mem_helper.c 71.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 *  S/390 memory access helper routines
 *
 *  Copyright (c) 2009 Ulrich Hecht
 *  Copyright (c) 2009 Alexander Graf
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */

P
Peter Maydell 已提交
21
#include "qemu/osdep.h"
22
#include "cpu.h"
23
#include "exec/address-spaces.h"
24
#include "exec/helper-proto.h"
25
#include "exec/exec-all.h"
P
Paolo Bonzini 已提交
26
#include "exec/cpu_ldst.h"
27
#include "qemu/int128.h"
28 29

#if !defined(CONFIG_USER_ONLY)
30
#include "hw/s390x/storage-keys.h"
31
#endif
32 33 34 35 36 37 38 39 40

/*****************************************************************************/
/* Softmmu support */
#if !defined(CONFIG_USER_ONLY)

/* try to fill the TLB and return an exception if error. If retaddr is
   NULL, it means that the function was called in C code (i.e. not
   from generated code or from helper.c) */
/* XXX: fix it to restore all registers */
41 42
void tlb_fill(CPUState *cs, target_ulong addr, MMUAccessType access_type,
              int mmu_idx, uintptr_t retaddr)
43
{
44
    int ret = s390_cpu_handle_mmu_fault(cs, addr, access_type, mmu_idx);
45
    if (unlikely(ret != 0)) {
46
        cpu_loop_exit_restore(cs, retaddr);
47 48 49 50 51 52 53 54 55 56 57 58
    }
}

#endif

/* #define DEBUG_HELPER */
#ifdef DEBUG_HELPER
#define HELPER_LOG(x...) qemu_log(x)
#else
#define HELPER_LOG(x...)
#endif

59
/* Reduce the length so that addr + len doesn't cross a page boundary.  */
60
static inline uint32_t adj_len_to_page(uint32_t len, uint64_t addr)
61 62 63
{
#ifndef CONFIG_USER_ONLY
    if ((addr & ~TARGET_PAGE_MASK) + len - 1 >= TARGET_PAGE_SIZE) {
64
        return -(addr | TARGET_PAGE_MASK);
65 66 67 68 69
    }
#endif
    return len;
}

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
/* Trigger a SPECIFICATION exception if an address or a length is not
   naturally aligned.  */
static inline void check_alignment(CPUS390XState *env, uint64_t v,
                                   int wordsize, uintptr_t ra)
{
    if (v % wordsize) {
        CPUState *cs = CPU(s390_env_get_cpu(env));
        cpu_restore_state(cs, ra);
        program_interrupt(env, PGM_SPECIFICATION, 6);
    }
}

/* Load a value from memory according to its size.  */
static inline uint64_t cpu_ldusize_data_ra(CPUS390XState *env, uint64_t addr,
                                           int wordsize, uintptr_t ra)
{
    switch (wordsize) {
    case 1:
        return cpu_ldub_data_ra(env, addr, ra);
    case 2:
        return cpu_lduw_data_ra(env, addr, ra);
    default:
        abort();
    }
}

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
/* Store a to memory according to its size.  */
static inline void cpu_stsize_data_ra(CPUS390XState *env, uint64_t addr,
                                      uint64_t value, int wordsize,
                                      uintptr_t ra)
{
    switch (wordsize) {
    case 1:
        cpu_stb_data_ra(env, addr, value, ra);
        break;
    case 2:
        cpu_stw_data_ra(env, addr, value, ra);
        break;
    default:
        abort();
    }
}

113 114 115 116 117 118 119 120 121 122 123 124 125 126
static inline uint64_t wrap_address(CPUS390XState *env, uint64_t a)
{
    if (!(env->psw.mask & PSW_MASK_64)) {
        if (!(env->psw.mask & PSW_MASK_32)) {
            /* 24-Bit mode */
            a &= 0x00ffffff;
        } else {
            /* 31-Bit mode */
            a &= 0x7fffffff;
        }
    }
    return a;
}

127
static void fast_memset(CPUS390XState *env, uint64_t dest, uint8_t byte,
128
                        uint32_t l, uintptr_t ra)
129
{
130
    int mmu_idx = cpu_mmu_index(env, false);
131 132 133 134 135

    while (l > 0) {
        void *p = tlb_vaddr_to_host(env, dest, MMU_DATA_STORE, mmu_idx);
        if (p) {
            /* Access to the whole page in write mode granted.  */
136
            uint32_t l_adj = adj_len_to_page(l, dest);
137 138 139 140 141 142
            memset(p, byte, l_adj);
            dest += l_adj;
            l -= l_adj;
        } else {
            /* We failed to get access to the whole page. The next write
               access will likely fill the QEMU TLB for the next iteration.  */
143
            cpu_stb_data_ra(env, dest, byte, ra);
144 145 146
            dest++;
            l--;
        }
147 148 149
    }
}

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
#ifndef CONFIG_USER_ONLY
static void fast_memmove_idx(CPUS390XState *env, uint64_t dest, uint64_t src,
                             uint32_t len, int dest_idx, int src_idx,
                             uintptr_t ra)
{
    TCGMemOpIdx oi_dest = make_memop_idx(MO_UB, dest_idx);
    TCGMemOpIdx oi_src = make_memop_idx(MO_UB, src_idx);
    uint32_t len_adj;
    void *src_p;
    void *dest_p;
    uint8_t x;

    while (len > 0) {
        src = wrap_address(env, src);
        dest = wrap_address(env, dest);
        src_p = tlb_vaddr_to_host(env, src, MMU_DATA_LOAD, src_idx);
        dest_p = tlb_vaddr_to_host(env, dest, MMU_DATA_STORE, dest_idx);

        if (src_p && dest_p) {
            /* Access to both whole pages granted.  */
            len_adj = adj_len_to_page(adj_len_to_page(len, src), dest);
            memmove(dest_p, src_p, len_adj);
        } else {
            /* We failed to get access to one or both whole pages. The next
               read or write access will likely fill the QEMU TLB for the
               next iteration.  */
            len_adj = 1;
            x = helper_ret_ldub_mmu(env, src, oi_src, ra);
            helper_ret_stb_mmu(env, dest, x, oi_dest, ra);
        }
        src += len_adj;
        dest += len_adj;
        len -= len_adj;
    }
}

static int mmu_idx_from_as(uint8_t as)
{
    switch (as) {
    case AS_PRIMARY:
        return MMU_PRIMARY_IDX;
    case AS_SECONDARY:
        return MMU_SECONDARY_IDX;
    case AS_HOME:
        return MMU_HOME_IDX;
    default:
        /* FIXME AS_ACCREG */
        g_assert_not_reached();
    }
}

static void fast_memmove_as(CPUS390XState *env, uint64_t dest, uint64_t src,
                            uint32_t len, uint8_t dest_as, uint8_t src_as,
                            uintptr_t ra)
{
    int src_idx = mmu_idx_from_as(src_as);
    int dest_idx = mmu_idx_from_as(dest_as);

    fast_memmove_idx(env, dest, src, len, dest_idx, src_idx, ra);
}
#endif

212
static void fast_memmove(CPUS390XState *env, uint64_t dest, uint64_t src,
213
                         uint32_t l, uintptr_t ra)
214
{
215
    int mmu_idx = cpu_mmu_index(env, false);
216

217 218 219 220 221
    while (l > 0) {
        void *src_p = tlb_vaddr_to_host(env, src, MMU_DATA_LOAD, mmu_idx);
        void *dest_p = tlb_vaddr_to_host(env, dest, MMU_DATA_STORE, mmu_idx);
        if (src_p && dest_p) {
            /* Access to both whole pages granted.  */
222
            uint32_t l_adj = adj_len_to_page(l, src);
223 224 225 226 227 228 229 230 231
            l_adj = adj_len_to_page(l_adj, dest);
            memmove(dest_p, src_p, l_adj);
            src += l_adj;
            dest += l_adj;
            l -= l_adj;
        } else {
            /* We failed to get access to one or both whole pages. The next
               read or write access will likely fill the QEMU TLB for the
               next iteration.  */
232
            cpu_stb_data_ra(env, dest, cpu_ldub_data_ra(env, src, ra), ra);
233 234 235 236
            src++;
            dest++;
            l--;
        }
237 238 239 240
    }
}

/* and on array */
241 242
static uint32_t do_helper_nc(CPUS390XState *env, uint32_t l, uint64_t dest,
                             uint64_t src, uintptr_t ra)
243
{
244 245
    uint32_t i;
    uint8_t c = 0;
246 247 248

    HELPER_LOG("%s l %d dest %" PRIx64 " src %" PRIx64 "\n",
               __func__, l, dest, src);
249

250
    for (i = 0; i <= l; i++) {
251 252 253 254
        uint8_t x = cpu_ldub_data_ra(env, src + i, ra);
        x &= cpu_ldub_data_ra(env, dest + i, ra);
        c |= x;
        cpu_stb_data_ra(env, dest + i, x, ra);
255
    }
256 257 258 259 260 261 262
    return c != 0;
}

uint32_t HELPER(nc)(CPUS390XState *env, uint32_t l, uint64_t dest,
                    uint64_t src)
{
    return do_helper_nc(env, l, dest, src, GETPC());
263 264 265
}

/* xor on array */
266 267
static uint32_t do_helper_xc(CPUS390XState *env, uint32_t l, uint64_t dest,
                             uint64_t src, uintptr_t ra)
268
{
269 270
    uint32_t i;
    uint8_t c = 0;
271 272 273 274 275 276

    HELPER_LOG("%s l %d dest %" PRIx64 " src %" PRIx64 "\n",
               __func__, l, dest, src);

    /* xor with itself is the same as memset(0) */
    if (src == dest) {
277
        fast_memset(env, dest, 0, l + 1, ra);
278 279 280 281
        return 0;
    }

    for (i = 0; i <= l; i++) {
282 283 284 285
        uint8_t x = cpu_ldub_data_ra(env, src + i, ra);
        x ^= cpu_ldub_data_ra(env, dest + i, ra);
        c |= x;
        cpu_stb_data_ra(env, dest + i, x, ra);
286
    }
287 288 289 290 291 292 293
    return c != 0;
}

uint32_t HELPER(xc)(CPUS390XState *env, uint32_t l, uint64_t dest,
                    uint64_t src)
{
    return do_helper_xc(env, l, dest, src, GETPC());
294 295 296
}

/* or on array */
297 298
static uint32_t do_helper_oc(CPUS390XState *env, uint32_t l, uint64_t dest,
                             uint64_t src, uintptr_t ra)
299
{
300 301
    uint32_t i;
    uint8_t c = 0;
302 303 304

    HELPER_LOG("%s l %d dest %" PRIx64 " src %" PRIx64 "\n",
               __func__, l, dest, src);
305

306
    for (i = 0; i <= l; i++) {
307 308 309 310
        uint8_t x = cpu_ldub_data_ra(env, src + i, ra);
        x |= cpu_ldub_data_ra(env, dest + i, ra);
        c |= x;
        cpu_stb_data_ra(env, dest + i, x, ra);
311
    }
312 313 314 315 316 317 318
    return c != 0;
}

uint32_t HELPER(oc)(CPUS390XState *env, uint32_t l, uint64_t dest,
                    uint64_t src)
{
    return do_helper_oc(env, l, dest, src, GETPC());
319 320 321
}

/* memmove */
322 323
static uint32_t do_helper_mvc(CPUS390XState *env, uint32_t l, uint64_t dest,
                              uint64_t src, uintptr_t ra)
324
{
325
    uint32_t i;
326 327 328 329

    HELPER_LOG("%s l %d dest %" PRIx64 " src %" PRIx64 "\n",
               __func__, l, dest, src);

330
    /* mvc and memmove do not behave the same when areas overlap! */
331 332
    /* mvc with source pointing to the byte after the destination is the
       same as memset with the first source byte */
333 334
    if (dest == src + 1) {
        fast_memset(env, dest, cpu_ldub_data_ra(env, src, ra), l + 1, ra);
335
    } else if (dest < src || src + l < dest) {
336
        fast_memmove(env, dest, src, l + 1, ra);
337 338 339 340 341 342
    } else {
        /* slow version with byte accesses which always work */
        for (i = 0; i <= l; i++) {
            uint8_t x = cpu_ldub_data_ra(env, src + i, ra);
            cpu_stb_data_ra(env, dest + i, x, ra);
        }
343 344
    }

345
    return env->cc_op;
346 347
}

348 349 350 351 352
void HELPER(mvc)(CPUS390XState *env, uint32_t l, uint64_t dest, uint64_t src)
{
    do_helper_mvc(env, l, dest, src, GETPC());
}

353 354 355 356 357 358 359 360 361 362 363 364
/* move inverse  */
void HELPER(mvcin)(CPUS390XState *env, uint32_t l, uint64_t dest, uint64_t src)
{
    uintptr_t ra = GETPC();
    int i;

    for (i = 0; i <= l; i++) {
        uint8_t v = cpu_ldub_data_ra(env, src - i, ra);
        cpu_stb_data_ra(env, dest + i, v, ra);
    }
}

365 366 367 368 369 370 371 372 373 374 375 376 377
/* move numerics  */
void HELPER(mvn)(CPUS390XState *env, uint32_t l, uint64_t dest, uint64_t src)
{
    uintptr_t ra = GETPC();
    int i;

    for (i = 0; i <= l; i++) {
        uint8_t v = cpu_ldub_data_ra(env, dest + i, ra) & 0xf0;
        v |= cpu_ldub_data_ra(env, src + i, ra) & 0x0f;
        cpu_stb_data_ra(env, dest + i, v, ra);
    }
}

378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
/* move with offset  */
void HELPER(mvo)(CPUS390XState *env, uint32_t l, uint64_t dest, uint64_t src)
{
    uintptr_t ra = GETPC();
    int len_dest = l >> 4;
    int len_src = l & 0xf;
    uint8_t byte_dest, byte_src;
    int i;

    src += len_src;
    dest += len_dest;

    /* Handle rightmost byte */
    byte_src = cpu_ldub_data_ra(env, src, ra);
    byte_dest = cpu_ldub_data_ra(env, dest, ra);
    byte_dest = (byte_dest & 0x0f) | (byte_src << 4);
    cpu_stb_data_ra(env, dest, byte_dest, ra);

    /* Process remaining bytes from right to left */
    for (i = 1; i <= len_dest; i++) {
        byte_dest = byte_src >> 4;
        if (len_src - i >= 0) {
            byte_src = cpu_ldub_data_ra(env, src - i, ra);
        } else {
            byte_src = 0;
        }
        byte_dest |= byte_src << 4;
        cpu_stb_data_ra(env, dest - i, byte_dest, ra);
    }
}

409 410 411 412 413 414 415 416 417 418 419 420 421
/* move zones  */
void HELPER(mvz)(CPUS390XState *env, uint32_t l, uint64_t dest, uint64_t src)
{
    uintptr_t ra = GETPC();
    int i;

    for (i = 0; i <= l; i++) {
        uint8_t b = cpu_ldub_data_ra(env, dest + i, ra) & 0x0f;
        b |= cpu_ldub_data_ra(env, src + i, ra) & 0xf0;
        cpu_stb_data_ra(env, dest + i, b, ra);
    }
}

422
/* compare unsigned byte arrays */
423 424
static uint32_t do_helper_clc(CPUS390XState *env, uint32_t l, uint64_t s1,
                              uint64_t s2, uintptr_t ra)
425
{
426 427
    uint32_t i;
    uint32_t cc = 0;
428 429 430

    HELPER_LOG("%s l %d s1 %" PRIx64 " s2 %" PRIx64 "\n",
               __func__, l, s1, s2);
431

432
    for (i = 0; i <= l; i++) {
433 434
        uint8_t x = cpu_ldub_data_ra(env, s1 + i, ra);
        uint8_t y = cpu_ldub_data_ra(env, s2 + i, ra);
435 436 437
        HELPER_LOG("%02x (%c)/%02x (%c) ", x, x, y, y);
        if (x < y) {
            cc = 1;
438
            break;
439 440
        } else if (x > y) {
            cc = 2;
441
            break;
442 443
        }
    }
444

445 446 447 448
    HELPER_LOG("\n");
    return cc;
}

449 450 451 452 453
uint32_t HELPER(clc)(CPUS390XState *env, uint32_t l, uint64_t s1, uint64_t s2)
{
    return do_helper_clc(env, l, s1, s2, GETPC());
}

454
/* compare logical under mask */
455 456
uint32_t HELPER(clm)(CPUS390XState *env, uint32_t r1, uint32_t mask,
                     uint64_t addr)
457
{
458 459
    uintptr_t ra = GETPC();
    uint32_t cc = 0;
460 461 462

    HELPER_LOG("%s: r1 0x%x mask 0x%x addr 0x%" PRIx64 "\n", __func__, r1,
               mask, addr);
463

464 465
    while (mask) {
        if (mask & 8) {
466 467
            uint8_t d = cpu_ldub_data_ra(env, addr, ra);
            uint8_t r = extract32(r1, 24, 8);
468 469 470 471 472 473 474 475 476 477 478 479 480 481
            HELPER_LOG("mask 0x%x %02x/%02x (0x%" PRIx64 ") ", mask, r, d,
                       addr);
            if (r < d) {
                cc = 1;
                break;
            } else if (r > d) {
                cc = 2;
                break;
            }
            addr++;
        }
        mask = (mask << 1) & 0xf;
        r1 <<= 8;
    }
482

483 484 485 486
    HELPER_LOG("\n");
    return cc;
}

487
static inline uint64_t get_address(CPUS390XState *env, int reg)
488
{
489
    return wrap_address(env, env->regs[reg]);
490 491
}

492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
static inline void set_address(CPUS390XState *env, int reg, uint64_t address)
{
    if (env->psw.mask & PSW_MASK_64) {
        /* 64-Bit mode */
        env->regs[reg] = address;
    } else {
        if (!(env->psw.mask & PSW_MASK_32)) {
            /* 24-Bit mode. According to the PoO it is implementation
            dependent if bits 32-39 remain unchanged or are set to
            zeros.  Choose the former so that the function can also be
            used for TRT.  */
            env->regs[reg] = deposit64(env->regs[reg], 0, 24, address);
        } else {
            /* 31-Bit mode. According to the PoO it is implementation
            dependent if bit 32 remains unchanged or is set to zero.
            Choose the latter so that the function can also be used for
            TRT.  */
            address &= 0x7fffffff;
            env->regs[reg] = deposit64(env->regs[reg], 0, 32, address);
        }
    }
}

515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
static inline uint64_t wrap_length(CPUS390XState *env, uint64_t length)
{
    if (!(env->psw.mask & PSW_MASK_64)) {
        /* 24-Bit and 31-Bit mode */
        length &= 0x7fffffff;
    }
    return length;
}

static inline uint64_t get_length(CPUS390XState *env, int reg)
{
    return wrap_length(env, env->regs[reg]);
}

static inline void set_length(CPUS390XState *env, int reg, uint64_t length)
{
    if (env->psw.mask & PSW_MASK_64) {
        /* 64-Bit mode */
        env->regs[reg] = length;
    } else {
        /* 24-Bit and 31-Bit mode */
        env->regs[reg] = deposit64(env->regs[reg], 0, 32, length);
    }
}

540
/* search string (c is byte to search, r2 is string, r1 end of string) */
R
Richard Henderson 已提交
541
void HELPER(srst)(CPUS390XState *env, uint32_t r1, uint32_t r2)
542
{
543
    uintptr_t ra = GETPC();
R
Richard Henderson 已提交
544
    uint64_t end, str;
R
Richard Henderson 已提交
545
    uint32_t len;
R
Richard Henderson 已提交
546
    uint8_t v, c = env->regs[0];
547

R
Richard Henderson 已提交
548 549 550 551 552
    /* Bits 32-55 must contain all 0.  */
    if (env->regs[0] & 0xffffff00u) {
        cpu_restore_state(ENV_GET_CPU(env), ra);
        program_interrupt(env, PGM_SPECIFICATION, 6);
    }
553

R
Richard Henderson 已提交
554 555
    str = get_address(env, r2);
    end = get_address(env, r1);
R
Richard Henderson 已提交
556 557

    /* Lest we fail to service interrupts in a timely manner, limit the
558
       amount of work we're willing to do.  For now, let's cap at 8k.  */
R
Richard Henderson 已提交
559 560 561 562
    for (len = 0; len < 0x2000; ++len) {
        if (str + len == end) {
            /* Character not found.  R1 & R2 are unmodified.  */
            env->cc_op = 2;
R
Richard Henderson 已提交
563
            return;
R
Richard Henderson 已提交
564
        }
565
        v = cpu_ldub_data_ra(env, str + len, ra);
R
Richard Henderson 已提交
566 567 568
        if (v == c) {
            /* Character found.  Set R1 to the location; R2 is unmodified.  */
            env->cc_op = 1;
R
Richard Henderson 已提交
569 570
            set_address(env, r1, str + len);
            return;
571 572 573
        }
    }

574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
    /* CPU-determined bytes processed.  Advance R2 to next byte to process.  */
    env->cc_op = 3;
    set_address(env, r2, str + len);
}

void HELPER(srstu)(CPUS390XState *env, uint32_t r1, uint32_t r2)
{
    uintptr_t ra = GETPC();
    uint32_t len;
    uint16_t v, c = env->regs[0];
    uint64_t end, str, adj_end;

    /* Bits 32-47 of R0 must be zero.  */
    if (env->regs[0] & 0xffff0000u) {
        cpu_restore_state(ENV_GET_CPU(env), ra);
        program_interrupt(env, PGM_SPECIFICATION, 6);
    }

    str = get_address(env, r2);
    end = get_address(env, r1);

    /* If the LSB of the two addresses differ, use one extra byte.  */
    adj_end = end + ((str ^ end) & 1);

    /* Lest we fail to service interrupts in a timely manner, limit the
       amount of work we're willing to do.  For now, let's cap at 8k.  */
    for (len = 0; len < 0x2000; len += 2) {
        if (str + len == adj_end) {
            /* End of input found.  */
            env->cc_op = 2;
            return;
        }
        v = cpu_lduw_data_ra(env, str + len, ra);
        if (v == c) {
            /* Character found.  Set R1 to the location; R2 is unmodified.  */
            env->cc_op = 1;
            set_address(env, r1, str + len);
            return;
        }
    }

R
Richard Henderson 已提交
615 616
    /* CPU-determined bytes processed.  Advance R2 to next byte to process.  */
    env->cc_op = 3;
R
Richard Henderson 已提交
617
    set_address(env, r2, str + len);
618 619 620
}

/* unsigned string compare (c is string terminator) */
621
uint64_t HELPER(clst)(CPUS390XState *env, uint64_t c, uint64_t s1, uint64_t s2)
622
{
623
    uintptr_t ra = GETPC();
624
    uint32_t len;
625 626

    c = c & 0xff;
627 628
    s1 = wrap_address(env, s1);
    s2 = wrap_address(env, s2);
629 630

    /* Lest we fail to service interrupts in a timely manner, limit the
631
       amount of work we're willing to do.  For now, let's cap at 8k.  */
632
    for (len = 0; len < 0x2000; ++len) {
633 634
        uint8_t v1 = cpu_ldub_data_ra(env, s1 + len, ra);
        uint8_t v2 = cpu_ldub_data_ra(env, s2 + len, ra);
635 636 637 638 639 640 641 642 643 644 645 646 647 648
        if (v1 == v2) {
            if (v1 == c) {
                /* Equal.  CC=0, and don't advance the registers.  */
                env->cc_op = 0;
                env->retxl = s2;
                return s1;
            }
        } else {
            /* Unequal.  CC={1,2}, and advance the registers.  Note that
               the terminator need not be zero, but the string that contains
               the terminator is by definition "low".  */
            env->cc_op = (v1 == c ? 1 : v2 == c ? 2 : v1 < v2 ? 1 : 2);
            env->retxl = s2 + len;
            return s1 + len;
649 650 651
        }
    }

652 653 654 655
    /* CPU-determined bytes equal; advance the registers.  */
    env->cc_op = 3;
    env->retxl = s2 + len;
    return s1 + len;
656 657 658
}

/* move page */
659
uint32_t HELPER(mvpg)(CPUS390XState *env, uint64_t r0, uint64_t r1, uint64_t r2)
660
{
661 662 663 664
    /* ??? missing r0 handling, which includes access keys, but more
       importantly optional suppression of the exception!  */
    fast_memmove(env, r1, r2, TARGET_PAGE_SIZE, GETPC());
    return 0; /* data moved */
665 666 667
}

/* string copy (c is string terminator) */
668
uint64_t HELPER(mvst)(CPUS390XState *env, uint64_t c, uint64_t d, uint64_t s)
669
{
670
    uintptr_t ra = GETPC();
671
    uint32_t len;
672 673

    c = c & 0xff;
674 675
    d = wrap_address(env, d);
    s = wrap_address(env, s);
676 677

    /* Lest we fail to service interrupts in a timely manner, limit the
678
       amount of work we're willing to do.  For now, let's cap at 8k.  */
679
    for (len = 0; len < 0x2000; ++len) {
680 681
        uint8_t v = cpu_ldub_data_ra(env, s + len, ra);
        cpu_stb_data_ra(env, d + len, v, ra);
682
        if (v == c) {
683 684 685 686
            /* Complete.  Set CC=1 and advance R1.  */
            env->cc_op = 1;
            env->retxl = s;
            return d + len;
687 688
        }
    }
689 690 691 692 693

    /* Incomplete.  Set CC=3 and signal to advance R1 and R2.  */
    env->cc_op = 3;
    env->retxl = s + len;
    return d + len;
694 695 696
}

/* load access registers r1 to r3 from memory at a2 */
697
void HELPER(lam)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3)
698
{
699
    uintptr_t ra = GETPC();
700 701 702
    int i;

    for (i = r1;; i = (i + 1) % 16) {
703
        env->aregs[i] = cpu_ldl_data_ra(env, a2, ra);
704 705 706 707 708 709 710 711 712
        a2 += 4;

        if (i == r3) {
            break;
        }
    }
}

/* store access registers r1 to r3 in memory at a2 */
713
void HELPER(stam)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3)
714
{
715
    uintptr_t ra = GETPC();
716 717 718
    int i;

    for (i = r1;; i = (i + 1) % 16) {
719
        cpu_stl_data_ra(env, a2, env->aregs[i], ra);
720 721 722 723 724 725 726 727
        a2 += 4;

        if (i == r3) {
            break;
        }
    }
}

728 729 730 731
/* move long helper */
static inline uint32_t do_mvcl(CPUS390XState *env,
                               uint64_t *dest, uint64_t *destlen,
                               uint64_t *src, uint64_t *srclen,
732
                               uint16_t pad, int wordsize, uintptr_t ra)
733
{
734
    uint64_t len = MIN(*srclen, *destlen);
735 736
    uint32_t cc;

737
    if (*destlen == *srclen) {
738
        cc = 0;
739
    } else if (*destlen < *srclen) {
740 741 742 743 744
        cc = 1;
    } else {
        cc = 2;
    }

745 746 747 748 749 750
    /* Copy the src array */
    fast_memmove(env, *dest, *src, len, ra);
    *src += len;
    *srclen -= len;
    *dest += len;
    *destlen -= len;
751

752
    /* Pad the remaining area */
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
    if (wordsize == 1) {
        fast_memset(env, *dest, pad, *destlen, ra);
        *dest += *destlen;
        *destlen = 0;
    } else {
        /* If remaining length is odd, pad with odd byte first.  */
        if (*destlen & 1) {
            cpu_stb_data_ra(env, *dest, pad & 0xff, ra);
            *dest += 1;
            *destlen -= 1;
        }
        /* The remaining length is even, pad using words.  */
        for (; *destlen; *dest += 2, *destlen -= 2) {
            cpu_stw_data_ra(env, *dest, pad, ra);
        }
    }
769

770 771 772 773 774 775 776 777 778 779 780 781 782 783
    return cc;
}

/* move long */
uint32_t HELPER(mvcl)(CPUS390XState *env, uint32_t r1, uint32_t r2)
{
    uintptr_t ra = GETPC();
    uint64_t destlen = env->regs[r1 + 1] & 0xffffff;
    uint64_t dest = get_address(env, r1);
    uint64_t srclen = env->regs[r2 + 1] & 0xffffff;
    uint64_t src = get_address(env, r2);
    uint8_t pad = env->regs[r2 + 1] >> 24;
    uint32_t cc;

784
    cc = do_mvcl(env, &dest, &destlen, &src, &srclen, pad, 1, ra);
785

786 787
    env->regs[r1 + 1] = deposit64(env->regs[r1 + 1], 0, 24, destlen);
    env->regs[r2 + 1] = deposit64(env->regs[r2 + 1], 0, 24, srclen);
788 789
    set_address(env, r1, dest);
    set_address(env, r2, src);
790 791 792 793

    return cc;
}

794
/* move long extended */
795 796
uint32_t HELPER(mvcle)(CPUS390XState *env, uint32_t r1, uint64_t a2,
                       uint32_t r3)
797
{
798
    uintptr_t ra = GETPC();
799
    uint64_t destlen = get_length(env, r1 + 1);
800
    uint64_t dest = get_address(env, r1);
801
    uint64_t srclen = get_length(env, r3 + 1);
802
    uint64_t src = get_address(env, r3);
803
    uint8_t pad = a2;
804 805
    uint32_t cc;

806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
    cc = do_mvcl(env, &dest, &destlen, &src, &srclen, pad, 1, ra);

    set_length(env, r1 + 1, destlen);
    set_length(env, r3 + 1, srclen);
    set_address(env, r1, dest);
    set_address(env, r3, src);

    return cc;
}

/* move long unicode */
uint32_t HELPER(mvclu)(CPUS390XState *env, uint32_t r1, uint64_t a2,
                       uint32_t r3)
{
    uintptr_t ra = GETPC();
    uint64_t destlen = get_length(env, r1 + 1);
    uint64_t dest = get_address(env, r1);
    uint64_t srclen = get_length(env, r3 + 1);
    uint64_t src = get_address(env, r3);
    uint16_t pad = a2;
    uint32_t cc;

    cc = do_mvcl(env, &dest, &destlen, &src, &srclen, pad, 2, ra);
829

830 831
    set_length(env, r1 + 1, destlen);
    set_length(env, r3 + 1, srclen);
832 833
    set_address(env, r1, dest);
    set_address(env, r3, src);
834 835 836 837

    return cc;
}

838 839 840 841
/* compare logical long helper */
static inline uint32_t do_clcl(CPUS390XState *env,
                               uint64_t *src1, uint64_t *src1len,
                               uint64_t *src3, uint64_t *src3len,
842 843
                               uint16_t pad, uint64_t limit,
                               int wordsize, uintptr_t ra)
844 845
{
    uint64_t len = MAX(*src1len, *src3len);
846 847
    uint32_t cc = 0;

848 849
    check_alignment(env, *src1len | *src3len, wordsize, ra);

850
    if (!len) {
851 852 853
        return cc;
    }

854
    /* Lest we fail to service interrupts in a timely manner, limit the
855 856 857
       amount of work we're willing to do.  */
    if (len > limit) {
        len = limit;
858
        cc = 3;
859 860
    }

861 862 863
    for (; len; len -= wordsize) {
        uint16_t v1 = pad;
        uint16_t v3 = pad;
864

865
        if (*src1len) {
866
            v1 = cpu_ldusize_data_ra(env, *src1, wordsize, ra);
867
        }
868
        if (*src3len) {
869
            v3 = cpu_ldusize_data_ra(env, *src3, wordsize, ra);
870 871 872 873
        }

        if (v1 != v3) {
            cc = (v1 < v3) ? 1 : 2;
874 875
            break;
        }
876

877
        if (*src1len) {
878 879
            *src1 += wordsize;
            *src1len -= wordsize;
880
        }
881
        if (*src3len) {
882 883
            *src3 += wordsize;
            *src3len -= wordsize;
884
        }
885 886
    }

887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
    return cc;
}


/* compare logical long */
uint32_t HELPER(clcl)(CPUS390XState *env, uint32_t r1, uint32_t r2)
{
    uintptr_t ra = GETPC();
    uint64_t src1len = extract64(env->regs[r1 + 1], 0, 24);
    uint64_t src1 = get_address(env, r1);
    uint64_t src3len = extract64(env->regs[r2 + 1], 0, 24);
    uint64_t src3 = get_address(env, r2);
    uint8_t pad = env->regs[r2 + 1] >> 24;
    uint32_t cc;

902
    cc = do_clcl(env, &src1, &src1len, &src3, &src3len, pad, -1, 1, ra);
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923

    env->regs[r1 + 1] = deposit64(env->regs[r1 + 1], 0, 24, src1len);
    env->regs[r2 + 1] = deposit64(env->regs[r2 + 1], 0, 24, src3len);
    set_address(env, r1, src1);
    set_address(env, r2, src3);

    return cc;
}

/* compare logical long extended memcompare insn with padding */
uint32_t HELPER(clcle)(CPUS390XState *env, uint32_t r1, uint64_t a2,
                       uint32_t r3)
{
    uintptr_t ra = GETPC();
    uint64_t src1len = get_length(env, r1 + 1);
    uint64_t src1 = get_address(env, r1);
    uint64_t src3len = get_length(env, r3 + 1);
    uint64_t src3 = get_address(env, r3);
    uint8_t pad = a2;
    uint32_t cc;

924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
    cc = do_clcl(env, &src1, &src1len, &src3, &src3len, pad, 0x2000, 1, ra);

    set_length(env, r1 + 1, src1len);
    set_length(env, r3 + 1, src3len);
    set_address(env, r1, src1);
    set_address(env, r3, src3);

    return cc;
}

/* compare logical long unicode memcompare insn with padding */
uint32_t HELPER(clclu)(CPUS390XState *env, uint32_t r1, uint64_t a2,
                       uint32_t r3)
{
    uintptr_t ra = GETPC();
    uint64_t src1len = get_length(env, r1 + 1);
    uint64_t src1 = get_address(env, r1);
    uint64_t src3len = get_length(env, r3 + 1);
    uint64_t src3 = get_address(env, r3);
    uint16_t pad = a2;
    uint32_t cc = 0;

    cc = do_clcl(env, &src1, &src1len, &src3, &src3len, pad, 0x1000, 2, ra);
947

948 949 950 951
    set_length(env, r1 + 1, src1len);
    set_length(env, r3 + 1, src3len);
    set_address(env, r1, src1);
    set_address(env, r3, src3);
952 953 954 955 956

    return cc;
}

/* checksum */
R
Richard Henderson 已提交
957 958
uint64_t HELPER(cksm)(CPUS390XState *env, uint64_t r1,
                      uint64_t src, uint64_t src_len)
959
{
960
    uintptr_t ra = GETPC();
R
Richard Henderson 已提交
961 962
    uint64_t max_len, len;
    uint64_t cksm = (uint32_t)r1;
963

R
Richard Henderson 已提交
964
    /* Lest we fail to service interrupts in a timely manner, limit the
965
       amount of work we're willing to do.  For now, let's cap at 8k.  */
R
Richard Henderson 已提交
966
    max_len = (src_len > 0x2000 ? 0x2000 : src_len);
967

R
Richard Henderson 已提交
968 969
    /* Process full words as available.  */
    for (len = 0; len + 4 <= max_len; len += 4, src += 4) {
970
        cksm += (uint32_t)cpu_ldl_data_ra(env, src, ra);
971 972
    }

R
Richard Henderson 已提交
973
    switch (max_len - len) {
974
    case 1:
975
        cksm += cpu_ldub_data_ra(env, src, ra) << 24;
R
Richard Henderson 已提交
976
        len += 1;
977 978
        break;
    case 2:
979
        cksm += cpu_lduw_data_ra(env, src, ra) << 16;
R
Richard Henderson 已提交
980
        len += 2;
981 982
        break;
    case 3:
983 984
        cksm += cpu_lduw_data_ra(env, src, ra) << 16;
        cksm += cpu_ldub_data_ra(env, src + 2, ra) << 8;
R
Richard Henderson 已提交
985
        len += 3;
986 987 988
        break;
    }

R
Richard Henderson 已提交
989 990 991 992 993 994 995 996
    /* Fold the carry from the checksum.  Note that we can see carry-out
       during folding more than once (but probably not more than twice).  */
    while (cksm > 0xffffffffull) {
        cksm = (uint32_t)cksm + (cksm >> 32);
    }

    /* Indicate whether or not we've processed everything.  */
    env->cc_op = (len == src_len ? 0 : 3);
997

R
Richard Henderson 已提交
998 999 1000
    /* Return both cksm and processed length.  */
    env->retxl = cksm;
    return len;
1001 1002
}

A
Aurelien Jarno 已提交
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
void HELPER(pack)(CPUS390XState *env, uint32_t len, uint64_t dest, uint64_t src)
{
    uintptr_t ra = GETPC();
    int len_dest = len >> 4;
    int len_src = len & 0xf;
    uint8_t b;

    dest += len_dest;
    src += len_src;

    /* last byte is special, it only flips the nibbles */
    b = cpu_ldub_data_ra(env, src, ra);
    cpu_stb_data_ra(env, dest, (b << 4) | (b >> 4), ra);
    src--;
    len_src--;

    /* now pack every value */
    while (len_dest >= 0) {
        b = 0;

        if (len_src > 0) {
            b = cpu_ldub_data_ra(env, src, ra) & 0x0f;
            src--;
            len_src--;
        }
        if (len_src > 0) {
            b |= cpu_ldub_data_ra(env, src, ra) << 4;
            src--;
            len_src--;
        }

        len_dest--;
        dest--;
        cpu_stb_data_ra(env, dest, b, ra);
    }
}

1040 1041
static inline void do_pkau(CPUS390XState *env, uint64_t dest, uint64_t src,
                           uint32_t srclen, int ssize, uintptr_t ra)
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
{
    int i;
    /* The destination operand is always 16 bytes long.  */
    const int destlen = 16;

    /* The operands are processed from right to left.  */
    src += srclen - 1;
    dest += destlen - 1;

    for (i = 0; i < destlen; i++) {
        uint8_t b = 0;

        /* Start with a positive sign */
        if (i == 0) {
            b = 0xc;
1057
        } else if (srclen > ssize) {
1058
            b = cpu_ldub_data_ra(env, src, ra) & 0x0f;
1059 1060
            src -= ssize;
            srclen -= ssize;
1061 1062
        }

1063
        if (srclen > ssize) {
1064
            b |= cpu_ldub_data_ra(env, src, ra) << 4;
1065 1066
            src -= ssize;
            srclen -= ssize;
1067 1068 1069 1070 1071 1072 1073
        }

        cpu_stb_data_ra(env, dest, b, ra);
        dest--;
    }
}

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086

void HELPER(pka)(CPUS390XState *env, uint64_t dest, uint64_t src,
                 uint32_t srclen)
{
    do_pkau(env, dest, src, srclen, 1, GETPC());
}

void HELPER(pku)(CPUS390XState *env, uint64_t dest, uint64_t src,
                 uint32_t srclen)
{
    do_pkau(env, dest, src, srclen, 2, GETPC());
}

1087 1088
void HELPER(unpk)(CPUS390XState *env, uint32_t len, uint64_t dest,
                  uint64_t src)
1089
{
1090
    uintptr_t ra = GETPC();
1091 1092 1093 1094 1095 1096 1097 1098 1099
    int len_dest = len >> 4;
    int len_src = len & 0xf;
    uint8_t b;
    int second_nibble = 0;

    dest += len_dest;
    src += len_src;

    /* last byte is special, it only flips the nibbles */
1100 1101
    b = cpu_ldub_data_ra(env, src, ra);
    cpu_stb_data_ra(env, dest, (b << 4) | (b >> 4), ra);
1102 1103 1104 1105 1106 1107 1108 1109 1110
    src--;
    len_src--;

    /* now pad every nibble with 0xf0 */

    while (len_dest > 0) {
        uint8_t cur_byte = 0;

        if (len_src > 0) {
1111
            cur_byte = cpu_ldub_data_ra(env, src, ra);
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
        }

        len_dest--;
        dest--;

        /* only advance one nibble at a time */
        if (second_nibble) {
            cur_byte >>= 4;
            len_src--;
            src--;
        }
        second_nibble = !second_nibble;

        /* digit */
        cur_byte = (cur_byte & 0xf);
        /* zone bits */
        cur_byte |= 0xf0;

1130
        cpu_stb_data_ra(env, dest, cur_byte, ra);
1131 1132 1133
    }
}

1134 1135 1136
static inline uint32_t do_unpkau(CPUS390XState *env, uint64_t dest,
                                 uint32_t destlen, int dsize, uint64_t src,
                                 uintptr_t ra)
1137 1138 1139 1140 1141 1142 1143 1144 1145
{
    int i;
    uint32_t cc;
    uint8_t b;
    /* The source operand is always 16 bytes long.  */
    const int srclen = 16;

    /* The operands are processed from right to left.  */
    src += srclen - 1;
1146
    dest += destlen - dsize;
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167

    /* Check for the sign.  */
    b = cpu_ldub_data_ra(env, src, ra);
    src--;
    switch (b & 0xf) {
    case 0xa:
    case 0xc:
    case 0xe ... 0xf:
        cc = 0;  /* plus */
        break;
    case 0xb:
    case 0xd:
        cc = 1;  /* minus */
        break;
    default:
    case 0x0 ... 0x9:
        cc = 3;  /* invalid */
        break;
    }

    /* Now pad every nibble with 0x30, advancing one nibble at a time. */
1168 1169 1170
    for (i = 0; i < destlen; i += dsize) {
        if (i == (31 * dsize)) {
            /* If length is 32/64 bytes, the leftmost byte is 0. */
1171
            b = 0;
1172
        } else if (i % (2 * dsize)) {
1173 1174 1175 1176 1177
            b = cpu_ldub_data_ra(env, src, ra);
            src--;
        } else {
            b >>= 4;
        }
1178 1179
        cpu_stsize_data_ra(env, dest, 0x30 + (b & 0xf), dsize, ra);
        dest -= dsize;
1180 1181 1182 1183 1184
    }

    return cc;
}

1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
uint32_t HELPER(unpka)(CPUS390XState *env, uint64_t dest, uint32_t destlen,
                       uint64_t src)
{
    return do_unpkau(env, dest, destlen, 1, src, GETPC());
}

uint32_t HELPER(unpku)(CPUS390XState *env, uint64_t dest, uint32_t destlen,
                       uint64_t src)
{
    return do_unpkau(env, dest, destlen, 2, src, GETPC());
}

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
uint32_t HELPER(tp)(CPUS390XState *env, uint64_t dest, uint32_t destlen)
{
    uintptr_t ra = GETPC();
    uint32_t cc = 0;
    int i;

    for (i = 0; i < destlen; i++) {
        uint8_t b = cpu_ldub_data_ra(env, dest + i, ra);
        /* digit */
        cc |= (b & 0xf0) > 0x90 ? 2 : 0;

        if (i == (destlen - 1)) {
            /* sign */
            cc |= (b & 0xf) < 0xa ? 1 : 0;
        } else {
            /* digit */
            cc |= (b & 0xf) > 0x9 ? 2 : 0;
        }
    }

    return cc;
}

1220 1221
static uint32_t do_helper_tr(CPUS390XState *env, uint32_t len, uint64_t array,
                             uint64_t trans, uintptr_t ra)
1222
{
1223
    uint32_t i;
1224 1225

    for (i = 0; i <= len; i++) {
1226 1227 1228
        uint8_t byte = cpu_ldub_data_ra(env, array + i, ra);
        uint8_t new_byte = cpu_ldub_data_ra(env, trans + byte, ra);
        cpu_stb_data_ra(env, array + i, new_byte, ra);
1229
    }
1230 1231

    return env->cc_op;
1232 1233
}

1234 1235 1236
void HELPER(tr)(CPUS390XState *env, uint32_t len, uint64_t array,
                uint64_t trans)
{
1237
    do_helper_tr(env, len, array, trans, GETPC());
1238 1239
}

1240 1241 1242
uint64_t HELPER(tre)(CPUS390XState *env, uint64_t array,
                     uint64_t len, uint64_t trans)
{
1243
    uintptr_t ra = GETPC();
1244 1245 1246
    uint8_t end = env->regs[0] & 0xff;
    uint64_t l = len;
    uint64_t i;
1247
    uint32_t cc = 0;
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257

    if (!(env->psw.mask & PSW_MASK_64)) {
        array &= 0x7fffffff;
        l = (uint32_t)l;
    }

    /* Lest we fail to service interrupts in a timely manner, limit the
       amount of work we're willing to do.  For now, let's cap at 8k.  */
    if (l > 0x2000) {
        l = 0x2000;
1258
        cc = 3;
1259 1260 1261 1262 1263
    }

    for (i = 0; i < l; i++) {
        uint8_t byte, new_byte;

1264
        byte = cpu_ldub_data_ra(env, array + i, ra);
1265 1266

        if (byte == end) {
1267
            cc = 1;
1268 1269 1270
            break;
        }

1271 1272
        new_byte = cpu_ldub_data_ra(env, trans + byte, ra);
        cpu_stb_data_ra(env, array + i, new_byte, ra);
1273 1274
    }

1275
    env->cc_op = cc;
1276 1277 1278 1279
    env->retxl = len - i;
    return array + i;
}

R
Richard Henderson 已提交
1280 1281 1282
static inline uint32_t do_helper_trt(CPUS390XState *env, int len,
                                     uint64_t array, uint64_t trans,
                                     int inc, uintptr_t ra)
1283
{
R
Richard Henderson 已提交
1284
    int i;
1285 1286

    for (i = 0; i <= len; i++) {
R
Richard Henderson 已提交
1287
        uint8_t byte = cpu_ldub_data_ra(env, array + i * inc, ra);
1288
        uint8_t sbyte = cpu_ldub_data_ra(env, trans + byte, ra);
1289 1290

        if (sbyte != 0) {
R
Richard Henderson 已提交
1291
            set_address(env, 1, array + i * inc);
1292 1293
            env->regs[2] = deposit64(env->regs[2], 0, 8, sbyte);
            return (i == len) ? 2 : 1;
1294 1295 1296
        }
    }

1297 1298 1299 1300 1301 1302
    return 0;
}

uint32_t HELPER(trt)(CPUS390XState *env, uint32_t len, uint64_t array,
                     uint64_t trans)
{
R
Richard Henderson 已提交
1303 1304 1305 1306 1307 1308 1309
    return do_helper_trt(env, len, array, trans, 1, GETPC());
}

uint32_t HELPER(trtr)(CPUS390XState *env, uint32_t len, uint64_t array,
                      uint64_t trans)
{
    return do_helper_trt(env, len, array, trans, -1, GETPC());
1310 1311
}

1312 1313 1314 1315 1316 1317 1318
/* Translate one/two to one/two */
uint32_t HELPER(trXX)(CPUS390XState *env, uint32_t r1, uint32_t r2,
                      uint32_t tst, uint32_t sizes)
{
    uintptr_t ra = GETPC();
    int dsize = (sizes & 1) ? 1 : 2;
    int ssize = (sizes & 2) ? 1 : 2;
1319
    uint64_t tbl = get_address(env, 1);
1320 1321 1322 1323 1324 1325
    uint64_t dst = get_address(env, r1);
    uint64_t len = get_length(env, r1 + 1);
    uint64_t src = get_address(env, r2);
    uint32_t cc = 3;
    int i;

1326 1327 1328 1329 1330 1331 1332 1333 1334
    /* The lower address bits of TBL are ignored.  For TROO, TROT, it's
       the low 3 bits (double-word aligned).  For TRTO, TRTT, it's either
       the low 12 bits (4K, without ETF2-ENH) or 3 bits (with ETF2-ENH).  */
    if (ssize == 2 && !s390_has_feat(S390_FEAT_ETF2_ENH)) {
        tbl &= -4096;
    } else {
        tbl &= -8;
    }

1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
    check_alignment(env, len, ssize, ra);

    /* Lest we fail to service interrupts in a timely manner, */
    /* limit the amount of work we're willing to do.   */
    for (i = 0; i < 0x2000; i++) {
        uint16_t sval = cpu_ldusize_data_ra(env, src, ssize, ra);
        uint64_t tble = tbl + (sval * dsize);
        uint16_t dval = cpu_ldusize_data_ra(env, tble, dsize, ra);
        if (dval == tst) {
            cc = 1;
            break;
        }
        cpu_stsize_data_ra(env, dst, dval, dsize, ra);

        len -= ssize;
        src += ssize;
        dst += dsize;

        if (len == 0) {
            cc = 0;
            break;
        }
    }

    set_address(env, r1, dst);
    set_length(env, r1 + 1, len);
    set_address(env, r2, src);

    return cc;
}

1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
void HELPER(cdsg)(CPUS390XState *env, uint64_t addr,
                  uint32_t r1, uint32_t r3)
{
    uintptr_t ra = GETPC();
    Int128 cmpv = int128_make128(env->regs[r1 + 1], env->regs[r1]);
    Int128 newv = int128_make128(env->regs[r3 + 1], env->regs[r3]);
    Int128 oldv;
    bool fail;

    if (parallel_cpus) {
#ifndef CONFIG_ATOMIC128
        cpu_loop_exit_atomic(ENV_GET_CPU(env), ra);
#else
        int mem_idx = cpu_mmu_index(env, false);
        TCGMemOpIdx oi = make_memop_idx(MO_TEQ | MO_ALIGN_16, mem_idx);
        oldv = helper_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv, oi, ra);
        fail = !int128_eq(oldv, cmpv);
#endif
    } else {
        uint64_t oldh, oldl;

1387 1388
        check_alignment(env, addr, 16, ra);

1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
        oldh = cpu_ldq_data_ra(env, addr + 0, ra);
        oldl = cpu_ldq_data_ra(env, addr + 8, ra);

        oldv = int128_make128(oldl, oldh);
        fail = !int128_eq(oldv, cmpv);
        if (fail) {
            newv = oldv;
        }

        cpu_stq_data_ra(env, addr + 0, int128_gethi(newv), ra);
        cpu_stq_data_ra(env, addr + 8, int128_getlo(newv), ra);
    }

    env->cc_op = fail;
    env->regs[r1] = int128_gethi(oldv);
    env->regs[r1 + 1] = int128_getlo(oldv);
}

R
Richard Henderson 已提交
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
uint32_t HELPER(csst)(CPUS390XState *env, uint32_t r3, uint64_t a1, uint64_t a2)
{
#if !defined(CONFIG_USER_ONLY) || defined(CONFIG_ATOMIC128)
    uint32_t mem_idx = cpu_mmu_index(env, false);
#endif
    uintptr_t ra = GETPC();
    uint32_t fc = extract32(env->regs[0], 0, 8);
    uint32_t sc = extract32(env->regs[0], 8, 8);
    uint64_t pl = get_address(env, 1) & -16;
    uint64_t svh, svl;
    uint32_t cc;

    /* Sanity check the function code and storage characteristic.  */
    if (fc > 1 || sc > 3) {
        if (!s390_has_feat(S390_FEAT_COMPARE_AND_SWAP_AND_STORE_2)) {
            goto spec_exception;
        }
        if (fc > 2 || sc > 4 || (fc == 2 && (r3 & 1))) {
            goto spec_exception;
        }
    }

    /* Sanity check the alignments.  */
    if (extract32(a1, 0, 4 << fc) || extract32(a2, 0, 1 << sc)) {
        goto spec_exception;
    }

    /* Sanity check writability of the store address.  */
#ifndef CONFIG_USER_ONLY
    probe_write(env, a2, mem_idx, ra);
#endif

    /* Note that the compare-and-swap is atomic, and the store is atomic, but
       the complete operation is not.  Therefore we do not need to assert serial
       context in order to implement this.  That said, restart early if we can't
       support either operation that is supposed to be atomic.  */
    if (parallel_cpus) {
        int mask = 0;
#if !defined(CONFIG_ATOMIC64)
        mask = -8;
#elif !defined(CONFIG_ATOMIC128)
        mask = -16;
#endif
        if (((4 << fc) | (1 << sc)) & mask) {
            cpu_loop_exit_atomic(ENV_GET_CPU(env), ra);
        }
    }

    /* All loads happen before all stores.  For simplicity, load the entire
       store value area from the parameter list.  */
    svh = cpu_ldq_data_ra(env, pl + 16, ra);
    svl = cpu_ldq_data_ra(env, pl + 24, ra);

    switch (fc) {
    case 0:
        {
            uint32_t nv = cpu_ldl_data_ra(env, pl, ra);
            uint32_t cv = env->regs[r3];
            uint32_t ov;

            if (parallel_cpus) {
#ifdef CONFIG_USER_ONLY
                uint32_t *haddr = g2h(a1);
                ov = atomic_cmpxchg__nocheck(haddr, cv, nv);
#else
                TCGMemOpIdx oi = make_memop_idx(MO_TEUL | MO_ALIGN, mem_idx);
                ov = helper_atomic_cmpxchgl_be_mmu(env, a1, cv, nv, oi, ra);
#endif
            } else {
                ov = cpu_ldl_data_ra(env, a1, ra);
                cpu_stl_data_ra(env, a1, (ov == cv ? nv : ov), ra);
            }
            cc = (ov != cv);
            env->regs[r3] = deposit64(env->regs[r3], 32, 32, ov);
        }
        break;

    case 1:
        {
            uint64_t nv = cpu_ldq_data_ra(env, pl, ra);
            uint64_t cv = env->regs[r3];
            uint64_t ov;

            if (parallel_cpus) {
#ifdef CONFIG_ATOMIC64
# ifdef CONFIG_USER_ONLY
                uint64_t *haddr = g2h(a1);
                ov = atomic_cmpxchg__nocheck(haddr, cv, nv);
# else
                TCGMemOpIdx oi = make_memop_idx(MO_TEQ | MO_ALIGN, mem_idx);
                ov = helper_atomic_cmpxchgq_be_mmu(env, a1, cv, nv, oi, ra);
# endif
#else
                /* Note that we asserted !parallel_cpus above.  */
                g_assert_not_reached();
#endif
            } else {
                ov = cpu_ldq_data_ra(env, a1, ra);
                cpu_stq_data_ra(env, a1, (ov == cv ? nv : ov), ra);
            }
            cc = (ov != cv);
            env->regs[r3] = ov;
        }
        break;

    case 2:
        {
            uint64_t nvh = cpu_ldq_data_ra(env, pl, ra);
            uint64_t nvl = cpu_ldq_data_ra(env, pl + 8, ra);
            Int128 nv = int128_make128(nvl, nvh);
            Int128 cv = int128_make128(env->regs[r3 + 1], env->regs[r3]);
            Int128 ov;

            if (parallel_cpus) {
#ifdef CONFIG_ATOMIC128
                TCGMemOpIdx oi = make_memop_idx(MO_TEQ | MO_ALIGN_16, mem_idx);
                ov = helper_atomic_cmpxchgo_be_mmu(env, a1, cv, nv, oi, ra);
                cc = !int128_eq(ov, cv);
#else
                /* Note that we asserted !parallel_cpus above.  */
                g_assert_not_reached();
#endif
            } else {
                uint64_t oh = cpu_ldq_data_ra(env, a1 + 0, ra);
                uint64_t ol = cpu_ldq_data_ra(env, a1 + 8, ra);

                ov = int128_make128(ol, oh);
                cc = !int128_eq(ov, cv);
                if (cc) {
                    nv = ov;
                }

                cpu_stq_data_ra(env, a1 + 0, int128_gethi(nv), ra);
                cpu_stq_data_ra(env, a1 + 8, int128_getlo(nv), ra);
            }

            env->regs[r3 + 0] = int128_gethi(ov);
            env->regs[r3 + 1] = int128_getlo(ov);
        }
        break;

    default:
        g_assert_not_reached();
    }

    /* Store only if the comparison succeeded.  Note that above we use a pair
       of 64-bit big-endian loads, so for sc < 3 we must extract the value
       from the most-significant bits of svh.  */
    if (cc == 0) {
        switch (sc) {
        case 0:
            cpu_stb_data_ra(env, a2, svh >> 56, ra);
            break;
        case 1:
            cpu_stw_data_ra(env, a2, svh >> 48, ra);
            break;
        case 2:
            cpu_stl_data_ra(env, a2, svh >> 32, ra);
            break;
        case 3:
            cpu_stq_data_ra(env, a2, svh, ra);
            break;
        case 4:
            if (parallel_cpus) {
#ifdef CONFIG_ATOMIC128
                TCGMemOpIdx oi = make_memop_idx(MO_TEQ | MO_ALIGN_16, mem_idx);
                Int128 sv = int128_make128(svl, svh);
                helper_atomic_sto_be_mmu(env, a2, sv, oi, ra);
#else
                /* Note that we asserted !parallel_cpus above.  */
                g_assert_not_reached();
#endif
            } else {
                cpu_stq_data_ra(env, a2 + 0, svh, ra);
                cpu_stq_data_ra(env, a2 + 8, svl, ra);
            }
        default:
            g_assert_not_reached();
        }
    }

    return cc;

 spec_exception:
    cpu_restore_state(ENV_GET_CPU(env), ra);
    program_interrupt(env, PGM_SPECIFICATION, 6);
    g_assert_not_reached();
}

1596
#if !defined(CONFIG_USER_ONLY)
1597
void HELPER(lctlg)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3)
1598
{
1599
    uintptr_t ra = GETPC();
1600
    S390CPU *cpu = s390_env_get_cpu(env);
1601
    bool PERchanged = false;
1602
    uint64_t src = a2;
1603
    uint32_t i;
1604 1605

    for (i = r1;; i = (i + 1) % 16) {
1606
        uint64_t val = cpu_ldq_data_ra(env, src, ra);
1607 1608 1609 1610
        if (env->cregs[i] != val && i >= 9 && i <= 11) {
            PERchanged = true;
        }
        env->cregs[i] = val;
1611
        HELPER_LOG("load ctl %d from 0x%" PRIx64 " == 0x%" PRIx64 "\n",
1612
                   i, src, val);
1613 1614 1615 1616 1617 1618 1619
        src += sizeof(uint64_t);

        if (i == r3) {
            break;
        }
    }

1620 1621 1622 1623
    if (PERchanged && env->psw.mask & PSW_MASK_PER) {
        s390_cpu_recompute_watchpoints(CPU(cpu));
    }

1624
    tlb_flush(CPU(cpu));
1625 1626
}

1627
void HELPER(lctl)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3)
1628
{
1629
    uintptr_t ra = GETPC();
1630
    S390CPU *cpu = s390_env_get_cpu(env);
1631
    bool PERchanged = false;
1632
    uint64_t src = a2;
1633
    uint32_t i;
1634 1635

    for (i = r1;; i = (i + 1) % 16) {
1636
        uint32_t val = cpu_ldl_data_ra(env, src, ra);
1637 1638 1639
        if ((uint32_t)env->cregs[i] != val && i >= 9 && i <= 11) {
            PERchanged = true;
        }
1640 1641
        env->cregs[i] = deposit64(env->cregs[i], 0, 32, val);
        HELPER_LOG("load ctl %d from 0x%" PRIx64 " == 0x%x\n", i, src, val);
1642 1643 1644 1645 1646 1647 1648
        src += sizeof(uint32_t);

        if (i == r3) {
            break;
        }
    }

1649 1650 1651 1652
    if (PERchanged && env->psw.mask & PSW_MASK_PER) {
        s390_cpu_recompute_watchpoints(CPU(cpu));
    }

1653
    tlb_flush(CPU(cpu));
1654 1655
}

1656
void HELPER(stctg)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3)
1657
{
1658
    uintptr_t ra = GETPC();
1659
    uint64_t dest = a2;
1660
    uint32_t i;
1661 1662

    for (i = r1;; i = (i + 1) % 16) {
1663
        cpu_stq_data_ra(env, dest, env->cregs[i], ra);
1664 1665 1666 1667 1668 1669 1670 1671
        dest += sizeof(uint64_t);

        if (i == r3) {
            break;
        }
    }
}

1672
void HELPER(stctl)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3)
1673
{
1674
    uintptr_t ra = GETPC();
1675
    uint64_t dest = a2;
1676
    uint32_t i;
1677 1678

    for (i = r1;; i = (i + 1) % 16) {
1679
        cpu_stl_data_ra(env, dest, env->cregs[i], ra);
1680 1681 1682 1683 1684 1685 1686 1687
        dest += sizeof(uint32_t);

        if (i == r3) {
            break;
        }
    }
}

1688 1689
uint32_t HELPER(testblock)(CPUS390XState *env, uint64_t real_addr)
{
1690
    uintptr_t ra = GETPC();
1691 1692 1693 1694
    CPUState *cs = CPU(s390_env_get_cpu(env));
    uint64_t abs_addr;
    int i;

1695
    real_addr = wrap_address(env, real_addr);
1696 1697 1698
    abs_addr = mmu_real2abs(env, real_addr) & TARGET_PAGE_MASK;
    if (!address_space_access_valid(&address_space_memory, abs_addr,
                                    TARGET_PAGE_SIZE, true)) {
1699
        cpu_restore_state(cs, ra);
1700 1701 1702 1703 1704 1705
        program_interrupt(env, PGM_ADDRESSING, 4);
        return 1;
    }

    /* Check low-address protection */
    if ((env->cregs[0] & CR0_LOWPROT) && real_addr < 0x2000) {
1706
        cpu_restore_state(cs, ra);
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
        program_interrupt(env, PGM_PROTECTION, 4);
        return 1;
    }

    for (i = 0; i < TARGET_PAGE_SIZE; i += 8) {
        stq_phys(cs->as, abs_addr + i, 0);
    }

    return 0;
}

1718 1719 1720 1721 1722 1723 1724
uint32_t HELPER(tprot)(uint64_t a1, uint64_t a2)
{
    /* XXX implement */
    return 0;
}

/* insert storage key extended */
1725
uint64_t HELPER(iske)(CPUS390XState *env, uint64_t r2)
1726
{
1727 1728
    static S390SKeysState *ss;
    static S390SKeysClass *skeyclass;
1729
    uint64_t addr = wrap_address(env, r2);
1730
    uint8_t key;
1731 1732 1733 1734 1735

    if (addr > ram_size) {
        return 0;
    }

1736 1737 1738 1739 1740 1741 1742 1743 1744
    if (unlikely(!ss)) {
        ss = s390_get_skeys_device();
        skeyclass = S390_SKEYS_GET_CLASS(ss);
    }

    if (skeyclass->get_skeys(ss, addr / TARGET_PAGE_SIZE, 1, &key)) {
        return 0;
    }
    return key;
1745 1746 1747
}

/* set storage key extended */
R
Richard Henderson 已提交
1748
void HELPER(sske)(CPUS390XState *env, uint64_t r1, uint64_t r2)
1749
{
1750 1751
    static S390SKeysState *ss;
    static S390SKeysClass *skeyclass;
1752
    uint64_t addr = wrap_address(env, r2);
1753
    uint8_t key;
1754 1755 1756 1757 1758

    if (addr > ram_size) {
        return;
    }

1759 1760 1761 1762 1763 1764 1765
    if (unlikely(!ss)) {
        ss = s390_get_skeys_device();
        skeyclass = S390_SKEYS_GET_CLASS(ss);
    }

    key = (uint8_t) r1;
    skeyclass->set_skeys(ss, addr / TARGET_PAGE_SIZE, 1, &key);
1766 1767 1768
}

/* reset reference bit extended */
R
Richard Henderson 已提交
1769
uint32_t HELPER(rrbe)(CPUS390XState *env, uint64_t r2)
1770
{
1771 1772 1773
    static S390SKeysState *ss;
    static S390SKeysClass *skeyclass;
    uint8_t re, key;
1774 1775 1776 1777 1778

    if (r2 > ram_size) {
        return 0;
    }

1779 1780 1781 1782 1783 1784 1785 1786 1787
    if (unlikely(!ss)) {
        ss = s390_get_skeys_device();
        skeyclass = S390_SKEYS_GET_CLASS(ss);
    }

    if (skeyclass->get_skeys(ss, r2 / TARGET_PAGE_SIZE, 1, &key)) {
        return 0;
    }

1788
    re = key & (SK_R | SK_C);
1789 1790 1791 1792 1793
    key &= ~SK_R;

    if (skeyclass->set_skeys(ss, r2 / TARGET_PAGE_SIZE, 1, &key)) {
        return 0;
    }
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806

    /*
     * cc
     *
     * 0  Reference bit zero; change bit zero
     * 1  Reference bit zero; change bit one
     * 2  Reference bit one; change bit zero
     * 3  Reference bit one; change bit one
     */

    return re >> 1;
}

1807
uint32_t HELPER(mvcs)(CPUS390XState *env, uint64_t l, uint64_t a1, uint64_t a2)
1808
{
1809
    uintptr_t ra = GETPC();
1810
    int cc = 0, i;
1811

1812 1813 1814 1815
    HELPER_LOG("%s: %16" PRIx64 " %16" PRIx64 " %16" PRIx64 "\n",
               __func__, l, a1, a2);

    if (l > 256) {
1816 1817 1818 1819 1820 1821 1822
        /* max 256 */
        l = 256;
        cc = 3;
    }

    /* XXX replace w/ memcpy */
    for (i = 0; i < l; i++) {
1823 1824
        uint8_t x = cpu_ldub_primary_ra(env, a2 + i, ra);
        cpu_stb_secondary_ra(env, a1 + i, x, ra);
1825 1826 1827 1828 1829
    }

    return cc;
}

1830
uint32_t HELPER(mvcp)(CPUS390XState *env, uint64_t l, uint64_t a1, uint64_t a2)
1831
{
1832
    uintptr_t ra = GETPC();
1833 1834
    int cc = 0, i;

1835 1836 1837
    HELPER_LOG("%s: %16" PRIx64 " %16" PRIx64 " %16" PRIx64 "\n",
               __func__, l, a1, a2);

1838 1839 1840 1841 1842
    if (l > 256) {
        /* max 256 */
        l = 256;
        cc = 3;
    }
1843

1844 1845
    /* XXX replace w/ memcpy */
    for (i = 0; i < l; i++) {
1846 1847
        uint8_t x = cpu_ldub_secondary_ra(env, a2 + i, ra);
        cpu_stb_primary_ra(env, a1 + i, x, ra);
1848
    }
1849

1850
    return cc;
1851 1852
}

1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
void HELPER(idte)(CPUS390XState *env, uint64_t r1, uint64_t r2, uint32_t m4)
{
    CPUState *cs = CPU(s390_env_get_cpu(env));
    const uintptr_t ra = GETPC();
    uint64_t table, entry, raddr;
    uint16_t entries, i, index = 0;

    if (r2 & 0xff000) {
        cpu_restore_state(cs, ra);
        program_interrupt(env, PGM_SPECIFICATION, 4);
    }

    if (!(r2 & 0x800)) {
        /* invalidation-and-clearing operation */
        table = r1 & _ASCE_ORIGIN;
        entries = (r2 & 0x7ff) + 1;

        switch (r1 & _ASCE_TYPE_MASK) {
        case _ASCE_TYPE_REGION1:
            index = (r2 >> 53) & 0x7ff;
            break;
        case _ASCE_TYPE_REGION2:
            index = (r2 >> 42) & 0x7ff;
            break;
        case _ASCE_TYPE_REGION3:
            index = (r2 >> 31) & 0x7ff;
            break;
        case _ASCE_TYPE_SEGMENT:
            index = (r2 >> 20) & 0x7ff;
            break;
        }
        for (i = 0; i < entries; i++) {
            /* addresses are not wrapped in 24/31bit mode but table index is */
            raddr = table + ((index + i) & 0x7ff) * sizeof(entry);
            entry = ldq_phys(cs->as, raddr);
            if (!(entry & _REGION_ENTRY_INV)) {
                /* we are allowed to not store if already invalid */
                entry |= _REGION_ENTRY_INV;
                stq_phys(cs->as, raddr, entry);
            }
        }
    }

    /* We simply flush the complete tlb, therefore we can ignore r3. */
    if (m4 & 1) {
        tlb_flush(cs);
    } else {
        tlb_flush_all_cpus_synced(cs);
    }
}

1904
/* invalidate pte */
1905 1906
void HELPER(ipte)(CPUS390XState *env, uint64_t pto, uint64_t vaddr,
                  uint32_t m4)
1907
{
1908
    CPUState *cs = CPU(s390_env_get_cpu(env));
1909
    uint64_t page = vaddr & TARGET_PAGE_MASK;
1910
    uint64_t pte_addr, pte;
1911

1912 1913
    /* Compute the page table entry address */
    pte_addr = (pto & _SEGMENT_ENTRY_ORIGIN);
1914
    pte_addr += (vaddr & VADDR_PX) >> 9;
1915 1916 1917 1918 1919

    /* Mark the page table entry as invalid */
    pte = ldq_phys(cs->as, pte_addr);
    pte |= _PAGE_INVALID;
    stq_phys(cs->as, pte_addr, pte);
1920 1921 1922

    /* XXX we exploit the fact that Linux passes the exact virtual
       address here - it's not obliged to! */
1923
    if (m4 & 1) {
1924 1925 1926 1927 1928 1929 1930 1931
        if (vaddr & ~VADDR_PX) {
            tlb_flush_page(cs, page);
            /* XXX 31-bit hack */
            tlb_flush_page(cs, page ^ 0x80000000);
        } else {
            /* looks like we don't have a valid virtual address */
            tlb_flush(cs);
        }
1932
    } else {
1933 1934 1935 1936 1937 1938 1939 1940
        if (vaddr & ~VADDR_PX) {
            tlb_flush_page_all_cpus_synced(cs, page);
            /* XXX 31-bit hack */
            tlb_flush_page_all_cpus_synced(cs, page ^ 0x80000000);
        } else {
            /* looks like we don't have a valid virtual address */
            tlb_flush_all_cpus_synced(cs);
        }
1941 1942 1943 1944
    }
}

/* flush local tlb */
1945
void HELPER(ptlb)(CPUS390XState *env)
1946
{
1947 1948
    S390CPU *cpu = s390_env_get_cpu(env);

1949
    tlb_flush(CPU(cpu));
1950 1951
}

1952 1953 1954 1955 1956 1957 1958 1959
/* flush global tlb */
void HELPER(purge)(CPUS390XState *env)
{
    S390CPU *cpu = s390_env_get_cpu(env);

    tlb_flush_all_cpus_synced(CPU(cpu));
}

1960 1961 1962 1963 1964
/* load using real address */
uint64_t HELPER(lura)(CPUS390XState *env, uint64_t addr)
{
    CPUState *cs = CPU(s390_env_get_cpu(env));

1965
    return (uint32_t)ldl_phys(cs->as, wrap_address(env, addr));
1966 1967 1968 1969 1970 1971
}

uint64_t HELPER(lurag)(CPUS390XState *env, uint64_t addr)
{
    CPUState *cs = CPU(s390_env_get_cpu(env));

1972
    return ldq_phys(cs->as, wrap_address(env, addr));
1973 1974
}

1975
/* store using real address */
R
Richard Henderson 已提交
1976
void HELPER(stura)(CPUS390XState *env, uint64_t addr, uint64_t v1)
1977
{
1978 1979
    CPUState *cs = CPU(s390_env_get_cpu(env));

1980
    stl_phys(cs->as, wrap_address(env, addr), (uint32_t)v1);
1981 1982 1983 1984 1985 1986 1987 1988

    if ((env->psw.mask & PSW_MASK_PER) &&
        (env->cregs[9] & PER_CR9_EVENT_STORE) &&
        (env->cregs[9] & PER_CR9_EVENT_STORE_REAL)) {
        /* PSW is saved just before calling the helper.  */
        env->per_address = env->psw.addr;
        env->per_perc_atmid = PER_CODE_EVENT_STORE_REAL | get_per_atmid(env);
    }
1989 1990
}

1991 1992 1993 1994
void HELPER(sturg)(CPUS390XState *env, uint64_t addr, uint64_t v1)
{
    CPUState *cs = CPU(s390_env_get_cpu(env));

1995
    stq_phys(cs->as, wrap_address(env, addr), v1);
1996 1997 1998 1999 2000 2001 2002 2003

    if ((env->psw.mask & PSW_MASK_PER) &&
        (env->cregs[9] & PER_CR9_EVENT_STORE) &&
        (env->cregs[9] & PER_CR9_EVENT_STORE_REAL)) {
        /* PSW is saved just before calling the helper.  */
        env->per_address = env->psw.addr;
        env->per_perc_atmid = PER_CODE_EVENT_STORE_REAL | get_per_atmid(env);
    }
2004 2005
}

2006
/* load real address */
R
Richard Henderson 已提交
2007
uint64_t HELPER(lra)(CPUS390XState *env, uint64_t addr)
2008
{
2009
    CPUState *cs = CPU(s390_env_get_cpu(env));
2010 2011 2012
    uint32_t cc = 0;
    uint64_t asc = env->psw.mask & PSW_MASK_ASC;
    uint64_t ret;
2013
    int old_exc, flags;
2014 2015 2016

    /* XXX incomplete - has more corner cases */
    if (!(env->psw.mask & PSW_MASK_64) && (addr >> 32)) {
2017
        cpu_restore_state(cs, GETPC());
2018 2019 2020
        program_interrupt(env, PGM_SPECIAL_OP, 2);
    }

2021
    old_exc = cs->exception_index;
2022
    if (mmu_translate(env, addr, 0, asc, &ret, &flags, true)) {
2023 2024
        cc = 3;
    }
2025
    if (cs->exception_index == EXCP_PGM) {
2026 2027 2028 2029
        ret = env->int_pgm_code | 0x80000000;
    } else {
        ret |= addr & ~TARGET_PAGE_MASK;
    }
2030
    cs->exception_index = old_exc;
2031

R
Richard Henderson 已提交
2032 2033
    env->cc_op = cc;
    return ret;
2034 2035
}
#endif
2036

2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
/* load pair from quadword */
uint64_t HELPER(lpq)(CPUS390XState *env, uint64_t addr)
{
    uintptr_t ra = GETPC();
    uint64_t hi, lo;

    if (parallel_cpus) {
#ifndef CONFIG_ATOMIC128
        cpu_loop_exit_atomic(ENV_GET_CPU(env), ra);
#else
        int mem_idx = cpu_mmu_index(env, false);
        TCGMemOpIdx oi = make_memop_idx(MO_TEQ | MO_ALIGN_16, mem_idx);
        Int128 v = helper_atomic_ldo_be_mmu(env, addr, oi, ra);
        hi = int128_gethi(v);
        lo = int128_getlo(v);
#endif
    } else {
        check_alignment(env, addr, 16, ra);

        hi = cpu_ldq_data_ra(env, addr + 0, ra);
        lo = cpu_ldq_data_ra(env, addr + 8, ra);
    }

    env->retxl = lo;
    return hi;
}

2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
/* store pair to quadword */
void HELPER(stpq)(CPUS390XState *env, uint64_t addr,
                  uint64_t low, uint64_t high)
{
    uintptr_t ra = GETPC();

    if (parallel_cpus) {
#ifndef CONFIG_ATOMIC128
        cpu_loop_exit_atomic(ENV_GET_CPU(env), ra);
#else
        int mem_idx = cpu_mmu_index(env, false);
        TCGMemOpIdx oi = make_memop_idx(MO_TEQ | MO_ALIGN_16, mem_idx);

        Int128 v = int128_make128(low, high);
        helper_atomic_sto_be_mmu(env, addr, v, oi, ra);
#endif
    } else {
        check_alignment(env, addr, 16, ra);

        cpu_stq_data_ra(env, addr + 0, high, ra);
        cpu_stq_data_ra(env, addr + 8, low, ra);
    }
}

2088 2089 2090 2091 2092 2093
/* Execute instruction.  This instruction executes an insn modified with
   the contents of r1.  It does not change the executed instruction in memory;
   it does not change the program counter.

   Perform this by recording the modified instruction in env->ex_value.
   This will be noticed by cpu_get_tb_cpu_state and thus tb translation.
2094
*/
2095
void HELPER(ex)(CPUS390XState *env, uint32_t ilen, uint64_t r1, uint64_t addr)
2096
{
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
    uint64_t insn = cpu_lduw_code(env, addr);
    uint8_t opc = insn >> 8;

    /* Or in the contents of R1[56:63].  */
    insn |= r1 & 0xff;

    /* Load the rest of the instruction.  */
    insn <<= 48;
    switch (get_ilen(opc)) {
    case 2:
        break;
    case 4:
        insn |= (uint64_t)cpu_lduw_code(env, addr + 2) << 32;
        break;
    case 6:
        insn |= (uint64_t)(uint32_t)cpu_ldl_code(env, addr + 2) << 16;
        break;
    default:
        g_assert_not_reached();
    }

2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
    /* The very most common cases can be sped up by avoiding a new TB.  */
    if ((opc & 0xf0) == 0xd0) {
        typedef uint32_t (*dx_helper)(CPUS390XState *, uint32_t, uint64_t,
                                      uint64_t, uintptr_t);
        static const dx_helper dx[16] = {
            [0x2] = do_helper_mvc,
            [0x4] = do_helper_nc,
            [0x5] = do_helper_clc,
            [0x6] = do_helper_oc,
            [0x7] = do_helper_xc,
            [0xc] = do_helper_tr,
        };
        dx_helper helper = dx[opc & 0xf];

        if (helper) {
            uint32_t l = extract64(insn, 48, 8);
            uint32_t b1 = extract64(insn, 44, 4);
            uint32_t d1 = extract64(insn, 32, 12);
            uint32_t b2 = extract64(insn, 28, 4);
            uint32_t d2 = extract64(insn, 16, 12);
2138 2139
            uint64_t a1 = wrap_address(env, env->regs[b1] + d1);
            uint64_t a2 = wrap_address(env, env->regs[b2] + d2);
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151

            env->cc_op = helper(env, l, a1, a2, 0);
            env->psw.addr += ilen;
            return;
        }
    } else if (opc == 0x0a) {
        env->int_svc_code = extract64(insn, 48, 8);
        env->int_svc_ilen = ilen;
        helper_exception(env, EXCP_SVC);
        g_assert_not_reached();
    }

2152 2153 2154 2155 2156
    /* Record the insn we want to execute as well as the ilen to use
       during the execution of the target insn.  This will also ensure
       that ex_value is non-zero, which flags that we are in a state
       that requires such execution.  */
    env->ex_value = insn | ilen;
2157
}
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248

uint32_t HELPER(mvcos)(CPUS390XState *env, uint64_t dest, uint64_t src,
                       uint64_t len)
{
    const uint8_t psw_key = (env->psw.mask & PSW_MASK_KEY) >> PSW_SHIFT_KEY;
    const uint8_t psw_as = (env->psw.mask & PSW_MASK_ASC) >> PSW_SHIFT_ASC;
    const uint64_t r0 = env->regs[0];
    const uintptr_t ra = GETPC();
    CPUState *cs = CPU(s390_env_get_cpu(env));
    uint8_t dest_key, dest_as, dest_k, dest_a;
    uint8_t src_key, src_as, src_k, src_a;
    uint64_t val;
    int cc = 0;

    HELPER_LOG("%s dest %" PRIx64 ", src %" PRIx64 ", len %" PRIx64 "\n",
               __func__, dest, src, len);

    if (!(env->psw.mask & PSW_MASK_DAT)) {
        cpu_restore_state(cs, ra);
        program_interrupt(env, PGM_SPECIAL_OP, 6);
    }

    /* OAC (operand access control) for the first operand -> dest */
    val = (r0 & 0xffff0000ULL) >> 16;
    dest_key = (val >> 12) & 0xf;
    dest_as = (val >> 6) & 0x3;
    dest_k = (val >> 1) & 0x1;
    dest_a = val & 0x1;

    /* OAC (operand access control) for the second operand -> src */
    val = (r0 & 0x0000ffffULL);
    src_key = (val >> 12) & 0xf;
    src_as = (val >> 6) & 0x3;
    src_k = (val >> 1) & 0x1;
    src_a = val & 0x1;

    if (!dest_k) {
        dest_key = psw_key;
    }
    if (!src_k) {
        src_key = psw_key;
    }
    if (!dest_a) {
        dest_as = psw_as;
    }
    if (!src_a) {
        src_as = psw_as;
    }

    if (dest_a && dest_as == AS_HOME && (env->psw.mask & PSW_MASK_PSTATE)) {
        cpu_restore_state(cs, ra);
        program_interrupt(env, PGM_SPECIAL_OP, 6);
    }
    if (!(env->cregs[0] & CR0_SECONDARY) &&
        (dest_as == AS_SECONDARY || src_as == AS_SECONDARY)) {
        cpu_restore_state(cs, ra);
        program_interrupt(env, PGM_SPECIAL_OP, 6);
    }
    if (!psw_key_valid(env, dest_key) || !psw_key_valid(env, src_key)) {
        cpu_restore_state(cs, ra);
        program_interrupt(env, PGM_PRIVILEGED, 6);
    }

    len = wrap_length(env, len);
    if (len > 4096) {
        cc = 3;
        len = 4096;
    }

    /* FIXME: AR-mode and proper problem state mode (using PSW keys) missing */
    if (src_as == AS_ACCREG || dest_as == AS_ACCREG ||
        (env->psw.mask & PSW_MASK_PSTATE)) {
        qemu_log_mask(LOG_UNIMP, "%s: AR-mode and PSTATE support missing\n",
                      __func__);
        cpu_restore_state(cs, ra);
        program_interrupt(env, PGM_ADDRESSING, 6);
    }

    /* FIXME: a) LAP
     *        b) Access using correct keys
     *        c) AR-mode
     */
#ifdef CONFIG_USER_ONLY
    /* psw keys are never valid in user mode, we will never reach this */
    g_assert_not_reached();
#else
    fast_memmove_as(env, dest, src, len, dest_as, src_as, ra);
#endif

    return cc;
}
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558

/* Decode a Unicode character.  A return value < 0 indicates success, storing
   the UTF-32 result into OCHAR and the input length into OLEN.  A return
   value >= 0 indicates failure, and the CC value to be returned.  */
typedef int (*decode_unicode_fn)(CPUS390XState *env, uint64_t addr,
                                 uint64_t ilen, bool enh_check, uintptr_t ra,
                                 uint32_t *ochar, uint32_t *olen);

/* Encode a Unicode character.  A return value < 0 indicates success, storing
   the bytes into ADDR and the output length into OLEN.  A return value >= 0
   indicates failure, and the CC value to be returned.  */
typedef int (*encode_unicode_fn)(CPUS390XState *env, uint64_t addr,
                                 uint64_t ilen, uintptr_t ra, uint32_t c,
                                 uint32_t *olen);

static int decode_utf8(CPUS390XState *env, uint64_t addr, uint64_t ilen,
                       bool enh_check, uintptr_t ra,
                       uint32_t *ochar, uint32_t *olen)
{
    uint8_t s0, s1, s2, s3;
    uint32_t c, l;

    if (ilen < 1) {
        return 0;
    }
    s0 = cpu_ldub_data_ra(env, addr, ra);
    if (s0 <= 0x7f) {
        /* one byte character */
        l = 1;
        c = s0;
    } else if (s0 <= (enh_check ? 0xc1 : 0xbf)) {
        /* invalid character */
        return 2;
    } else if (s0 <= 0xdf) {
        /* two byte character */
        l = 2;
        if (ilen < 2) {
            return 0;
        }
        s1 = cpu_ldub_data_ra(env, addr + 1, ra);
        c = s0 & 0x1f;
        c = (c << 6) | (s1 & 0x3f);
        if (enh_check && (s1 & 0xc0) != 0x80) {
            return 2;
        }
    } else if (s0 <= 0xef) {
        /* three byte character */
        l = 3;
        if (ilen < 3) {
            return 0;
        }
        s1 = cpu_ldub_data_ra(env, addr + 1, ra);
        s2 = cpu_ldub_data_ra(env, addr + 2, ra);
        c = s0 & 0x0f;
        c = (c << 6) | (s1 & 0x3f);
        c = (c << 6) | (s2 & 0x3f);
        /* Fold the byte-by-byte range descriptions in the PoO into
           tests against the complete value.  It disallows encodings
           that could be smaller, and the UTF-16 surrogates.  */
        if (enh_check
            && ((s1 & 0xc0) != 0x80
                || (s2 & 0xc0) != 0x80
                || c < 0x1000
                || (c >= 0xd800 && c <= 0xdfff))) {
            return 2;
        }
    } else if (s0 <= (enh_check ? 0xf4 : 0xf7)) {
        /* four byte character */
        l = 4;
        if (ilen < 4) {
            return 0;
        }
        s1 = cpu_ldub_data_ra(env, addr + 1, ra);
        s2 = cpu_ldub_data_ra(env, addr + 2, ra);
        s3 = cpu_ldub_data_ra(env, addr + 3, ra);
        c = s0 & 0x07;
        c = (c << 6) | (s1 & 0x3f);
        c = (c << 6) | (s2 & 0x3f);
        c = (c << 6) | (s3 & 0x3f);
        /* See above.  */
        if (enh_check
            && ((s1 & 0xc0) != 0x80
                || (s2 & 0xc0) != 0x80
                || (s3 & 0xc0) != 0x80
                || c < 0x010000
                || c > 0x10ffff)) {
            return 2;
        }
    } else {
        /* invalid character */
        return 2;
    }

    *ochar = c;
    *olen = l;
    return -1;
}

static int decode_utf16(CPUS390XState *env, uint64_t addr, uint64_t ilen,
                        bool enh_check, uintptr_t ra,
                        uint32_t *ochar, uint32_t *olen)
{
    uint16_t s0, s1;
    uint32_t c, l;

    if (ilen < 2) {
        return 0;
    }
    s0 = cpu_lduw_data_ra(env, addr, ra);
    if ((s0 & 0xfc00) != 0xd800) {
        /* one word character */
        l = 2;
        c = s0;
    } else {
        /* two word character */
        l = 4;
        if (ilen < 4) {
            return 0;
        }
        s1 = cpu_lduw_data_ra(env, addr + 2, ra);
        c = extract32(s0, 6, 4) + 1;
        c = (c << 6) | (s0 & 0x3f);
        c = (c << 10) | (s1 & 0x3ff);
        if (enh_check && (s1 & 0xfc00) != 0xdc00) {
            /* invalid surrogate character */
            return 2;
        }
    }

    *ochar = c;
    *olen = l;
    return -1;
}

static int decode_utf32(CPUS390XState *env, uint64_t addr, uint64_t ilen,
                        bool enh_check, uintptr_t ra,
                        uint32_t *ochar, uint32_t *olen)
{
    uint32_t c;

    if (ilen < 4) {
        return 0;
    }
    c = cpu_ldl_data_ra(env, addr, ra);
    if ((c >= 0xd800 && c <= 0xdbff) || c > 0x10ffff) {
        /* invalid unicode character */
        return 2;
    }

    *ochar = c;
    *olen = 4;
    return -1;
}

static int encode_utf8(CPUS390XState *env, uint64_t addr, uint64_t ilen,
                       uintptr_t ra, uint32_t c, uint32_t *olen)
{
    uint8_t d[4];
    uint32_t l, i;

    if (c <= 0x7f) {
        /* one byte character */
        l = 1;
        d[0] = c;
    } else if (c <= 0x7ff) {
        /* two byte character */
        l = 2;
        d[1] = 0x80 | extract32(c, 0, 6);
        d[0] = 0xc0 | extract32(c, 6, 5);
    } else if (c <= 0xffff) {
        /* three byte character */
        l = 3;
        d[2] = 0x80 | extract32(c, 0, 6);
        d[1] = 0x80 | extract32(c, 6, 6);
        d[0] = 0xe0 | extract32(c, 12, 4);
    } else {
        /* four byte character */
        l = 4;
        d[3] = 0x80 | extract32(c, 0, 6);
        d[2] = 0x80 | extract32(c, 6, 6);
        d[1] = 0x80 | extract32(c, 12, 6);
        d[0] = 0xf0 | extract32(c, 18, 3);
    }

    if (ilen < l) {
        return 1;
    }
    for (i = 0; i < l; ++i) {
        cpu_stb_data_ra(env, addr + i, d[i], ra);
    }

    *olen = l;
    return -1;
}

static int encode_utf16(CPUS390XState *env, uint64_t addr, uint64_t ilen,
                        uintptr_t ra, uint32_t c, uint32_t *olen)
{
    uint16_t d0, d1;

    if (c <= 0xffff) {
        /* one word character */
        if (ilen < 2) {
            return 1;
        }
        cpu_stw_data_ra(env, addr, c, ra);
        *olen = 2;
    } else {
        /* two word character */
        if (ilen < 4) {
            return 1;
        }
        d1 = 0xdc00 | extract32(c, 0, 10);
        d0 = 0xd800 | extract32(c, 10, 6);
        d0 = deposit32(d0, 6, 4, extract32(c, 16, 5) - 1);
        cpu_stw_data_ra(env, addr + 0, d0, ra);
        cpu_stw_data_ra(env, addr + 2, d1, ra);
        *olen = 4;
    }

    return -1;
}

static int encode_utf32(CPUS390XState *env, uint64_t addr, uint64_t ilen,
                        uintptr_t ra, uint32_t c, uint32_t *olen)
{
    if (ilen < 4) {
        return 1;
    }
    cpu_stl_data_ra(env, addr, c, ra);
    *olen = 4;
    return -1;
}

static inline uint32_t convert_unicode(CPUS390XState *env, uint32_t r1,
                                       uint32_t r2, uint32_t m3, uintptr_t ra,
                                       decode_unicode_fn decode,
                                       encode_unicode_fn encode)
{
    uint64_t dst = get_address(env, r1);
    uint64_t dlen = get_length(env, r1 + 1);
    uint64_t src = get_address(env, r2);
    uint64_t slen = get_length(env, r2 + 1);
    bool enh_check = m3 & 1;
    int cc, i;

    /* Lest we fail to service interrupts in a timely manner, limit the
       amount of work we're willing to do.  For now, let's cap at 256.  */
    for (i = 0; i < 256; ++i) {
        uint32_t c, ilen, olen;

        cc = decode(env, src, slen, enh_check, ra, &c, &ilen);
        if (unlikely(cc >= 0)) {
            break;
        }
        cc = encode(env, dst, dlen, ra, c, &olen);
        if (unlikely(cc >= 0)) {
            break;
        }

        src += ilen;
        slen -= ilen;
        dst += olen;
        dlen -= olen;
        cc = 3;
    }

    set_address(env, r1, dst);
    set_length(env, r1 + 1, dlen);
    set_address(env, r2, src);
    set_length(env, r2 + 1, slen);

    return cc;
}

uint32_t HELPER(cu12)(CPUS390XState *env, uint32_t r1, uint32_t r2, uint32_t m3)
{
    return convert_unicode(env, r1, r2, m3, GETPC(),
                           decode_utf8, encode_utf16);
}

uint32_t HELPER(cu14)(CPUS390XState *env, uint32_t r1, uint32_t r2, uint32_t m3)
{
    return convert_unicode(env, r1, r2, m3, GETPC(),
                           decode_utf8, encode_utf32);
}

uint32_t HELPER(cu21)(CPUS390XState *env, uint32_t r1, uint32_t r2, uint32_t m3)
{
    return convert_unicode(env, r1, r2, m3, GETPC(),
                           decode_utf16, encode_utf8);
}

uint32_t HELPER(cu24)(CPUS390XState *env, uint32_t r1, uint32_t r2, uint32_t m3)
{
    return convert_unicode(env, r1, r2, m3, GETPC(),
                           decode_utf16, encode_utf32);
}

uint32_t HELPER(cu41)(CPUS390XState *env, uint32_t r1, uint32_t r2, uint32_t m3)
{
    return convert_unicode(env, r1, r2, m3, GETPC(),
                           decode_utf32, encode_utf8);
}

uint32_t HELPER(cu42)(CPUS390XState *env, uint32_t r1, uint32_t r2, uint32_t m3)
{
    return convert_unicode(env, r1, r2, m3, GETPC(),
                           decode_utf32, encode_utf16);
}