mem_helper.c 70.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 *  S/390 memory access helper routines
 *
 *  Copyright (c) 2009 Ulrich Hecht
 *  Copyright (c) 2009 Alexander Graf
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */

P
Peter Maydell 已提交
21
#include "qemu/osdep.h"
22
#include "cpu.h"
23
#include "internal.h"
24
#include "exec/address-spaces.h"
25
#include "exec/helper-proto.h"
26
#include "exec/exec-all.h"
P
Paolo Bonzini 已提交
27
#include "exec/cpu_ldst.h"
28
#include "qemu/int128.h"
29 30

#if !defined(CONFIG_USER_ONLY)
31
#include "hw/s390x/storage-keys.h"
32
#endif
33 34 35 36 37 38 39 40 41

/*****************************************************************************/
/* Softmmu support */
#if !defined(CONFIG_USER_ONLY)

/* try to fill the TLB and return an exception if error. If retaddr is
   NULL, it means that the function was called in C code (i.e. not
   from generated code or from helper.c) */
/* XXX: fix it to restore all registers */
42 43
void tlb_fill(CPUState *cs, target_ulong addr, MMUAccessType access_type,
              int mmu_idx, uintptr_t retaddr)
44
{
45
    int ret = s390_cpu_handle_mmu_fault(cs, addr, access_type, mmu_idx);
46
    if (unlikely(ret != 0)) {
47
        cpu_loop_exit_restore(cs, retaddr);
48 49 50 51 52 53 54 55 56 57 58 59
    }
}

#endif

/* #define DEBUG_HELPER */
#ifdef DEBUG_HELPER
#define HELPER_LOG(x...) qemu_log(x)
#else
#define HELPER_LOG(x...)
#endif

60 61 62 63 64 65 66 67 68 69 70
static inline bool psw_key_valid(CPUS390XState *env, uint8_t psw_key)
{
    uint16_t pkm = env->cregs[3] >> 16;

    if (env->psw.mask & PSW_MASK_PSTATE) {
        /* PSW key has range 0..15, it is valid if the bit is 1 in the PKM */
        return pkm & (0x80 >> psw_key);
    }
    return true;
}

71
/* Reduce the length so that addr + len doesn't cross a page boundary.  */
72
static inline uint32_t adj_len_to_page(uint32_t len, uint64_t addr)
73 74 75
{
#ifndef CONFIG_USER_ONLY
    if ((addr & ~TARGET_PAGE_MASK) + len - 1 >= TARGET_PAGE_SIZE) {
76
        return -(addr | TARGET_PAGE_MASK);
77 78 79 80 81
    }
#endif
    return len;
}

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
/* Trigger a SPECIFICATION exception if an address or a length is not
   naturally aligned.  */
static inline void check_alignment(CPUS390XState *env, uint64_t v,
                                   int wordsize, uintptr_t ra)
{
    if (v % wordsize) {
        CPUState *cs = CPU(s390_env_get_cpu(env));
        cpu_restore_state(cs, ra);
        program_interrupt(env, PGM_SPECIFICATION, 6);
    }
}

/* Load a value from memory according to its size.  */
static inline uint64_t cpu_ldusize_data_ra(CPUS390XState *env, uint64_t addr,
                                           int wordsize, uintptr_t ra)
{
    switch (wordsize) {
    case 1:
        return cpu_ldub_data_ra(env, addr, ra);
    case 2:
        return cpu_lduw_data_ra(env, addr, ra);
    default:
        abort();
    }
}

108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
/* Store a to memory according to its size.  */
static inline void cpu_stsize_data_ra(CPUS390XState *env, uint64_t addr,
                                      uint64_t value, int wordsize,
                                      uintptr_t ra)
{
    switch (wordsize) {
    case 1:
        cpu_stb_data_ra(env, addr, value, ra);
        break;
    case 2:
        cpu_stw_data_ra(env, addr, value, ra);
        break;
    default:
        abort();
    }
}

125
static void fast_memset(CPUS390XState *env, uint64_t dest, uint8_t byte,
126
                        uint32_t l, uintptr_t ra)
127
{
128
    int mmu_idx = cpu_mmu_index(env, false);
129 130 131 132 133

    while (l > 0) {
        void *p = tlb_vaddr_to_host(env, dest, MMU_DATA_STORE, mmu_idx);
        if (p) {
            /* Access to the whole page in write mode granted.  */
134
            uint32_t l_adj = adj_len_to_page(l, dest);
135 136 137 138 139 140
            memset(p, byte, l_adj);
            dest += l_adj;
            l -= l_adj;
        } else {
            /* We failed to get access to the whole page. The next write
               access will likely fill the QEMU TLB for the next iteration.  */
141
            cpu_stb_data_ra(env, dest, byte, ra);
142 143 144
            dest++;
            l--;
        }
145 146 147
    }
}

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
#ifndef CONFIG_USER_ONLY
static void fast_memmove_idx(CPUS390XState *env, uint64_t dest, uint64_t src,
                             uint32_t len, int dest_idx, int src_idx,
                             uintptr_t ra)
{
    TCGMemOpIdx oi_dest = make_memop_idx(MO_UB, dest_idx);
    TCGMemOpIdx oi_src = make_memop_idx(MO_UB, src_idx);
    uint32_t len_adj;
    void *src_p;
    void *dest_p;
    uint8_t x;

    while (len > 0) {
        src = wrap_address(env, src);
        dest = wrap_address(env, dest);
        src_p = tlb_vaddr_to_host(env, src, MMU_DATA_LOAD, src_idx);
        dest_p = tlb_vaddr_to_host(env, dest, MMU_DATA_STORE, dest_idx);

        if (src_p && dest_p) {
            /* Access to both whole pages granted.  */
            len_adj = adj_len_to_page(adj_len_to_page(len, src), dest);
            memmove(dest_p, src_p, len_adj);
        } else {
            /* We failed to get access to one or both whole pages. The next
               read or write access will likely fill the QEMU TLB for the
               next iteration.  */
            len_adj = 1;
            x = helper_ret_ldub_mmu(env, src, oi_src, ra);
            helper_ret_stb_mmu(env, dest, x, oi_dest, ra);
        }
        src += len_adj;
        dest += len_adj;
        len -= len_adj;
    }
}

static int mmu_idx_from_as(uint8_t as)
{
    switch (as) {
    case AS_PRIMARY:
        return MMU_PRIMARY_IDX;
    case AS_SECONDARY:
        return MMU_SECONDARY_IDX;
    case AS_HOME:
        return MMU_HOME_IDX;
    default:
        /* FIXME AS_ACCREG */
        g_assert_not_reached();
    }
}

static void fast_memmove_as(CPUS390XState *env, uint64_t dest, uint64_t src,
                            uint32_t len, uint8_t dest_as, uint8_t src_as,
                            uintptr_t ra)
{
    int src_idx = mmu_idx_from_as(src_as);
    int dest_idx = mmu_idx_from_as(dest_as);

    fast_memmove_idx(env, dest, src, len, dest_idx, src_idx, ra);
}
#endif

210
static void fast_memmove(CPUS390XState *env, uint64_t dest, uint64_t src,
211
                         uint32_t l, uintptr_t ra)
212
{
213
    int mmu_idx = cpu_mmu_index(env, false);
214

215 216 217 218 219
    while (l > 0) {
        void *src_p = tlb_vaddr_to_host(env, src, MMU_DATA_LOAD, mmu_idx);
        void *dest_p = tlb_vaddr_to_host(env, dest, MMU_DATA_STORE, mmu_idx);
        if (src_p && dest_p) {
            /* Access to both whole pages granted.  */
220
            uint32_t l_adj = adj_len_to_page(l, src);
221 222 223 224 225 226 227 228 229
            l_adj = adj_len_to_page(l_adj, dest);
            memmove(dest_p, src_p, l_adj);
            src += l_adj;
            dest += l_adj;
            l -= l_adj;
        } else {
            /* We failed to get access to one or both whole pages. The next
               read or write access will likely fill the QEMU TLB for the
               next iteration.  */
230
            cpu_stb_data_ra(env, dest, cpu_ldub_data_ra(env, src, ra), ra);
231 232 233 234
            src++;
            dest++;
            l--;
        }
235 236 237 238
    }
}

/* and on array */
239 240
static uint32_t do_helper_nc(CPUS390XState *env, uint32_t l, uint64_t dest,
                             uint64_t src, uintptr_t ra)
241
{
242 243
    uint32_t i;
    uint8_t c = 0;
244 245 246

    HELPER_LOG("%s l %d dest %" PRIx64 " src %" PRIx64 "\n",
               __func__, l, dest, src);
247

248
    for (i = 0; i <= l; i++) {
249 250 251 252
        uint8_t x = cpu_ldub_data_ra(env, src + i, ra);
        x &= cpu_ldub_data_ra(env, dest + i, ra);
        c |= x;
        cpu_stb_data_ra(env, dest + i, x, ra);
253
    }
254 255 256 257 258 259 260
    return c != 0;
}

uint32_t HELPER(nc)(CPUS390XState *env, uint32_t l, uint64_t dest,
                    uint64_t src)
{
    return do_helper_nc(env, l, dest, src, GETPC());
261 262 263
}

/* xor on array */
264 265
static uint32_t do_helper_xc(CPUS390XState *env, uint32_t l, uint64_t dest,
                             uint64_t src, uintptr_t ra)
266
{
267 268
    uint32_t i;
    uint8_t c = 0;
269 270 271 272 273 274

    HELPER_LOG("%s l %d dest %" PRIx64 " src %" PRIx64 "\n",
               __func__, l, dest, src);

    /* xor with itself is the same as memset(0) */
    if (src == dest) {
275
        fast_memset(env, dest, 0, l + 1, ra);
276 277 278 279
        return 0;
    }

    for (i = 0; i <= l; i++) {
280 281 282 283
        uint8_t x = cpu_ldub_data_ra(env, src + i, ra);
        x ^= cpu_ldub_data_ra(env, dest + i, ra);
        c |= x;
        cpu_stb_data_ra(env, dest + i, x, ra);
284
    }
285 286 287 288 289 290 291
    return c != 0;
}

uint32_t HELPER(xc)(CPUS390XState *env, uint32_t l, uint64_t dest,
                    uint64_t src)
{
    return do_helper_xc(env, l, dest, src, GETPC());
292 293 294
}

/* or on array */
295 296
static uint32_t do_helper_oc(CPUS390XState *env, uint32_t l, uint64_t dest,
                             uint64_t src, uintptr_t ra)
297
{
298 299
    uint32_t i;
    uint8_t c = 0;
300 301 302

    HELPER_LOG("%s l %d dest %" PRIx64 " src %" PRIx64 "\n",
               __func__, l, dest, src);
303

304
    for (i = 0; i <= l; i++) {
305 306 307 308
        uint8_t x = cpu_ldub_data_ra(env, src + i, ra);
        x |= cpu_ldub_data_ra(env, dest + i, ra);
        c |= x;
        cpu_stb_data_ra(env, dest + i, x, ra);
309
    }
310 311 312 313 314 315 316
    return c != 0;
}

uint32_t HELPER(oc)(CPUS390XState *env, uint32_t l, uint64_t dest,
                    uint64_t src)
{
    return do_helper_oc(env, l, dest, src, GETPC());
317 318 319
}

/* memmove */
320 321
static uint32_t do_helper_mvc(CPUS390XState *env, uint32_t l, uint64_t dest,
                              uint64_t src, uintptr_t ra)
322
{
323
    uint32_t i;
324 325 326 327

    HELPER_LOG("%s l %d dest %" PRIx64 " src %" PRIx64 "\n",
               __func__, l, dest, src);

328
    /* mvc and memmove do not behave the same when areas overlap! */
329 330
    /* mvc with source pointing to the byte after the destination is the
       same as memset with the first source byte */
331 332
    if (dest == src + 1) {
        fast_memset(env, dest, cpu_ldub_data_ra(env, src, ra), l + 1, ra);
333
    } else if (dest < src || src + l < dest) {
334
        fast_memmove(env, dest, src, l + 1, ra);
335 336 337 338 339 340
    } else {
        /* slow version with byte accesses which always work */
        for (i = 0; i <= l; i++) {
            uint8_t x = cpu_ldub_data_ra(env, src + i, ra);
            cpu_stb_data_ra(env, dest + i, x, ra);
        }
341 342
    }

343
    return env->cc_op;
344 345
}

346 347 348 349 350
void HELPER(mvc)(CPUS390XState *env, uint32_t l, uint64_t dest, uint64_t src)
{
    do_helper_mvc(env, l, dest, src, GETPC());
}

351 352 353 354 355 356 357 358 359 360 361 362
/* move inverse  */
void HELPER(mvcin)(CPUS390XState *env, uint32_t l, uint64_t dest, uint64_t src)
{
    uintptr_t ra = GETPC();
    int i;

    for (i = 0; i <= l; i++) {
        uint8_t v = cpu_ldub_data_ra(env, src - i, ra);
        cpu_stb_data_ra(env, dest + i, v, ra);
    }
}

363 364 365 366 367 368 369 370 371 372 373 374 375
/* move numerics  */
void HELPER(mvn)(CPUS390XState *env, uint32_t l, uint64_t dest, uint64_t src)
{
    uintptr_t ra = GETPC();
    int i;

    for (i = 0; i <= l; i++) {
        uint8_t v = cpu_ldub_data_ra(env, dest + i, ra) & 0xf0;
        v |= cpu_ldub_data_ra(env, src + i, ra) & 0x0f;
        cpu_stb_data_ra(env, dest + i, v, ra);
    }
}

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
/* move with offset  */
void HELPER(mvo)(CPUS390XState *env, uint32_t l, uint64_t dest, uint64_t src)
{
    uintptr_t ra = GETPC();
    int len_dest = l >> 4;
    int len_src = l & 0xf;
    uint8_t byte_dest, byte_src;
    int i;

    src += len_src;
    dest += len_dest;

    /* Handle rightmost byte */
    byte_src = cpu_ldub_data_ra(env, src, ra);
    byte_dest = cpu_ldub_data_ra(env, dest, ra);
    byte_dest = (byte_dest & 0x0f) | (byte_src << 4);
    cpu_stb_data_ra(env, dest, byte_dest, ra);

    /* Process remaining bytes from right to left */
    for (i = 1; i <= len_dest; i++) {
        byte_dest = byte_src >> 4;
        if (len_src - i >= 0) {
            byte_src = cpu_ldub_data_ra(env, src - i, ra);
        } else {
            byte_src = 0;
        }
        byte_dest |= byte_src << 4;
        cpu_stb_data_ra(env, dest - i, byte_dest, ra);
    }
}

407 408 409 410 411 412 413 414 415 416 417 418 419
/* move zones  */
void HELPER(mvz)(CPUS390XState *env, uint32_t l, uint64_t dest, uint64_t src)
{
    uintptr_t ra = GETPC();
    int i;

    for (i = 0; i <= l; i++) {
        uint8_t b = cpu_ldub_data_ra(env, dest + i, ra) & 0x0f;
        b |= cpu_ldub_data_ra(env, src + i, ra) & 0xf0;
        cpu_stb_data_ra(env, dest + i, b, ra);
    }
}

420
/* compare unsigned byte arrays */
421 422
static uint32_t do_helper_clc(CPUS390XState *env, uint32_t l, uint64_t s1,
                              uint64_t s2, uintptr_t ra)
423
{
424 425
    uint32_t i;
    uint32_t cc = 0;
426 427 428

    HELPER_LOG("%s l %d s1 %" PRIx64 " s2 %" PRIx64 "\n",
               __func__, l, s1, s2);
429

430
    for (i = 0; i <= l; i++) {
431 432
        uint8_t x = cpu_ldub_data_ra(env, s1 + i, ra);
        uint8_t y = cpu_ldub_data_ra(env, s2 + i, ra);
433 434 435
        HELPER_LOG("%02x (%c)/%02x (%c) ", x, x, y, y);
        if (x < y) {
            cc = 1;
436
            break;
437 438
        } else if (x > y) {
            cc = 2;
439
            break;
440 441
        }
    }
442

443 444 445 446
    HELPER_LOG("\n");
    return cc;
}

447 448 449 450 451
uint32_t HELPER(clc)(CPUS390XState *env, uint32_t l, uint64_t s1, uint64_t s2)
{
    return do_helper_clc(env, l, s1, s2, GETPC());
}

452
/* compare logical under mask */
453 454
uint32_t HELPER(clm)(CPUS390XState *env, uint32_t r1, uint32_t mask,
                     uint64_t addr)
455
{
456 457
    uintptr_t ra = GETPC();
    uint32_t cc = 0;
458 459 460

    HELPER_LOG("%s: r1 0x%x mask 0x%x addr 0x%" PRIx64 "\n", __func__, r1,
               mask, addr);
461

462 463
    while (mask) {
        if (mask & 8) {
464 465
            uint8_t d = cpu_ldub_data_ra(env, addr, ra);
            uint8_t r = extract32(r1, 24, 8);
466 467 468 469 470 471 472 473 474 475 476 477 478 479
            HELPER_LOG("mask 0x%x %02x/%02x (0x%" PRIx64 ") ", mask, r, d,
                       addr);
            if (r < d) {
                cc = 1;
                break;
            } else if (r > d) {
                cc = 2;
                break;
            }
            addr++;
        }
        mask = (mask << 1) & 0xf;
        r1 <<= 8;
    }
480

481 482 483 484
    HELPER_LOG("\n");
    return cc;
}

485
static inline uint64_t get_address(CPUS390XState *env, int reg)
486
{
487
    return wrap_address(env, env->regs[reg]);
488 489
}

490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
static inline void set_address(CPUS390XState *env, int reg, uint64_t address)
{
    if (env->psw.mask & PSW_MASK_64) {
        /* 64-Bit mode */
        env->regs[reg] = address;
    } else {
        if (!(env->psw.mask & PSW_MASK_32)) {
            /* 24-Bit mode. According to the PoO it is implementation
            dependent if bits 32-39 remain unchanged or are set to
            zeros.  Choose the former so that the function can also be
            used for TRT.  */
            env->regs[reg] = deposit64(env->regs[reg], 0, 24, address);
        } else {
            /* 31-Bit mode. According to the PoO it is implementation
            dependent if bit 32 remains unchanged or is set to zero.
            Choose the latter so that the function can also be used for
            TRT.  */
            address &= 0x7fffffff;
            env->regs[reg] = deposit64(env->regs[reg], 0, 32, address);
        }
    }
}

513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
static inline uint64_t wrap_length(CPUS390XState *env, uint64_t length)
{
    if (!(env->psw.mask & PSW_MASK_64)) {
        /* 24-Bit and 31-Bit mode */
        length &= 0x7fffffff;
    }
    return length;
}

static inline uint64_t get_length(CPUS390XState *env, int reg)
{
    return wrap_length(env, env->regs[reg]);
}

static inline void set_length(CPUS390XState *env, int reg, uint64_t length)
{
    if (env->psw.mask & PSW_MASK_64) {
        /* 64-Bit mode */
        env->regs[reg] = length;
    } else {
        /* 24-Bit and 31-Bit mode */
        env->regs[reg] = deposit64(env->regs[reg], 0, 32, length);
    }
}

538
/* search string (c is byte to search, r2 is string, r1 end of string) */
R
Richard Henderson 已提交
539
void HELPER(srst)(CPUS390XState *env, uint32_t r1, uint32_t r2)
540
{
541
    uintptr_t ra = GETPC();
R
Richard Henderson 已提交
542
    uint64_t end, str;
R
Richard Henderson 已提交
543
    uint32_t len;
R
Richard Henderson 已提交
544
    uint8_t v, c = env->regs[0];
545

R
Richard Henderson 已提交
546 547 548 549 550
    /* Bits 32-55 must contain all 0.  */
    if (env->regs[0] & 0xffffff00u) {
        cpu_restore_state(ENV_GET_CPU(env), ra);
        program_interrupt(env, PGM_SPECIFICATION, 6);
    }
551

R
Richard Henderson 已提交
552 553
    str = get_address(env, r2);
    end = get_address(env, r1);
R
Richard Henderson 已提交
554 555

    /* Lest we fail to service interrupts in a timely manner, limit the
556
       amount of work we're willing to do.  For now, let's cap at 8k.  */
R
Richard Henderson 已提交
557 558 559 560
    for (len = 0; len < 0x2000; ++len) {
        if (str + len == end) {
            /* Character not found.  R1 & R2 are unmodified.  */
            env->cc_op = 2;
R
Richard Henderson 已提交
561
            return;
R
Richard Henderson 已提交
562
        }
563
        v = cpu_ldub_data_ra(env, str + len, ra);
R
Richard Henderson 已提交
564 565 566
        if (v == c) {
            /* Character found.  Set R1 to the location; R2 is unmodified.  */
            env->cc_op = 1;
R
Richard Henderson 已提交
567 568
            set_address(env, r1, str + len);
            return;
569 570 571
        }
    }

572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
    /* CPU-determined bytes processed.  Advance R2 to next byte to process.  */
    env->cc_op = 3;
    set_address(env, r2, str + len);
}

void HELPER(srstu)(CPUS390XState *env, uint32_t r1, uint32_t r2)
{
    uintptr_t ra = GETPC();
    uint32_t len;
    uint16_t v, c = env->regs[0];
    uint64_t end, str, adj_end;

    /* Bits 32-47 of R0 must be zero.  */
    if (env->regs[0] & 0xffff0000u) {
        cpu_restore_state(ENV_GET_CPU(env), ra);
        program_interrupt(env, PGM_SPECIFICATION, 6);
    }

    str = get_address(env, r2);
    end = get_address(env, r1);

    /* If the LSB of the two addresses differ, use one extra byte.  */
    adj_end = end + ((str ^ end) & 1);

    /* Lest we fail to service interrupts in a timely manner, limit the
       amount of work we're willing to do.  For now, let's cap at 8k.  */
    for (len = 0; len < 0x2000; len += 2) {
        if (str + len == adj_end) {
            /* End of input found.  */
            env->cc_op = 2;
            return;
        }
        v = cpu_lduw_data_ra(env, str + len, ra);
        if (v == c) {
            /* Character found.  Set R1 to the location; R2 is unmodified.  */
            env->cc_op = 1;
            set_address(env, r1, str + len);
            return;
        }
    }

R
Richard Henderson 已提交
613 614
    /* CPU-determined bytes processed.  Advance R2 to next byte to process.  */
    env->cc_op = 3;
R
Richard Henderson 已提交
615
    set_address(env, r2, str + len);
616 617 618
}

/* unsigned string compare (c is string terminator) */
619
uint64_t HELPER(clst)(CPUS390XState *env, uint64_t c, uint64_t s1, uint64_t s2)
620
{
621
    uintptr_t ra = GETPC();
622
    uint32_t len;
623 624

    c = c & 0xff;
625 626
    s1 = wrap_address(env, s1);
    s2 = wrap_address(env, s2);
627 628

    /* Lest we fail to service interrupts in a timely manner, limit the
629
       amount of work we're willing to do.  For now, let's cap at 8k.  */
630
    for (len = 0; len < 0x2000; ++len) {
631 632
        uint8_t v1 = cpu_ldub_data_ra(env, s1 + len, ra);
        uint8_t v2 = cpu_ldub_data_ra(env, s2 + len, ra);
633 634 635 636 637 638 639 640 641 642 643 644 645 646
        if (v1 == v2) {
            if (v1 == c) {
                /* Equal.  CC=0, and don't advance the registers.  */
                env->cc_op = 0;
                env->retxl = s2;
                return s1;
            }
        } else {
            /* Unequal.  CC={1,2}, and advance the registers.  Note that
               the terminator need not be zero, but the string that contains
               the terminator is by definition "low".  */
            env->cc_op = (v1 == c ? 1 : v2 == c ? 2 : v1 < v2 ? 1 : 2);
            env->retxl = s2 + len;
            return s1 + len;
647 648 649
        }
    }

650 651 652 653
    /* CPU-determined bytes equal; advance the registers.  */
    env->cc_op = 3;
    env->retxl = s2 + len;
    return s1 + len;
654 655 656
}

/* move page */
657
uint32_t HELPER(mvpg)(CPUS390XState *env, uint64_t r0, uint64_t r1, uint64_t r2)
658
{
659 660 661 662
    /* ??? missing r0 handling, which includes access keys, but more
       importantly optional suppression of the exception!  */
    fast_memmove(env, r1, r2, TARGET_PAGE_SIZE, GETPC());
    return 0; /* data moved */
663 664 665
}

/* string copy (c is string terminator) */
666
uint64_t HELPER(mvst)(CPUS390XState *env, uint64_t c, uint64_t d, uint64_t s)
667
{
668
    uintptr_t ra = GETPC();
669
    uint32_t len;
670 671

    c = c & 0xff;
672 673
    d = wrap_address(env, d);
    s = wrap_address(env, s);
674 675

    /* Lest we fail to service interrupts in a timely manner, limit the
676
       amount of work we're willing to do.  For now, let's cap at 8k.  */
677
    for (len = 0; len < 0x2000; ++len) {
678 679
        uint8_t v = cpu_ldub_data_ra(env, s + len, ra);
        cpu_stb_data_ra(env, d + len, v, ra);
680
        if (v == c) {
681 682 683 684
            /* Complete.  Set CC=1 and advance R1.  */
            env->cc_op = 1;
            env->retxl = s;
            return d + len;
685 686
        }
    }
687 688 689 690 691

    /* Incomplete.  Set CC=3 and signal to advance R1 and R2.  */
    env->cc_op = 3;
    env->retxl = s + len;
    return d + len;
692 693 694
}

/* load access registers r1 to r3 from memory at a2 */
695
void HELPER(lam)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3)
696
{
697
    uintptr_t ra = GETPC();
698 699 700
    int i;

    for (i = r1;; i = (i + 1) % 16) {
701
        env->aregs[i] = cpu_ldl_data_ra(env, a2, ra);
702 703 704 705 706 707 708 709 710
        a2 += 4;

        if (i == r3) {
            break;
        }
    }
}

/* store access registers r1 to r3 in memory at a2 */
711
void HELPER(stam)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3)
712
{
713
    uintptr_t ra = GETPC();
714 715 716
    int i;

    for (i = r1;; i = (i + 1) % 16) {
717
        cpu_stl_data_ra(env, a2, env->aregs[i], ra);
718 719 720 721 722 723 724 725
        a2 += 4;

        if (i == r3) {
            break;
        }
    }
}

726 727 728 729
/* move long helper */
static inline uint32_t do_mvcl(CPUS390XState *env,
                               uint64_t *dest, uint64_t *destlen,
                               uint64_t *src, uint64_t *srclen,
730
                               uint16_t pad, int wordsize, uintptr_t ra)
731
{
732
    uint64_t len = MIN(*srclen, *destlen);
733 734
    uint32_t cc;

735
    if (*destlen == *srclen) {
736
        cc = 0;
737
    } else if (*destlen < *srclen) {
738 739 740 741 742
        cc = 1;
    } else {
        cc = 2;
    }

743 744 745 746 747 748
    /* Copy the src array */
    fast_memmove(env, *dest, *src, len, ra);
    *src += len;
    *srclen -= len;
    *dest += len;
    *destlen -= len;
749

750
    /* Pad the remaining area */
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
    if (wordsize == 1) {
        fast_memset(env, *dest, pad, *destlen, ra);
        *dest += *destlen;
        *destlen = 0;
    } else {
        /* If remaining length is odd, pad with odd byte first.  */
        if (*destlen & 1) {
            cpu_stb_data_ra(env, *dest, pad & 0xff, ra);
            *dest += 1;
            *destlen -= 1;
        }
        /* The remaining length is even, pad using words.  */
        for (; *destlen; *dest += 2, *destlen -= 2) {
            cpu_stw_data_ra(env, *dest, pad, ra);
        }
    }
767

768 769 770 771 772 773 774 775 776 777 778 779 780 781
    return cc;
}

/* move long */
uint32_t HELPER(mvcl)(CPUS390XState *env, uint32_t r1, uint32_t r2)
{
    uintptr_t ra = GETPC();
    uint64_t destlen = env->regs[r1 + 1] & 0xffffff;
    uint64_t dest = get_address(env, r1);
    uint64_t srclen = env->regs[r2 + 1] & 0xffffff;
    uint64_t src = get_address(env, r2);
    uint8_t pad = env->regs[r2 + 1] >> 24;
    uint32_t cc;

782
    cc = do_mvcl(env, &dest, &destlen, &src, &srclen, pad, 1, ra);
783

784 785
    env->regs[r1 + 1] = deposit64(env->regs[r1 + 1], 0, 24, destlen);
    env->regs[r2 + 1] = deposit64(env->regs[r2 + 1], 0, 24, srclen);
786 787
    set_address(env, r1, dest);
    set_address(env, r2, src);
788 789 790 791

    return cc;
}

792
/* move long extended */
793 794
uint32_t HELPER(mvcle)(CPUS390XState *env, uint32_t r1, uint64_t a2,
                       uint32_t r3)
795
{
796
    uintptr_t ra = GETPC();
797
    uint64_t destlen = get_length(env, r1 + 1);
798
    uint64_t dest = get_address(env, r1);
799
    uint64_t srclen = get_length(env, r3 + 1);
800
    uint64_t src = get_address(env, r3);
801
    uint8_t pad = a2;
802 803
    uint32_t cc;

804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
    cc = do_mvcl(env, &dest, &destlen, &src, &srclen, pad, 1, ra);

    set_length(env, r1 + 1, destlen);
    set_length(env, r3 + 1, srclen);
    set_address(env, r1, dest);
    set_address(env, r3, src);

    return cc;
}

/* move long unicode */
uint32_t HELPER(mvclu)(CPUS390XState *env, uint32_t r1, uint64_t a2,
                       uint32_t r3)
{
    uintptr_t ra = GETPC();
    uint64_t destlen = get_length(env, r1 + 1);
    uint64_t dest = get_address(env, r1);
    uint64_t srclen = get_length(env, r3 + 1);
    uint64_t src = get_address(env, r3);
    uint16_t pad = a2;
    uint32_t cc;

    cc = do_mvcl(env, &dest, &destlen, &src, &srclen, pad, 2, ra);
827

828 829
    set_length(env, r1 + 1, destlen);
    set_length(env, r3 + 1, srclen);
830 831
    set_address(env, r1, dest);
    set_address(env, r3, src);
832 833 834 835

    return cc;
}

836 837 838 839
/* compare logical long helper */
static inline uint32_t do_clcl(CPUS390XState *env,
                               uint64_t *src1, uint64_t *src1len,
                               uint64_t *src3, uint64_t *src3len,
840 841
                               uint16_t pad, uint64_t limit,
                               int wordsize, uintptr_t ra)
842 843
{
    uint64_t len = MAX(*src1len, *src3len);
844 845
    uint32_t cc = 0;

846 847
    check_alignment(env, *src1len | *src3len, wordsize, ra);

848
    if (!len) {
849 850 851
        return cc;
    }

852
    /* Lest we fail to service interrupts in a timely manner, limit the
853 854 855
       amount of work we're willing to do.  */
    if (len > limit) {
        len = limit;
856
        cc = 3;
857 858
    }

859 860 861
    for (; len; len -= wordsize) {
        uint16_t v1 = pad;
        uint16_t v3 = pad;
862

863
        if (*src1len) {
864
            v1 = cpu_ldusize_data_ra(env, *src1, wordsize, ra);
865
        }
866
        if (*src3len) {
867
            v3 = cpu_ldusize_data_ra(env, *src3, wordsize, ra);
868 869 870 871
        }

        if (v1 != v3) {
            cc = (v1 < v3) ? 1 : 2;
872 873
            break;
        }
874

875
        if (*src1len) {
876 877
            *src1 += wordsize;
            *src1len -= wordsize;
878
        }
879
        if (*src3len) {
880 881
            *src3 += wordsize;
            *src3len -= wordsize;
882
        }
883 884
    }

885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
    return cc;
}


/* compare logical long */
uint32_t HELPER(clcl)(CPUS390XState *env, uint32_t r1, uint32_t r2)
{
    uintptr_t ra = GETPC();
    uint64_t src1len = extract64(env->regs[r1 + 1], 0, 24);
    uint64_t src1 = get_address(env, r1);
    uint64_t src3len = extract64(env->regs[r2 + 1], 0, 24);
    uint64_t src3 = get_address(env, r2);
    uint8_t pad = env->regs[r2 + 1] >> 24;
    uint32_t cc;

900
    cc = do_clcl(env, &src1, &src1len, &src3, &src3len, pad, -1, 1, ra);
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921

    env->regs[r1 + 1] = deposit64(env->regs[r1 + 1], 0, 24, src1len);
    env->regs[r2 + 1] = deposit64(env->regs[r2 + 1], 0, 24, src3len);
    set_address(env, r1, src1);
    set_address(env, r2, src3);

    return cc;
}

/* compare logical long extended memcompare insn with padding */
uint32_t HELPER(clcle)(CPUS390XState *env, uint32_t r1, uint64_t a2,
                       uint32_t r3)
{
    uintptr_t ra = GETPC();
    uint64_t src1len = get_length(env, r1 + 1);
    uint64_t src1 = get_address(env, r1);
    uint64_t src3len = get_length(env, r3 + 1);
    uint64_t src3 = get_address(env, r3);
    uint8_t pad = a2;
    uint32_t cc;

922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
    cc = do_clcl(env, &src1, &src1len, &src3, &src3len, pad, 0x2000, 1, ra);

    set_length(env, r1 + 1, src1len);
    set_length(env, r3 + 1, src3len);
    set_address(env, r1, src1);
    set_address(env, r3, src3);

    return cc;
}

/* compare logical long unicode memcompare insn with padding */
uint32_t HELPER(clclu)(CPUS390XState *env, uint32_t r1, uint64_t a2,
                       uint32_t r3)
{
    uintptr_t ra = GETPC();
    uint64_t src1len = get_length(env, r1 + 1);
    uint64_t src1 = get_address(env, r1);
    uint64_t src3len = get_length(env, r3 + 1);
    uint64_t src3 = get_address(env, r3);
    uint16_t pad = a2;
    uint32_t cc = 0;

    cc = do_clcl(env, &src1, &src1len, &src3, &src3len, pad, 0x1000, 2, ra);
945

946 947 948 949
    set_length(env, r1 + 1, src1len);
    set_length(env, r3 + 1, src3len);
    set_address(env, r1, src1);
    set_address(env, r3, src3);
950 951 952 953 954

    return cc;
}

/* checksum */
R
Richard Henderson 已提交
955 956
uint64_t HELPER(cksm)(CPUS390XState *env, uint64_t r1,
                      uint64_t src, uint64_t src_len)
957
{
958
    uintptr_t ra = GETPC();
R
Richard Henderson 已提交
959 960
    uint64_t max_len, len;
    uint64_t cksm = (uint32_t)r1;
961

R
Richard Henderson 已提交
962
    /* Lest we fail to service interrupts in a timely manner, limit the
963
       amount of work we're willing to do.  For now, let's cap at 8k.  */
R
Richard Henderson 已提交
964
    max_len = (src_len > 0x2000 ? 0x2000 : src_len);
965

R
Richard Henderson 已提交
966 967
    /* Process full words as available.  */
    for (len = 0; len + 4 <= max_len; len += 4, src += 4) {
968
        cksm += (uint32_t)cpu_ldl_data_ra(env, src, ra);
969 970
    }

R
Richard Henderson 已提交
971
    switch (max_len - len) {
972
    case 1:
973
        cksm += cpu_ldub_data_ra(env, src, ra) << 24;
R
Richard Henderson 已提交
974
        len += 1;
975 976
        break;
    case 2:
977
        cksm += cpu_lduw_data_ra(env, src, ra) << 16;
R
Richard Henderson 已提交
978
        len += 2;
979 980
        break;
    case 3:
981 982
        cksm += cpu_lduw_data_ra(env, src, ra) << 16;
        cksm += cpu_ldub_data_ra(env, src + 2, ra) << 8;
R
Richard Henderson 已提交
983
        len += 3;
984 985 986
        break;
    }

R
Richard Henderson 已提交
987 988 989 990 991 992 993 994
    /* Fold the carry from the checksum.  Note that we can see carry-out
       during folding more than once (but probably not more than twice).  */
    while (cksm > 0xffffffffull) {
        cksm = (uint32_t)cksm + (cksm >> 32);
    }

    /* Indicate whether or not we've processed everything.  */
    env->cc_op = (len == src_len ? 0 : 3);
995

R
Richard Henderson 已提交
996 997 998
    /* Return both cksm and processed length.  */
    env->retxl = cksm;
    return len;
999 1000
}

A
Aurelien Jarno 已提交
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
void HELPER(pack)(CPUS390XState *env, uint32_t len, uint64_t dest, uint64_t src)
{
    uintptr_t ra = GETPC();
    int len_dest = len >> 4;
    int len_src = len & 0xf;
    uint8_t b;

    dest += len_dest;
    src += len_src;

    /* last byte is special, it only flips the nibbles */
    b = cpu_ldub_data_ra(env, src, ra);
    cpu_stb_data_ra(env, dest, (b << 4) | (b >> 4), ra);
    src--;
    len_src--;

    /* now pack every value */
    while (len_dest >= 0) {
        b = 0;

        if (len_src > 0) {
            b = cpu_ldub_data_ra(env, src, ra) & 0x0f;
            src--;
            len_src--;
        }
        if (len_src > 0) {
            b |= cpu_ldub_data_ra(env, src, ra) << 4;
            src--;
            len_src--;
        }

        len_dest--;
        dest--;
        cpu_stb_data_ra(env, dest, b, ra);
    }
}

1038 1039
static inline void do_pkau(CPUS390XState *env, uint64_t dest, uint64_t src,
                           uint32_t srclen, int ssize, uintptr_t ra)
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
{
    int i;
    /* The destination operand is always 16 bytes long.  */
    const int destlen = 16;

    /* The operands are processed from right to left.  */
    src += srclen - 1;
    dest += destlen - 1;

    for (i = 0; i < destlen; i++) {
        uint8_t b = 0;

        /* Start with a positive sign */
        if (i == 0) {
            b = 0xc;
1055
        } else if (srclen > ssize) {
1056
            b = cpu_ldub_data_ra(env, src, ra) & 0x0f;
1057 1058
            src -= ssize;
            srclen -= ssize;
1059 1060
        }

1061
        if (srclen > ssize) {
1062
            b |= cpu_ldub_data_ra(env, src, ra) << 4;
1063 1064
            src -= ssize;
            srclen -= ssize;
1065 1066 1067 1068 1069 1070 1071
        }

        cpu_stb_data_ra(env, dest, b, ra);
        dest--;
    }
}

1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084

void HELPER(pka)(CPUS390XState *env, uint64_t dest, uint64_t src,
                 uint32_t srclen)
{
    do_pkau(env, dest, src, srclen, 1, GETPC());
}

void HELPER(pku)(CPUS390XState *env, uint64_t dest, uint64_t src,
                 uint32_t srclen)
{
    do_pkau(env, dest, src, srclen, 2, GETPC());
}

1085 1086
void HELPER(unpk)(CPUS390XState *env, uint32_t len, uint64_t dest,
                  uint64_t src)
1087
{
1088
    uintptr_t ra = GETPC();
1089 1090 1091 1092 1093 1094 1095 1096 1097
    int len_dest = len >> 4;
    int len_src = len & 0xf;
    uint8_t b;
    int second_nibble = 0;

    dest += len_dest;
    src += len_src;

    /* last byte is special, it only flips the nibbles */
1098 1099
    b = cpu_ldub_data_ra(env, src, ra);
    cpu_stb_data_ra(env, dest, (b << 4) | (b >> 4), ra);
1100 1101 1102 1103 1104 1105 1106 1107 1108
    src--;
    len_src--;

    /* now pad every nibble with 0xf0 */

    while (len_dest > 0) {
        uint8_t cur_byte = 0;

        if (len_src > 0) {
1109
            cur_byte = cpu_ldub_data_ra(env, src, ra);
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
        }

        len_dest--;
        dest--;

        /* only advance one nibble at a time */
        if (second_nibble) {
            cur_byte >>= 4;
            len_src--;
            src--;
        }
        second_nibble = !second_nibble;

        /* digit */
        cur_byte = (cur_byte & 0xf);
        /* zone bits */
        cur_byte |= 0xf0;

1128
        cpu_stb_data_ra(env, dest, cur_byte, ra);
1129 1130 1131
    }
}

1132 1133 1134
static inline uint32_t do_unpkau(CPUS390XState *env, uint64_t dest,
                                 uint32_t destlen, int dsize, uint64_t src,
                                 uintptr_t ra)
1135 1136 1137 1138 1139 1140 1141 1142 1143
{
    int i;
    uint32_t cc;
    uint8_t b;
    /* The source operand is always 16 bytes long.  */
    const int srclen = 16;

    /* The operands are processed from right to left.  */
    src += srclen - 1;
1144
    dest += destlen - dsize;
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165

    /* Check for the sign.  */
    b = cpu_ldub_data_ra(env, src, ra);
    src--;
    switch (b & 0xf) {
    case 0xa:
    case 0xc:
    case 0xe ... 0xf:
        cc = 0;  /* plus */
        break;
    case 0xb:
    case 0xd:
        cc = 1;  /* minus */
        break;
    default:
    case 0x0 ... 0x9:
        cc = 3;  /* invalid */
        break;
    }

    /* Now pad every nibble with 0x30, advancing one nibble at a time. */
1166 1167 1168
    for (i = 0; i < destlen; i += dsize) {
        if (i == (31 * dsize)) {
            /* If length is 32/64 bytes, the leftmost byte is 0. */
1169
            b = 0;
1170
        } else if (i % (2 * dsize)) {
1171 1172 1173 1174 1175
            b = cpu_ldub_data_ra(env, src, ra);
            src--;
        } else {
            b >>= 4;
        }
1176 1177
        cpu_stsize_data_ra(env, dest, 0x30 + (b & 0xf), dsize, ra);
        dest -= dsize;
1178 1179 1180 1181 1182
    }

    return cc;
}

1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
uint32_t HELPER(unpka)(CPUS390XState *env, uint64_t dest, uint32_t destlen,
                       uint64_t src)
{
    return do_unpkau(env, dest, destlen, 1, src, GETPC());
}

uint32_t HELPER(unpku)(CPUS390XState *env, uint64_t dest, uint32_t destlen,
                       uint64_t src)
{
    return do_unpkau(env, dest, destlen, 2, src, GETPC());
}

1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
uint32_t HELPER(tp)(CPUS390XState *env, uint64_t dest, uint32_t destlen)
{
    uintptr_t ra = GETPC();
    uint32_t cc = 0;
    int i;

    for (i = 0; i < destlen; i++) {
        uint8_t b = cpu_ldub_data_ra(env, dest + i, ra);
        /* digit */
        cc |= (b & 0xf0) > 0x90 ? 2 : 0;

        if (i == (destlen - 1)) {
            /* sign */
            cc |= (b & 0xf) < 0xa ? 1 : 0;
        } else {
            /* digit */
            cc |= (b & 0xf) > 0x9 ? 2 : 0;
        }
    }

    return cc;
}

1218 1219
static uint32_t do_helper_tr(CPUS390XState *env, uint32_t len, uint64_t array,
                             uint64_t trans, uintptr_t ra)
1220
{
1221
    uint32_t i;
1222 1223

    for (i = 0; i <= len; i++) {
1224 1225 1226
        uint8_t byte = cpu_ldub_data_ra(env, array + i, ra);
        uint8_t new_byte = cpu_ldub_data_ra(env, trans + byte, ra);
        cpu_stb_data_ra(env, array + i, new_byte, ra);
1227
    }
1228 1229

    return env->cc_op;
1230 1231
}

1232 1233 1234
void HELPER(tr)(CPUS390XState *env, uint32_t len, uint64_t array,
                uint64_t trans)
{
1235
    do_helper_tr(env, len, array, trans, GETPC());
1236 1237
}

1238 1239 1240
uint64_t HELPER(tre)(CPUS390XState *env, uint64_t array,
                     uint64_t len, uint64_t trans)
{
1241
    uintptr_t ra = GETPC();
1242 1243 1244
    uint8_t end = env->regs[0] & 0xff;
    uint64_t l = len;
    uint64_t i;
1245
    uint32_t cc = 0;
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255

    if (!(env->psw.mask & PSW_MASK_64)) {
        array &= 0x7fffffff;
        l = (uint32_t)l;
    }

    /* Lest we fail to service interrupts in a timely manner, limit the
       amount of work we're willing to do.  For now, let's cap at 8k.  */
    if (l > 0x2000) {
        l = 0x2000;
1256
        cc = 3;
1257 1258 1259 1260 1261
    }

    for (i = 0; i < l; i++) {
        uint8_t byte, new_byte;

1262
        byte = cpu_ldub_data_ra(env, array + i, ra);
1263 1264

        if (byte == end) {
1265
            cc = 1;
1266 1267 1268
            break;
        }

1269 1270
        new_byte = cpu_ldub_data_ra(env, trans + byte, ra);
        cpu_stb_data_ra(env, array + i, new_byte, ra);
1271 1272
    }

1273
    env->cc_op = cc;
1274 1275 1276 1277
    env->retxl = len - i;
    return array + i;
}

R
Richard Henderson 已提交
1278 1279 1280
static inline uint32_t do_helper_trt(CPUS390XState *env, int len,
                                     uint64_t array, uint64_t trans,
                                     int inc, uintptr_t ra)
1281
{
R
Richard Henderson 已提交
1282
    int i;
1283 1284

    for (i = 0; i <= len; i++) {
R
Richard Henderson 已提交
1285
        uint8_t byte = cpu_ldub_data_ra(env, array + i * inc, ra);
1286
        uint8_t sbyte = cpu_ldub_data_ra(env, trans + byte, ra);
1287 1288

        if (sbyte != 0) {
R
Richard Henderson 已提交
1289
            set_address(env, 1, array + i * inc);
1290 1291
            env->regs[2] = deposit64(env->regs[2], 0, 8, sbyte);
            return (i == len) ? 2 : 1;
1292 1293 1294
        }
    }

1295 1296 1297 1298 1299 1300
    return 0;
}

uint32_t HELPER(trt)(CPUS390XState *env, uint32_t len, uint64_t array,
                     uint64_t trans)
{
R
Richard Henderson 已提交
1301 1302 1303 1304 1305 1306 1307
    return do_helper_trt(env, len, array, trans, 1, GETPC());
}

uint32_t HELPER(trtr)(CPUS390XState *env, uint32_t len, uint64_t array,
                      uint64_t trans)
{
    return do_helper_trt(env, len, array, trans, -1, GETPC());
1308 1309
}

1310 1311 1312 1313 1314 1315 1316
/* Translate one/two to one/two */
uint32_t HELPER(trXX)(CPUS390XState *env, uint32_t r1, uint32_t r2,
                      uint32_t tst, uint32_t sizes)
{
    uintptr_t ra = GETPC();
    int dsize = (sizes & 1) ? 1 : 2;
    int ssize = (sizes & 2) ? 1 : 2;
1317
    uint64_t tbl = get_address(env, 1);
1318 1319 1320 1321 1322 1323
    uint64_t dst = get_address(env, r1);
    uint64_t len = get_length(env, r1 + 1);
    uint64_t src = get_address(env, r2);
    uint32_t cc = 3;
    int i;

1324 1325 1326 1327 1328 1329 1330 1331 1332
    /* The lower address bits of TBL are ignored.  For TROO, TROT, it's
       the low 3 bits (double-word aligned).  For TRTO, TRTT, it's either
       the low 12 bits (4K, without ETF2-ENH) or 3 bits (with ETF2-ENH).  */
    if (ssize == 2 && !s390_has_feat(S390_FEAT_ETF2_ENH)) {
        tbl &= -4096;
    } else {
        tbl &= -8;
    }

1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
    check_alignment(env, len, ssize, ra);

    /* Lest we fail to service interrupts in a timely manner, */
    /* limit the amount of work we're willing to do.   */
    for (i = 0; i < 0x2000; i++) {
        uint16_t sval = cpu_ldusize_data_ra(env, src, ssize, ra);
        uint64_t tble = tbl + (sval * dsize);
        uint16_t dval = cpu_ldusize_data_ra(env, tble, dsize, ra);
        if (dval == tst) {
            cc = 1;
            break;
        }
        cpu_stsize_data_ra(env, dst, dval, dsize, ra);

        len -= ssize;
        src += ssize;
        dst += dsize;

        if (len == 0) {
            cc = 0;
            break;
        }
    }

    set_address(env, r1, dst);
    set_length(env, r1 + 1, len);
    set_address(env, r2, src);

    return cc;
}

1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
void HELPER(cdsg)(CPUS390XState *env, uint64_t addr,
                  uint32_t r1, uint32_t r3)
{
    uintptr_t ra = GETPC();
    Int128 cmpv = int128_make128(env->regs[r1 + 1], env->regs[r1]);
    Int128 newv = int128_make128(env->regs[r3 + 1], env->regs[r3]);
    Int128 oldv;
    bool fail;

    if (parallel_cpus) {
#ifndef CONFIG_ATOMIC128
        cpu_loop_exit_atomic(ENV_GET_CPU(env), ra);
#else
        int mem_idx = cpu_mmu_index(env, false);
        TCGMemOpIdx oi = make_memop_idx(MO_TEQ | MO_ALIGN_16, mem_idx);
        oldv = helper_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv, oi, ra);
        fail = !int128_eq(oldv, cmpv);
#endif
    } else {
        uint64_t oldh, oldl;

1385 1386
        check_alignment(env, addr, 16, ra);

1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
        oldh = cpu_ldq_data_ra(env, addr + 0, ra);
        oldl = cpu_ldq_data_ra(env, addr + 8, ra);

        oldv = int128_make128(oldl, oldh);
        fail = !int128_eq(oldv, cmpv);
        if (fail) {
            newv = oldv;
        }

        cpu_stq_data_ra(env, addr + 0, int128_gethi(newv), ra);
        cpu_stq_data_ra(env, addr + 8, int128_getlo(newv), ra);
    }

    env->cc_op = fail;
    env->regs[r1] = int128_gethi(oldv);
    env->regs[r1 + 1] = int128_getlo(oldv);
}

R
Richard Henderson 已提交
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
uint32_t HELPER(csst)(CPUS390XState *env, uint32_t r3, uint64_t a1, uint64_t a2)
{
#if !defined(CONFIG_USER_ONLY) || defined(CONFIG_ATOMIC128)
    uint32_t mem_idx = cpu_mmu_index(env, false);
#endif
    uintptr_t ra = GETPC();
    uint32_t fc = extract32(env->regs[0], 0, 8);
    uint32_t sc = extract32(env->regs[0], 8, 8);
    uint64_t pl = get_address(env, 1) & -16;
    uint64_t svh, svl;
    uint32_t cc;

    /* Sanity check the function code and storage characteristic.  */
    if (fc > 1 || sc > 3) {
        if (!s390_has_feat(S390_FEAT_COMPARE_AND_SWAP_AND_STORE_2)) {
            goto spec_exception;
        }
        if (fc > 2 || sc > 4 || (fc == 2 && (r3 & 1))) {
            goto spec_exception;
        }
    }

    /* Sanity check the alignments.  */
    if (extract32(a1, 0, 4 << fc) || extract32(a2, 0, 1 << sc)) {
        goto spec_exception;
    }

    /* Sanity check writability of the store address.  */
#ifndef CONFIG_USER_ONLY
    probe_write(env, a2, mem_idx, ra);
#endif

    /* Note that the compare-and-swap is atomic, and the store is atomic, but
       the complete operation is not.  Therefore we do not need to assert serial
       context in order to implement this.  That said, restart early if we can't
       support either operation that is supposed to be atomic.  */
    if (parallel_cpus) {
        int mask = 0;
#if !defined(CONFIG_ATOMIC64)
        mask = -8;
#elif !defined(CONFIG_ATOMIC128)
        mask = -16;
#endif
        if (((4 << fc) | (1 << sc)) & mask) {
            cpu_loop_exit_atomic(ENV_GET_CPU(env), ra);
        }
    }

    /* All loads happen before all stores.  For simplicity, load the entire
       store value area from the parameter list.  */
    svh = cpu_ldq_data_ra(env, pl + 16, ra);
    svl = cpu_ldq_data_ra(env, pl + 24, ra);

    switch (fc) {
    case 0:
        {
            uint32_t nv = cpu_ldl_data_ra(env, pl, ra);
            uint32_t cv = env->regs[r3];
            uint32_t ov;

            if (parallel_cpus) {
#ifdef CONFIG_USER_ONLY
                uint32_t *haddr = g2h(a1);
                ov = atomic_cmpxchg__nocheck(haddr, cv, nv);
#else
                TCGMemOpIdx oi = make_memop_idx(MO_TEUL | MO_ALIGN, mem_idx);
                ov = helper_atomic_cmpxchgl_be_mmu(env, a1, cv, nv, oi, ra);
#endif
            } else {
                ov = cpu_ldl_data_ra(env, a1, ra);
                cpu_stl_data_ra(env, a1, (ov == cv ? nv : ov), ra);
            }
            cc = (ov != cv);
            env->regs[r3] = deposit64(env->regs[r3], 32, 32, ov);
        }
        break;

    case 1:
        {
            uint64_t nv = cpu_ldq_data_ra(env, pl, ra);
            uint64_t cv = env->regs[r3];
            uint64_t ov;

            if (parallel_cpus) {
#ifdef CONFIG_ATOMIC64
# ifdef CONFIG_USER_ONLY
                uint64_t *haddr = g2h(a1);
                ov = atomic_cmpxchg__nocheck(haddr, cv, nv);
# else
                TCGMemOpIdx oi = make_memop_idx(MO_TEQ | MO_ALIGN, mem_idx);
                ov = helper_atomic_cmpxchgq_be_mmu(env, a1, cv, nv, oi, ra);
# endif
#else
                /* Note that we asserted !parallel_cpus above.  */
                g_assert_not_reached();
#endif
            } else {
                ov = cpu_ldq_data_ra(env, a1, ra);
                cpu_stq_data_ra(env, a1, (ov == cv ? nv : ov), ra);
            }
            cc = (ov != cv);
            env->regs[r3] = ov;
        }
        break;

    case 2:
        {
            uint64_t nvh = cpu_ldq_data_ra(env, pl, ra);
            uint64_t nvl = cpu_ldq_data_ra(env, pl + 8, ra);
            Int128 nv = int128_make128(nvl, nvh);
            Int128 cv = int128_make128(env->regs[r3 + 1], env->regs[r3]);
            Int128 ov;

            if (parallel_cpus) {
#ifdef CONFIG_ATOMIC128
                TCGMemOpIdx oi = make_memop_idx(MO_TEQ | MO_ALIGN_16, mem_idx);
                ov = helper_atomic_cmpxchgo_be_mmu(env, a1, cv, nv, oi, ra);
                cc = !int128_eq(ov, cv);
#else
                /* Note that we asserted !parallel_cpus above.  */
                g_assert_not_reached();
#endif
            } else {
                uint64_t oh = cpu_ldq_data_ra(env, a1 + 0, ra);
                uint64_t ol = cpu_ldq_data_ra(env, a1 + 8, ra);

                ov = int128_make128(ol, oh);
                cc = !int128_eq(ov, cv);
                if (cc) {
                    nv = ov;
                }

                cpu_stq_data_ra(env, a1 + 0, int128_gethi(nv), ra);
                cpu_stq_data_ra(env, a1 + 8, int128_getlo(nv), ra);
            }

            env->regs[r3 + 0] = int128_gethi(ov);
            env->regs[r3 + 1] = int128_getlo(ov);
        }
        break;

    default:
        g_assert_not_reached();
    }

    /* Store only if the comparison succeeded.  Note that above we use a pair
       of 64-bit big-endian loads, so for sc < 3 we must extract the value
       from the most-significant bits of svh.  */
    if (cc == 0) {
        switch (sc) {
        case 0:
            cpu_stb_data_ra(env, a2, svh >> 56, ra);
            break;
        case 1:
            cpu_stw_data_ra(env, a2, svh >> 48, ra);
            break;
        case 2:
            cpu_stl_data_ra(env, a2, svh >> 32, ra);
            break;
        case 3:
            cpu_stq_data_ra(env, a2, svh, ra);
            break;
        case 4:
            if (parallel_cpus) {
#ifdef CONFIG_ATOMIC128
                TCGMemOpIdx oi = make_memop_idx(MO_TEQ | MO_ALIGN_16, mem_idx);
                Int128 sv = int128_make128(svl, svh);
                helper_atomic_sto_be_mmu(env, a2, sv, oi, ra);
#else
                /* Note that we asserted !parallel_cpus above.  */
                g_assert_not_reached();
#endif
            } else {
                cpu_stq_data_ra(env, a2 + 0, svh, ra);
                cpu_stq_data_ra(env, a2 + 8, svl, ra);
            }
1581
            break;
R
Richard Henderson 已提交
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
        default:
            g_assert_not_reached();
        }
    }

    return cc;

 spec_exception:
    cpu_restore_state(ENV_GET_CPU(env), ra);
    program_interrupt(env, PGM_SPECIFICATION, 6);
    g_assert_not_reached();
}

1595
#if !defined(CONFIG_USER_ONLY)
1596
void HELPER(lctlg)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3)
1597
{
1598
    uintptr_t ra = GETPC();
1599
    S390CPU *cpu = s390_env_get_cpu(env);
1600
    bool PERchanged = false;
1601
    uint64_t src = a2;
1602
    uint32_t i;
1603 1604

    for (i = r1;; i = (i + 1) % 16) {
1605
        uint64_t val = cpu_ldq_data_ra(env, src, ra);
1606 1607 1608 1609
        if (env->cregs[i] != val && i >= 9 && i <= 11) {
            PERchanged = true;
        }
        env->cregs[i] = val;
1610
        HELPER_LOG("load ctl %d from 0x%" PRIx64 " == 0x%" PRIx64 "\n",
1611
                   i, src, val);
1612 1613 1614 1615 1616 1617 1618
        src += sizeof(uint64_t);

        if (i == r3) {
            break;
        }
    }

1619 1620 1621 1622
    if (PERchanged && env->psw.mask & PSW_MASK_PER) {
        s390_cpu_recompute_watchpoints(CPU(cpu));
    }

1623
    tlb_flush(CPU(cpu));
1624 1625
}

1626
void HELPER(lctl)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3)
1627
{
1628
    uintptr_t ra = GETPC();
1629
    S390CPU *cpu = s390_env_get_cpu(env);
1630
    bool PERchanged = false;
1631
    uint64_t src = a2;
1632
    uint32_t i;
1633 1634

    for (i = r1;; i = (i + 1) % 16) {
1635
        uint32_t val = cpu_ldl_data_ra(env, src, ra);
1636 1637 1638
        if ((uint32_t)env->cregs[i] != val && i >= 9 && i <= 11) {
            PERchanged = true;
        }
1639 1640
        env->cregs[i] = deposit64(env->cregs[i], 0, 32, val);
        HELPER_LOG("load ctl %d from 0x%" PRIx64 " == 0x%x\n", i, src, val);
1641 1642 1643 1644 1645 1646 1647
        src += sizeof(uint32_t);

        if (i == r3) {
            break;
        }
    }

1648 1649 1650 1651
    if (PERchanged && env->psw.mask & PSW_MASK_PER) {
        s390_cpu_recompute_watchpoints(CPU(cpu));
    }

1652
    tlb_flush(CPU(cpu));
1653 1654
}

1655
void HELPER(stctg)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3)
1656
{
1657
    uintptr_t ra = GETPC();
1658
    uint64_t dest = a2;
1659
    uint32_t i;
1660 1661

    for (i = r1;; i = (i + 1) % 16) {
1662
        cpu_stq_data_ra(env, dest, env->cregs[i], ra);
1663 1664 1665 1666 1667 1668 1669 1670
        dest += sizeof(uint64_t);

        if (i == r3) {
            break;
        }
    }
}

1671
void HELPER(stctl)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3)
1672
{
1673
    uintptr_t ra = GETPC();
1674
    uint64_t dest = a2;
1675
    uint32_t i;
1676 1677

    for (i = r1;; i = (i + 1) % 16) {
1678
        cpu_stl_data_ra(env, dest, env->cregs[i], ra);
1679 1680 1681 1682 1683 1684 1685 1686
        dest += sizeof(uint32_t);

        if (i == r3) {
            break;
        }
    }
}

1687 1688
uint32_t HELPER(testblock)(CPUS390XState *env, uint64_t real_addr)
{
1689
    uintptr_t ra = GETPC();
1690 1691
    int i;

1692
    real_addr = wrap_address(env, real_addr) & TARGET_PAGE_MASK;
1693 1694

    for (i = 0; i < TARGET_PAGE_SIZE; i += 8) {
1695
        cpu_stq_real_ra(env, real_addr + i, 0, ra);
1696 1697 1698 1699 1700
    }

    return 0;
}

1701 1702 1703 1704 1705 1706 1707
uint32_t HELPER(tprot)(uint64_t a1, uint64_t a2)
{
    /* XXX implement */
    return 0;
}

/* insert storage key extended */
1708
uint64_t HELPER(iske)(CPUS390XState *env, uint64_t r2)
1709
{
1710 1711
    static S390SKeysState *ss;
    static S390SKeysClass *skeyclass;
1712
    uint64_t addr = wrap_address(env, r2);
1713
    uint8_t key;
1714 1715 1716 1717 1718

    if (addr > ram_size) {
        return 0;
    }

1719 1720 1721 1722 1723 1724 1725 1726 1727
    if (unlikely(!ss)) {
        ss = s390_get_skeys_device();
        skeyclass = S390_SKEYS_GET_CLASS(ss);
    }

    if (skeyclass->get_skeys(ss, addr / TARGET_PAGE_SIZE, 1, &key)) {
        return 0;
    }
    return key;
1728 1729 1730
}

/* set storage key extended */
R
Richard Henderson 已提交
1731
void HELPER(sske)(CPUS390XState *env, uint64_t r1, uint64_t r2)
1732
{
1733 1734
    static S390SKeysState *ss;
    static S390SKeysClass *skeyclass;
1735
    uint64_t addr = wrap_address(env, r2);
1736
    uint8_t key;
1737 1738 1739 1740 1741

    if (addr > ram_size) {
        return;
    }

1742 1743 1744 1745 1746 1747 1748
    if (unlikely(!ss)) {
        ss = s390_get_skeys_device();
        skeyclass = S390_SKEYS_GET_CLASS(ss);
    }

    key = (uint8_t) r1;
    skeyclass->set_skeys(ss, addr / TARGET_PAGE_SIZE, 1, &key);
1749 1750 1751
}

/* reset reference bit extended */
R
Richard Henderson 已提交
1752
uint32_t HELPER(rrbe)(CPUS390XState *env, uint64_t r2)
1753
{
1754 1755 1756
    static S390SKeysState *ss;
    static S390SKeysClass *skeyclass;
    uint8_t re, key;
1757 1758 1759 1760 1761

    if (r2 > ram_size) {
        return 0;
    }

1762 1763 1764 1765 1766 1767 1768 1769 1770
    if (unlikely(!ss)) {
        ss = s390_get_skeys_device();
        skeyclass = S390_SKEYS_GET_CLASS(ss);
    }

    if (skeyclass->get_skeys(ss, r2 / TARGET_PAGE_SIZE, 1, &key)) {
        return 0;
    }

1771
    re = key & (SK_R | SK_C);
1772 1773 1774 1775 1776
    key &= ~SK_R;

    if (skeyclass->set_skeys(ss, r2 / TARGET_PAGE_SIZE, 1, &key)) {
        return 0;
    }
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789

    /*
     * cc
     *
     * 0  Reference bit zero; change bit zero
     * 1  Reference bit zero; change bit one
     * 2  Reference bit one; change bit zero
     * 3  Reference bit one; change bit one
     */

    return re >> 1;
}

1790
uint32_t HELPER(mvcs)(CPUS390XState *env, uint64_t l, uint64_t a1, uint64_t a2)
1791
{
1792
    uintptr_t ra = GETPC();
1793
    int cc = 0, i;
1794

1795 1796 1797 1798
    HELPER_LOG("%s: %16" PRIx64 " %16" PRIx64 " %16" PRIx64 "\n",
               __func__, l, a1, a2);

    if (l > 256) {
1799 1800 1801 1802 1803 1804 1805
        /* max 256 */
        l = 256;
        cc = 3;
    }

    /* XXX replace w/ memcpy */
    for (i = 0; i < l; i++) {
1806 1807
        uint8_t x = cpu_ldub_primary_ra(env, a2 + i, ra);
        cpu_stb_secondary_ra(env, a1 + i, x, ra);
1808 1809 1810 1811 1812
    }

    return cc;
}

1813
uint32_t HELPER(mvcp)(CPUS390XState *env, uint64_t l, uint64_t a1, uint64_t a2)
1814
{
1815
    uintptr_t ra = GETPC();
1816 1817
    int cc = 0, i;

1818 1819 1820
    HELPER_LOG("%s: %16" PRIx64 " %16" PRIx64 " %16" PRIx64 "\n",
               __func__, l, a1, a2);

1821 1822 1823 1824 1825
    if (l > 256) {
        /* max 256 */
        l = 256;
        cc = 3;
    }
1826

1827 1828
    /* XXX replace w/ memcpy */
    for (i = 0; i < l; i++) {
1829 1830
        uint8_t x = cpu_ldub_secondary_ra(env, a2 + i, ra);
        cpu_stb_primary_ra(env, a1 + i, x, ra);
1831
    }
1832

1833
    return cc;
1834 1835
}

1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
void HELPER(idte)(CPUS390XState *env, uint64_t r1, uint64_t r2, uint32_t m4)
{
    CPUState *cs = CPU(s390_env_get_cpu(env));
    const uintptr_t ra = GETPC();
    uint64_t table, entry, raddr;
    uint16_t entries, i, index = 0;

    if (r2 & 0xff000) {
        cpu_restore_state(cs, ra);
        program_interrupt(env, PGM_SPECIFICATION, 4);
    }

    if (!(r2 & 0x800)) {
        /* invalidation-and-clearing operation */
        table = r1 & _ASCE_ORIGIN;
        entries = (r2 & 0x7ff) + 1;

        switch (r1 & _ASCE_TYPE_MASK) {
        case _ASCE_TYPE_REGION1:
            index = (r2 >> 53) & 0x7ff;
            break;
        case _ASCE_TYPE_REGION2:
            index = (r2 >> 42) & 0x7ff;
            break;
        case _ASCE_TYPE_REGION3:
            index = (r2 >> 31) & 0x7ff;
            break;
        case _ASCE_TYPE_SEGMENT:
            index = (r2 >> 20) & 0x7ff;
            break;
        }
        for (i = 0; i < entries; i++) {
            /* addresses are not wrapped in 24/31bit mode but table index is */
            raddr = table + ((index + i) & 0x7ff) * sizeof(entry);
1870
            entry = cpu_ldq_real_ra(env, raddr, ra);
1871 1872 1873
            if (!(entry & _REGION_ENTRY_INV)) {
                /* we are allowed to not store if already invalid */
                entry |= _REGION_ENTRY_INV;
1874
                cpu_stq_real_ra(env, raddr, entry, ra);
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
            }
        }
    }

    /* We simply flush the complete tlb, therefore we can ignore r3. */
    if (m4 & 1) {
        tlb_flush(cs);
    } else {
        tlb_flush_all_cpus_synced(cs);
    }
}

1887
/* invalidate pte */
1888 1889
void HELPER(ipte)(CPUS390XState *env, uint64_t pto, uint64_t vaddr,
                  uint32_t m4)
1890
{
1891
    CPUState *cs = CPU(s390_env_get_cpu(env));
1892
    const uintptr_t ra = GETPC();
1893
    uint64_t page = vaddr & TARGET_PAGE_MASK;
1894
    uint64_t pte_addr, pte;
1895

1896 1897
    /* Compute the page table entry address */
    pte_addr = (pto & _SEGMENT_ENTRY_ORIGIN);
1898
    pte_addr += (vaddr & VADDR_PX) >> 9;
1899 1900

    /* Mark the page table entry as invalid */
1901
    pte = cpu_ldq_real_ra(env, pte_addr, ra);
1902
    pte |= _PAGE_INVALID;
1903
    cpu_stq_real_ra(env, pte_addr, pte, ra);
1904 1905 1906

    /* XXX we exploit the fact that Linux passes the exact virtual
       address here - it's not obliged to! */
1907
    if (m4 & 1) {
1908 1909 1910 1911 1912 1913 1914 1915
        if (vaddr & ~VADDR_PX) {
            tlb_flush_page(cs, page);
            /* XXX 31-bit hack */
            tlb_flush_page(cs, page ^ 0x80000000);
        } else {
            /* looks like we don't have a valid virtual address */
            tlb_flush(cs);
        }
1916
    } else {
1917 1918 1919 1920 1921 1922 1923 1924
        if (vaddr & ~VADDR_PX) {
            tlb_flush_page_all_cpus_synced(cs, page);
            /* XXX 31-bit hack */
            tlb_flush_page_all_cpus_synced(cs, page ^ 0x80000000);
        } else {
            /* looks like we don't have a valid virtual address */
            tlb_flush_all_cpus_synced(cs);
        }
1925 1926 1927 1928
    }
}

/* flush local tlb */
1929
void HELPER(ptlb)(CPUS390XState *env)
1930
{
1931 1932
    S390CPU *cpu = s390_env_get_cpu(env);

1933
    tlb_flush(CPU(cpu));
1934 1935
}

1936 1937 1938 1939 1940 1941 1942 1943
/* flush global tlb */
void HELPER(purge)(CPUS390XState *env)
{
    S390CPU *cpu = s390_env_get_cpu(env);

    tlb_flush_all_cpus_synced(CPU(cpu));
}

1944 1945 1946
/* load using real address */
uint64_t HELPER(lura)(CPUS390XState *env, uint64_t addr)
{
1947
    return cpu_ldl_real_ra(env, wrap_address(env, addr), GETPC());
1948 1949 1950 1951
}

uint64_t HELPER(lurag)(CPUS390XState *env, uint64_t addr)
{
1952
    return cpu_ldq_real_ra(env, wrap_address(env, addr), GETPC());
1953 1954
}

1955
/* store using real address */
R
Richard Henderson 已提交
1956
void HELPER(stura)(CPUS390XState *env, uint64_t addr, uint64_t v1)
1957
{
1958
    cpu_stl_real_ra(env, wrap_address(env, addr), (uint32_t)v1, GETPC());
1959 1960 1961 1962 1963 1964 1965 1966

    if ((env->psw.mask & PSW_MASK_PER) &&
        (env->cregs[9] & PER_CR9_EVENT_STORE) &&
        (env->cregs[9] & PER_CR9_EVENT_STORE_REAL)) {
        /* PSW is saved just before calling the helper.  */
        env->per_address = env->psw.addr;
        env->per_perc_atmid = PER_CODE_EVENT_STORE_REAL | get_per_atmid(env);
    }
1967 1968
}

1969 1970
void HELPER(sturg)(CPUS390XState *env, uint64_t addr, uint64_t v1)
{
1971
    cpu_stq_real_ra(env, wrap_address(env, addr), v1, GETPC());
1972 1973 1974 1975 1976 1977 1978 1979

    if ((env->psw.mask & PSW_MASK_PER) &&
        (env->cregs[9] & PER_CR9_EVENT_STORE) &&
        (env->cregs[9] & PER_CR9_EVENT_STORE_REAL)) {
        /* PSW is saved just before calling the helper.  */
        env->per_address = env->psw.addr;
        env->per_perc_atmid = PER_CODE_EVENT_STORE_REAL | get_per_atmid(env);
    }
1980 1981
}

1982
/* load real address */
R
Richard Henderson 已提交
1983
uint64_t HELPER(lra)(CPUS390XState *env, uint64_t addr)
1984
{
1985
    CPUState *cs = CPU(s390_env_get_cpu(env));
1986 1987 1988
    uint32_t cc = 0;
    uint64_t asc = env->psw.mask & PSW_MASK_ASC;
    uint64_t ret;
1989
    int old_exc, flags;
1990 1991 1992

    /* XXX incomplete - has more corner cases */
    if (!(env->psw.mask & PSW_MASK_64) && (addr >> 32)) {
1993
        cpu_restore_state(cs, GETPC());
1994 1995 1996
        program_interrupt(env, PGM_SPECIAL_OP, 2);
    }

1997
    old_exc = cs->exception_index;
1998
    if (mmu_translate(env, addr, 0, asc, &ret, &flags, true)) {
1999 2000
        cc = 3;
    }
2001
    if (cs->exception_index == EXCP_PGM) {
2002 2003 2004 2005
        ret = env->int_pgm_code | 0x80000000;
    } else {
        ret |= addr & ~TARGET_PAGE_MASK;
    }
2006
    cs->exception_index = old_exc;
2007

R
Richard Henderson 已提交
2008 2009
    env->cc_op = cc;
    return ret;
2010 2011
}
#endif
2012

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
/* load pair from quadword */
uint64_t HELPER(lpq)(CPUS390XState *env, uint64_t addr)
{
    uintptr_t ra = GETPC();
    uint64_t hi, lo;

    if (parallel_cpus) {
#ifndef CONFIG_ATOMIC128
        cpu_loop_exit_atomic(ENV_GET_CPU(env), ra);
#else
        int mem_idx = cpu_mmu_index(env, false);
        TCGMemOpIdx oi = make_memop_idx(MO_TEQ | MO_ALIGN_16, mem_idx);
        Int128 v = helper_atomic_ldo_be_mmu(env, addr, oi, ra);
        hi = int128_gethi(v);
        lo = int128_getlo(v);
#endif
    } else {
        check_alignment(env, addr, 16, ra);

        hi = cpu_ldq_data_ra(env, addr + 0, ra);
        lo = cpu_ldq_data_ra(env, addr + 8, ra);
    }

    env->retxl = lo;
    return hi;
}

2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
/* store pair to quadword */
void HELPER(stpq)(CPUS390XState *env, uint64_t addr,
                  uint64_t low, uint64_t high)
{
    uintptr_t ra = GETPC();

    if (parallel_cpus) {
#ifndef CONFIG_ATOMIC128
        cpu_loop_exit_atomic(ENV_GET_CPU(env), ra);
#else
        int mem_idx = cpu_mmu_index(env, false);
        TCGMemOpIdx oi = make_memop_idx(MO_TEQ | MO_ALIGN_16, mem_idx);

        Int128 v = int128_make128(low, high);
        helper_atomic_sto_be_mmu(env, addr, v, oi, ra);
#endif
    } else {
        check_alignment(env, addr, 16, ra);

        cpu_stq_data_ra(env, addr + 0, high, ra);
        cpu_stq_data_ra(env, addr + 8, low, ra);
    }
}

2064 2065 2066 2067 2068 2069
/* Execute instruction.  This instruction executes an insn modified with
   the contents of r1.  It does not change the executed instruction in memory;
   it does not change the program counter.

   Perform this by recording the modified instruction in env->ex_value.
   This will be noticed by cpu_get_tb_cpu_state and thus tb translation.
2070
*/
2071
void HELPER(ex)(CPUS390XState *env, uint32_t ilen, uint64_t r1, uint64_t addr)
2072
{
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
    uint64_t insn = cpu_lduw_code(env, addr);
    uint8_t opc = insn >> 8;

    /* Or in the contents of R1[56:63].  */
    insn |= r1 & 0xff;

    /* Load the rest of the instruction.  */
    insn <<= 48;
    switch (get_ilen(opc)) {
    case 2:
        break;
    case 4:
        insn |= (uint64_t)cpu_lduw_code(env, addr + 2) << 32;
        break;
    case 6:
        insn |= (uint64_t)(uint32_t)cpu_ldl_code(env, addr + 2) << 16;
        break;
    default:
        g_assert_not_reached();
    }

2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
    /* The very most common cases can be sped up by avoiding a new TB.  */
    if ((opc & 0xf0) == 0xd0) {
        typedef uint32_t (*dx_helper)(CPUS390XState *, uint32_t, uint64_t,
                                      uint64_t, uintptr_t);
        static const dx_helper dx[16] = {
            [0x2] = do_helper_mvc,
            [0x4] = do_helper_nc,
            [0x5] = do_helper_clc,
            [0x6] = do_helper_oc,
            [0x7] = do_helper_xc,
            [0xc] = do_helper_tr,
        };
        dx_helper helper = dx[opc & 0xf];

        if (helper) {
            uint32_t l = extract64(insn, 48, 8);
            uint32_t b1 = extract64(insn, 44, 4);
            uint32_t d1 = extract64(insn, 32, 12);
            uint32_t b2 = extract64(insn, 28, 4);
            uint32_t d2 = extract64(insn, 16, 12);
2114 2115
            uint64_t a1 = wrap_address(env, env->regs[b1] + d1);
            uint64_t a2 = wrap_address(env, env->regs[b2] + d2);
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127

            env->cc_op = helper(env, l, a1, a2, 0);
            env->psw.addr += ilen;
            return;
        }
    } else if (opc == 0x0a) {
        env->int_svc_code = extract64(insn, 48, 8);
        env->int_svc_ilen = ilen;
        helper_exception(env, EXCP_SVC);
        g_assert_not_reached();
    }

2128 2129 2130 2131 2132
    /* Record the insn we want to execute as well as the ilen to use
       during the execution of the target insn.  This will also ensure
       that ex_value is non-zero, which flags that we are in a state
       that requires such execution.  */
    env->ex_value = insn | ilen;
2133
}
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224

uint32_t HELPER(mvcos)(CPUS390XState *env, uint64_t dest, uint64_t src,
                       uint64_t len)
{
    const uint8_t psw_key = (env->psw.mask & PSW_MASK_KEY) >> PSW_SHIFT_KEY;
    const uint8_t psw_as = (env->psw.mask & PSW_MASK_ASC) >> PSW_SHIFT_ASC;
    const uint64_t r0 = env->regs[0];
    const uintptr_t ra = GETPC();
    CPUState *cs = CPU(s390_env_get_cpu(env));
    uint8_t dest_key, dest_as, dest_k, dest_a;
    uint8_t src_key, src_as, src_k, src_a;
    uint64_t val;
    int cc = 0;

    HELPER_LOG("%s dest %" PRIx64 ", src %" PRIx64 ", len %" PRIx64 "\n",
               __func__, dest, src, len);

    if (!(env->psw.mask & PSW_MASK_DAT)) {
        cpu_restore_state(cs, ra);
        program_interrupt(env, PGM_SPECIAL_OP, 6);
    }

    /* OAC (operand access control) for the first operand -> dest */
    val = (r0 & 0xffff0000ULL) >> 16;
    dest_key = (val >> 12) & 0xf;
    dest_as = (val >> 6) & 0x3;
    dest_k = (val >> 1) & 0x1;
    dest_a = val & 0x1;

    /* OAC (operand access control) for the second operand -> src */
    val = (r0 & 0x0000ffffULL);
    src_key = (val >> 12) & 0xf;
    src_as = (val >> 6) & 0x3;
    src_k = (val >> 1) & 0x1;
    src_a = val & 0x1;

    if (!dest_k) {
        dest_key = psw_key;
    }
    if (!src_k) {
        src_key = psw_key;
    }
    if (!dest_a) {
        dest_as = psw_as;
    }
    if (!src_a) {
        src_as = psw_as;
    }

    if (dest_a && dest_as == AS_HOME && (env->psw.mask & PSW_MASK_PSTATE)) {
        cpu_restore_state(cs, ra);
        program_interrupt(env, PGM_SPECIAL_OP, 6);
    }
    if (!(env->cregs[0] & CR0_SECONDARY) &&
        (dest_as == AS_SECONDARY || src_as == AS_SECONDARY)) {
        cpu_restore_state(cs, ra);
        program_interrupt(env, PGM_SPECIAL_OP, 6);
    }
    if (!psw_key_valid(env, dest_key) || !psw_key_valid(env, src_key)) {
        cpu_restore_state(cs, ra);
        program_interrupt(env, PGM_PRIVILEGED, 6);
    }

    len = wrap_length(env, len);
    if (len > 4096) {
        cc = 3;
        len = 4096;
    }

    /* FIXME: AR-mode and proper problem state mode (using PSW keys) missing */
    if (src_as == AS_ACCREG || dest_as == AS_ACCREG ||
        (env->psw.mask & PSW_MASK_PSTATE)) {
        qemu_log_mask(LOG_UNIMP, "%s: AR-mode and PSTATE support missing\n",
                      __func__);
        cpu_restore_state(cs, ra);
        program_interrupt(env, PGM_ADDRESSING, 6);
    }

    /* FIXME: a) LAP
     *        b) Access using correct keys
     *        c) AR-mode
     */
#ifdef CONFIG_USER_ONLY
    /* psw keys are never valid in user mode, we will never reach this */
    g_assert_not_reached();
#else
    fast_memmove_as(env, dest, src, len, dest_as, src_as, ra);
#endif

    return cc;
}
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534

/* Decode a Unicode character.  A return value < 0 indicates success, storing
   the UTF-32 result into OCHAR and the input length into OLEN.  A return
   value >= 0 indicates failure, and the CC value to be returned.  */
typedef int (*decode_unicode_fn)(CPUS390XState *env, uint64_t addr,
                                 uint64_t ilen, bool enh_check, uintptr_t ra,
                                 uint32_t *ochar, uint32_t *olen);

/* Encode a Unicode character.  A return value < 0 indicates success, storing
   the bytes into ADDR and the output length into OLEN.  A return value >= 0
   indicates failure, and the CC value to be returned.  */
typedef int (*encode_unicode_fn)(CPUS390XState *env, uint64_t addr,
                                 uint64_t ilen, uintptr_t ra, uint32_t c,
                                 uint32_t *olen);

static int decode_utf8(CPUS390XState *env, uint64_t addr, uint64_t ilen,
                       bool enh_check, uintptr_t ra,
                       uint32_t *ochar, uint32_t *olen)
{
    uint8_t s0, s1, s2, s3;
    uint32_t c, l;

    if (ilen < 1) {
        return 0;
    }
    s0 = cpu_ldub_data_ra(env, addr, ra);
    if (s0 <= 0x7f) {
        /* one byte character */
        l = 1;
        c = s0;
    } else if (s0 <= (enh_check ? 0xc1 : 0xbf)) {
        /* invalid character */
        return 2;
    } else if (s0 <= 0xdf) {
        /* two byte character */
        l = 2;
        if (ilen < 2) {
            return 0;
        }
        s1 = cpu_ldub_data_ra(env, addr + 1, ra);
        c = s0 & 0x1f;
        c = (c << 6) | (s1 & 0x3f);
        if (enh_check && (s1 & 0xc0) != 0x80) {
            return 2;
        }
    } else if (s0 <= 0xef) {
        /* three byte character */
        l = 3;
        if (ilen < 3) {
            return 0;
        }
        s1 = cpu_ldub_data_ra(env, addr + 1, ra);
        s2 = cpu_ldub_data_ra(env, addr + 2, ra);
        c = s0 & 0x0f;
        c = (c << 6) | (s1 & 0x3f);
        c = (c << 6) | (s2 & 0x3f);
        /* Fold the byte-by-byte range descriptions in the PoO into
           tests against the complete value.  It disallows encodings
           that could be smaller, and the UTF-16 surrogates.  */
        if (enh_check
            && ((s1 & 0xc0) != 0x80
                || (s2 & 0xc0) != 0x80
                || c < 0x1000
                || (c >= 0xd800 && c <= 0xdfff))) {
            return 2;
        }
    } else if (s0 <= (enh_check ? 0xf4 : 0xf7)) {
        /* four byte character */
        l = 4;
        if (ilen < 4) {
            return 0;
        }
        s1 = cpu_ldub_data_ra(env, addr + 1, ra);
        s2 = cpu_ldub_data_ra(env, addr + 2, ra);
        s3 = cpu_ldub_data_ra(env, addr + 3, ra);
        c = s0 & 0x07;
        c = (c << 6) | (s1 & 0x3f);
        c = (c << 6) | (s2 & 0x3f);
        c = (c << 6) | (s3 & 0x3f);
        /* See above.  */
        if (enh_check
            && ((s1 & 0xc0) != 0x80
                || (s2 & 0xc0) != 0x80
                || (s3 & 0xc0) != 0x80
                || c < 0x010000
                || c > 0x10ffff)) {
            return 2;
        }
    } else {
        /* invalid character */
        return 2;
    }

    *ochar = c;
    *olen = l;
    return -1;
}

static int decode_utf16(CPUS390XState *env, uint64_t addr, uint64_t ilen,
                        bool enh_check, uintptr_t ra,
                        uint32_t *ochar, uint32_t *olen)
{
    uint16_t s0, s1;
    uint32_t c, l;

    if (ilen < 2) {
        return 0;
    }
    s0 = cpu_lduw_data_ra(env, addr, ra);
    if ((s0 & 0xfc00) != 0xd800) {
        /* one word character */
        l = 2;
        c = s0;
    } else {
        /* two word character */
        l = 4;
        if (ilen < 4) {
            return 0;
        }
        s1 = cpu_lduw_data_ra(env, addr + 2, ra);
        c = extract32(s0, 6, 4) + 1;
        c = (c << 6) | (s0 & 0x3f);
        c = (c << 10) | (s1 & 0x3ff);
        if (enh_check && (s1 & 0xfc00) != 0xdc00) {
            /* invalid surrogate character */
            return 2;
        }
    }

    *ochar = c;
    *olen = l;
    return -1;
}

static int decode_utf32(CPUS390XState *env, uint64_t addr, uint64_t ilen,
                        bool enh_check, uintptr_t ra,
                        uint32_t *ochar, uint32_t *olen)
{
    uint32_t c;

    if (ilen < 4) {
        return 0;
    }
    c = cpu_ldl_data_ra(env, addr, ra);
    if ((c >= 0xd800 && c <= 0xdbff) || c > 0x10ffff) {
        /* invalid unicode character */
        return 2;
    }

    *ochar = c;
    *olen = 4;
    return -1;
}

static int encode_utf8(CPUS390XState *env, uint64_t addr, uint64_t ilen,
                       uintptr_t ra, uint32_t c, uint32_t *olen)
{
    uint8_t d[4];
    uint32_t l, i;

    if (c <= 0x7f) {
        /* one byte character */
        l = 1;
        d[0] = c;
    } else if (c <= 0x7ff) {
        /* two byte character */
        l = 2;
        d[1] = 0x80 | extract32(c, 0, 6);
        d[0] = 0xc0 | extract32(c, 6, 5);
    } else if (c <= 0xffff) {
        /* three byte character */
        l = 3;
        d[2] = 0x80 | extract32(c, 0, 6);
        d[1] = 0x80 | extract32(c, 6, 6);
        d[0] = 0xe0 | extract32(c, 12, 4);
    } else {
        /* four byte character */
        l = 4;
        d[3] = 0x80 | extract32(c, 0, 6);
        d[2] = 0x80 | extract32(c, 6, 6);
        d[1] = 0x80 | extract32(c, 12, 6);
        d[0] = 0xf0 | extract32(c, 18, 3);
    }

    if (ilen < l) {
        return 1;
    }
    for (i = 0; i < l; ++i) {
        cpu_stb_data_ra(env, addr + i, d[i], ra);
    }

    *olen = l;
    return -1;
}

static int encode_utf16(CPUS390XState *env, uint64_t addr, uint64_t ilen,
                        uintptr_t ra, uint32_t c, uint32_t *olen)
{
    uint16_t d0, d1;

    if (c <= 0xffff) {
        /* one word character */
        if (ilen < 2) {
            return 1;
        }
        cpu_stw_data_ra(env, addr, c, ra);
        *olen = 2;
    } else {
        /* two word character */
        if (ilen < 4) {
            return 1;
        }
        d1 = 0xdc00 | extract32(c, 0, 10);
        d0 = 0xd800 | extract32(c, 10, 6);
        d0 = deposit32(d0, 6, 4, extract32(c, 16, 5) - 1);
        cpu_stw_data_ra(env, addr + 0, d0, ra);
        cpu_stw_data_ra(env, addr + 2, d1, ra);
        *olen = 4;
    }

    return -1;
}

static int encode_utf32(CPUS390XState *env, uint64_t addr, uint64_t ilen,
                        uintptr_t ra, uint32_t c, uint32_t *olen)
{
    if (ilen < 4) {
        return 1;
    }
    cpu_stl_data_ra(env, addr, c, ra);
    *olen = 4;
    return -1;
}

static inline uint32_t convert_unicode(CPUS390XState *env, uint32_t r1,
                                       uint32_t r2, uint32_t m3, uintptr_t ra,
                                       decode_unicode_fn decode,
                                       encode_unicode_fn encode)
{
    uint64_t dst = get_address(env, r1);
    uint64_t dlen = get_length(env, r1 + 1);
    uint64_t src = get_address(env, r2);
    uint64_t slen = get_length(env, r2 + 1);
    bool enh_check = m3 & 1;
    int cc, i;

    /* Lest we fail to service interrupts in a timely manner, limit the
       amount of work we're willing to do.  For now, let's cap at 256.  */
    for (i = 0; i < 256; ++i) {
        uint32_t c, ilen, olen;

        cc = decode(env, src, slen, enh_check, ra, &c, &ilen);
        if (unlikely(cc >= 0)) {
            break;
        }
        cc = encode(env, dst, dlen, ra, c, &olen);
        if (unlikely(cc >= 0)) {
            break;
        }

        src += ilen;
        slen -= ilen;
        dst += olen;
        dlen -= olen;
        cc = 3;
    }

    set_address(env, r1, dst);
    set_length(env, r1 + 1, dlen);
    set_address(env, r2, src);
    set_length(env, r2 + 1, slen);

    return cc;
}

uint32_t HELPER(cu12)(CPUS390XState *env, uint32_t r1, uint32_t r2, uint32_t m3)
{
    return convert_unicode(env, r1, r2, m3, GETPC(),
                           decode_utf8, encode_utf16);
}

uint32_t HELPER(cu14)(CPUS390XState *env, uint32_t r1, uint32_t r2, uint32_t m3)
{
    return convert_unicode(env, r1, r2, m3, GETPC(),
                           decode_utf8, encode_utf32);
}

uint32_t HELPER(cu21)(CPUS390XState *env, uint32_t r1, uint32_t r2, uint32_t m3)
{
    return convert_unicode(env, r1, r2, m3, GETPC(),
                           decode_utf16, encode_utf8);
}

uint32_t HELPER(cu24)(CPUS390XState *env, uint32_t r1, uint32_t r2, uint32_t m3)
{
    return convert_unicode(env, r1, r2, m3, GETPC(),
                           decode_utf16, encode_utf32);
}

uint32_t HELPER(cu41)(CPUS390XState *env, uint32_t r1, uint32_t r2, uint32_t m3)
{
    return convert_unicode(env, r1, r2, m3, GETPC(),
                           decode_utf32, encode_utf8);
}

uint32_t HELPER(cu42)(CPUS390XState *env, uint32_t r1, uint32_t r2, uint32_t m3)
{
    return convert_unicode(env, r1, r2, m3, GETPC(),
                           decode_utf32, encode_utf16);
}