mem_helper.c 38.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/*
 *  S/390 memory access helper routines
 *
 *  Copyright (c) 2009 Ulrich Hecht
 *  Copyright (c) 2009 Alexander Graf
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */

P
Peter Maydell 已提交
21
#include "qemu/osdep.h"
22
#include "cpu.h"
23
#include "exec/address-spaces.h"
24
#include "exec/helper-proto.h"
25
#include "exec/exec-all.h"
P
Paolo Bonzini 已提交
26
#include "exec/cpu_ldst.h"
27
#include "qemu/int128.h"
28 29

#if !defined(CONFIG_USER_ONLY)
30
#include "hw/s390x/storage-keys.h"
31
#endif
32 33 34 35 36 37 38 39 40

/*****************************************************************************/
/* Softmmu support */
#if !defined(CONFIG_USER_ONLY)

/* try to fill the TLB and return an exception if error. If retaddr is
   NULL, it means that the function was called in C code (i.e. not
   from generated code or from helper.c) */
/* XXX: fix it to restore all registers */
41 42
void tlb_fill(CPUState *cs, target_ulong addr, MMUAccessType access_type,
              int mmu_idx, uintptr_t retaddr)
43
{
44
    int ret = s390_cpu_handle_mmu_fault(cs, addr, access_type, mmu_idx);
45
    if (unlikely(ret != 0)) {
46
        cpu_loop_exit_restore(cs, retaddr);
47 48 49 50 51 52 53 54 55 56 57 58
    }
}

#endif

/* #define DEBUG_HELPER */
#ifdef DEBUG_HELPER
#define HELPER_LOG(x...) qemu_log(x)
#else
#define HELPER_LOG(x...)
#endif

59
/* Reduce the length so that addr + len doesn't cross a page boundary.  */
60
static inline uint32_t adj_len_to_page(uint32_t len, uint64_t addr)
61 62 63 64 65 66 67 68 69
{
#ifndef CONFIG_USER_ONLY
    if ((addr & ~TARGET_PAGE_MASK) + len - 1 >= TARGET_PAGE_SIZE) {
        return -addr & ~TARGET_PAGE_MASK;
    }
#endif
    return len;
}

70
static void fast_memset(CPUS390XState *env, uint64_t dest, uint8_t byte,
71
                        uint32_t l, uintptr_t ra)
72
{
73
    int mmu_idx = cpu_mmu_index(env, false);
74 75 76 77 78

    while (l > 0) {
        void *p = tlb_vaddr_to_host(env, dest, MMU_DATA_STORE, mmu_idx);
        if (p) {
            /* Access to the whole page in write mode granted.  */
79
            uint32_t l_adj = adj_len_to_page(l, dest);
80 81 82 83 84 85
            memset(p, byte, l_adj);
            dest += l_adj;
            l -= l_adj;
        } else {
            /* We failed to get access to the whole page. The next write
               access will likely fill the QEMU TLB for the next iteration.  */
86
            cpu_stb_data_ra(env, dest, byte, ra);
87 88 89
            dest++;
            l--;
        }
90 91 92
    }
}

93
static void fast_memmove(CPUS390XState *env, uint64_t dest, uint64_t src,
94
                         uint32_t l, uintptr_t ra)
95
{
96
    int mmu_idx = cpu_mmu_index(env, false);
97

98 99 100 101 102
    while (l > 0) {
        void *src_p = tlb_vaddr_to_host(env, src, MMU_DATA_LOAD, mmu_idx);
        void *dest_p = tlb_vaddr_to_host(env, dest, MMU_DATA_STORE, mmu_idx);
        if (src_p && dest_p) {
            /* Access to both whole pages granted.  */
103
            uint32_t l_adj = adj_len_to_page(l, src);
104 105 106 107 108 109 110 111 112
            l_adj = adj_len_to_page(l_adj, dest);
            memmove(dest_p, src_p, l_adj);
            src += l_adj;
            dest += l_adj;
            l -= l_adj;
        } else {
            /* We failed to get access to one or both whole pages. The next
               read or write access will likely fill the QEMU TLB for the
               next iteration.  */
113
            cpu_stb_data_ra(env, dest, cpu_ldub_data_ra(env, src, ra), ra);
114 115 116 117
            src++;
            dest++;
            l--;
        }
118 119 120 121
    }
}

/* and on array */
122 123
static uint32_t do_helper_nc(CPUS390XState *env, uint32_t l, uint64_t dest,
                             uint64_t src, uintptr_t ra)
124
{
125 126
    uint32_t i;
    uint8_t c = 0;
127 128 129

    HELPER_LOG("%s l %d dest %" PRIx64 " src %" PRIx64 "\n",
               __func__, l, dest, src);
130

131
    for (i = 0; i <= l; i++) {
132 133 134 135
        uint8_t x = cpu_ldub_data_ra(env, src + i, ra);
        x &= cpu_ldub_data_ra(env, dest + i, ra);
        c |= x;
        cpu_stb_data_ra(env, dest + i, x, ra);
136
    }
137 138 139 140 141 142 143
    return c != 0;
}

uint32_t HELPER(nc)(CPUS390XState *env, uint32_t l, uint64_t dest,
                    uint64_t src)
{
    return do_helper_nc(env, l, dest, src, GETPC());
144 145 146
}

/* xor on array */
147 148
static uint32_t do_helper_xc(CPUS390XState *env, uint32_t l, uint64_t dest,
                             uint64_t src, uintptr_t ra)
149
{
150 151
    uint32_t i;
    uint8_t c = 0;
152 153 154 155 156 157

    HELPER_LOG("%s l %d dest %" PRIx64 " src %" PRIx64 "\n",
               __func__, l, dest, src);

    /* xor with itself is the same as memset(0) */
    if (src == dest) {
158
        fast_memset(env, dest, 0, l + 1, ra);
159 160 161 162
        return 0;
    }

    for (i = 0; i <= l; i++) {
163 164 165 166
        uint8_t x = cpu_ldub_data_ra(env, src + i, ra);
        x ^= cpu_ldub_data_ra(env, dest + i, ra);
        c |= x;
        cpu_stb_data_ra(env, dest + i, x, ra);
167
    }
168 169 170 171 172 173 174
    return c != 0;
}

uint32_t HELPER(xc)(CPUS390XState *env, uint32_t l, uint64_t dest,
                    uint64_t src)
{
    return do_helper_xc(env, l, dest, src, GETPC());
175 176 177
}

/* or on array */
178 179
static uint32_t do_helper_oc(CPUS390XState *env, uint32_t l, uint64_t dest,
                             uint64_t src, uintptr_t ra)
180
{
181 182
    uint32_t i;
    uint8_t c = 0;
183 184 185

    HELPER_LOG("%s l %d dest %" PRIx64 " src %" PRIx64 "\n",
               __func__, l, dest, src);
186

187
    for (i = 0; i <= l; i++) {
188 189 190 191
        uint8_t x = cpu_ldub_data_ra(env, src + i, ra);
        x |= cpu_ldub_data_ra(env, dest + i, ra);
        c |= x;
        cpu_stb_data_ra(env, dest + i, x, ra);
192
    }
193 194 195 196 197 198 199
    return c != 0;
}

uint32_t HELPER(oc)(CPUS390XState *env, uint32_t l, uint64_t dest,
                    uint64_t src)
{
    return do_helper_oc(env, l, dest, src, GETPC());
200 201 202
}

/* memmove */
203 204
static uint32_t do_helper_mvc(CPUS390XState *env, uint32_t l, uint64_t dest,
                              uint64_t src, uintptr_t ra)
205
{
206
    uint32_t i;
207 208 209 210

    HELPER_LOG("%s l %d dest %" PRIx64 " src %" PRIx64 "\n",
               __func__, l, dest, src);

211
    /* mvc and memmove do not behave the same when areas overlap! */
212 213
    /* mvc with source pointing to the byte after the destination is the
       same as memset with the first source byte */
214 215
    if (dest == src + 1) {
        fast_memset(env, dest, cpu_ldub_data_ra(env, src, ra), l + 1, ra);
216
    } else if (dest < src || src + l < dest) {
217
        fast_memmove(env, dest, src, l + 1, ra);
218 219 220 221 222 223
    } else {
        /* slow version with byte accesses which always work */
        for (i = 0; i <= l; i++) {
            uint8_t x = cpu_ldub_data_ra(env, src + i, ra);
            cpu_stb_data_ra(env, dest + i, x, ra);
        }
224 225
    }

226
    return env->cc_op;
227 228
}

229 230 231 232 233
void HELPER(mvc)(CPUS390XState *env, uint32_t l, uint64_t dest, uint64_t src)
{
    do_helper_mvc(env, l, dest, src, GETPC());
}

234 235 236 237 238 239 240 241 242 243 244 245
/* move inverse  */
void HELPER(mvcin)(CPUS390XState *env, uint32_t l, uint64_t dest, uint64_t src)
{
    uintptr_t ra = GETPC();
    int i;

    for (i = 0; i <= l; i++) {
        uint8_t v = cpu_ldub_data_ra(env, src - i, ra);
        cpu_stb_data_ra(env, dest + i, v, ra);
    }
}

246 247 248 249 250 251 252 253 254 255 256 257 258
/* move numerics  */
void HELPER(mvn)(CPUS390XState *env, uint32_t l, uint64_t dest, uint64_t src)
{
    uintptr_t ra = GETPC();
    int i;

    for (i = 0; i <= l; i++) {
        uint8_t v = cpu_ldub_data_ra(env, dest + i, ra) & 0xf0;
        v |= cpu_ldub_data_ra(env, src + i, ra) & 0x0f;
        cpu_stb_data_ra(env, dest + i, v, ra);
    }
}

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
/* move with offset  */
void HELPER(mvo)(CPUS390XState *env, uint32_t l, uint64_t dest, uint64_t src)
{
    uintptr_t ra = GETPC();
    int len_dest = l >> 4;
    int len_src = l & 0xf;
    uint8_t byte_dest, byte_src;
    int i;

    src += len_src;
    dest += len_dest;

    /* Handle rightmost byte */
    byte_src = cpu_ldub_data_ra(env, src, ra);
    byte_dest = cpu_ldub_data_ra(env, dest, ra);
    byte_dest = (byte_dest & 0x0f) | (byte_src << 4);
    cpu_stb_data_ra(env, dest, byte_dest, ra);

    /* Process remaining bytes from right to left */
    for (i = 1; i <= len_dest; i++) {
        byte_dest = byte_src >> 4;
        if (len_src - i >= 0) {
            byte_src = cpu_ldub_data_ra(env, src - i, ra);
        } else {
            byte_src = 0;
        }
        byte_dest |= byte_src << 4;
        cpu_stb_data_ra(env, dest - i, byte_dest, ra);
    }
}

290 291 292 293 294 295 296 297 298 299 300 301 302
/* move zones  */
void HELPER(mvz)(CPUS390XState *env, uint32_t l, uint64_t dest, uint64_t src)
{
    uintptr_t ra = GETPC();
    int i;

    for (i = 0; i <= l; i++) {
        uint8_t b = cpu_ldub_data_ra(env, dest + i, ra) & 0x0f;
        b |= cpu_ldub_data_ra(env, src + i, ra) & 0xf0;
        cpu_stb_data_ra(env, dest + i, b, ra);
    }
}

303
/* compare unsigned byte arrays */
304 305
static uint32_t do_helper_clc(CPUS390XState *env, uint32_t l, uint64_t s1,
                              uint64_t s2, uintptr_t ra)
306
{
307 308
    uint32_t i;
    uint32_t cc = 0;
309 310 311

    HELPER_LOG("%s l %d s1 %" PRIx64 " s2 %" PRIx64 "\n",
               __func__, l, s1, s2);
312

313
    for (i = 0; i <= l; i++) {
314 315
        uint8_t x = cpu_ldub_data_ra(env, s1 + i, ra);
        uint8_t y = cpu_ldub_data_ra(env, s2 + i, ra);
316 317 318
        HELPER_LOG("%02x (%c)/%02x (%c) ", x, x, y, y);
        if (x < y) {
            cc = 1;
319
            break;
320 321
        } else if (x > y) {
            cc = 2;
322
            break;
323 324
        }
    }
325

326 327 328 329
    HELPER_LOG("\n");
    return cc;
}

330 331 332 333 334
uint32_t HELPER(clc)(CPUS390XState *env, uint32_t l, uint64_t s1, uint64_t s2)
{
    return do_helper_clc(env, l, s1, s2, GETPC());
}

335
/* compare logical under mask */
336 337
uint32_t HELPER(clm)(CPUS390XState *env, uint32_t r1, uint32_t mask,
                     uint64_t addr)
338
{
339 340
    uintptr_t ra = GETPC();
    uint32_t cc = 0;
341 342 343

    HELPER_LOG("%s: r1 0x%x mask 0x%x addr 0x%" PRIx64 "\n", __func__, r1,
               mask, addr);
344

345 346
    while (mask) {
        if (mask & 8) {
347 348
            uint8_t d = cpu_ldub_data_ra(env, addr, ra);
            uint8_t r = extract32(r1, 24, 8);
349 350 351 352 353 354 355 356 357 358 359 360 361 362
            HELPER_LOG("mask 0x%x %02x/%02x (0x%" PRIx64 ") ", mask, r, d,
                       addr);
            if (r < d) {
                cc = 1;
                break;
            } else if (r > d) {
                cc = 2;
                break;
            }
            addr++;
        }
        mask = (mask << 1) & 0xf;
        r1 <<= 8;
    }
363

364 365 366 367
    HELPER_LOG("\n");
    return cc;
}

368
static inline uint64_t wrap_address(CPUS390XState *env, uint64_t a)
369 370
{
    if (!(env->psw.mask & PSW_MASK_64)) {
371 372 373 374 375 376 377
        if (!(env->psw.mask & PSW_MASK_32)) {
            /* 24-Bit mode */
            a &= 0x00ffffff;
        } else {
            /* 31-Bit mode */
            a &= 0x7fffffff;
        }
378 379 380 381
    }
    return a;
}

382
static inline uint64_t get_address(CPUS390XState *env, int reg)
383
{
384
    return wrap_address(env, env->regs[reg]);
385 386
}

387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
static inline void set_address(CPUS390XState *env, int reg, uint64_t address)
{
    if (env->psw.mask & PSW_MASK_64) {
        /* 64-Bit mode */
        env->regs[reg] = address;
    } else {
        if (!(env->psw.mask & PSW_MASK_32)) {
            /* 24-Bit mode. According to the PoO it is implementation
            dependent if bits 32-39 remain unchanged or are set to
            zeros.  Choose the former so that the function can also be
            used for TRT.  */
            env->regs[reg] = deposit64(env->regs[reg], 0, 24, address);
        } else {
            /* 31-Bit mode. According to the PoO it is implementation
            dependent if bit 32 remains unchanged or is set to zero.
            Choose the latter so that the function can also be used for
            TRT.  */
            address &= 0x7fffffff;
            env->regs[reg] = deposit64(env->regs[reg], 0, 32, address);
        }
    }
}

410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
static inline uint64_t wrap_length(CPUS390XState *env, uint64_t length)
{
    if (!(env->psw.mask & PSW_MASK_64)) {
        /* 24-Bit and 31-Bit mode */
        length &= 0x7fffffff;
    }
    return length;
}

static inline uint64_t get_length(CPUS390XState *env, int reg)
{
    return wrap_length(env, env->regs[reg]);
}

static inline void set_length(CPUS390XState *env, int reg, uint64_t length)
{
    if (env->psw.mask & PSW_MASK_64) {
        /* 64-Bit mode */
        env->regs[reg] = length;
    } else {
        /* 24-Bit and 31-Bit mode */
        env->regs[reg] = deposit64(env->regs[reg], 0, 32, length);
    }
}

435
/* search string (c is byte to search, r2 is string, r1 end of string) */
R
Richard Henderson 已提交
436 437
uint64_t HELPER(srst)(CPUS390XState *env, uint64_t r0, uint64_t end,
                      uint64_t str)
438
{
439
    uintptr_t ra = GETPC();
R
Richard Henderson 已提交
440 441
    uint32_t len;
    uint8_t v, c = r0;
442

443 444
    str = wrap_address(env, str);
    end = wrap_address(env, end);
445

R
Richard Henderson 已提交
446 447 448 449
    /* Assume for now that R2 is unmodified.  */
    env->retxl = str;

    /* Lest we fail to service interrupts in a timely manner, limit the
450
       amount of work we're willing to do.  For now, let's cap at 8k.  */
R
Richard Henderson 已提交
451 452 453 454 455 456
    for (len = 0; len < 0x2000; ++len) {
        if (str + len == end) {
            /* Character not found.  R1 & R2 are unmodified.  */
            env->cc_op = 2;
            return end;
        }
457
        v = cpu_ldub_data_ra(env, str + len, ra);
R
Richard Henderson 已提交
458 459 460 461
        if (v == c) {
            /* Character found.  Set R1 to the location; R2 is unmodified.  */
            env->cc_op = 1;
            return str + len;
462 463 464
        }
    }

R
Richard Henderson 已提交
465 466 467 468
    /* CPU-determined bytes processed.  Advance R2 to next byte to process.  */
    env->retxl = str + len;
    env->cc_op = 3;
    return end;
469 470 471
}

/* unsigned string compare (c is string terminator) */
472
uint64_t HELPER(clst)(CPUS390XState *env, uint64_t c, uint64_t s1, uint64_t s2)
473
{
474
    uintptr_t ra = GETPC();
475
    uint32_t len;
476 477

    c = c & 0xff;
478 479
    s1 = wrap_address(env, s1);
    s2 = wrap_address(env, s2);
480 481

    /* Lest we fail to service interrupts in a timely manner, limit the
482
       amount of work we're willing to do.  For now, let's cap at 8k.  */
483
    for (len = 0; len < 0x2000; ++len) {
484 485
        uint8_t v1 = cpu_ldub_data_ra(env, s1 + len, ra);
        uint8_t v2 = cpu_ldub_data_ra(env, s2 + len, ra);
486 487 488 489 490 491 492 493 494 495 496 497 498 499
        if (v1 == v2) {
            if (v1 == c) {
                /* Equal.  CC=0, and don't advance the registers.  */
                env->cc_op = 0;
                env->retxl = s2;
                return s1;
            }
        } else {
            /* Unequal.  CC={1,2}, and advance the registers.  Note that
               the terminator need not be zero, but the string that contains
               the terminator is by definition "low".  */
            env->cc_op = (v1 == c ? 1 : v2 == c ? 2 : v1 < v2 ? 1 : 2);
            env->retxl = s2 + len;
            return s1 + len;
500 501 502
        }
    }

503 504 505 506
    /* CPU-determined bytes equal; advance the registers.  */
    env->cc_op = 3;
    env->retxl = s2 + len;
    return s1 + len;
507 508 509
}

/* move page */
510
uint32_t HELPER(mvpg)(CPUS390XState *env, uint64_t r0, uint64_t r1, uint64_t r2)
511
{
512 513 514 515
    /* ??? missing r0 handling, which includes access keys, but more
       importantly optional suppression of the exception!  */
    fast_memmove(env, r1, r2, TARGET_PAGE_SIZE, GETPC());
    return 0; /* data moved */
516 517 518
}

/* string copy (c is string terminator) */
519
uint64_t HELPER(mvst)(CPUS390XState *env, uint64_t c, uint64_t d, uint64_t s)
520
{
521
    uintptr_t ra = GETPC();
522
    uint32_t len;
523 524

    c = c & 0xff;
525 526
    d = wrap_address(env, d);
    s = wrap_address(env, s);
527 528

    /* Lest we fail to service interrupts in a timely manner, limit the
529
       amount of work we're willing to do.  For now, let's cap at 8k.  */
530
    for (len = 0; len < 0x2000; ++len) {
531 532
        uint8_t v = cpu_ldub_data_ra(env, s + len, ra);
        cpu_stb_data_ra(env, d + len, v, ra);
533
        if (v == c) {
534 535 536 537
            /* Complete.  Set CC=1 and advance R1.  */
            env->cc_op = 1;
            env->retxl = s;
            return d + len;
538 539
        }
    }
540 541 542 543 544

    /* Incomplete.  Set CC=3 and signal to advance R1 and R2.  */
    env->cc_op = 3;
    env->retxl = s + len;
    return d + len;
545 546 547
}

/* load access registers r1 to r3 from memory at a2 */
548
void HELPER(lam)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3)
549
{
550
    uintptr_t ra = GETPC();
551 552 553
    int i;

    for (i = r1;; i = (i + 1) % 16) {
554
        env->aregs[i] = cpu_ldl_data_ra(env, a2, ra);
555 556 557 558 559 560 561 562 563
        a2 += 4;

        if (i == r3) {
            break;
        }
    }
}

/* store access registers r1 to r3 in memory at a2 */
564
void HELPER(stam)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3)
565
{
566
    uintptr_t ra = GETPC();
567 568 569
    int i;

    for (i = r1;; i = (i + 1) % 16) {
570
        cpu_stl_data_ra(env, a2, env->aregs[i], ra);
571 572 573 574 575 576 577 578 579
        a2 += 4;

        if (i == r3) {
            break;
        }
    }
}

/* move long */
580
uint32_t HELPER(mvcl)(CPUS390XState *env, uint32_t r1, uint32_t r2)
581
{
582
    uintptr_t ra = GETPC();
583
    uint64_t destlen = env->regs[r1 + 1] & 0xffffff;
584
    uint64_t dest = get_address(env, r1);
585
    uint64_t srclen = env->regs[r2 + 1] & 0xffffff;
586
    uint64_t src = get_address(env, r2);
587
    uint8_t pad = env->regs[r2 + 1] >> 24;
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
    uint8_t v;
    uint32_t cc;

    if (destlen == srclen) {
        cc = 0;
    } else if (destlen < srclen) {
        cc = 1;
    } else {
        cc = 2;
    }

    if (srclen > destlen) {
        srclen = destlen;
    }

    for (; destlen && srclen; src++, dest++, destlen--, srclen--) {
604 605
        v = cpu_ldub_data_ra(env, src, ra);
        cpu_stb_data_ra(env, dest, v, ra);
606 607 608
    }

    for (; destlen; dest++, destlen--) {
609
        cpu_stb_data_ra(env, dest, pad, ra);
610 611 612 613 614
    }

    env->regs[r1 + 1] = destlen;
    /* can't use srclen here, we trunc'ed it */
    env->regs[r2 + 1] -= src - env->regs[r2];
615 616
    set_address(env, r1, dest);
    set_address(env, r2, src);
617 618 619 620 621

    return cc;
}

/* move long extended another memcopy insn with more bells and whistles */
622 623
uint32_t HELPER(mvcle)(CPUS390XState *env, uint32_t r1, uint64_t a2,
                       uint32_t r3)
624
{
625
    uintptr_t ra = GETPC();
626
    uint64_t destlen = get_length(env, r1 + 1);
627
    uint64_t dest = get_address(env, r1);
628
    uint64_t srclen = get_length(env, r3 + 1);
629
    uint64_t src = get_address(env, r3);
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
    uint8_t pad = a2 & 0xff;
    uint8_t v;
    uint32_t cc;

    if (destlen == srclen) {
        cc = 0;
    } else if (destlen < srclen) {
        cc = 1;
    } else {
        cc = 2;
    }

    if (srclen > destlen) {
        srclen = destlen;
    }

    for (; destlen && srclen; src++, dest++, destlen--, srclen--) {
647 648
        v = cpu_ldub_data_ra(env, src, ra);
        cpu_stb_data_ra(env, dest, v, ra);
649 650 651
    }

    for (; destlen; dest++, destlen--) {
652
        cpu_stb_data_ra(env, dest, pad, ra);
653 654
    }

655
    set_length(env, r1 + 1 , destlen);
656
    /* can't use srclen here, we trunc'ed it */
657
    set_length(env, r3 + 1, env->regs[r3 + 1] - src - env->regs[r3]);
658 659
    set_address(env, r1, dest);
    set_address(env, r3, src);
660 661 662 663 664

    return cc;
}

/* compare logical long extended memcompare insn with padding */
665 666
uint32_t HELPER(clcle)(CPUS390XState *env, uint32_t r1, uint64_t a2,
                       uint32_t r3)
667
{
668
    uintptr_t ra = GETPC();
669 670 671 672
    uint64_t src1len = get_length(env, r1 + 1);
    uint64_t src1 = get_address(env, r1);
    uint64_t src3len = get_length(env, r3 + 1);
    uint64_t src3 = get_address(env, r3);
673
    uint8_t pad = a2 & 0xff;
674
    uint64_t len = MAX(src1len, src3len);
675 676
    uint32_t cc = 0;

677
    if (!len) {
678 679 680
        return cc;
    }

681 682 683 684 685
    /* Lest we fail to service interrupts in a timely manner, limit the
       amount of work we're willing to do.  For now, let's cap at 8k.  */
    if (len > 0x2000) {
        len = 0x2000;
        cc = 3;
686 687
    }

688 689 690 691 692 693 694 695 696 697 698 699 700
    for (; len; len--) {
        uint8_t v1 = pad;
        uint8_t v3 = pad;

        if (src1len) {
            v1 = cpu_ldub_data_ra(env, src1, ra);
        }
        if (src3len) {
            v3 = cpu_ldub_data_ra(env, src3, ra);
        }

        if (v1 != v3) {
            cc = (v1 < v3) ? 1 : 2;
701 702
            break;
        }
703 704 705 706 707 708 709 710 711

        if (src1len) {
            src1++;
            src1len--;
        }
        if (src3len) {
            src3++;
            src3len--;
        }
712 713
    }

714 715 716 717
    set_length(env, r1 + 1, src1len);
    set_length(env, r3 + 1, src3len);
    set_address(env, r1, src1);
    set_address(env, r3, src3);
718 719 720 721 722

    return cc;
}

/* checksum */
R
Richard Henderson 已提交
723 724
uint64_t HELPER(cksm)(CPUS390XState *env, uint64_t r1,
                      uint64_t src, uint64_t src_len)
725
{
726
    uintptr_t ra = GETPC();
R
Richard Henderson 已提交
727 728
    uint64_t max_len, len;
    uint64_t cksm = (uint32_t)r1;
729

R
Richard Henderson 已提交
730
    /* Lest we fail to service interrupts in a timely manner, limit the
731
       amount of work we're willing to do.  For now, let's cap at 8k.  */
R
Richard Henderson 已提交
732
    max_len = (src_len > 0x2000 ? 0x2000 : src_len);
733

R
Richard Henderson 已提交
734 735
    /* Process full words as available.  */
    for (len = 0; len + 4 <= max_len; len += 4, src += 4) {
736
        cksm += (uint32_t)cpu_ldl_data_ra(env, src, ra);
737 738
    }

R
Richard Henderson 已提交
739
    switch (max_len - len) {
740
    case 1:
741
        cksm += cpu_ldub_data_ra(env, src, ra) << 24;
R
Richard Henderson 已提交
742
        len += 1;
743 744
        break;
    case 2:
745
        cksm += cpu_lduw_data_ra(env, src, ra) << 16;
R
Richard Henderson 已提交
746
        len += 2;
747 748
        break;
    case 3:
749 750
        cksm += cpu_lduw_data_ra(env, src, ra) << 16;
        cksm += cpu_ldub_data_ra(env, src + 2, ra) << 8;
R
Richard Henderson 已提交
751
        len += 3;
752 753 754
        break;
    }

R
Richard Henderson 已提交
755 756 757 758 759 760 761 762
    /* Fold the carry from the checksum.  Note that we can see carry-out
       during folding more than once (but probably not more than twice).  */
    while (cksm > 0xffffffffull) {
        cksm = (uint32_t)cksm + (cksm >> 32);
    }

    /* Indicate whether or not we've processed everything.  */
    env->cc_op = (len == src_len ? 0 : 3);
763

R
Richard Henderson 已提交
764 765 766
    /* Return both cksm and processed length.  */
    env->retxl = cksm;
    return len;
767 768
}

A
Aurelien Jarno 已提交
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
void HELPER(pack)(CPUS390XState *env, uint32_t len, uint64_t dest, uint64_t src)
{
    uintptr_t ra = GETPC();
    int len_dest = len >> 4;
    int len_src = len & 0xf;
    uint8_t b;

    dest += len_dest;
    src += len_src;

    /* last byte is special, it only flips the nibbles */
    b = cpu_ldub_data_ra(env, src, ra);
    cpu_stb_data_ra(env, dest, (b << 4) | (b >> 4), ra);
    src--;
    len_src--;

    /* now pack every value */
    while (len_dest >= 0) {
        b = 0;

        if (len_src > 0) {
            b = cpu_ldub_data_ra(env, src, ra) & 0x0f;
            src--;
            len_src--;
        }
        if (len_src > 0) {
            b |= cpu_ldub_data_ra(env, src, ra) << 4;
            src--;
            len_src--;
        }

        len_dest--;
        dest--;
        cpu_stb_data_ra(env, dest, b, ra);
    }
}

806 807
void HELPER(unpk)(CPUS390XState *env, uint32_t len, uint64_t dest,
                  uint64_t src)
808
{
809
    uintptr_t ra = GETPC();
810 811 812 813 814 815 816 817 818
    int len_dest = len >> 4;
    int len_src = len & 0xf;
    uint8_t b;
    int second_nibble = 0;

    dest += len_dest;
    src += len_src;

    /* last byte is special, it only flips the nibbles */
819 820
    b = cpu_ldub_data_ra(env, src, ra);
    cpu_stb_data_ra(env, dest, (b << 4) | (b >> 4), ra);
821 822 823 824 825 826 827 828 829
    src--;
    len_src--;

    /* now pad every nibble with 0xf0 */

    while (len_dest > 0) {
        uint8_t cur_byte = 0;

        if (len_src > 0) {
830
            cur_byte = cpu_ldub_data_ra(env, src, ra);
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
        }

        len_dest--;
        dest--;

        /* only advance one nibble at a time */
        if (second_nibble) {
            cur_byte >>= 4;
            len_src--;
            src--;
        }
        second_nibble = !second_nibble;

        /* digit */
        cur_byte = (cur_byte & 0xf);
        /* zone bits */
        cur_byte |= 0xf0;

849
        cpu_stb_data_ra(env, dest, cur_byte, ra);
850 851 852
    }
}

853 854
static uint32_t do_helper_tr(CPUS390XState *env, uint32_t len, uint64_t array,
                             uint64_t trans, uintptr_t ra)
855
{
856
    uint32_t i;
857 858

    for (i = 0; i <= len; i++) {
859 860 861
        uint8_t byte = cpu_ldub_data_ra(env, array + i, ra);
        uint8_t new_byte = cpu_ldub_data_ra(env, trans + byte, ra);
        cpu_stb_data_ra(env, array + i, new_byte, ra);
862
    }
863 864

    return env->cc_op;
865 866
}

867 868 869
void HELPER(tr)(CPUS390XState *env, uint32_t len, uint64_t array,
                uint64_t trans)
{
870
    do_helper_tr(env, len, array, trans, GETPC());
871 872
}

873 874 875
uint64_t HELPER(tre)(CPUS390XState *env, uint64_t array,
                     uint64_t len, uint64_t trans)
{
876
    uintptr_t ra = GETPC();
877 878 879
    uint8_t end = env->regs[0] & 0xff;
    uint64_t l = len;
    uint64_t i;
880
    uint32_t cc = 0;
881 882 883 884 885 886 887 888 889 890

    if (!(env->psw.mask & PSW_MASK_64)) {
        array &= 0x7fffffff;
        l = (uint32_t)l;
    }

    /* Lest we fail to service interrupts in a timely manner, limit the
       amount of work we're willing to do.  For now, let's cap at 8k.  */
    if (l > 0x2000) {
        l = 0x2000;
891
        cc = 3;
892 893 894 895 896
    }

    for (i = 0; i < l; i++) {
        uint8_t byte, new_byte;

897
        byte = cpu_ldub_data_ra(env, array + i, ra);
898 899

        if (byte == end) {
900
            cc = 1;
901 902 903
            break;
        }

904 905
        new_byte = cpu_ldub_data_ra(env, trans + byte, ra);
        cpu_stb_data_ra(env, array + i, new_byte, ra);
906 907
    }

908
    env->cc_op = cc;
909 910 911 912
    env->retxl = len - i;
    return array + i;
}

913 914
static uint32_t do_helper_trt(CPUS390XState *env, uint32_t len, uint64_t array,
                              uint64_t trans, uintptr_t ra)
915
{
916
    uint32_t i;
917 918

    for (i = 0; i <= len; i++) {
919 920
        uint8_t byte = cpu_ldub_data_ra(env, array + i, ra);
        uint8_t sbyte = cpu_ldub_data_ra(env, trans + byte, ra);
921 922

        if (sbyte != 0) {
923
            set_address(env, 1, array + i);
924 925
            env->regs[2] = deposit64(env->regs[2], 0, 8, sbyte);
            return (i == len) ? 2 : 1;
926 927 928
        }
    }

929 930 931 932 933 934 935
    return 0;
}

uint32_t HELPER(trt)(CPUS390XState *env, uint32_t len, uint64_t array,
                     uint64_t trans)
{
    return do_helper_trt(env, len, array, trans, GETPC());
936 937
}

938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
void HELPER(cdsg)(CPUS390XState *env, uint64_t addr,
                  uint32_t r1, uint32_t r3)
{
    uintptr_t ra = GETPC();
    Int128 cmpv = int128_make128(env->regs[r1 + 1], env->regs[r1]);
    Int128 newv = int128_make128(env->regs[r3 + 1], env->regs[r3]);
    Int128 oldv;
    bool fail;

    if (parallel_cpus) {
#ifndef CONFIG_ATOMIC128
        cpu_loop_exit_atomic(ENV_GET_CPU(env), ra);
#else
        int mem_idx = cpu_mmu_index(env, false);
        TCGMemOpIdx oi = make_memop_idx(MO_TEQ | MO_ALIGN_16, mem_idx);
        oldv = helper_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv, oi, ra);
        fail = !int128_eq(oldv, cmpv);
#endif
    } else {
        uint64_t oldh, oldl;

        oldh = cpu_ldq_data_ra(env, addr + 0, ra);
        oldl = cpu_ldq_data_ra(env, addr + 8, ra);

        oldv = int128_make128(oldl, oldh);
        fail = !int128_eq(oldv, cmpv);
        if (fail) {
            newv = oldv;
        }

        cpu_stq_data_ra(env, addr + 0, int128_gethi(newv), ra);
        cpu_stq_data_ra(env, addr + 8, int128_getlo(newv), ra);
    }

    env->cc_op = fail;
    env->regs[r1] = int128_gethi(oldv);
    env->regs[r1 + 1] = int128_getlo(oldv);
}

977
#if !defined(CONFIG_USER_ONLY)
978
void HELPER(lctlg)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3)
979
{
980
    uintptr_t ra = GETPC();
981
    S390CPU *cpu = s390_env_get_cpu(env);
982
    bool PERchanged = false;
983
    uint64_t src = a2;
984
    uint32_t i;
985 986

    for (i = r1;; i = (i + 1) % 16) {
987
        uint64_t val = cpu_ldq_data_ra(env, src, ra);
988 989 990 991
        if (env->cregs[i] != val && i >= 9 && i <= 11) {
            PERchanged = true;
        }
        env->cregs[i] = val;
992
        HELPER_LOG("load ctl %d from 0x%" PRIx64 " == 0x%" PRIx64 "\n",
993
                   i, src, val);
994 995 996 997 998 999 1000
        src += sizeof(uint64_t);

        if (i == r3) {
            break;
        }
    }

1001 1002 1003 1004
    if (PERchanged && env->psw.mask & PSW_MASK_PER) {
        s390_cpu_recompute_watchpoints(CPU(cpu));
    }

1005
    tlb_flush(CPU(cpu));
1006 1007
}

1008
void HELPER(lctl)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3)
1009
{
1010
    uintptr_t ra = GETPC();
1011
    S390CPU *cpu = s390_env_get_cpu(env);
1012
    bool PERchanged = false;
1013
    uint64_t src = a2;
1014
    uint32_t i;
1015 1016

    for (i = r1;; i = (i + 1) % 16) {
1017
        uint32_t val = cpu_ldl_data_ra(env, src, ra);
1018 1019 1020
        if ((uint32_t)env->cregs[i] != val && i >= 9 && i <= 11) {
            PERchanged = true;
        }
1021 1022
        env->cregs[i] = deposit64(env->cregs[i], 0, 32, val);
        HELPER_LOG("load ctl %d from 0x%" PRIx64 " == 0x%x\n", i, src, val);
1023 1024 1025 1026 1027 1028 1029
        src += sizeof(uint32_t);

        if (i == r3) {
            break;
        }
    }

1030 1031 1032 1033
    if (PERchanged && env->psw.mask & PSW_MASK_PER) {
        s390_cpu_recompute_watchpoints(CPU(cpu));
    }

1034
    tlb_flush(CPU(cpu));
1035 1036
}

1037
void HELPER(stctg)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3)
1038
{
1039
    uintptr_t ra = GETPC();
1040
    uint64_t dest = a2;
1041
    uint32_t i;
1042 1043

    for (i = r1;; i = (i + 1) % 16) {
1044
        cpu_stq_data_ra(env, dest, env->cregs[i], ra);
1045 1046 1047 1048 1049 1050 1051 1052
        dest += sizeof(uint64_t);

        if (i == r3) {
            break;
        }
    }
}

1053
void HELPER(stctl)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3)
1054
{
1055
    uintptr_t ra = GETPC();
1056
    uint64_t dest = a2;
1057
    uint32_t i;
1058 1059

    for (i = r1;; i = (i + 1) % 16) {
1060
        cpu_stl_data_ra(env, dest, env->cregs[i], ra);
1061 1062 1063 1064 1065 1066 1067 1068
        dest += sizeof(uint32_t);

        if (i == r3) {
            break;
        }
    }
}

1069 1070
uint32_t HELPER(testblock)(CPUS390XState *env, uint64_t real_addr)
{
1071
    uintptr_t ra = GETPC();
1072 1073 1074 1075
    CPUState *cs = CPU(s390_env_get_cpu(env));
    uint64_t abs_addr;
    int i;

1076
    real_addr = wrap_address(env, real_addr);
1077 1078 1079
    abs_addr = mmu_real2abs(env, real_addr) & TARGET_PAGE_MASK;
    if (!address_space_access_valid(&address_space_memory, abs_addr,
                                    TARGET_PAGE_SIZE, true)) {
1080
        cpu_restore_state(cs, ra);
1081 1082 1083 1084 1085 1086
        program_interrupt(env, PGM_ADDRESSING, 4);
        return 1;
    }

    /* Check low-address protection */
    if ((env->cregs[0] & CR0_LOWPROT) && real_addr < 0x2000) {
1087
        cpu_restore_state(cs, ra);
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
        program_interrupt(env, PGM_PROTECTION, 4);
        return 1;
    }

    for (i = 0; i < TARGET_PAGE_SIZE; i += 8) {
        stq_phys(cs->as, abs_addr + i, 0);
    }

    return 0;
}

1099 1100 1101 1102 1103 1104 1105
uint32_t HELPER(tprot)(uint64_t a1, uint64_t a2)
{
    /* XXX implement */
    return 0;
}

/* insert storage key extended */
1106
uint64_t HELPER(iske)(CPUS390XState *env, uint64_t r2)
1107
{
1108 1109
    static S390SKeysState *ss;
    static S390SKeysClass *skeyclass;
1110
    uint64_t addr = wrap_address(env, r2);
1111
    uint8_t key;
1112 1113 1114 1115 1116

    if (addr > ram_size) {
        return 0;
    }

1117 1118 1119 1120 1121 1122 1123 1124 1125
    if (unlikely(!ss)) {
        ss = s390_get_skeys_device();
        skeyclass = S390_SKEYS_GET_CLASS(ss);
    }

    if (skeyclass->get_skeys(ss, addr / TARGET_PAGE_SIZE, 1, &key)) {
        return 0;
    }
    return key;
1126 1127 1128
}

/* set storage key extended */
R
Richard Henderson 已提交
1129
void HELPER(sske)(CPUS390XState *env, uint64_t r1, uint64_t r2)
1130
{
1131 1132
    static S390SKeysState *ss;
    static S390SKeysClass *skeyclass;
1133
    uint64_t addr = wrap_address(env, r2);
1134
    uint8_t key;
1135 1136 1137 1138 1139

    if (addr > ram_size) {
        return;
    }

1140 1141 1142 1143 1144 1145 1146
    if (unlikely(!ss)) {
        ss = s390_get_skeys_device();
        skeyclass = S390_SKEYS_GET_CLASS(ss);
    }

    key = (uint8_t) r1;
    skeyclass->set_skeys(ss, addr / TARGET_PAGE_SIZE, 1, &key);
1147 1148 1149
}

/* reset reference bit extended */
R
Richard Henderson 已提交
1150
uint32_t HELPER(rrbe)(CPUS390XState *env, uint64_t r2)
1151
{
1152 1153 1154
    static S390SKeysState *ss;
    static S390SKeysClass *skeyclass;
    uint8_t re, key;
1155 1156 1157 1158 1159

    if (r2 > ram_size) {
        return 0;
    }

1160 1161 1162 1163 1164 1165 1166 1167 1168
    if (unlikely(!ss)) {
        ss = s390_get_skeys_device();
        skeyclass = S390_SKEYS_GET_CLASS(ss);
    }

    if (skeyclass->get_skeys(ss, r2 / TARGET_PAGE_SIZE, 1, &key)) {
        return 0;
    }

1169
    re = key & (SK_R | SK_C);
1170 1171 1172 1173 1174
    key &= ~SK_R;

    if (skeyclass->set_skeys(ss, r2 / TARGET_PAGE_SIZE, 1, &key)) {
        return 0;
    }
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187

    /*
     * cc
     *
     * 0  Reference bit zero; change bit zero
     * 1  Reference bit zero; change bit one
     * 2  Reference bit one; change bit zero
     * 3  Reference bit one; change bit one
     */

    return re >> 1;
}

1188
uint32_t HELPER(mvcs)(CPUS390XState *env, uint64_t l, uint64_t a1, uint64_t a2)
1189
{
1190
    uintptr_t ra = GETPC();
1191
    int cc = 0, i;
1192

1193 1194 1195 1196
    HELPER_LOG("%s: %16" PRIx64 " %16" PRIx64 " %16" PRIx64 "\n",
               __func__, l, a1, a2);

    if (l > 256) {
1197 1198 1199 1200 1201 1202 1203
        /* max 256 */
        l = 256;
        cc = 3;
    }

    /* XXX replace w/ memcpy */
    for (i = 0; i < l; i++) {
1204 1205
        uint8_t x = cpu_ldub_primary_ra(env, a2 + i, ra);
        cpu_stb_secondary_ra(env, a1 + i, x, ra);
1206 1207 1208 1209 1210
    }

    return cc;
}

1211
uint32_t HELPER(mvcp)(CPUS390XState *env, uint64_t l, uint64_t a1, uint64_t a2)
1212
{
1213
    uintptr_t ra = GETPC();
1214 1215
    int cc = 0, i;

1216 1217 1218
    HELPER_LOG("%s: %16" PRIx64 " %16" PRIx64 " %16" PRIx64 "\n",
               __func__, l, a1, a2);

1219 1220 1221 1222 1223
    if (l > 256) {
        /* max 256 */
        l = 256;
        cc = 3;
    }
1224

1225 1226
    /* XXX replace w/ memcpy */
    for (i = 0; i < l; i++) {
1227 1228
        uint8_t x = cpu_ldub_secondary_ra(env, a2 + i, ra);
        cpu_stb_primary_ra(env, a1 + i, x, ra);
1229
    }
1230

1231
    return cc;
1232 1233 1234
}

/* invalidate pte */
1235 1236
void HELPER(ipte)(CPUS390XState *env, uint64_t pto, uint64_t vaddr,
                  uint32_t m4)
1237
{
1238
    CPUState *cs = CPU(s390_env_get_cpu(env));
1239
    uint64_t page = vaddr & TARGET_PAGE_MASK;
1240
    uint64_t pte_addr, pte;
1241

1242 1243
    /* Compute the page table entry address */
    pte_addr = (pto & _SEGMENT_ENTRY_ORIGIN);
1244
    pte_addr += (vaddr & VADDR_PX) >> 9;
1245 1246 1247 1248 1249

    /* Mark the page table entry as invalid */
    pte = ldq_phys(cs->as, pte_addr);
    pte |= _PAGE_INVALID;
    stq_phys(cs->as, pte_addr, pte);
1250 1251 1252

    /* XXX we exploit the fact that Linux passes the exact virtual
       address here - it's not obliged to! */
1253 1254 1255 1256 1257 1258 1259
    /* XXX: the LC bit should be considered as 0 if the local-TLB-clearing
       facility is not installed.  */
    if (m4 & 1) {
        tlb_flush_page(cs, page);
    } else {
        tlb_flush_page_all_cpus_synced(cs, page);
    }
1260 1261

    /* XXX 31-bit hack */
1262 1263
    if (m4 & 1) {
        tlb_flush_page(cs, page ^ 0x80000000);
1264
    } else {
1265
        tlb_flush_page_all_cpus_synced(cs, page ^ 0x80000000);
1266 1267 1268 1269
    }
}

/* flush local tlb */
1270
void HELPER(ptlb)(CPUS390XState *env)
1271
{
1272 1273
    S390CPU *cpu = s390_env_get_cpu(env);

1274
    tlb_flush(CPU(cpu));
1275 1276
}

1277 1278 1279 1280 1281 1282 1283 1284
/* flush global tlb */
void HELPER(purge)(CPUS390XState *env)
{
    S390CPU *cpu = s390_env_get_cpu(env);

    tlb_flush_all_cpus_synced(CPU(cpu));
}

1285 1286 1287 1288 1289
/* load using real address */
uint64_t HELPER(lura)(CPUS390XState *env, uint64_t addr)
{
    CPUState *cs = CPU(s390_env_get_cpu(env));

1290
    return (uint32_t)ldl_phys(cs->as, wrap_address(env, addr));
1291 1292 1293 1294 1295 1296
}

uint64_t HELPER(lurag)(CPUS390XState *env, uint64_t addr)
{
    CPUState *cs = CPU(s390_env_get_cpu(env));

1297
    return ldq_phys(cs->as, wrap_address(env, addr));
1298 1299
}

1300
/* store using real address */
R
Richard Henderson 已提交
1301
void HELPER(stura)(CPUS390XState *env, uint64_t addr, uint64_t v1)
1302
{
1303 1304
    CPUState *cs = CPU(s390_env_get_cpu(env));

1305
    stl_phys(cs->as, wrap_address(env, addr), (uint32_t)v1);
1306 1307 1308 1309 1310 1311 1312 1313

    if ((env->psw.mask & PSW_MASK_PER) &&
        (env->cregs[9] & PER_CR9_EVENT_STORE) &&
        (env->cregs[9] & PER_CR9_EVENT_STORE_REAL)) {
        /* PSW is saved just before calling the helper.  */
        env->per_address = env->psw.addr;
        env->per_perc_atmid = PER_CODE_EVENT_STORE_REAL | get_per_atmid(env);
    }
1314 1315
}

1316 1317 1318 1319
void HELPER(sturg)(CPUS390XState *env, uint64_t addr, uint64_t v1)
{
    CPUState *cs = CPU(s390_env_get_cpu(env));

1320
    stq_phys(cs->as, wrap_address(env, addr), v1);
1321 1322 1323 1324 1325 1326 1327 1328

    if ((env->psw.mask & PSW_MASK_PER) &&
        (env->cregs[9] & PER_CR9_EVENT_STORE) &&
        (env->cregs[9] & PER_CR9_EVENT_STORE_REAL)) {
        /* PSW is saved just before calling the helper.  */
        env->per_address = env->psw.addr;
        env->per_perc_atmid = PER_CODE_EVENT_STORE_REAL | get_per_atmid(env);
    }
1329 1330
}

1331
/* load real address */
R
Richard Henderson 已提交
1332
uint64_t HELPER(lra)(CPUS390XState *env, uint64_t addr)
1333
{
1334
    CPUState *cs = CPU(s390_env_get_cpu(env));
1335 1336 1337
    uint32_t cc = 0;
    uint64_t asc = env->psw.mask & PSW_MASK_ASC;
    uint64_t ret;
1338
    int old_exc, flags;
1339 1340 1341

    /* XXX incomplete - has more corner cases */
    if (!(env->psw.mask & PSW_MASK_64) && (addr >> 32)) {
1342
        cpu_restore_state(cs, GETPC());
1343 1344 1345
        program_interrupt(env, PGM_SPECIAL_OP, 2);
    }

1346
    old_exc = cs->exception_index;
1347
    if (mmu_translate(env, addr, 0, asc, &ret, &flags, true)) {
1348 1349
        cc = 3;
    }
1350
    if (cs->exception_index == EXCP_PGM) {
1351 1352 1353 1354
        ret = env->int_pgm_code | 0x80000000;
    } else {
        ret |= addr & ~TARGET_PAGE_MASK;
    }
1355
    cs->exception_index = old_exc;
1356

R
Richard Henderson 已提交
1357 1358
    env->cc_op = cc;
    return ret;
1359 1360
}
#endif
1361

1362 1363 1364 1365 1366 1367
/* Execute instruction.  This instruction executes an insn modified with
   the contents of r1.  It does not change the executed instruction in memory;
   it does not change the program counter.

   Perform this by recording the modified instruction in env->ex_value.
   This will be noticed by cpu_get_tb_cpu_state and thus tb translation.
1368
*/
1369
void HELPER(ex)(CPUS390XState *env, uint32_t ilen, uint64_t r1, uint64_t addr)
1370
{
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
    uint64_t insn = cpu_lduw_code(env, addr);
    uint8_t opc = insn >> 8;

    /* Or in the contents of R1[56:63].  */
    insn |= r1 & 0xff;

    /* Load the rest of the instruction.  */
    insn <<= 48;
    switch (get_ilen(opc)) {
    case 2:
        break;
    case 4:
        insn |= (uint64_t)cpu_lduw_code(env, addr + 2) << 32;
        break;
    case 6:
        insn |= (uint64_t)(uint32_t)cpu_ldl_code(env, addr + 2) << 16;
        break;
    default:
        g_assert_not_reached();
    }

1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
    /* The very most common cases can be sped up by avoiding a new TB.  */
    if ((opc & 0xf0) == 0xd0) {
        typedef uint32_t (*dx_helper)(CPUS390XState *, uint32_t, uint64_t,
                                      uint64_t, uintptr_t);
        static const dx_helper dx[16] = {
            [0x2] = do_helper_mvc,
            [0x4] = do_helper_nc,
            [0x5] = do_helper_clc,
            [0x6] = do_helper_oc,
            [0x7] = do_helper_xc,
            [0xc] = do_helper_tr,
            [0xd] = do_helper_trt,
        };
        dx_helper helper = dx[opc & 0xf];

        if (helper) {
            uint32_t l = extract64(insn, 48, 8);
            uint32_t b1 = extract64(insn, 44, 4);
            uint32_t d1 = extract64(insn, 32, 12);
            uint32_t b2 = extract64(insn, 28, 4);
            uint32_t d2 = extract64(insn, 16, 12);
1413 1414
            uint64_t a1 = wrap_address(env, env->regs[b1] + d1);
            uint64_t a2 = wrap_address(env, env->regs[b2] + d2);
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426

            env->cc_op = helper(env, l, a1, a2, 0);
            env->psw.addr += ilen;
            return;
        }
    } else if (opc == 0x0a) {
        env->int_svc_code = extract64(insn, 48, 8);
        env->int_svc_ilen = ilen;
        helper_exception(env, EXCP_SVC);
        g_assert_not_reached();
    }

1427 1428 1429 1430 1431
    /* Record the insn we want to execute as well as the ilen to use
       during the execution of the target insn.  This will also ensure
       that ex_value is non-zero, which flags that we are in a state
       that requires such execution.  */
    env->ex_value = insn | ilen;
1432
}