init.c 21.5 KB
Newer Older
1
#include <linux/gfp.h>
2
#include <linux/initrd.h>
3
#include <linux/ioport.h>
4
#include <linux/swap.h>
5
#include <linux/memblock.h>
P
Pekka Enberg 已提交
6
#include <linux/bootmem.h>	/* for max_low_pfn */
7

8
#include <asm/cacheflush.h>
9
#include <asm/e820.h>
10
#include <asm/init.h>
11
#include <asm/page.h>
12
#include <asm/page_types.h>
13
#include <asm/sections.h>
14
#include <asm/setup.h>
15
#include <asm/tlbflush.h>
16
#include <asm/tlb.h>
17
#include <asm/proto.h>
P
Pekka Enberg 已提交
18
#include <asm/dma.h>		/* for MAX_DMA_PFN */
19
#include <asm/microcode.h>
20

21 22 23 24 25 26 27
/*
 * We need to define the tracepoints somewhere, and tlb.c
 * is only compied when SMP=y.
 */
#define CREATE_TRACE_POINTS
#include <trace/events/tlb.h>

28 29
#include "mm_internal.h"

30 31
/*
 * Tables translating between page_cache_type_t and pte encoding.
32
 *
33 34 35 36 37
 * The default values are defined statically as minimal supported mode;
 * WC and WT fall back to UC-.  pat_init() updates these values to support
 * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
 * for the details.  Note, __early_ioremap() used during early boot-time
 * takes pgprot_t (pte encoding) and does not use these tables.
38 39 40 41 42
 *
 *   Index into __cachemode2pte_tbl[] is the cachemode.
 *
 *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
 *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
43 44
 */
uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
45
	[_PAGE_CACHE_MODE_WB      ]	= 0         | 0        ,
46
	[_PAGE_CACHE_MODE_WC      ]	= 0         | _PAGE_PCD,
47 48 49 50
	[_PAGE_CACHE_MODE_UC_MINUS]	= 0         | _PAGE_PCD,
	[_PAGE_CACHE_MODE_UC      ]	= _PAGE_PWT | _PAGE_PCD,
	[_PAGE_CACHE_MODE_WT      ]	= 0         | _PAGE_PCD,
	[_PAGE_CACHE_MODE_WP      ]	= 0         | _PAGE_PCD,
51
};
52
EXPORT_SYMBOL(__cachemode2pte_tbl);
53

54
uint8_t __pte2cachemode_tbl[8] = {
55
	[__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
56
	[__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
57 58 59
	[__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
	[__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
60
	[__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
61
	[__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
62 63
	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
};
64
EXPORT_SYMBOL(__pte2cachemode_tbl);
65

66 67 68
static unsigned long __initdata pgt_buf_start;
static unsigned long __initdata pgt_buf_end;
static unsigned long __initdata pgt_buf_top;
69

70 71
static unsigned long min_pfn_mapped;

72 73
static bool __initdata can_use_brk_pgt = true;

74 75 76 77 78 79 80 81 82
/*
 * Pages returned are already directly mapped.
 *
 * Changing that is likely to break Xen, see commit:
 *
 *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
 *
 * for detailed information.
 */
Y
Yinghai Lu 已提交
83
__ref void *alloc_low_pages(unsigned int num)
84 85
{
	unsigned long pfn;
Y
Yinghai Lu 已提交
86
	int i;
87 88

	if (after_bootmem) {
Y
Yinghai Lu 已提交
89
		unsigned int order;
90

Y
Yinghai Lu 已提交
91 92 93
		order = get_order((unsigned long)num << PAGE_SHIFT);
		return (void *)__get_free_pages(GFP_ATOMIC | __GFP_NOTRACK |
						__GFP_ZERO, order);
94 95
	}

96
	if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
97 98
		unsigned long ret;
		if (min_pfn_mapped >= max_pfn_mapped)
99
			panic("alloc_low_pages: ran out of memory");
100 101
		ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
					max_pfn_mapped << PAGE_SHIFT,
Y
Yinghai Lu 已提交
102
					PAGE_SIZE * num , PAGE_SIZE);
103
		if (!ret)
104
			panic("alloc_low_pages: can not alloc memory");
Y
Yinghai Lu 已提交
105
		memblock_reserve(ret, PAGE_SIZE * num);
106
		pfn = ret >> PAGE_SHIFT;
Y
Yinghai Lu 已提交
107 108 109
	} else {
		pfn = pgt_buf_end;
		pgt_buf_end += num;
110 111
		printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
			pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
Y
Yinghai Lu 已提交
112 113 114 115 116 117 118 119
	}

	for (i = 0; i < num; i++) {
		void *adr;

		adr = __va((pfn + i) << PAGE_SHIFT);
		clear_page(adr);
	}
120

Y
Yinghai Lu 已提交
121
	return __va(pfn << PAGE_SHIFT);
122 123
}

124 125
/* need 3 4k for initial PMD_SIZE,  3 4k for 0-ISA_END_ADDRESS */
#define INIT_PGT_BUF_SIZE	(6 * PAGE_SIZE)
Y
Yinghai Lu 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138
RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
void  __init early_alloc_pgt_buf(void)
{
	unsigned long tables = INIT_PGT_BUF_SIZE;
	phys_addr_t base;

	base = __pa(extend_brk(tables, PAGE_SIZE));

	pgt_buf_start = base >> PAGE_SHIFT;
	pgt_buf_end = pgt_buf_start;
	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
}

139 140
int after_bootmem;

141
early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
142

143 144 145 146 147 148
struct map_range {
	unsigned long start;
	unsigned long end;
	unsigned page_size_mask;
};

149
static int page_size_mask;
150

151
static void __init probe_page_size_mask(void)
152 153 154 155 156 157 158 159 160 161 162 163 164
{
#if !defined(CONFIG_DEBUG_PAGEALLOC) && !defined(CONFIG_KMEMCHECK)
	/*
	 * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
	 * This will simplify cpa(), which otherwise needs to support splitting
	 * large pages into small in interrupt context, etc.
	 */
	if (cpu_has_pse)
		page_size_mask |= 1 << PG_LEVEL_2M;
#endif

	/* Enable PSE if available */
	if (cpu_has_pse)
A
Andy Lutomirski 已提交
165
		cr4_set_bits_and_update_boot(X86_CR4_PSE);
166 167 168

	/* Enable PGE if available */
	if (cpu_has_pge) {
A
Andy Lutomirski 已提交
169
		cr4_set_bits_and_update_boot(X86_CR4_PGE);
170
		__supported_pte_mask |= _PAGE_GLOBAL;
171 172
	} else
		__supported_pte_mask &= ~_PAGE_GLOBAL;
173 174 175 176 177 178 179 180

	/* Enable 1 GB linear kernel mappings if available: */
	if (direct_gbpages && cpu_has_gbpages) {
		printk(KERN_INFO "Using GB pages for direct mapping\n");
		page_size_mask |= 1 << PG_LEVEL_1G;
	} else {
		direct_gbpages = 0;
	}
181
}
182

183 184 185 186 187 188
#ifdef CONFIG_X86_32
#define NR_RANGE_MR 3
#else /* CONFIG_X86_64 */
#define NR_RANGE_MR 5
#endif

189 190 191
static int __meminit save_mr(struct map_range *mr, int nr_range,
			     unsigned long start_pfn, unsigned long end_pfn,
			     unsigned long page_size_mask)
192 193 194 195 196 197 198 199 200 201 202 203 204
{
	if (start_pfn < end_pfn) {
		if (nr_range >= NR_RANGE_MR)
			panic("run out of range for init_memory_mapping\n");
		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
		mr[nr_range].page_size_mask = page_size_mask;
		nr_range++;
	}

	return nr_range;
}

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
/*
 * adjust the page_size_mask for small range to go with
 *	big page size instead small one if nearby are ram too.
 */
static void __init_refok adjust_range_page_size_mask(struct map_range *mr,
							 int nr_range)
{
	int i;

	for (i = 0; i < nr_range; i++) {
		if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
		    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
			unsigned long start = round_down(mr[i].start, PMD_SIZE);
			unsigned long end = round_up(mr[i].end, PMD_SIZE);

#ifdef CONFIG_X86_32
			if ((end >> PAGE_SHIFT) > max_low_pfn)
				continue;
#endif

			if (memblock_is_region_memory(start, end - start))
				mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
		}
		if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
		    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
			unsigned long start = round_down(mr[i].start, PUD_SIZE);
			unsigned long end = round_up(mr[i].end, PUD_SIZE);

			if (memblock_is_region_memory(start, end - start))
				mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
		}
	}
}

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
static const char *page_size_string(struct map_range *mr)
{
	static const char str_1g[] = "1G";
	static const char str_2m[] = "2M";
	static const char str_4m[] = "4M";
	static const char str_4k[] = "4k";

	if (mr->page_size_mask & (1<<PG_LEVEL_1G))
		return str_1g;
	/*
	 * 32-bit without PAE has a 4M large page size.
	 * PG_LEVEL_2M is misnamed, but we can at least
	 * print out the right size in the string.
	 */
	if (IS_ENABLED(CONFIG_X86_32) &&
	    !IS_ENABLED(CONFIG_X86_PAE) &&
	    mr->page_size_mask & (1<<PG_LEVEL_2M))
		return str_4m;

	if (mr->page_size_mask & (1<<PG_LEVEL_2M))
		return str_2m;

	return str_4k;
}

264 265 266
static int __meminit split_mem_range(struct map_range *mr, int nr_range,
				     unsigned long start,
				     unsigned long end)
267
{
Y
Yinghai Lu 已提交
268
	unsigned long start_pfn, end_pfn, limit_pfn;
269
	unsigned long pfn;
270
	int i;
271

Y
Yinghai Lu 已提交
272 273
	limit_pfn = PFN_DOWN(end);

274
	/* head if not big page alignment ? */
275
	pfn = start_pfn = PFN_DOWN(start);
276 277 278 279 280 281 282
#ifdef CONFIG_X86_32
	/*
	 * Don't use a large page for the first 2/4MB of memory
	 * because there are often fixed size MTRRs in there
	 * and overlapping MTRRs into large pages can cause
	 * slowdowns.
	 */
283
	if (pfn == 0)
284
		end_pfn = PFN_DOWN(PMD_SIZE);
285
	else
286
		end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
287
#else /* CONFIG_X86_64 */
288
	end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
289
#endif
Y
Yinghai Lu 已提交
290 291
	if (end_pfn > limit_pfn)
		end_pfn = limit_pfn;
292 293
	if (start_pfn < end_pfn) {
		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
294
		pfn = end_pfn;
295 296 297
	}

	/* big page (2M) range */
298
	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
299
#ifdef CONFIG_X86_32
Y
Yinghai Lu 已提交
300
	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
301
#else /* CONFIG_X86_64 */
302
	end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
Y
Yinghai Lu 已提交
303 304
	if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
		end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
305 306 307 308 309
#endif

	if (start_pfn < end_pfn) {
		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
				page_size_mask & (1<<PG_LEVEL_2M));
310
		pfn = end_pfn;
311 312 313 314
	}

#ifdef CONFIG_X86_64
	/* big page (1G) range */
315
	start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
Y
Yinghai Lu 已提交
316
	end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
317 318 319 320
	if (start_pfn < end_pfn) {
		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
				page_size_mask &
				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
321
		pfn = end_pfn;
322 323 324
	}

	/* tail is not big page (1G) alignment */
325
	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
Y
Yinghai Lu 已提交
326
	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
327 328 329
	if (start_pfn < end_pfn) {
		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
				page_size_mask & (1<<PG_LEVEL_2M));
330
		pfn = end_pfn;
331 332 333 334
	}
#endif

	/* tail is not big page (2M) alignment */
335
	start_pfn = pfn;
Y
Yinghai Lu 已提交
336
	end_pfn = limit_pfn;
337 338
	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);

339 340 341
	if (!after_bootmem)
		adjust_range_page_size_mask(mr, nr_range);

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
	/* try to merge same page size and continuous */
	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
		unsigned long old_start;
		if (mr[i].end != mr[i+1].start ||
		    mr[i].page_size_mask != mr[i+1].page_size_mask)
			continue;
		/* move it */
		old_start = mr[i].start;
		memmove(&mr[i], &mr[i+1],
			(nr_range - 1 - i) * sizeof(struct map_range));
		mr[i--].start = old_start;
		nr_range--;
	}

	for (i = 0; i < nr_range; i++)
357 358
		printk(KERN_DEBUG " [mem %#010lx-%#010lx] page %s\n",
				mr[i].start, mr[i].end - 1,
359
				page_size_string(&mr[i]));
360

361 362 363
	return nr_range;
}

364 365
struct range pfn_mapped[E820_X_MAX];
int nr_pfn_mapped;
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391

static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
{
	nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_X_MAX,
					     nr_pfn_mapped, start_pfn, end_pfn);
	nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_X_MAX);

	max_pfn_mapped = max(max_pfn_mapped, end_pfn);

	if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
		max_low_pfn_mapped = max(max_low_pfn_mapped,
					 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
}

bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
{
	int i;

	for (i = 0; i < nr_pfn_mapped; i++)
		if ((start_pfn >= pfn_mapped[i].start) &&
		    (end_pfn <= pfn_mapped[i].end))
			return true;

	return false;
}

392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
/*
 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
 * This runs before bootmem is initialized and gets pages directly from
 * the physical memory. To access them they are temporarily mapped.
 */
unsigned long __init_refok init_memory_mapping(unsigned long start,
					       unsigned long end)
{
	struct map_range mr[NR_RANGE_MR];
	unsigned long ret = 0;
	int nr_range, i;

	pr_info("init_memory_mapping: [mem %#010lx-%#010lx]\n",
	       start, end - 1);

	memset(mr, 0, sizeof(mr));
	nr_range = split_mem_range(mr, 0, start, end);

410 411 412 413
	for (i = 0; i < nr_range; i++)
		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
						   mr[i].page_size_mask);

414 415
	add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);

416 417 418
	return ret >> PAGE_SHIFT;
}

419
/*
420 421 422 423 424 425 426 427 428 429 430
 * We need to iterate through the E820 memory map and create direct mappings
 * for only E820_RAM and E820_KERN_RESERVED regions. We cannot simply
 * create direct mappings for all pfns from [0 to max_low_pfn) and
 * [4GB to max_pfn) because of possible memory holes in high addresses
 * that cannot be marked as UC by fixed/variable range MTRRs.
 * Depending on the alignment of E820 ranges, this may possibly result
 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
 *
 * init_mem_mapping() calls init_range_memory_mapping() with big range.
 * That range would have hole in the middle or ends, and only ram parts
 * will be mapped in init_range_memory_mapping().
431
 */
Y
Yinghai Lu 已提交
432
static unsigned long __init init_range_memory_mapping(
433 434
					   unsigned long r_start,
					   unsigned long r_end)
435 436
{
	unsigned long start_pfn, end_pfn;
Y
Yinghai Lu 已提交
437
	unsigned long mapped_ram_size = 0;
438 439 440
	int i;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
441 442 443
		u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
		u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
		if (start >= end)
444 445
			continue;

446 447 448 449 450 451
		/*
		 * if it is overlapping with brk pgt, we need to
		 * alloc pgt buf from memblock instead.
		 */
		can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
				    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
452
		init_memory_mapping(start, end);
Y
Yinghai Lu 已提交
453
		mapped_ram_size += end - start;
454
		can_use_brk_pgt = true;
455
	}
Y
Yinghai Lu 已提交
456 457

	return mapped_ram_size;
458 459
}

460 461 462
static unsigned long __init get_new_step_size(unsigned long step_size)
{
	/*
463
	 * Initial mapped size is PMD_SIZE (2M).
464 465 466
	 * We can not set step_size to be PUD_SIZE (1G) yet.
	 * In worse case, when we cross the 1G boundary, and
	 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
467 468
	 * to map 1G range with PTE. Hence we use one less than the
	 * difference of page table level shifts.
469
	 *
470 471 472 473 474
	 * Don't need to worry about overflow in the top-down case, on 32bit,
	 * when step_size is 0, round_down() returns 0 for start, and that
	 * turns it into 0x100000000ULL.
	 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
	 * needs to be taken into consideration by the code below.
475
	 */
476
	return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
477 478
}

479 480 481 482 483 484 485 486 487 488 489 490
/**
 * memory_map_top_down - Map [map_start, map_end) top down
 * @map_start: start address of the target memory range
 * @map_end: end address of the target memory range
 *
 * This function will setup direct mapping for memory range
 * [map_start, map_end) in top-down. That said, the page tables
 * will be allocated at the end of the memory, and we map the
 * memory in top-down.
 */
static void __init memory_map_top_down(unsigned long map_start,
				       unsigned long map_end)
491
{
492
	unsigned long real_end, start, last_start;
Y
Yinghai Lu 已提交
493 494 495
	unsigned long step_size;
	unsigned long addr;
	unsigned long mapped_ram_size = 0;
496

497
	/* xen has big range in reserved near end of ram, skip it at first.*/
498
	addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
Y
Yinghai Lu 已提交
499 500 501 502 503 504 505
	real_end = addr + PMD_SIZE;

	/* step_size need to be small so pgt_buf from BRK could cover it */
	step_size = PMD_SIZE;
	max_pfn_mapped = 0; /* will get exact value next */
	min_pfn_mapped = real_end >> PAGE_SHIFT;
	last_start = start = real_end;
506 507 508 509 510 511 512

	/*
	 * We start from the top (end of memory) and go to the bottom.
	 * The memblock_find_in_range() gets us a block of RAM from the
	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
	 * for page table.
	 */
513
	while (last_start > map_start) {
Y
Yinghai Lu 已提交
514 515
		if (last_start > step_size) {
			start = round_down(last_start - 1, step_size);
516 517
			if (start < map_start)
				start = map_start;
Y
Yinghai Lu 已提交
518
		} else
519
			start = map_start;
520
		mapped_ram_size += init_range_memory_mapping(start,
Y
Yinghai Lu 已提交
521 522 523
							last_start);
		last_start = start;
		min_pfn_mapped = last_start >> PAGE_SHIFT;
524
		if (mapped_ram_size >= step_size)
525
			step_size = get_new_step_size(step_size);
Y
Yinghai Lu 已提交
526 527
	}

528 529 530 531
	if (real_end < map_end)
		init_range_memory_mapping(real_end, map_end);
}

532 533 534 535 536 537 538 539 540 541 542 543 544 545
/**
 * memory_map_bottom_up - Map [map_start, map_end) bottom up
 * @map_start: start address of the target memory range
 * @map_end: end address of the target memory range
 *
 * This function will setup direct mapping for memory range
 * [map_start, map_end) in bottom-up. Since we have limited the
 * bottom-up allocation above the kernel, the page tables will
 * be allocated just above the kernel and we map the memory
 * in [map_start, map_end) in bottom-up.
 */
static void __init memory_map_bottom_up(unsigned long map_start,
					unsigned long map_end)
{
546
	unsigned long next, start;
547 548 549 550 551 552 553 554 555 556 557 558 559 560
	unsigned long mapped_ram_size = 0;
	/* step_size need to be small so pgt_buf from BRK could cover it */
	unsigned long step_size = PMD_SIZE;

	start = map_start;
	min_pfn_mapped = start >> PAGE_SHIFT;

	/*
	 * We start from the bottom (@map_start) and go to the top (@map_end).
	 * The memblock_find_in_range() gets us a block of RAM from the
	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
	 * for page table.
	 */
	while (start < map_end) {
561
		if (step_size && map_end - start > step_size) {
562 563 564
			next = round_up(start + 1, step_size);
			if (next > map_end)
				next = map_end;
565
		} else {
566
			next = map_end;
567
		}
568

569
		mapped_ram_size += init_range_memory_mapping(start, next);
570 571
		start = next;

572
		if (mapped_ram_size >= step_size)
573 574 575 576
			step_size = get_new_step_size(step_size);
	}
}

577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
void __init init_mem_mapping(void)
{
	unsigned long end;

	probe_page_size_mask();

#ifdef CONFIG_X86_64
	end = max_pfn << PAGE_SHIFT;
#else
	end = max_low_pfn << PAGE_SHIFT;
#endif

	/* the ISA range is always mapped regardless of memory holes */
	init_memory_mapping(0, ISA_END_ADDRESS);

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
	/*
	 * If the allocation is in bottom-up direction, we setup direct mapping
	 * in bottom-up, otherwise we setup direct mapping in top-down.
	 */
	if (memblock_bottom_up()) {
		unsigned long kernel_end = __pa_symbol(_end);

		/*
		 * we need two separate calls here. This is because we want to
		 * allocate page tables above the kernel. So we first map
		 * [kernel_end, end) to make memory above the kernel be mapped
		 * as soon as possible. And then use page tables allocated above
		 * the kernel to map [ISA_END_ADDRESS, kernel_end).
		 */
		memory_map_bottom_up(kernel_end, end);
		memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
	} else {
		memory_map_top_down(ISA_END_ADDRESS, end);
	}
Y
Yinghai Lu 已提交
611

612 613 614 615 616
#ifdef CONFIG_X86_64
	if (max_pfn > max_low_pfn) {
		/* can we preseve max_low_pfn ?*/
		max_low_pfn = max_pfn;
	}
617 618
#else
	early_ioremap_page_table_range_init();
619 620
#endif

621 622 623
	load_cr3(swapper_pg_dir);
	__flush_tlb_all();

624
	early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
625
}
626

627 628 629 630 631 632
/*
 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
 * is valid. The argument is a physical page number.
 *
 *
 * On x86, access has to be given to the first megabyte of ram because that area
633
 * contains BIOS code and data regions used by X and dosemu and similar apps.
634 635 636 637 638
 * Access has to be given to non-kernel-ram areas as well, these contain the PCI
 * mmio resources as well as potential bios/acpi data regions.
 */
int devmem_is_allowed(unsigned long pagenr)
{
639
	if (pagenr < 256)
640 641 642 643 644 645 646 647
		return 1;
	if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
		return 0;
	if (!page_is_ram(pagenr))
		return 1;
	return 0;
}

648 649
void free_init_pages(char *what, unsigned long begin, unsigned long end)
{
650
	unsigned long begin_aligned, end_aligned;
651

652 653 654 655 656 657 658 659 660 661
	/* Make sure boundaries are page aligned */
	begin_aligned = PAGE_ALIGN(begin);
	end_aligned   = end & PAGE_MASK;

	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
		begin = begin_aligned;
		end   = end_aligned;
	}

	if (begin >= end)
662 663 664 665 666 667 668 669
		return;

	/*
	 * If debugging page accesses then do not free this memory but
	 * mark them not present - any buggy init-section access will
	 * create a kernel page fault:
	 */
#ifdef CONFIG_DEBUG_PAGEALLOC
670 671
	printk(KERN_INFO "debug: unmapping init [mem %#010lx-%#010lx]\n",
		begin, end - 1);
672 673 674 675 676
	set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
#else
	/*
	 * We just marked the kernel text read only above, now that
	 * we are going to free part of that, we need to make that
677
	 * writeable and non-executable first.
678
	 */
679
	set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
680 681
	set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);

682
	free_reserved_area((void *)begin, (void *)end, POISON_FREE_INITMEM, what);
683 684 685 686 687
#endif
}

void free_initmem(void)
{
688
	free_init_pages("unused kernel",
689 690 691
			(unsigned long)(&__init_begin),
			(unsigned long)(&__init_end));
}
692 693

#ifdef CONFIG_BLK_DEV_INITRD
694
void __init free_initrd_mem(unsigned long start, unsigned long end)
695
{
696 697 698 699 700 701 702 703 704
#ifdef CONFIG_MICROCODE_EARLY
	/*
	 * Remember, initrd memory may contain microcode or other useful things.
	 * Before we lose initrd mem, we need to find a place to hold them
	 * now that normal virtual memory is enabled.
	 */
	save_microcode_in_initrd();
#endif

705 706 707 708 709 710 711 712 713
	/*
	 * end could be not aligned, and We can not align that,
	 * decompresser could be confused by aligned initrd_end
	 * We already reserve the end partial page before in
	 *   - i386_start_kernel()
	 *   - x86_64_start_kernel()
	 *   - relocate_initrd()
	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
	 */
714
	free_init_pages("initrd", start, PAGE_ALIGN(end));
715 716
}
#endif
P
Pekka Enberg 已提交
717 718 719 720 721 722 723 724

void __init zone_sizes_init(void)
{
	unsigned long max_zone_pfns[MAX_NR_ZONES];

	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));

#ifdef CONFIG_ZONE_DMA
X
Xishi Qiu 已提交
725
	max_zone_pfns[ZONE_DMA]		= min(MAX_DMA_PFN, max_low_pfn);
P
Pekka Enberg 已提交
726 727
#endif
#ifdef CONFIG_ZONE_DMA32
X
Xishi Qiu 已提交
728
	max_zone_pfns[ZONE_DMA32]	= min(MAX_DMA32_PFN, max_low_pfn);
P
Pekka Enberg 已提交
729 730 731 732 733 734 735 736 737
#endif
	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
#ifdef CONFIG_HIGHMEM
	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
#endif

	free_area_init_nodes(max_zone_pfns);
}

738 739 740 741 742 743 744 745 746
DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
#ifdef CONFIG_SMP
	.active_mm = &init_mm,
	.state = 0,
#endif
	.cr4 = ~0UL,	/* fail hard if we screw up cr4 shadow initialization */
};
EXPORT_SYMBOL_GPL(cpu_tlbstate);

747 748 749 750 751 752 753 754
void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
{
	/* entry 0 MUST be WB (hardwired to speed up translations) */
	BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);

	__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
	__pte2cachemode_tbl[entry] = cache;
}