],
						flags, ext_flags);
			}
			break;
		default:
			break;
		}

731
		p += ivhd_entry_length(p);
732 733 734
	}
}

735
/* Initializes the device->iommu mapping for the driver */
736 737 738 739 740 741 742 743 744 745
static int __init init_iommu_devices(struct amd_iommu *iommu)
{
	u16 i;

	for (i = iommu->first_device; i <= iommu->last_device; ++i)
		set_iommu_for_device(iommu, i);

	return 0;
}

746 747 748
static void __init free_iommu_one(struct amd_iommu *iommu)
{
	free_command_buffer(iommu);
749
	free_event_buffer(iommu);
750 751 752 753 754 755 756 757 758 759 760 761 762 763
	iommu_unmap_mmio_space(iommu);
}

static void __init free_iommu_all(void)
{
	struct amd_iommu *iommu, *next;

	list_for_each_entry_safe(iommu, next, &amd_iommu_list, list) {
		list_del(&iommu->list);
		free_iommu_one(iommu);
		kfree(iommu);
	}
}

764 765 766 767 768
/*
 * This function clues the initialization function for one IOMMU
 * together and also allocates the command buffer and programs the
 * hardware. It does NOT enable the IOMMU. This is done afterwards.
 */
769 770 771 772 773 774 775 776
static int __init init_iommu_one(struct amd_iommu *iommu, struct ivhd_header *h)
{
	spin_lock_init(&iommu->lock);
	list_add_tail(&iommu->list, &amd_iommu_list);

	/*
	 * Copy data from ACPI table entry to the iommu struct
	 */
777 778 779 780
	iommu->dev = pci_get_bus_and_slot(PCI_BUS(h->devid), h->devid & 0xff);
	if (!iommu->dev)
		return 1;

781
	iommu->cap_ptr = h->cap_ptr;
782
	iommu->pci_seg = h->pci_seg;
783 784 785 786 787 788 789 790 791 792
	iommu->mmio_phys = h->mmio_phys;
	iommu->mmio_base = iommu_map_mmio_space(h->mmio_phys);
	if (!iommu->mmio_base)
		return -ENOMEM;

	iommu_set_device_table(iommu);
	iommu->cmd_buf = alloc_command_buffer(iommu);
	if (!iommu->cmd_buf)
		return -ENOMEM;

793 794 795 796
	iommu->evt_buf = alloc_event_buffer(iommu);
	if (!iommu->evt_buf)
		return -ENOMEM;

797 798
	iommu->int_enabled = false;

799 800 801 802
	init_iommu_from_pci(iommu);
	init_iommu_from_acpi(iommu, h);
	init_iommu_devices(iommu);

803
	return pci_enable_device(iommu->dev);
804 805
}

806 807 808 809
/*
 * Iterates over all IOMMU entries in the ACPI table, allocates the
 * IOMMU structure and initializes it with init_iommu_one()
 */
810 811 812 813 814 815 816 817 818 819 820 821 822 823
static int __init init_iommu_all(struct acpi_table_header *table)
{
	u8 *p = (u8 *)table, *end = (u8 *)table;
	struct ivhd_header *h;
	struct amd_iommu *iommu;
	int ret;

	end += table->length;
	p += IVRS_HEADER_LENGTH;

	while (p < end) {
		h = (struct ivhd_header *)p;
		switch (*p) {
		case ACPI_IVHD_TYPE:
824 825 826 827 828 829 830 831 832

			DUMP_printk("IOMMU: device: %02x:%02x.%01x cap: %04x "
				    "seg: %d flags: %01x info %04x\n",
				    PCI_BUS(h->devid), PCI_SLOT(h->devid),
				    PCI_FUNC(h->devid), h->cap_ptr,
				    h->pci_seg, h->flags, h->info);
			DUMP_printk("       mmio-addr: %016llx\n",
				    h->mmio_phys);

833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
			iommu = kzalloc(sizeof(struct amd_iommu), GFP_KERNEL);
			if (iommu == NULL)
				return -ENOMEM;
			ret = init_iommu_one(iommu, h);
			if (ret)
				return ret;
			break;
		default:
			break;
		}
		p += h->length;

	}
	WARN_ON(p != end);

	return 0;
}

851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
/****************************************************************************
 *
 * The following functions initialize the MSI interrupts for all IOMMUs
 * in the system. Its a bit challenging because there could be multiple
 * IOMMUs per PCI BDF but we can call pci_enable_msi(x) only once per
 * pci_dev.
 *
 ****************************************************************************/

static int __init iommu_setup_msix(struct amd_iommu *iommu)
{
	struct amd_iommu *curr;
	struct msix_entry entries[32]; /* only 32 supported by AMD IOMMU */
	int nvec = 0, i;

	list_for_each_entry(curr, &amd_iommu_list, list) {
		if (curr->dev == iommu->dev) {
			entries[nvec].entry = curr->evt_msi_num;
			entries[nvec].vector = 0;
			curr->int_enabled = true;
			nvec++;
		}
	}

	if (pci_enable_msix(iommu->dev, entries, nvec)) {
		pci_disable_msix(iommu->dev);
		return 1;
	}

	for (i = 0; i < nvec; ++i) {
		int r = request_irq(entries->vector, amd_iommu_int_handler,
				    IRQF_SAMPLE_RANDOM,
				    "AMD IOMMU",
				    NULL);
		if (r)
			goto out_free;
	}

	return 0;

out_free:
	for (i -= 1; i >= 0; --i)
		free_irq(entries->vector, NULL);

	pci_disable_msix(iommu->dev);

	return 1;
}

static int __init iommu_setup_msi(struct amd_iommu *iommu)
{
	int r;
	struct amd_iommu *curr;

	list_for_each_entry(curr, &amd_iommu_list, list) {
		if (curr->dev == iommu->dev)
			curr->int_enabled = true;
	}


	if (pci_enable_msi(iommu->dev))
		return 1;

	r = request_irq(iommu->dev->irq, amd_iommu_int_handler,
			IRQF_SAMPLE_RANDOM,
			"AMD IOMMU",
			NULL);

	if (r) {
		pci_disable_msi(iommu->dev);
		return 1;
	}

	return 0;
}

static int __init iommu_init_msi(struct amd_iommu *iommu)
{
	if (iommu->int_enabled)
		return 0;

	if (pci_find_capability(iommu->dev, PCI_CAP_ID_MSIX))
		return iommu_setup_msix(iommu);
	else if (pci_find_capability(iommu->dev, PCI_CAP_ID_MSI))
		return iommu_setup_msi(iommu);

	return 1;
}

940 941 942 943 944 945 946 947
/****************************************************************************
 *
 * The next functions belong to the third pass of parsing the ACPI
 * table. In this last pass the memory mapping requirements are
 * gathered (like exclusion and unity mapping reanges).
 *
 ****************************************************************************/

948 949 950 951 952 953 954 955 956 957
static void __init free_unity_maps(void)
{
	struct unity_map_entry *entry, *next;

	list_for_each_entry_safe(entry, next, &amd_iommu_unity_map, list) {
		list_del(&entry->list);
		kfree(entry);
	}
}

958
/* called when we find an exclusion range definition in ACPI */
959 960 961 962 963 964 965 966 967
static int __init init_exclusion_range(struct ivmd_header *m)
{
	int i;

	switch (m->type) {
	case ACPI_IVMD_TYPE:
		set_device_exclusion_range(m->devid, m);
		break;
	case ACPI_IVMD_TYPE_ALL:
968
		for (i = 0; i <= amd_iommu_last_bdf; ++i)
969 970 971 972 973 974 975 976 977 978 979 980 981
			set_device_exclusion_range(i, m);
		break;
	case ACPI_IVMD_TYPE_RANGE:
		for (i = m->devid; i <= m->aux; ++i)
			set_device_exclusion_range(i, m);
		break;
	default:
		break;
	}

	return 0;
}

982
/* called for unity map ACPI definition */
983 984 985
static int __init init_unity_map_range(struct ivmd_header *m)
{
	struct unity_map_entry *e = 0;
986
	char *s;
987 988 989 990 991 992 993 994

	e = kzalloc(sizeof(*e), GFP_KERNEL);
	if (e == NULL)
		return -ENOMEM;

	switch (m->type) {
	default:
	case ACPI_IVMD_TYPE:
995
		s = "IVMD_TYPEi\t\t\t";
996 997 998
		e->devid_start = e->devid_end = m->devid;
		break;
	case ACPI_IVMD_TYPE_ALL:
999
		s = "IVMD_TYPE_ALL\t\t";
1000 1001 1002 1003
		e->devid_start = 0;
		e->devid_end = amd_iommu_last_bdf;
		break;
	case ACPI_IVMD_TYPE_RANGE:
1004
		s = "IVMD_TYPE_RANGE\t\t";
1005 1006 1007 1008 1009 1010 1011 1012
		e->devid_start = m->devid;
		e->devid_end = m->aux;
		break;
	}
	e->address_start = PAGE_ALIGN(m->range_start);
	e->address_end = e->address_start + PAGE_ALIGN(m->range_length);
	e->prot = m->flags >> 1;

1013 1014 1015 1016 1017 1018 1019
	DUMP_printk("%s devid_start: %02x:%02x.%x devid_end: %02x:%02x.%x"
		    " range_start: %016llx range_end: %016llx flags: %x\n", s,
		    PCI_BUS(e->devid_start), PCI_SLOT(e->devid_start),
		    PCI_FUNC(e->devid_start), PCI_BUS(e->devid_end),
		    PCI_SLOT(e->devid_end), PCI_FUNC(e->devid_end),
		    e->address_start, e->address_end, m->flags);

1020 1021 1022 1023 1024
	list_add_tail(&e->list, &amd_iommu_unity_map);

	return 0;
}

1025
/* iterates over all memory definitions we find in the ACPI table */
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
static int __init init_memory_definitions(struct acpi_table_header *table)
{
	u8 *p = (u8 *)table, *end = (u8 *)table;
	struct ivmd_header *m;

	end += table->length;
	p += IVRS_HEADER_LENGTH;

	while (p < end) {
		m = (struct ivmd_header *)p;
		if (m->flags & IVMD_FLAG_EXCL_RANGE)
			init_exclusion_range(m);
		else if (m->flags & IVMD_FLAG_UNITY_MAP)
			init_unity_map_range(m);

		p += m->length;
	}

	return 0;
}

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
/*
 * Init the device table to not allow DMA access for devices and
 * suppress all page faults
 */
static void init_device_table(void)
{
	u16 devid;

	for (devid = 0; devid <= amd_iommu_last_bdf; ++devid) {
		set_dev_entry_bit(devid, DEV_ENTRY_VALID);
		set_dev_entry_bit(devid, DEV_ENTRY_TRANSLATION);
	}
}

1061 1062 1063 1064
/*
 * This function finally enables all IOMMUs found in the system after
 * they have been initialized
 */
1065 1066 1067 1068 1069 1070
static void __init enable_iommus(void)
{
	struct amd_iommu *iommu;

	list_for_each_entry(iommu, &amd_iommu_list, list) {
		iommu_set_exclusion_range(iommu);
1071
		iommu_init_msi(iommu);
J
Joerg Roedel 已提交
1072
		iommu_enable_event_logging(iommu);
1073 1074 1075 1076
		iommu_enable(iommu);
	}
}

1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
/*
 * Suspend/Resume support
 * disable suspend until real resume implemented
 */

static int amd_iommu_resume(struct sys_device *dev)
{
	return 0;
}

static int amd_iommu_suspend(struct sys_device *dev, pm_message_t state)
{
	return -EINVAL;
}

static struct sysdev_class amd_iommu_sysdev_class = {
	.name = "amd_iommu",
	.suspend = amd_iommu_suspend,
	.resume = amd_iommu_resume,
};

static struct sys_device device_amd_iommu = {
	.id = 0,
	.cls = &amd_iommu_sysdev_class,
};

1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
/*
 * This is the core init function for AMD IOMMU hardware in the system.
 * This function is called from the generic x86 DMA layer initialization
 * code.
 *
 * This function basically parses the ACPI table for AMD IOMMU (IVRS)
 * three times:
 *
 *	1 pass) Find the highest PCI device id the driver has to handle.
 *		Upon this information the size of the data structures is
 *		determined that needs to be allocated.
 *
 *	2 pass) Initialize the data structures just allocated with the
 *		information in the ACPI table about available AMD IOMMUs
 *		in the system. It also maps the PCI devices in the
 *		system to specific IOMMUs
 *
 *	3 pass) After the basic data structures are allocated and
 *		initialized we update them with information about memory
 *		remapping requirements parsed out of the ACPI table in
 *		this last pass.
 *
 * After that the hardware is initialized and ready to go. In the last
 * step we do some Linux specific things like registering the driver in
 * the dma_ops interface and initializing the suspend/resume support
 * functions. Finally it prints some information about AMD IOMMUs and
 * the driver state and enables the hardware.
 */
1131 1132 1133 1134 1135
int __init amd_iommu_init(void)
{
	int i, ret = 0;


1136
	if (no_iommu) {
1137 1138 1139 1140
		printk(KERN_INFO "AMD IOMMU disabled by kernel command line\n");
		return 0;
	}

1141 1142 1143
	if (!amd_iommu_detected)
		return -ENODEV;

1144 1145 1146 1147 1148 1149 1150 1151
	/*
	 * First parse ACPI tables to find the largest Bus/Dev/Func
	 * we need to handle. Upon this information the shared data
	 * structures for the IOMMUs in the system will be allocated
	 */
	if (acpi_table_parse("IVRS", find_last_devid_acpi) != 0)
		return -ENODEV;

1152 1153 1154
	dev_table_size     = tbl_size(DEV_TABLE_ENTRY_SIZE);
	alias_table_size   = tbl_size(ALIAS_TABLE_ENTRY_SIZE);
	rlookup_table_size = tbl_size(RLOOKUP_TABLE_ENTRY_SIZE);
1155 1156 1157 1158

	ret = -ENOMEM;

	/* Device table - directly used by all IOMMUs */
1159
	amd_iommu_dev_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
				      get_order(dev_table_size));
	if (amd_iommu_dev_table == NULL)
		goto out;

	/*
	 * Alias table - map PCI Bus/Dev/Func to Bus/Dev/Func the
	 * IOMMU see for that device
	 */
	amd_iommu_alias_table = (void *)__get_free_pages(GFP_KERNEL,
			get_order(alias_table_size));
	if (amd_iommu_alias_table == NULL)
		goto free;

	/* IOMMU rlookup table - find the IOMMU for a specific device */
1174 1175
	amd_iommu_rlookup_table = (void *)__get_free_pages(
			GFP_KERNEL | __GFP_ZERO,
1176 1177 1178 1179 1180 1181 1182 1183
			get_order(rlookup_table_size));
	if (amd_iommu_rlookup_table == NULL)
		goto free;

	/*
	 * Protection Domain table - maps devices to protection domains
	 * This table has the same size as the rlookup_table
	 */
1184
	amd_iommu_pd_table = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1185 1186 1187 1188
				     get_order(rlookup_table_size));
	if (amd_iommu_pd_table == NULL)
		goto free;

1189 1190
	amd_iommu_pd_alloc_bitmap = (void *)__get_free_pages(
					    GFP_KERNEL | __GFP_ZERO,
1191 1192 1193 1194
					    get_order(MAX_DOMAIN_ID/8));
	if (amd_iommu_pd_alloc_bitmap == NULL)
		goto free;

1195 1196 1197
	/* init the device table */
	init_device_table();

1198
	/*
1199
	 * let all alias entries point to itself
1200
	 */
1201
	for (i = 0; i <= amd_iommu_last_bdf; ++i)
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
		amd_iommu_alias_table[i] = i;

	/*
	 * never allocate domain 0 because its used as the non-allocated and
	 * error value placeholder
	 */
	amd_iommu_pd_alloc_bitmap[0] = 1;

	/*
	 * now the data structures are allocated and basically initialized
	 * start the real acpi table scan
	 */
	ret = -ENODEV;
	if (acpi_table_parse("IVRS", init_iommu_all) != 0)
		goto free;

	if (acpi_table_parse("IVRS", init_memory_definitions) != 0)
		goto free;

1221
	ret = sysdev_class_register(&amd_iommu_sysdev_class);
1222 1223 1224
	if (ret)
		goto free;

1225
	ret = sysdev_register(&device_amd_iommu);
1226 1227 1228
	if (ret)
		goto free;

1229
	ret = amd_iommu_init_dma_ops();
1230 1231 1232
	if (ret)
		goto free;

1233 1234
	enable_iommus();

1235 1236 1237 1238 1239 1240 1241 1242 1243
	printk(KERN_INFO "AMD IOMMU: aperture size is %d MB\n",
			(1 << (amd_iommu_aperture_order-20)));

	printk(KERN_INFO "AMD IOMMU: device isolation ");
	if (amd_iommu_isolate)
		printk("enabled\n");
	else
		printk("disabled\n");

1244
	if (amd_iommu_unmap_flush)
1245 1246 1247 1248
		printk(KERN_INFO "AMD IOMMU: IO/TLB flush on unmap enabled\n");
	else
		printk(KERN_INFO "AMD IOMMU: Lazy IO/TLB flushing enabled\n");

1249 1250 1251 1252
out:
	return ret;

free:
1253 1254
	free_pages((unsigned long)amd_iommu_pd_alloc_bitmap,
		   get_order(MAX_DOMAIN_ID/8));
1255

1256 1257
	free_pages((unsigned long)amd_iommu_pd_table,
		   get_order(rlookup_table_size));
1258

1259 1260
	free_pages((unsigned long)amd_iommu_rlookup_table,
		   get_order(rlookup_table_size));
1261

1262 1263
	free_pages((unsigned long)amd_iommu_alias_table,
		   get_order(alias_table_size));
1264

1265 1266
	free_pages((unsigned long)amd_iommu_dev_table,
		   get_order(dev_table_size));
1267 1268 1269 1270 1271 1272 1273 1274

	free_iommu_all();

	free_unity_maps();

	goto out;
}

1275 1276 1277 1278 1279 1280 1281
/****************************************************************************
 *
 * Early detect code. This code runs at IOMMU detection time in the DMA
 * layer. It just looks if there is an IVRS ACPI table to detect AMD
 * IOMMUs
 *
 ****************************************************************************/
1282 1283 1284 1285 1286 1287 1288
static int __init early_amd_iommu_detect(struct acpi_table_header *table)
{
	return 0;
}

void __init amd_iommu_detect(void)
{
1289
	if (swiotlb || no_iommu || (iommu_detected && !gart_iommu_aperture))
1290 1291 1292 1293
		return;

	if (acpi_table_parse("IVRS", early_amd_iommu_detect) == 0) {
		iommu_detected = 1;
1294
		amd_iommu_detected = 1;
I
Ingo Molnar 已提交
1295
#ifdef CONFIG_GART_IOMMU
1296 1297
		gart_iommu_aperture_disabled = 1;
		gart_iommu_aperture = 0;
I
Ingo Molnar 已提交
1298
#endif
1299 1300 1301
	}
}

1302 1303 1304 1305 1306 1307 1308
/****************************************************************************
 *
 * Parsing functions for the AMD IOMMU specific kernel command line
 * options.
 *
 ****************************************************************************/

1309 1310 1311 1312 1313 1314 1315
static int __init parse_amd_iommu_dump(char *str)
{
	amd_iommu_dump = true;

	return 1;
}

1316 1317 1318
static int __init parse_amd_iommu_options(char *str)
{
	for (; *str; ++str) {
1319
		if (strncmp(str, "isolate", 7) == 0)
1320
			amd_iommu_isolate = true;
1321
		if (strncmp(str, "share", 5) == 0)
1322
			amd_iommu_isolate = false;
1323
		if (strncmp(str, "fullflush", 9) == 0)
1324
			amd_iommu_unmap_flush = true;
1325 1326 1327 1328 1329 1330 1331
	}

	return 1;
}

static int __init parse_amd_iommu_size_options(char *str)
{
1332 1333 1334 1335
	unsigned order = PAGE_SHIFT + get_order(memparse(str, &str));

	if ((order > 24) && (order < 31))
		amd_iommu_aperture_order = order;
1336 1337 1338 1339

	return 1;
}

1340
__setup("amd_iommu_dump", parse_amd_iommu_dump);
1341 1342
__setup("amd_iommu=", parse_amd_iommu_options);
__setup("amd_iommu_size=", parse_amd_iommu_size_options);