op_helper.c 41.4 KB
Newer Older
B
bellard 已提交
1 2
/*
 *  ARM helper routines
3
 *
P
pbrook 已提交
4
 *  Copyright (c) 2005-2007 CodeSourcery, LLC
B
bellard 已提交
5 6 7 8 9 10 11 12 13 14 15 16
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
B
bellard 已提交
18
 */
P
Peter Maydell 已提交
19
#include "qemu/osdep.h"
20
#include "qemu/log.h"
21
#include "qemu/main-loop.h"
B
Blue Swirl 已提交
22
#include "cpu.h"
23
#include "exec/helper-proto.h"
24
#include "internals.h"
25
#include "exec/exec-all.h"
P
Paolo Bonzini 已提交
26
#include "exec/cpu_ldst.h"
B
bellard 已提交
27

P
pbrook 已提交
28 29 30
#define SIGNBIT (uint32_t)0x80000000
#define SIGNBIT64 ((uint64_t)1 << 63)

31 32
static void raise_exception(CPUARMState *env, uint32_t excp,
                            uint32_t syndrome, uint32_t target_el)
B
bellard 已提交
33
{
34
    CPUState *cs = CPU(arm_env_get_cpu(env));
35

36 37 38 39
    assert(!excp_is_internal(excp));
    cs->exception_index = excp;
    env->exception.syndrome = syndrome;
    env->exception.target_el = target_el;
40
    cpu_loop_exit(cs);
B
bellard 已提交
41 42
}

43 44 45 46 47 48 49 50 51 52 53 54 55 56
static int exception_target_el(CPUARMState *env)
{
    int target_el = MAX(1, arm_current_el(env));

    /* No such thing as secure EL1 if EL3 is aarch32, so update the target EL
     * to EL3 in this case.
     */
    if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
        target_el = 3;
    }

    return target_el;
}

57
uint32_t HELPER(neon_tbl)(CPUARMState *env, uint32_t ireg, uint32_t def,
P
pbrook 已提交
58
                          uint32_t rn, uint32_t maxindex)
P
pbrook 已提交
59 60 61 62 63 64 65 66 67
{
    uint32_t val;
    uint32_t tmp;
    int index;
    int shift;
    uint64_t *table;
    table = (uint64_t *)&env->vfp.regs[rn];
    val = 0;
    for (shift = 0; shift < 32; shift += 8) {
P
pbrook 已提交
68 69
        index = (ireg >> shift) & 0xff;
        if (index < maxindex) {
P
pbrook 已提交
70
            tmp = (table[index >> 3] >> ((index & 7) << 3)) & 0xff;
P
pbrook 已提交
71 72
            val |= tmp << shift;
        } else {
P
pbrook 已提交
73
            val |= def & (0xff << shift);
P
pbrook 已提交
74 75
        }
    }
P
pbrook 已提交
76
    return val;
P
pbrook 已提交
77 78
}

B
bellard 已提交
79 80
#if !defined(CONFIG_USER_ONLY)

81 82
static inline uint32_t merge_syn_data_abort(uint32_t template_syn,
                                            unsigned int target_el,
83
                                            bool same_el, bool ea,
84
                                            bool s1ptw, bool is_write,
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
                                            int fsc)
{
    uint32_t syn;

    /* ISV is only set for data aborts routed to EL2 and
     * never for stage-1 page table walks faulting on stage 2.
     *
     * Furthermore, ISV is only set for certain kinds of load/stores.
     * If the template syndrome does not have ISV set, we should leave
     * it cleared.
     *
     * See ARMv8 specs, D7-1974:
     * ISS encoding for an exception from a Data Abort, the
     * ISV field.
     */
    if (!(template_syn & ARM_EL_ISV) || target_el != 2 || s1ptw) {
        syn = syn_data_abort_no_iss(same_el,
102
                                    ea, 0, s1ptw, is_write, fsc);
103 104 105 106 107 108 109
    } else {
        /* Fields: IL, ISV, SAS, SSE, SRT, SF and AR come from the template
         * syndrome created at translation time.
         * Now we create the runtime syndrome with the remaining fields.
         */
        syn = syn_data_abort_with_iss(same_el,
                                      0, 0, 0, 0, 0,
110
                                      ea, 0, s1ptw, is_write, fsc,
111 112 113 114 115 116 117
                                      false);
        /* Merge the runtime syndrome with the template syndrome.  */
        syn |= template_syn;
    }
    return syn;
}

118
static void deliver_fault(ARMCPU *cpu, vaddr addr, MMUAccessType access_type,
119
                          int mmu_idx, ARMMMUFaultInfo *fi)
120 121 122 123
{
    CPUARMState *env = &cpu->env;
    int target_el;
    bool same_el;
124 125
    uint32_t syn, exc, fsr, fsc;
    ARMMMUIdx arm_mmu_idx = core_to_arm_mmu_idx(env, mmu_idx);
126 127 128 129 130 131 132 133

    target_el = exception_target_el(env);
    if (fi->stage2) {
        target_el = 2;
        env->cp15.hpfar_el2 = extract64(fi->s2addr, 12, 47) << 4;
    }
    same_el = (arm_current_el(env) == target_el);

134 135 136 137 138 139 140 141 142 143 144 145 146
    if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
        arm_s1_regime_using_lpae_format(env, arm_mmu_idx)) {
        /* LPAE format fault status register : bottom 6 bits are
         * status code in the same form as needed for syndrome
         */
        fsr = arm_fi_to_lfsc(fi);
        fsc = extract32(fsr, 0, 6);
    } else {
        fsr = arm_fi_to_sfsc(fi);
        /* Short format FSR : this fault will never actually be reported
         * to an EL that uses a syndrome register. Use a (currently)
         * reserved FSR code in case the constructed syndrome does leak
         * into the guest somehow.
147
         */
148
        fsc = 0x3f;
149 150 151
    }

    if (access_type == MMU_INST_FETCH) {
152
        syn = syn_insn_abort(same_el, fi->ea, fi->s1ptw, fsc);
153 154 155
        exc = EXCP_PREFETCH_ABORT;
    } else {
        syn = merge_syn_data_abort(env->exception.syndrome, target_el,
156
                                   same_el, fi->ea, fi->s1ptw,
157 158 159 160 161 162 163 164 165 166 167 168 169 170
                                   access_type == MMU_DATA_STORE,
                                   fsc);
        if (access_type == MMU_DATA_STORE
            && arm_feature(env, ARM_FEATURE_V6)) {
            fsr |= (1 << 11);
        }
        exc = EXCP_DATA_ABORT;
    }

    env->exception.vaddress = addr;
    env->exception.fsr = fsr;
    raise_exception(env, exc, syn, target_el);
}

B
bellard 已提交
171
/* try to fill the TLB and return an exception if error. If retaddr is
172 173 174
 * NULL, it means that the function was called in C code (i.e. not
 * from generated code or from helper.c)
 */
175 176
void tlb_fill(CPUState *cs, target_ulong addr, int size,
              MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
B
bellard 已提交
177
{
178
    bool ret;
179
    ARMMMUFaultInfo fi = {};
B
bellard 已提交
180

181
    ret = arm_tlb_fill(cs, addr, access_type, mmu_idx, &fi);
182
    if (unlikely(ret)) {
183 184
        ARMCPU *cpu = ARM_CPU(cs);

185 186
        /* now we have a real cpu fault */
        cpu_restore_state(cs, retaddr);
187

188
        deliver_fault(cpu, addr, access_type, mmu_idx, &fi);
B
bellard 已提交
189 190
    }
}
191 192

/* Raise a data fault alignment exception for the specified virtual address */
193 194 195
void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
                                 MMUAccessType access_type,
                                 int mmu_idx, uintptr_t retaddr)
196 197
{
    ARMCPU *cpu = ARM_CPU(cs);
198
    ARMMMUFaultInfo fi = {};
199

200 201
    /* now we have a real cpu fault */
    cpu_restore_state(cs, retaddr);
202

203 204
    fi.type = ARMFault_Alignment;
    deliver_fault(cpu, vaddr, access_type, mmu_idx, &fi);
205 206
}

207 208 209 210 211 212 213 214 215 216 217 218 219
/* arm_cpu_do_transaction_failed: handle a memory system error response
 * (eg "no device/memory present at address") by raising an external abort
 * exception
 */
void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
                                   vaddr addr, unsigned size,
                                   MMUAccessType access_type,
                                   int mmu_idx, MemTxAttrs attrs,
                                   MemTxResult response, uintptr_t retaddr)
{
    ARMCPU *cpu = ARM_CPU(cs);
    ARMMMUFaultInfo fi = {};

220 221
    /* now we have a real cpu fault */
    cpu_restore_state(cs, retaddr);
222

223
    fi.ea = arm_extabort_type(response);
224 225
    fi.type = ARMFault_SyncExternal;
    deliver_fault(cpu, addr, access_type, mmu_idx, &fi);
226 227
}

228
#endif /* !defined(CONFIG_USER_ONLY) */
P
pbrook 已提交
229

230
uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b)
P
pbrook 已提交
231 232 233 234 235 236 237
{
    uint32_t res = a + b;
    if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT))
        env->QF = 1;
    return res;
}

238
uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
P
pbrook 已提交
239 240 241 242 243 244 245 246 247
{
    uint32_t res = a + b;
    if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
        env->QF = 1;
        res = ~(((int32_t)a >> 31) ^ SIGNBIT);
    }
    return res;
}

248
uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
P
pbrook 已提交
249 250 251 252 253 254 255 256 257
{
    uint32_t res = a - b;
    if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
        env->QF = 1;
        res = ~(((int32_t)a >> 31) ^ SIGNBIT);
    }
    return res;
}

258
uint32_t HELPER(double_saturate)(CPUARMState *env, int32_t val)
P
pbrook 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272
{
    uint32_t res;
    if (val >= 0x40000000) {
        res = ~SIGNBIT;
        env->QF = 1;
    } else if (val <= (int32_t)0xc0000000) {
        res = SIGNBIT;
        env->QF = 1;
    } else {
        res = val << 1;
    }
    return res;
}

273
uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
P
pbrook 已提交
274 275 276 277 278 279 280 281 282
{
    uint32_t res = a + b;
    if (res < a) {
        env->QF = 1;
        res = ~0;
    }
    return res;
}

283
uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
P
pbrook 已提交
284 285 286 287 288 289 290 291 292
{
    uint32_t res = a - b;
    if (res > a) {
        env->QF = 1;
        res = 0;
    }
    return res;
}

P
pbrook 已提交
293
/* Signed saturation.  */
294
static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift)
P
pbrook 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
{
    int32_t top;
    uint32_t mask;

    top = val >> shift;
    mask = (1u << shift) - 1;
    if (top > 0) {
        env->QF = 1;
        return mask;
    } else if (top < -1) {
        env->QF = 1;
        return ~mask;
    }
    return val;
}

/* Unsigned saturation.  */
312
static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift)
P
pbrook 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
{
    uint32_t max;

    max = (1u << shift) - 1;
    if (val < 0) {
        env->QF = 1;
        return 0;
    } else if (val > max) {
        env->QF = 1;
        return max;
    }
    return val;
}

/* Signed saturate.  */
328
uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift)
P
pbrook 已提交
329
{
330
    return do_ssat(env, x, shift);
P
pbrook 已提交
331 332 333
}

/* Dual halfword signed saturate.  */
334
uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift)
P
pbrook 已提交
335 336 337
{
    uint32_t res;

338 339
    res = (uint16_t)do_ssat(env, (int16_t)x, shift);
    res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16;
P
pbrook 已提交
340 341 342 343
    return res;
}

/* Unsigned saturate.  */
344
uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift)
P
pbrook 已提交
345
{
346
    return do_usat(env, x, shift);
P
pbrook 已提交
347 348 349
}

/* Dual halfword unsigned saturate.  */
350
uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift)
P
pbrook 已提交
351 352 353
{
    uint32_t res;

354 355
    res = (uint16_t)do_usat(env, (int16_t)x, shift);
    res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16;
P
pbrook 已提交
356 357
    return res;
}
P
pbrook 已提交
358

P
Paolo Bonzini 已提交
359 360 361 362 363
void HELPER(setend)(CPUARMState *env)
{
    env->uncached_cpsr ^= CPSR_E;
}

364 365 366 367 368 369 370 371 372
/* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
 * The function returns the target EL (1-3) if the instruction is to be trapped;
 * otherwise it returns 0 indicating it is not trapped.
 */
static inline int check_wfx_trap(CPUARMState *env, bool is_wfe)
{
    int cur_el = arm_current_el(env);
    uint64_t mask;

373 374 375 376 377
    if (arm_feature(env, ARM_FEATURE_M)) {
        /* M profile cores can never trap WFI/WFE. */
        return 0;
    }

378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
    /* If we are currently in EL0 then we need to check if SCTLR is set up for
     * WFx instructions being trapped to EL1. These trap bits don't exist in v7.
     */
    if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) {
        int target_el;

        mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI;
        if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) {
            /* Secure EL0 and Secure PL1 is at EL3 */
            target_el = 3;
        } else {
            target_el = 1;
        }

        if (!(env->cp15.sctlr_el[target_el] & mask)) {
            return target_el;
        }
    }

    /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
     * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
     * bits will be zero indicating no trap.
     */
    if (cur_el < 2 && !arm_is_secure(env)) {
        mask = (is_wfe) ? HCR_TWE : HCR_TWI;
        if (env->cp15.hcr_el2 & mask) {
            return 2;
        }
    }

    /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
    if (cur_el < 3) {
        mask = (is_wfe) ? SCR_TWE : SCR_TWI;
        if (env->cp15.scr_el3 & mask) {
            return 3;
        }
    }

    return 0;
}

419
void HELPER(wfi)(CPUARMState *env, uint32_t insn_len)
P
pbrook 已提交
420
{
421
    CPUState *cs = CPU(arm_env_get_cpu(env));
422
    int target_el = check_wfx_trap(env, false);
423

424 425 426 427 428 429 430
    if (cpu_has_work(cs)) {
        /* Don't bother to go into our "low power state" if
         * we would just wake up immediately.
         */
        return;
    }

431
    if (target_el) {
432 433 434
        env->pc -= insn_len;
        raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0, insn_len == 2),
                        target_el);
435 436
    }

437
    cs->exception_index = EXCP_HLT;
438
    cs->halted = 1;
439
    cpu_loop_exit(cs);
P
pbrook 已提交
440 441
}

442 443
void HELPER(wfe)(CPUARMState *env)
{
444 445 446
    /* This is a hint instruction that is semantically different
     * from YIELD even though we currently implement it identically.
     * Don't actually halt the CPU, just yield back to top
447 448 449
     * level loop. This is not going into a "low power state"
     * (ie halting until some event occurs), so we never take
     * a configurable trap to a different exception level.
450
     */
451 452 453 454 455 456 457 458 459 460 461 462
    HELPER(yield)(env);
}

void HELPER(yield)(CPUARMState *env)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);

    /* This is a non-trappable hint instruction that generally indicates
     * that the guest is currently busy-looping. Yield control back to the
     * top level loop so that a more deserving VCPU has a chance to run.
     */
463
    cs->exception_index = EXCP_YIELD;
464
    cpu_loop_exit(cs);
465 466
}

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
/* Raise an internal-to-QEMU exception. This is limited to only
 * those EXCP values which are special cases for QEMU to interrupt
 * execution and not to be used for exceptions which are passed to
 * the guest (those must all have syndrome information and thus should
 * use exception_with_syndrome).
 */
void HELPER(exception_internal)(CPUARMState *env, uint32_t excp)
{
    CPUState *cs = CPU(arm_env_get_cpu(env));

    assert(excp_is_internal(excp));
    cs->exception_index = excp;
    cpu_loop_exit(cs);
}

/* Raise an exception with the specified syndrome register value */
void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp,
484
                                     uint32_t syndrome, uint32_t target_el)
P
pbrook 已提交
485
{
486
    raise_exception(env, excp, syndrome, target_el);
P
pbrook 已提交
487 488
}

489
uint32_t HELPER(cpsr_read)(CPUARMState *env)
P
pbrook 已提交
490
{
491
    return cpsr_read(env) & ~(CPSR_EXEC | CPSR_RESERVED);
P
pbrook 已提交
492 493
}

B
Blue Swirl 已提交
494
void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask)
P
pbrook 已提交
495
{
496
    cpsr_write(env, val, mask, CPSRWriteByInstr);
P
pbrook 已提交
497
}
P
pbrook 已提交
498

499 500 501
/* Write the CPSR for a 32-bit exception return */
void HELPER(cpsr_write_eret)(CPUARMState *env, uint32_t val)
{
502
    cpsr_write(env, val, CPSR_ERET_MASK, CPSRWriteExceptionReturn);
503

504 505 506 507 508 509 510
    /* Generated code has already stored the new PC value, but
     * without masking out its low bits, because which bits need
     * masking depends on whether we're returning to Thumb or ARM
     * state. Do the masking now.
     */
    env->regs[15] &= (env->thumb ? ~1 : ~3);

511
    qemu_mutex_lock_iothread();
512
    arm_call_el_change_hook(arm_env_get_cpu(env));
513
    qemu_mutex_unlock_iothread();
514 515
}

P
pbrook 已提交
516
/* Access to user mode registers from privileged modes.  */
517
uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno)
P
pbrook 已提交
518 519 520 521
{
    uint32_t val;

    if (regno == 13) {
522
        val = env->banked_r13[BANK_USRSYS];
P
pbrook 已提交
523
    } else if (regno == 14) {
524
        val = env->banked_r14[BANK_USRSYS];
P
pbrook 已提交
525 526 527 528 529 530 531 532 533
    } else if (regno >= 8
               && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
        val = env->usr_regs[regno - 8];
    } else {
        val = env->regs[regno];
    }
    return val;
}

B
Blue Swirl 已提交
534
void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val)
P
pbrook 已提交
535 536
{
    if (regno == 13) {
537
        env->banked_r13[BANK_USRSYS] = val;
P
pbrook 已提交
538
    } else if (regno == 14) {
539
        env->banked_r14[BANK_USRSYS] = val;
P
pbrook 已提交
540 541 542 543 544 545 546
    } else if (regno >= 8
               && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
        env->usr_regs[regno - 8] = val;
    } else {
        env->regs[regno] = val;
    }
}
547

548 549 550 551 552 553 554 555 556 557 558
void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
{
    if ((env->uncached_cpsr & CPSR_M) == mode) {
        env->regs[13] = val;
    } else {
        env->banked_r13[bank_number(mode)] = val;
    }
}

uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
{
559 560 561 562 563 564 565 566
    if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SYS) {
        /* SRS instruction is UNPREDICTABLE from System mode; we UNDEF.
         * Other UNPREDICTABLE and UNDEF cases were caught at translate time.
         */
        raise_exception(env, EXCP_UDEF, syn_uncategorized(),
                        exception_target_el(env));
    }

567 568 569 570 571 572 573
    if ((env->uncached_cpsr & CPSR_M) == mode) {
        return env->regs[13];
    } else {
        return env->banked_r13[bank_number(mode)];
    }
}

574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
static void msr_mrs_banked_exc_checks(CPUARMState *env, uint32_t tgtmode,
                                      uint32_t regno)
{
    /* Raise an exception if the requested access is one of the UNPREDICTABLE
     * cases; otherwise return. This broadly corresponds to the pseudocode
     * BankedRegisterAccessValid() and SPSRAccessValid(),
     * except that we have already handled some cases at translate time.
     */
    int curmode = env->uncached_cpsr & CPSR_M;

    if (curmode == tgtmode) {
        goto undef;
    }

    if (tgtmode == ARM_CPU_MODE_USR) {
        switch (regno) {
        case 8 ... 12:
            if (curmode != ARM_CPU_MODE_FIQ) {
                goto undef;
            }
            break;
        case 13:
            if (curmode == ARM_CPU_MODE_SYS) {
                goto undef;
            }
            break;
        case 14:
            if (curmode == ARM_CPU_MODE_HYP || curmode == ARM_CPU_MODE_SYS) {
                goto undef;
            }
            break;
        default:
            break;
        }
    }

    if (tgtmode == ARM_CPU_MODE_HYP) {
        switch (regno) {
        case 17: /* ELR_Hyp */
            if (curmode != ARM_CPU_MODE_HYP && curmode != ARM_CPU_MODE_MON) {
                goto undef;
            }
            break;
        default:
            if (curmode != ARM_CPU_MODE_MON) {
                goto undef;
            }
            break;
        }
    }

    return;

undef:
    raise_exception(env, EXCP_UDEF, syn_uncategorized(),
                    exception_target_el(env));
}

void HELPER(msr_banked)(CPUARMState *env, uint32_t value, uint32_t tgtmode,
                        uint32_t regno)
{
    msr_mrs_banked_exc_checks(env, tgtmode, regno);

    switch (regno) {
    case 16: /* SPSRs */
        env->banked_spsr[bank_number(tgtmode)] = value;
        break;
    case 17: /* ELR_Hyp */
        env->elr_el[2] = value;
        break;
    case 13:
        env->banked_r13[bank_number(tgtmode)] = value;
        break;
    case 14:
        env->banked_r14[bank_number(tgtmode)] = value;
        break;
    case 8 ... 12:
        switch (tgtmode) {
        case ARM_CPU_MODE_USR:
            env->usr_regs[regno - 8] = value;
            break;
        case ARM_CPU_MODE_FIQ:
            env->fiq_regs[regno - 8] = value;
            break;
        default:
            g_assert_not_reached();
        }
        break;
    default:
        g_assert_not_reached();
    }
}

uint32_t HELPER(mrs_banked)(CPUARMState *env, uint32_t tgtmode, uint32_t regno)
{
    msr_mrs_banked_exc_checks(env, tgtmode, regno);

    switch (regno) {
    case 16: /* SPSRs */
        return env->banked_spsr[bank_number(tgtmode)];
    case 17: /* ELR_Hyp */
        return env->elr_el[2];
    case 13:
        return env->banked_r13[bank_number(tgtmode)];
    case 14:
        return env->banked_r14[bank_number(tgtmode)];
    case 8 ... 12:
        switch (tgtmode) {
        case ARM_CPU_MODE_USR:
            return env->usr_regs[regno - 8];
        case ARM_CPU_MODE_FIQ:
            return env->fiq_regs[regno - 8];
        default:
            g_assert_not_reached();
        }
    default:
        g_assert_not_reached();
    }
}

694 695
void HELPER(access_check_cp_reg)(CPUARMState *env, void *rip, uint32_t syndrome,
                                 uint32_t isread)
696 697
{
    const ARMCPRegInfo *ri = rip;
698
    int target_el;
699 700 701

    if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14
        && extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) {
702
        raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
703 704 705 706 707 708
    }

    if (!ri->accessfn) {
        return;
    }

709
    switch (ri->accessfn(env, ri, isread)) {
710 711 712
    case CP_ACCESS_OK:
        return;
    case CP_ACCESS_TRAP:
713 714 715 716 717 718
        target_el = exception_target_el(env);
        break;
    case CP_ACCESS_TRAP_EL2:
        /* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is
         * a bug in the access function.
         */
719
        assert(!arm_is_secure(env) && arm_current_el(env) != 3);
720 721 722 723
        target_el = 2;
        break;
    case CP_ACCESS_TRAP_EL3:
        target_el = 3;
724
        break;
725
    case CP_ACCESS_TRAP_UNCATEGORIZED:
726
        target_el = exception_target_el(env);
727
        syndrome = syn_uncategorized();
728
        break;
729 730 731 732 733 734 735 736
    case CP_ACCESS_TRAP_UNCATEGORIZED_EL2:
        target_el = 2;
        syndrome = syn_uncategorized();
        break;
    case CP_ACCESS_TRAP_UNCATEGORIZED_EL3:
        target_el = 3;
        syndrome = syn_uncategorized();
        break;
737 738 739 740 741 742 743 744 745 746 747 748 749
    case CP_ACCESS_TRAP_FP_EL2:
        target_el = 2;
        /* Since we are an implementation that takes exceptions on a trapped
         * conditional insn only if the insn has passed its condition code
         * check, we take the IMPDEF choice to always report CV=1 COND=0xe
         * (which is also the required value for AArch64 traps).
         */
        syndrome = syn_fp_access_trap(1, 0xe, false);
        break;
    case CP_ACCESS_TRAP_FP_EL3:
        target_el = 3;
        syndrome = syn_fp_access_trap(1, 0xe, false);
        break;
750 751 752
    default:
        g_assert_not_reached();
    }
753

754
    raise_exception(env, EXCP_UDEF, syndrome, target_el);
755 756
}

757 758 759
void HELPER(set_cp_reg)(CPUARMState *env, void *rip, uint32_t value)
{
    const ARMCPRegInfo *ri = rip;
760

761 762 763 764 765 766 767
    if (ri->type & ARM_CP_IO) {
        qemu_mutex_lock_iothread();
        ri->writefn(env, ri, value);
        qemu_mutex_unlock_iothread();
    } else {
        ri->writefn(env, ri, value);
    }
768 769 770 771 772
}

uint32_t HELPER(get_cp_reg)(CPUARMState *env, void *rip)
{
    const ARMCPRegInfo *ri = rip;
773
    uint32_t res;
774

775 776 777 778 779 780 781 782 783
    if (ri->type & ARM_CP_IO) {
        qemu_mutex_lock_iothread();
        res = ri->readfn(env, ri);
        qemu_mutex_unlock_iothread();
    } else {
        res = ri->readfn(env, ri);
    }

    return res;
784 785 786 787 788
}

void HELPER(set_cp_reg64)(CPUARMState *env, void *rip, uint64_t value)
{
    const ARMCPRegInfo *ri = rip;
789

790 791 792 793 794 795 796
    if (ri->type & ARM_CP_IO) {
        qemu_mutex_lock_iothread();
        ri->writefn(env, ri, value);
        qemu_mutex_unlock_iothread();
    } else {
        ri->writefn(env, ri, value);
    }
797 798 799 800 801
}

uint64_t HELPER(get_cp_reg64)(CPUARMState *env, void *rip)
{
    const ARMCPRegInfo *ri = rip;
802 803 804 805 806 807 808 809 810
    uint64_t res;

    if (ri->type & ARM_CP_IO) {
        qemu_mutex_lock_iothread();
        res = ri->readfn(env, ri);
        qemu_mutex_unlock_iothread();
    } else {
        res = ri->readfn(env, ri);
    }
811

812
    return res;
813
}
P
pbrook 已提交
814

815 816 817 818 819 820
void HELPER(msr_i_pstate)(CPUARMState *env, uint32_t op, uint32_t imm)
{
    /* MSR_i to update PSTATE. This is OK from EL0 only if UMA is set.
     * Note that SPSel is never OK from EL0; we rely on handle_msr_i()
     * to catch that case at translate time.
     */
821
    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
822 823 824 825
        uint32_t syndrome = syn_aa64_sysregtrap(0, extract32(op, 0, 3),
                                                extract32(op, 3, 3), 4,
                                                imm, 0x1f, 0);
        raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
826 827 828 829
    }

    switch (op) {
    case 0x05: /* SPSel */
830
        update_spsel(env, imm);
831 832 833 834 835 836 837 838 839 840 841 842
        break;
    case 0x1e: /* DAIFSet */
        env->daif |= (imm << 6) & PSTATE_DAIF;
        break;
    case 0x1f: /* DAIFClear */
        env->daif &= ~((imm << 6) & PSTATE_DAIF);
        break;
    default:
        g_assert_not_reached();
    }
}

843 844 845 846 847
void HELPER(clear_pstate_ss)(CPUARMState *env)
{
    env->pstate &= ~PSTATE_SS;
}

848 849
void HELPER(pre_hvc)(CPUARMState *env)
{
850
    ARMCPU *cpu = arm_env_get_cpu(env);
851
    int cur_el = arm_current_el(env);
852 853 854 855
    /* FIXME: Use actual secure state.  */
    bool secure = false;
    bool undef;

856 857 858 859 860 861 862
    if (arm_is_psci_call(cpu, EXCP_HVC)) {
        /* If PSCI is enabled and this looks like a valid PSCI call then
         * that overrides the architecturally mandated HVC behaviour.
         */
        return;
    }

863 864 865 866 867
    if (!arm_feature(env, ARM_FEATURE_EL2)) {
        /* If EL2 doesn't exist, HVC always UNDEFs */
        undef = true;
    } else if (arm_feature(env, ARM_FEATURE_EL3)) {
        /* EL3.HCE has priority over EL2.HCD. */
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
        undef = !(env->cp15.scr_el3 & SCR_HCE);
    } else {
        undef = env->cp15.hcr_el2 & HCR_HCD;
    }

    /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
     * For ARMv8/AArch64, HVC is allowed in EL3.
     * Note that we've already trapped HVC from EL0 at translation
     * time.
     */
    if (secure && (!is_a64(env) || cur_el == 1)) {
        undef = true;
    }

    if (undef) {
883 884
        raise_exception(env, EXCP_UDEF, syn_uncategorized(),
                        exception_target_el(env));
885 886 887
    }
}

888 889
void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome)
{
890
    ARMCPU *cpu = arm_env_get_cpu(env);
891
    int cur_el = arm_current_el(env);
892
    bool secure = arm_is_secure(env);
893
    bool smd = env->cp15.scr_el3 & SCR_SMD;
894 895 896 897 898 899
    /* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state.
     * On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization
     *  extensions, SMD only applies to NS state.
     * On ARMv7 without the Virtualization extensions, the SMD bit
     * doesn't exist, but we forbid the guest to set it to 1 in scr_write(),
     * so we need not special case this here.
900
     */
901
    bool undef = arm_feature(env, ARM_FEATURE_AARCH64) ? smd : smd && !secure;
902

903 904 905 906 907 908 909 910
    if (!arm_feature(env, ARM_FEATURE_EL3) &&
        cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
        /* If we have no EL3 then SMC always UNDEFs and can't be
         * trapped to EL2. PSCI-via-SMC is a sort of ersatz EL3
         * firmware within QEMU, and we want an EL2 guest to be able
         * to forbid its EL1 from making PSCI calls into QEMU's
         * "firmware" via HCR.TSC, so for these purposes treat
         * PSCI-via-SMC as implying an EL3.
911
         */
912 913
        undef = true;
    } else if (!secure && cur_el == 1 && (env->cp15.hcr_el2 & HCR_TSC)) {
914 915 916 917
        /* In NS EL1, HCR controlled routing to EL2 has priority over SMD.
         * We also want an EL2 guest to be able to forbid its EL1 from
         * making PSCI calls into QEMU's "firmware" via HCR.TSC.
         */
918
        raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
919 920
    }

921 922 923 924 925
    /* If PSCI is enabled and this looks like a valid PSCI call then
     * suppress the UNDEF -- we'll catch the SMC exception and
     * implement the PSCI call behaviour there.
     */
    if (undef && !arm_is_psci_call(cpu, EXCP_SMC)) {
926 927
        raise_exception(env, EXCP_UDEF, syn_uncategorized(),
                        exception_target_el(env));
928 929 930
    }
}

931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
static int el_from_spsr(uint32_t spsr)
{
    /* Return the exception level that this SPSR is requesting a return to,
     * or -1 if it is invalid (an illegal return)
     */
    if (spsr & PSTATE_nRW) {
        switch (spsr & CPSR_M) {
        case ARM_CPU_MODE_USR:
            return 0;
        case ARM_CPU_MODE_HYP:
            return 2;
        case ARM_CPU_MODE_FIQ:
        case ARM_CPU_MODE_IRQ:
        case ARM_CPU_MODE_SVC:
        case ARM_CPU_MODE_ABT:
        case ARM_CPU_MODE_UND:
        case ARM_CPU_MODE_SYS:
            return 1;
        case ARM_CPU_MODE_MON:
            /* Returning to Mon from AArch64 is never possible,
             * so this is an illegal return.
             */
        default:
            return -1;
        }
    } else {
        if (extract32(spsr, 1, 1)) {
            /* Return with reserved M[1] bit set */
            return -1;
        }
        if (extract32(spsr, 0, 4) == 1) {
            /* return to EL0 with M[0] bit set */
            return -1;
        }
        return extract32(spsr, 2, 2);
    }
}

969 970
void HELPER(exception_return)(CPUARMState *env)
{
971
    int cur_el = arm_current_el(env);
972
    unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el);
973
    uint32_t spsr = env->banked_spsr[spsr_idx];
974
    int new_el;
975
    bool return_to_aa64 = (spsr & PSTATE_nRW) == 0;
976

977
    aarch64_save_sp(env, cur_el);
978

979
    arm_clear_exclusive(env);
980

981 982 983 984 985 986 987 988 989 990 991
    /* We must squash the PSTATE.SS bit to zero unless both of the
     * following hold:
     *  1. debug exceptions are currently disabled
     *  2. singlestep will be active in the EL we return to
     * We check 1 here and 2 after we've done the pstate/cpsr write() to
     * transition to the EL we're going to.
     */
    if (arm_generate_debug_exceptions(env)) {
        spsr &= ~PSTATE_SS;
    }

992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
    new_el = el_from_spsr(spsr);
    if (new_el == -1) {
        goto illegal_return;
    }
    if (new_el > cur_el
        || (new_el == 2 && !arm_feature(env, ARM_FEATURE_EL2))) {
        /* Disallow return to an EL which is unimplemented or higher
         * than the current one.
         */
        goto illegal_return;
    }

    if (new_el != 0 && arm_el_is_aa64(env, new_el) != return_to_aa64) {
        /* Return to an EL which is configured for a different register width */
        goto illegal_return;
    }

1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
    if (new_el == 2 && arm_is_secure_below_el3(env)) {
        /* Return to the non-existent secure-EL2 */
        goto illegal_return;
    }

    if (new_el == 1 && (env->cp15.hcr_el2 & HCR_TGE)
        && !arm_is_secure_below_el3(env)) {
        goto illegal_return;
    }

1019
    if (!return_to_aa64) {
1020
        env->aarch64 = 0;
1021 1022 1023 1024
        /* We do a raw CPSR write because aarch64_sync_64_to_32()
         * will sort the register banks out for us, and we've already
         * caught all the bad-mode cases in el_from_spsr().
         */
1025
        cpsr_write(env, spsr, ~0, CPSRWriteRaw);
1026 1027 1028
        if (!arm_singlestep_active(env)) {
            env->uncached_cpsr &= ~PSTATE_SS;
        }
1029
        aarch64_sync_64_to_32(env);
1030

1031 1032 1033 1034 1035
        if (spsr & CPSR_T) {
            env->regs[15] = env->elr_el[cur_el] & ~0x1;
        } else {
            env->regs[15] = env->elr_el[cur_el] & ~0x3;
        }
1036 1037 1038
        qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
                      "AArch32 EL%d PC 0x%" PRIx32 "\n",
                      cur_el, new_el, env->regs[15]);
1039 1040 1041
    } else {
        env->aarch64 = 1;
        pstate_write(env, spsr);
1042 1043 1044
        if (!arm_singlestep_active(env)) {
            env->pstate &= ~PSTATE_SS;
        }
1045
        aarch64_restore_sp(env, new_el);
1046
        env->pc = env->elr_el[cur_el];
1047 1048 1049
        qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
                      "AArch64 EL%d PC 0x%" PRIx64 "\n",
                      cur_el, new_el, env->pc);
1050 1051
    }

1052
    qemu_mutex_lock_iothread();
1053
    arm_call_el_change_hook(arm_env_get_cpu(env));
1054
    qemu_mutex_unlock_iothread();
1055

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
    return;

illegal_return:
    /* Illegal return events of various kinds have architecturally
     * mandated behaviour:
     * restore NZCV and DAIF from SPSR_ELx
     * set PSTATE.IL
     * restore PC from ELR_ELx
     * no change to exception level, execution state or stack pointer
     */
    env->pstate |= PSTATE_IL;
1067
    env->pc = env->elr_el[cur_el];
1068 1069 1070
    spsr &= PSTATE_NZCV | PSTATE_DAIF;
    spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF);
    pstate_write(env, spsr);
1071 1072 1073
    if (!arm_singlestep_active(env)) {
        env->pstate &= ~PSTATE_SS;
    }
1074 1075
    qemu_log_mask(LOG_GUEST_ERROR, "Illegal exception return at EL%d: "
                  "resuming execution at 0x%" PRIx64 "\n", cur_el, env->pc);
1076 1077
}

1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
/* Return true if the linked breakpoint entry lbn passes its checks */
static bool linked_bp_matches(ARMCPU *cpu, int lbn)
{
    CPUARMState *env = &cpu->env;
    uint64_t bcr = env->cp15.dbgbcr[lbn];
    int brps = extract32(cpu->dbgdidr, 24, 4);
    int ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
    int bt;
    uint32_t contextidr;

    /* Links to unimplemented or non-context aware breakpoints are
     * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
     * as if linked to an UNKNOWN context-aware breakpoint (in which
     * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
     * We choose the former.
     */
    if (lbn > brps || lbn < (brps - ctx_cmps)) {
        return false;
    }

    bcr = env->cp15.dbgbcr[lbn];

    if (extract64(bcr, 0, 1) == 0) {
        /* Linked breakpoint disabled : generate no events */
        return false;
    }

    bt = extract64(bcr, 20, 4);

    /* We match the whole register even if this is AArch32 using the
     * short descriptor format (in which case it holds both PROCID and ASID),
     * since we don't implement the optional v7 context ID masking.
     */
1111
    contextidr = extract64(env->cp15.contextidr_el[1], 0, 32);
1112 1113 1114

    switch (bt) {
    case 3: /* linked context ID match */
1115
        if (arm_current_el(env) > 1) {
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
            /* Context matches never fire in EL2 or (AArch64) EL3 */
            return false;
        }
        return (contextidr == extract64(env->cp15.dbgbvr[lbn], 0, 32));
    case 5: /* linked address mismatch (reserved in AArch64) */
    case 9: /* linked VMID match (reserved if no EL2) */
    case 11: /* linked context ID and VMID match (reserved if no EL2) */
    default:
        /* Links to Unlinked context breakpoints must generate no
         * events; we choose to do the same for reserved values too.
         */
        return false;
    }

    return false;
}

1133
static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp)
1134 1135
{
    CPUARMState *env = &cpu->env;
1136
    uint64_t cr;
1137
    int pac, hmc, ssc, wt, lbn;
1138 1139 1140 1141
    /* Note that for watchpoints the check is against the CPU security
     * state, not the S/NS attribute on the offending data access.
     */
    bool is_secure = arm_is_secure(env);
1142
    int access_el = arm_current_el(env);
1143

1144
    if (is_wp) {
1145 1146 1147
        CPUWatchpoint *wp = env->cpu_watchpoint[n];

        if (!wp || !(wp->flags & BP_WATCHPOINT_HIT)) {
1148 1149 1150
            return false;
        }
        cr = env->cp15.dbgwcr[n];
1151 1152 1153 1154 1155 1156 1157
        if (wp->hitattrs.user) {
            /* The LDRT/STRT/LDT/STT "unprivileged access" instructions should
             * match watchpoints as if they were accesses done at EL0, even if
             * the CPU is at EL1 or higher.
             */
            access_el = 0;
        }
1158 1159
    } else {
        uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
1160

1161 1162 1163 1164 1165
        if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) {
            return false;
        }
        cr = env->cp15.dbgbcr[n];
    }
1166
    /* The WATCHPOINT_HIT flag guarantees us that the watchpoint is
1167 1168 1169 1170 1171
     * enabled and that the address and access type match; for breakpoints
     * we know the address matched; check the remaining fields, including
     * linked breakpoints. We rely on WCR and BCR having the same layout
     * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
     * Note that some combinations of {PAC, HMC, SSC} are reserved and
1172 1173 1174 1175 1176 1177
     * must act either like some valid combination or as if the watchpoint
     * were disabled. We choose the former, and use this together with
     * the fact that EL3 must always be Secure and EL2 must always be
     * Non-Secure to simplify the code slightly compared to the full
     * table in the ARM ARM.
     */
1178 1179 1180
    pac = extract64(cr, 1, 2);
    hmc = extract64(cr, 13, 1);
    ssc = extract64(cr, 14, 2);
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197

    switch (ssc) {
    case 0:
        break;
    case 1:
    case 3:
        if (is_secure) {
            return false;
        }
        break;
    case 2:
        if (!is_secure) {
            return false;
        }
        break;
    }

1198
    switch (access_el) {
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
    case 3:
    case 2:
        if (!hmc) {
            return false;
        }
        break;
    case 1:
        if (extract32(pac, 0, 1) == 0) {
            return false;
        }
        break;
    case 0:
        if (extract32(pac, 1, 1) == 0) {
            return false;
        }
        break;
    default:
        g_assert_not_reached();
    }

1219 1220
    wt = extract64(cr, 20, 1);
    lbn = extract64(cr, 16, 4);
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242

    if (wt && !linked_bp_matches(cpu, lbn)) {
        return false;
    }

    return true;
}

static bool check_watchpoints(ARMCPU *cpu)
{
    CPUARMState *env = &cpu->env;
    int n;

    /* If watchpoints are disabled globally or we can't take debug
     * exceptions here then watchpoint firings are ignored.
     */
    if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
        || !arm_generate_debug_exceptions(env)) {
        return false;
    }

    for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) {
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
        if (bp_wp_matches(cpu, n, true)) {
            return true;
        }
    }
    return false;
}

static bool check_breakpoints(ARMCPU *cpu)
{
    CPUARMState *env = &cpu->env;
    int n;

    /* If breakpoints are disabled globally or we can't take debug
     * exceptions here then breakpoint firings are ignored.
     */
    if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
        || !arm_generate_debug_exceptions(env)) {
        return false;
    }

    for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) {
        if (bp_wp_matches(cpu, n, false)) {
1265 1266 1267 1268 1269 1270
            return true;
        }
    }
    return false;
}

1271 1272 1273 1274 1275 1276 1277 1278 1279
void HELPER(check_breakpoints)(CPUARMState *env)
{
    ARMCPU *cpu = arm_env_get_cpu(env);

    if (check_breakpoints(cpu)) {
        HELPER(exception_internal(env, EXCP_DEBUG));
    }
}

1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp)
{
    /* Called by core code when a CPU watchpoint fires; need to check if this
     * is also an architectural watchpoint match.
     */
    ARMCPU *cpu = ARM_CPU(cs);

    return check_watchpoints(cpu);
}

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len)
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;

    /* In BE32 system mode, target memory is stored byteswapped (on a
     * little-endian host system), and by the time we reach here (via an
     * opcode helper) the addresses of subword accesses have been adjusted
     * to account for that, which means that watchpoints will not match.
     * Undo the adjustment here.
     */
    if (arm_sctlr_b(env)) {
        if (len == 1) {
            addr ^= 3;
        } else if (len == 2) {
            addr ^= 2;
        }
    }

    return addr;
}

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
void arm_debug_excp_handler(CPUState *cs)
{
    /* Called by core code when a watchpoint or breakpoint fires;
     * need to check which one and raise the appropriate exception.
     */
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
    CPUWatchpoint *wp_hit = cs->watchpoint_hit;

    if (wp_hit) {
        if (wp_hit->flags & BP_CPU) {
1323 1324 1325
            bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0;
            bool same_el = arm_debug_target_el(env) == arm_current_el(env);

1326
            cs->watchpoint_hit = NULL;
1327 1328 1329

            if (extended_addresses_enabled(env)) {
                env->exception.fsr = (1 << 9) | 0x22;
1330
            } else {
1331
                env->exception.fsr = 0x2;
1332
            }
1333 1334 1335 1336
            env->exception.vaddress = wp_hit->hitaddr;
            raise_exception(env, EXCP_DATA_ABORT,
                    syn_watchpoint(same_el, 0, wnr),
                    arm_debug_target_el(env));
1337
        }
1338
    } else {
1339
        uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
1340
        bool same_el = (arm_debug_target_el(env) == arm_current_el(env));
1341

1342 1343 1344 1345 1346 1347 1348
        /* (1) GDB breakpoints should be handled first.
         * (2) Do not raise a CPU exception if no CPU breakpoint has fired,
         * since singlestep is also done by generating a debug internal
         * exception.
         */
        if (cpu_breakpoint_test(cs, pc, BP_GDB)
            || !cpu_breakpoint_test(cs, pc, BP_CPU)) {
1349 1350 1351
            return;
        }

1352 1353 1354 1355
        if (extended_addresses_enabled(env)) {
            env->exception.fsr = (1 << 9) | 0x22;
        } else {
            env->exception.fsr = 0x2;
1356
        }
1357 1358 1359 1360
        /* FAR is UNKNOWN, so doesn't need setting */
        raise_exception(env, EXCP_PREFETCH_ABORT,
                        syn_breakpoint(same_el),
                        arm_debug_target_el(env));
1361 1362 1363
    }
}

P
pbrook 已提交
1364 1365 1366 1367 1368 1369
/* ??? Flag setting arithmetic is awkward because we need to do comparisons.
   The only way to do that in TCG is a conditional branch, which clobbers
   all our temporaries.  For now implement these as helper functions.  */

/* Similarly for variable shift instructions.  */

1370
uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i)
P
pbrook 已提交
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
{
    int shift = i & 0xff;
    if (shift >= 32) {
        if (shift == 32)
            env->CF = x & 1;
        else
            env->CF = 0;
        return 0;
    } else if (shift != 0) {
        env->CF = (x >> (32 - shift)) & 1;
        return x << shift;
    }
    return x;
}

1386
uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i)
P
pbrook 已提交
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
{
    int shift = i & 0xff;
    if (shift >= 32) {
        if (shift == 32)
            env->CF = (x >> 31) & 1;
        else
            env->CF = 0;
        return 0;
    } else if (shift != 0) {
        env->CF = (x >> (shift - 1)) & 1;
        return x >> shift;
    }
    return x;
}

1402
uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i)
P
pbrook 已提交
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
{
    int shift = i & 0xff;
    if (shift >= 32) {
        env->CF = (x >> 31) & 1;
        return (int32_t)x >> 31;
    } else if (shift != 0) {
        env->CF = (x >> (shift - 1)) & 1;
        return (int32_t)x >> shift;
    }
    return x;
}

1415
uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i)
P
pbrook 已提交
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
{
    int shift1, shift;
    shift1 = i & 0xff;
    shift = shift1 & 0x1f;
    if (shift == 0) {
        if (shift1 != 0)
            env->CF = (x >> 31) & 1;
        return x;
    } else {
        env->CF = (x >> (shift - 1)) & 1;
        return ((uint32_t)x >> shift) | (x << (32 - shift));
    }
}