init.c 18.8 KB
Newer Older
1
#include <linux/gfp.h>
2
#include <linux/initrd.h>
3
#include <linux/ioport.h>
4
#include <linux/swap.h>
5
#include <linux/memblock.h>
P
Pekka Enberg 已提交
6
#include <linux/bootmem.h>	/* for max_low_pfn */
7

8
#include <asm/cacheflush.h>
9
#include <asm/e820.h>
10
#include <asm/init.h>
11
#include <asm/page.h>
12
#include <asm/page_types.h>
13
#include <asm/sections.h>
14
#include <asm/setup.h>
15
#include <asm/tlbflush.h>
16
#include <asm/tlb.h>
17
#include <asm/proto.h>
P
Pekka Enberg 已提交
18
#include <asm/dma.h>		/* for MAX_DMA_PFN */
19
#include <asm/microcode.h>
20

21 22 23 24 25 26 27
/*
 * We need to define the tracepoints somewhere, and tlb.c
 * is only compied when SMP=y.
 */
#define CREATE_TRACE_POINTS
#include <trace/events/tlb.h>

28 29
#include "mm_internal.h"

30 31 32
static unsigned long __initdata pgt_buf_start;
static unsigned long __initdata pgt_buf_end;
static unsigned long __initdata pgt_buf_top;
33

34 35
static unsigned long min_pfn_mapped;

36 37
static bool __initdata can_use_brk_pgt = true;

38 39 40 41 42 43 44 45 46
/*
 * Pages returned are already directly mapped.
 *
 * Changing that is likely to break Xen, see commit:
 *
 *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
 *
 * for detailed information.
 */
Y
Yinghai Lu 已提交
47
__ref void *alloc_low_pages(unsigned int num)
48 49
{
	unsigned long pfn;
Y
Yinghai Lu 已提交
50
	int i;
51 52

	if (after_bootmem) {
Y
Yinghai Lu 已提交
53
		unsigned int order;
54

Y
Yinghai Lu 已提交
55 56 57
		order = get_order((unsigned long)num << PAGE_SHIFT);
		return (void *)__get_free_pages(GFP_ATOMIC | __GFP_NOTRACK |
						__GFP_ZERO, order);
58 59
	}

60
	if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
61 62
		unsigned long ret;
		if (min_pfn_mapped >= max_pfn_mapped)
63
			panic("alloc_low_pages: ran out of memory");
64 65
		ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
					max_pfn_mapped << PAGE_SHIFT,
Y
Yinghai Lu 已提交
66
					PAGE_SIZE * num , PAGE_SIZE);
67
		if (!ret)
68
			panic("alloc_low_pages: can not alloc memory");
Y
Yinghai Lu 已提交
69
		memblock_reserve(ret, PAGE_SIZE * num);
70
		pfn = ret >> PAGE_SHIFT;
Y
Yinghai Lu 已提交
71 72 73
	} else {
		pfn = pgt_buf_end;
		pgt_buf_end += num;
74 75
		printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
			pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
Y
Yinghai Lu 已提交
76 77 78 79 80 81 82 83
	}

	for (i = 0; i < num; i++) {
		void *adr;

		adr = __va((pfn + i) << PAGE_SHIFT);
		clear_page(adr);
	}
84

Y
Yinghai Lu 已提交
85
	return __va(pfn << PAGE_SHIFT);
86 87
}

88 89
/* need 3 4k for initial PMD_SIZE,  3 4k for 0-ISA_END_ADDRESS */
#define INIT_PGT_BUF_SIZE	(6 * PAGE_SIZE)
Y
Yinghai Lu 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102
RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
void  __init early_alloc_pgt_buf(void)
{
	unsigned long tables = INIT_PGT_BUF_SIZE;
	phys_addr_t base;

	base = __pa(extend_brk(tables, PAGE_SIZE));

	pgt_buf_start = base >> PAGE_SHIFT;
	pgt_buf_end = pgt_buf_start;
	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
}

103 104 105 106 107 108 109 110
int after_bootmem;

int direct_gbpages
#ifdef CONFIG_DIRECT_GBPAGES
				= 1
#endif
;

111 112 113 114 115 116 117 118 119 120
static void __init init_gbpages(void)
{
#ifdef CONFIG_X86_64
	if (direct_gbpages && cpu_has_gbpages)
		printk(KERN_INFO "Using GB pages for direct mapping\n");
	else
		direct_gbpages = 0;
#endif
}

121 122 123 124 125 126
struct map_range {
	unsigned long start;
	unsigned long end;
	unsigned page_size_mask;
};

127
static int page_size_mask;
128

129
static void __init probe_page_size_mask(void)
130
{
131 132
	init_gbpages();

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
#if !defined(CONFIG_DEBUG_PAGEALLOC) && !defined(CONFIG_KMEMCHECK)
	/*
	 * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
	 * This will simplify cpa(), which otherwise needs to support splitting
	 * large pages into small in interrupt context, etc.
	 */
	if (direct_gbpages)
		page_size_mask |= 1 << PG_LEVEL_1G;
	if (cpu_has_pse)
		page_size_mask |= 1 << PG_LEVEL_2M;
#endif

	/* Enable PSE if available */
	if (cpu_has_pse)
		set_in_cr4(X86_CR4_PSE);

	/* Enable PGE if available */
	if (cpu_has_pge) {
		set_in_cr4(X86_CR4_PGE);
		__supported_pte_mask |= _PAGE_GLOBAL;
	}
}
155

156 157 158 159 160 161
#ifdef CONFIG_X86_32
#define NR_RANGE_MR 3
#else /* CONFIG_X86_64 */
#define NR_RANGE_MR 5
#endif

162 163 164
static int __meminit save_mr(struct map_range *mr, int nr_range,
			     unsigned long start_pfn, unsigned long end_pfn,
			     unsigned long page_size_mask)
165 166 167 168 169 170 171 172 173 174 175 176 177
{
	if (start_pfn < end_pfn) {
		if (nr_range >= NR_RANGE_MR)
			panic("run out of range for init_memory_mapping\n");
		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
		mr[nr_range].page_size_mask = page_size_mask;
		nr_range++;
	}

	return nr_range;
}

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
/*
 * adjust the page_size_mask for small range to go with
 *	big page size instead small one if nearby are ram too.
 */
static void __init_refok adjust_range_page_size_mask(struct map_range *mr,
							 int nr_range)
{
	int i;

	for (i = 0; i < nr_range; i++) {
		if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
		    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
			unsigned long start = round_down(mr[i].start, PMD_SIZE);
			unsigned long end = round_up(mr[i].end, PMD_SIZE);

#ifdef CONFIG_X86_32
			if ((end >> PAGE_SHIFT) > max_low_pfn)
				continue;
#endif

			if (memblock_is_region_memory(start, end - start))
				mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
		}
		if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
		    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
			unsigned long start = round_down(mr[i].start, PUD_SIZE);
			unsigned long end = round_up(mr[i].end, PUD_SIZE);

			if (memblock_is_region_memory(start, end - start))
				mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
		}
	}
}

212 213 214
static int __meminit split_mem_range(struct map_range *mr, int nr_range,
				     unsigned long start,
				     unsigned long end)
215
{
Y
Yinghai Lu 已提交
216
	unsigned long start_pfn, end_pfn, limit_pfn;
217
	unsigned long pfn;
218
	int i;
219

Y
Yinghai Lu 已提交
220 221
	limit_pfn = PFN_DOWN(end);

222
	/* head if not big page alignment ? */
223
	pfn = start_pfn = PFN_DOWN(start);
224 225 226 227 228 229 230
#ifdef CONFIG_X86_32
	/*
	 * Don't use a large page for the first 2/4MB of memory
	 * because there are often fixed size MTRRs in there
	 * and overlapping MTRRs into large pages can cause
	 * slowdowns.
	 */
231
	if (pfn == 0)
232
		end_pfn = PFN_DOWN(PMD_SIZE);
233
	else
234
		end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
235
#else /* CONFIG_X86_64 */
236
	end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
237
#endif
Y
Yinghai Lu 已提交
238 239
	if (end_pfn > limit_pfn)
		end_pfn = limit_pfn;
240 241
	if (start_pfn < end_pfn) {
		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
242
		pfn = end_pfn;
243 244 245
	}

	/* big page (2M) range */
246
	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
247
#ifdef CONFIG_X86_32
Y
Yinghai Lu 已提交
248
	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
249
#else /* CONFIG_X86_64 */
250
	end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
Y
Yinghai Lu 已提交
251 252
	if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
		end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
253 254 255 256 257
#endif

	if (start_pfn < end_pfn) {
		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
				page_size_mask & (1<<PG_LEVEL_2M));
258
		pfn = end_pfn;
259 260 261 262
	}

#ifdef CONFIG_X86_64
	/* big page (1G) range */
263
	start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
Y
Yinghai Lu 已提交
264
	end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
265 266 267 268
	if (start_pfn < end_pfn) {
		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
				page_size_mask &
				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
269
		pfn = end_pfn;
270 271 272
	}

	/* tail is not big page (1G) alignment */
273
	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
Y
Yinghai Lu 已提交
274
	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
275 276 277
	if (start_pfn < end_pfn) {
		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
				page_size_mask & (1<<PG_LEVEL_2M));
278
		pfn = end_pfn;
279 280 281 282
	}
#endif

	/* tail is not big page (2M) alignment */
283
	start_pfn = pfn;
Y
Yinghai Lu 已提交
284
	end_pfn = limit_pfn;
285 286
	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);

287 288 289
	if (!after_bootmem)
		adjust_range_page_size_mask(mr, nr_range);

290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
	/* try to merge same page size and continuous */
	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
		unsigned long old_start;
		if (mr[i].end != mr[i+1].start ||
		    mr[i].page_size_mask != mr[i+1].page_size_mask)
			continue;
		/* move it */
		old_start = mr[i].start;
		memmove(&mr[i], &mr[i+1],
			(nr_range - 1 - i) * sizeof(struct map_range));
		mr[i--].start = old_start;
		nr_range--;
	}

	for (i = 0; i < nr_range; i++)
305 306
		printk(KERN_DEBUG " [mem %#010lx-%#010lx] page %s\n",
				mr[i].start, mr[i].end - 1,
307 308 309
			(mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
			 (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));

310 311 312
	return nr_range;
}

313 314
struct range pfn_mapped[E820_X_MAX];
int nr_pfn_mapped;
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340

static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
{
	nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_X_MAX,
					     nr_pfn_mapped, start_pfn, end_pfn);
	nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_X_MAX);

	max_pfn_mapped = max(max_pfn_mapped, end_pfn);

	if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
		max_low_pfn_mapped = max(max_low_pfn_mapped,
					 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
}

bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
{
	int i;

	for (i = 0; i < nr_pfn_mapped; i++)
		if ((start_pfn >= pfn_mapped[i].start) &&
		    (end_pfn <= pfn_mapped[i].end))
			return true;

	return false;
}

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
/*
 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
 * This runs before bootmem is initialized and gets pages directly from
 * the physical memory. To access them they are temporarily mapped.
 */
unsigned long __init_refok init_memory_mapping(unsigned long start,
					       unsigned long end)
{
	struct map_range mr[NR_RANGE_MR];
	unsigned long ret = 0;
	int nr_range, i;

	pr_info("init_memory_mapping: [mem %#010lx-%#010lx]\n",
	       start, end - 1);

	memset(mr, 0, sizeof(mr));
	nr_range = split_mem_range(mr, 0, start, end);

359 360 361 362
	for (i = 0; i < nr_range; i++)
		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
						   mr[i].page_size_mask);

363 364
	add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);

365 366 367
	return ret >> PAGE_SHIFT;
}

368
/*
369 370 371 372 373 374 375 376 377 378 379
 * We need to iterate through the E820 memory map and create direct mappings
 * for only E820_RAM and E820_KERN_RESERVED regions. We cannot simply
 * create direct mappings for all pfns from [0 to max_low_pfn) and
 * [4GB to max_pfn) because of possible memory holes in high addresses
 * that cannot be marked as UC by fixed/variable range MTRRs.
 * Depending on the alignment of E820 ranges, this may possibly result
 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
 *
 * init_mem_mapping() calls init_range_memory_mapping() with big range.
 * That range would have hole in the middle or ends, and only ram parts
 * will be mapped in init_range_memory_mapping().
380
 */
Y
Yinghai Lu 已提交
381
static unsigned long __init init_range_memory_mapping(
382 383
					   unsigned long r_start,
					   unsigned long r_end)
384 385
{
	unsigned long start_pfn, end_pfn;
Y
Yinghai Lu 已提交
386
	unsigned long mapped_ram_size = 0;
387 388 389
	int i;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
390 391 392
		u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
		u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
		if (start >= end)
393 394
			continue;

395 396 397 398 399 400
		/*
		 * if it is overlapping with brk pgt, we need to
		 * alloc pgt buf from memblock instead.
		 */
		can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
				    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
401
		init_memory_mapping(start, end);
Y
Yinghai Lu 已提交
402
		mapped_ram_size += end - start;
403
		can_use_brk_pgt = true;
404
	}
Y
Yinghai Lu 已提交
405 406

	return mapped_ram_size;
407 408
}

409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
static unsigned long __init get_new_step_size(unsigned long step_size)
{
	/*
	 * Explain why we shift by 5 and why we don't have to worry about
	 * 'step_size << 5' overflowing:
	 *
	 * initial mapped size is PMD_SIZE (2M).
	 * We can not set step_size to be PUD_SIZE (1G) yet.
	 * In worse case, when we cross the 1G boundary, and
	 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
	 * to map 1G range with PTE. Use 5 as shift for now.
	 *
	 * Don't need to worry about overflow, on 32bit, when step_size
	 * is 0, round_down() returns 0 for start, and that turns it
	 * into 0x100000000ULL.
	 */
	return step_size << 5;
}

428 429 430 431 432 433 434 435 436 437 438 439
/**
 * memory_map_top_down - Map [map_start, map_end) top down
 * @map_start: start address of the target memory range
 * @map_end: end address of the target memory range
 *
 * This function will setup direct mapping for memory range
 * [map_start, map_end) in top-down. That said, the page tables
 * will be allocated at the end of the memory, and we map the
 * memory in top-down.
 */
static void __init memory_map_top_down(unsigned long map_start,
				       unsigned long map_end)
440
{
441
	unsigned long real_end, start, last_start;
Y
Yinghai Lu 已提交
442 443 444 445
	unsigned long step_size;
	unsigned long addr;
	unsigned long mapped_ram_size = 0;
	unsigned long new_mapped_ram_size;
446

447
	/* xen has big range in reserved near end of ram, skip it at first.*/
448
	addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
Y
Yinghai Lu 已提交
449 450 451 452 453 454 455
	real_end = addr + PMD_SIZE;

	/* step_size need to be small so pgt_buf from BRK could cover it */
	step_size = PMD_SIZE;
	max_pfn_mapped = 0; /* will get exact value next */
	min_pfn_mapped = real_end >> PAGE_SHIFT;
	last_start = start = real_end;
456 457 458 459 460 461 462

	/*
	 * We start from the top (end of memory) and go to the bottom.
	 * The memblock_find_in_range() gets us a block of RAM from the
	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
	 * for page table.
	 */
463
	while (last_start > map_start) {
Y
Yinghai Lu 已提交
464 465
		if (last_start > step_size) {
			start = round_down(last_start - 1, step_size);
466 467
			if (start < map_start)
				start = map_start;
Y
Yinghai Lu 已提交
468
		} else
469
			start = map_start;
Y
Yinghai Lu 已提交
470 471 472 473 474 475
		new_mapped_ram_size = init_range_memory_mapping(start,
							last_start);
		last_start = start;
		min_pfn_mapped = last_start >> PAGE_SHIFT;
		/* only increase step_size after big range get mapped */
		if (new_mapped_ram_size > mapped_ram_size)
476
			step_size = get_new_step_size(step_size);
Y
Yinghai Lu 已提交
477 478 479
		mapped_ram_size += new_mapped_ram_size;
	}

480 481 482 483
	if (real_end < map_end)
		init_range_memory_mapping(real_end, map_end);
}

484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
/**
 * memory_map_bottom_up - Map [map_start, map_end) bottom up
 * @map_start: start address of the target memory range
 * @map_end: end address of the target memory range
 *
 * This function will setup direct mapping for memory range
 * [map_start, map_end) in bottom-up. Since we have limited the
 * bottom-up allocation above the kernel, the page tables will
 * be allocated just above the kernel and we map the memory
 * in [map_start, map_end) in bottom-up.
 */
static void __init memory_map_bottom_up(unsigned long map_start,
					unsigned long map_end)
{
	unsigned long next, new_mapped_ram_size, start;
	unsigned long mapped_ram_size = 0;
	/* step_size need to be small so pgt_buf from BRK could cover it */
	unsigned long step_size = PMD_SIZE;

	start = map_start;
	min_pfn_mapped = start >> PAGE_SHIFT;

	/*
	 * We start from the bottom (@map_start) and go to the top (@map_end).
	 * The memblock_find_in_range() gets us a block of RAM from the
	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
	 * for page table.
	 */
	while (start < map_end) {
		if (map_end - start > step_size) {
			next = round_up(start + 1, step_size);
			if (next > map_end)
				next = map_end;
		} else
			next = map_end;

		new_mapped_ram_size = init_range_memory_mapping(start, next);
		start = next;

		if (new_mapped_ram_size > mapped_ram_size)
			step_size = get_new_step_size(step_size);
		mapped_ram_size += new_mapped_ram_size;
	}
}

529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
void __init init_mem_mapping(void)
{
	unsigned long end;

	probe_page_size_mask();

#ifdef CONFIG_X86_64
	end = max_pfn << PAGE_SHIFT;
#else
	end = max_low_pfn << PAGE_SHIFT;
#endif

	/* the ISA range is always mapped regardless of memory holes */
	init_memory_mapping(0, ISA_END_ADDRESS);

544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
	/*
	 * If the allocation is in bottom-up direction, we setup direct mapping
	 * in bottom-up, otherwise we setup direct mapping in top-down.
	 */
	if (memblock_bottom_up()) {
		unsigned long kernel_end = __pa_symbol(_end);

		/*
		 * we need two separate calls here. This is because we want to
		 * allocate page tables above the kernel. So we first map
		 * [kernel_end, end) to make memory above the kernel be mapped
		 * as soon as possible. And then use page tables allocated above
		 * the kernel to map [ISA_END_ADDRESS, kernel_end).
		 */
		memory_map_bottom_up(kernel_end, end);
		memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
	} else {
		memory_map_top_down(ISA_END_ADDRESS, end);
	}
Y
Yinghai Lu 已提交
563

564 565 566 567 568
#ifdef CONFIG_X86_64
	if (max_pfn > max_low_pfn) {
		/* can we preseve max_low_pfn ?*/
		max_low_pfn = max_pfn;
	}
569 570
#else
	early_ioremap_page_table_range_init();
571 572
#endif

573 574 575
	load_cr3(swapper_pg_dir);
	__flush_tlb_all();

576
	early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
577
}
578

579 580 581 582 583 584 585 586 587 588 589 590
/*
 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
 * is valid. The argument is a physical page number.
 *
 *
 * On x86, access has to be given to the first megabyte of ram because that area
 * contains bios code and data regions used by X and dosemu and similar apps.
 * Access has to be given to non-kernel-ram areas as well, these contain the PCI
 * mmio resources as well as potential bios/acpi data regions.
 */
int devmem_is_allowed(unsigned long pagenr)
{
591
	if (pagenr < 256)
592 593 594 595 596 597 598 599
		return 1;
	if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
		return 0;
	if (!page_is_ram(pagenr))
		return 1;
	return 0;
}

600 601
void free_init_pages(char *what, unsigned long begin, unsigned long end)
{
602
	unsigned long begin_aligned, end_aligned;
603

604 605 606 607 608 609 610 611 612 613
	/* Make sure boundaries are page aligned */
	begin_aligned = PAGE_ALIGN(begin);
	end_aligned   = end & PAGE_MASK;

	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
		begin = begin_aligned;
		end   = end_aligned;
	}

	if (begin >= end)
614 615 616 617 618 619 620 621
		return;

	/*
	 * If debugging page accesses then do not free this memory but
	 * mark them not present - any buggy init-section access will
	 * create a kernel page fault:
	 */
#ifdef CONFIG_DEBUG_PAGEALLOC
622 623
	printk(KERN_INFO "debug: unmapping init [mem %#010lx-%#010lx]\n",
		begin, end - 1);
624 625 626 627 628
	set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
#else
	/*
	 * We just marked the kernel text read only above, now that
	 * we are going to free part of that, we need to make that
629
	 * writeable and non-executable first.
630
	 */
631
	set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
632 633
	set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);

634
	free_reserved_area((void *)begin, (void *)end, POISON_FREE_INITMEM, what);
635 636 637 638 639
#endif
}

void free_initmem(void)
{
640
	free_init_pages("unused kernel",
641 642 643
			(unsigned long)(&__init_begin),
			(unsigned long)(&__init_end));
}
644 645

#ifdef CONFIG_BLK_DEV_INITRD
646
void __init free_initrd_mem(unsigned long start, unsigned long end)
647
{
648 649 650 651 652 653 654 655 656
#ifdef CONFIG_MICROCODE_EARLY
	/*
	 * Remember, initrd memory may contain microcode or other useful things.
	 * Before we lose initrd mem, we need to find a place to hold them
	 * now that normal virtual memory is enabled.
	 */
	save_microcode_in_initrd();
#endif

657 658 659 660 661 662 663 664 665
	/*
	 * end could be not aligned, and We can not align that,
	 * decompresser could be confused by aligned initrd_end
	 * We already reserve the end partial page before in
	 *   - i386_start_kernel()
	 *   - x86_64_start_kernel()
	 *   - relocate_initrd()
	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
	 */
666
	free_init_pages("initrd", start, PAGE_ALIGN(end));
667 668
}
#endif
P
Pekka Enberg 已提交
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689

void __init zone_sizes_init(void)
{
	unsigned long max_zone_pfns[MAX_NR_ZONES];

	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));

#ifdef CONFIG_ZONE_DMA
	max_zone_pfns[ZONE_DMA]		= MAX_DMA_PFN;
#endif
#ifdef CONFIG_ZONE_DMA32
	max_zone_pfns[ZONE_DMA32]	= MAX_DMA32_PFN;
#endif
	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
#ifdef CONFIG_HIGHMEM
	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
#endif

	free_area_init_nodes(max_zone_pfns);
}