op_helper.c 42.8 KB
Newer Older
B
bellard 已提交
1 2
/*
 *  ARM helper routines
3
 *
P
pbrook 已提交
4
 *  Copyright (c) 2005-2007 CodeSourcery, LLC
B
bellard 已提交
5 6 7 8 9 10 11 12 13 14 15 16
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
B
bellard 已提交
18
 */
P
Peter Maydell 已提交
19
#include "qemu/osdep.h"
20
#include "qemu/log.h"
21
#include "qemu/main-loop.h"
B
Blue Swirl 已提交
22
#include "cpu.h"
23
#include "exec/helper-proto.h"
24
#include "internals.h"
25
#include "exec/exec-all.h"
P
Paolo Bonzini 已提交
26
#include "exec/cpu_ldst.h"
B
bellard 已提交
27

P
pbrook 已提交
28 29 30
#define SIGNBIT (uint32_t)0x80000000
#define SIGNBIT64 ((uint64_t)1 << 63)

31 32
static void raise_exception(CPUARMState *env, uint32_t excp,
                            uint32_t syndrome, uint32_t target_el)
B
bellard 已提交
33
{
34
    CPUState *cs = CPU(arm_env_get_cpu(env));
35

36 37 38 39
    assert(!excp_is_internal(excp));
    cs->exception_index = excp;
    env->exception.syndrome = syndrome;
    env->exception.target_el = target_el;
40
    cpu_loop_exit(cs);
B
bellard 已提交
41 42
}

43 44 45 46 47 48 49 50 51 52 53 54 55 56
static int exception_target_el(CPUARMState *env)
{
    int target_el = MAX(1, arm_current_el(env));

    /* No such thing as secure EL1 if EL3 is aarch32, so update the target EL
     * to EL3 in this case.
     */
    if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
        target_el = 3;
    }

    return target_el;
}

57
uint32_t HELPER(neon_tbl)(CPUARMState *env, uint32_t ireg, uint32_t def,
P
pbrook 已提交
58
                          uint32_t rn, uint32_t maxindex)
P
pbrook 已提交
59 60 61 62 63 64 65 66 67
{
    uint32_t val;
    uint32_t tmp;
    int index;
    int shift;
    uint64_t *table;
    table = (uint64_t *)&env->vfp.regs[rn];
    val = 0;
    for (shift = 0; shift < 32; shift += 8) {
P
pbrook 已提交
68 69
        index = (ireg >> shift) & 0xff;
        if (index < maxindex) {
P
pbrook 已提交
70
            tmp = (table[index >> 3] >> ((index & 7) << 3)) & 0xff;
P
pbrook 已提交
71 72
            val |= tmp << shift;
        } else {
P
pbrook 已提交
73
            val |= def & (0xff << shift);
P
pbrook 已提交
74 75
        }
    }
P
pbrook 已提交
76
    return val;
P
pbrook 已提交
77 78
}

B
bellard 已提交
79 80
#if !defined(CONFIG_USER_ONLY)

81 82
static inline uint32_t merge_syn_data_abort(uint32_t template_syn,
                                            unsigned int target_el,
83
                                            bool same_el, bool ea,
84
                                            bool s1ptw, bool is_write,
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
                                            int fsc)
{
    uint32_t syn;

    /* ISV is only set for data aborts routed to EL2 and
     * never for stage-1 page table walks faulting on stage 2.
     *
     * Furthermore, ISV is only set for certain kinds of load/stores.
     * If the template syndrome does not have ISV set, we should leave
     * it cleared.
     *
     * See ARMv8 specs, D7-1974:
     * ISS encoding for an exception from a Data Abort, the
     * ISV field.
     */
    if (!(template_syn & ARM_EL_ISV) || target_el != 2 || s1ptw) {
        syn = syn_data_abort_no_iss(same_el,
102
                                    ea, 0, s1ptw, is_write, fsc);
103 104 105 106 107 108 109
    } else {
        /* Fields: IL, ISV, SAS, SSE, SRT, SF and AR come from the template
         * syndrome created at translation time.
         * Now we create the runtime syndrome with the remaining fields.
         */
        syn = syn_data_abort_with_iss(same_el,
                                      0, 0, 0, 0, 0,
110
                                      ea, 0, s1ptw, is_write, fsc,
111 112 113 114 115 116 117
                                      false);
        /* Merge the runtime syndrome with the template syndrome.  */
        syn |= template_syn;
    }
    return syn;
}

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
static void deliver_fault(ARMCPU *cpu, vaddr addr, MMUAccessType access_type,
                          uint32_t fsr, uint32_t fsc, ARMMMUFaultInfo *fi)
{
    CPUARMState *env = &cpu->env;
    int target_el;
    bool same_el;
    uint32_t syn, exc;

    target_el = exception_target_el(env);
    if (fi->stage2) {
        target_el = 2;
        env->cp15.hpfar_el2 = extract64(fi->s2addr, 12, 47) << 4;
    }
    same_el = (arm_current_el(env) == target_el);

    if (fsc == 0x3f) {
        /* Caller doesn't have a long-format fault status code. This
         * should only happen if this fault will never actually be reported
         * to an EL that uses a syndrome register. Check that here.
         * 0x3f is a (currently) reserved FSC code, in case the constructed
         * syndrome does leak into the guest somehow.
         */
        assert(target_el != 2 && !arm_el_is_aa64(env, target_el));
    }

    if (access_type == MMU_INST_FETCH) {
144
        syn = syn_insn_abort(same_el, fi->ea, fi->s1ptw, fsc);
145 146 147
        exc = EXCP_PREFETCH_ABORT;
    } else {
        syn = merge_syn_data_abort(env->exception.syndrome, target_el,
148
                                   same_el, fi->ea, fi->s1ptw,
149 150 151 152 153 154 155 156 157 158 159 160 161 162
                                   access_type == MMU_DATA_STORE,
                                   fsc);
        if (access_type == MMU_DATA_STORE
            && arm_feature(env, ARM_FEATURE_V6)) {
            fsr |= (1 << 11);
        }
        exc = EXCP_DATA_ABORT;
    }

    env->exception.vaddress = addr;
    env->exception.fsr = fsr;
    raise_exception(env, exc, syn, target_el);
}

B
bellard 已提交
163
/* try to fill the TLB and return an exception if error. If retaddr is
164 165 166
 * NULL, it means that the function was called in C code (i.e. not
 * from generated code or from helper.c)
 */
167 168
void tlb_fill(CPUState *cs, target_ulong addr, MMUAccessType access_type,
              int mmu_idx, uintptr_t retaddr)
B
bellard 已提交
169
{
170 171
    bool ret;
    uint32_t fsr = 0;
172
    ARMMMUFaultInfo fi = {};
B
bellard 已提交
173

174
    ret = arm_tlb_fill(cs, addr, access_type, mmu_idx, &fsr, &fi);
175
    if (unlikely(ret)) {
176
        ARMCPU *cpu = ARM_CPU(cs);
177
        uint32_t fsc;
178

B
bellard 已提交
179 180
        if (retaddr) {
            /* now we have a real cpu fault */
181
            cpu_restore_state(cs, retaddr);
B
bellard 已提交
182
        }
183

184 185 186 187 188 189 190
        if (fsr & (1 << 9)) {
            /* LPAE format fault status register : bottom 6 bits are
             * status code in the same form as needed for syndrome
             */
            fsc = extract32(fsr, 0, 6);
        } else {
            /* Short format FSR : this fault will never actually be reported
191 192 193 194
             * to an EL that uses a syndrome register. Use a (currently)
             * reserved FSR code in case the constructed syndrome does leak
             * into the guest somehow. deliver_fault will assert that
             * we don't target an EL using the syndrome.
195 196 197
             */
            fsc = 0x3f;
        }
198

199
        deliver_fault(cpu, addr, access_type, fsr, fsc, &fi);
B
bellard 已提交
200 201
    }
}
202 203

/* Raise a data fault alignment exception for the specified virtual address */
204 205 206
void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
                                 MMUAccessType access_type,
                                 int mmu_idx, uintptr_t retaddr)
207 208 209
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
210 211
    uint32_t fsr, fsc;
    ARMMMUFaultInfo fi = {};
212
    ARMMMUIdx arm_mmu_idx = core_to_arm_mmu_idx(env, mmu_idx);
213 214 215 216 217 218 219 220 221

    if (retaddr) {
        /* now we have a real cpu fault */
        cpu_restore_state(cs, retaddr);
    }

    /* the DFSR for an alignment fault depends on whether we're using
     * the LPAE long descriptor format, or the short descriptor format
     */
222
    if (arm_s1_regime_using_lpae_format(env, arm_mmu_idx)) {
223
        fsr = (1 << 9) | 0x21;
224
    } else {
225
        fsr = 0x1;
226
    }
227
    fsc = 0x21;
228

229
    deliver_fault(cpu, vaddr, access_type, fsr, fsc, &fi);
230 231
}

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
/* arm_cpu_do_transaction_failed: handle a memory system error response
 * (eg "no device/memory present at address") by raising an external abort
 * exception
 */
void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
                                   vaddr addr, unsigned size,
                                   MMUAccessType access_type,
                                   int mmu_idx, MemTxAttrs attrs,
                                   MemTxResult response, uintptr_t retaddr)
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
    uint32_t fsr, fsc;
    ARMMMUFaultInfo fi = {};
    ARMMMUIdx arm_mmu_idx = core_to_arm_mmu_idx(env, mmu_idx);

    if (retaddr) {
        /* now we have a real cpu fault */
        cpu_restore_state(cs, retaddr);
    }

    /* The EA bit in syndromes and fault status registers is an
     * IMPDEF classification of external aborts. ARM implementations
     * usually use this to indicate AXI bus Decode error (0) or
     * Slave error (1); in QEMU we follow that.
     */
    fi.ea = (response != MEMTX_DECODE_ERROR);

    /* The fault status register format depends on whether we're using
     * the LPAE long descriptor format, or the short descriptor format.
     */
    if (arm_s1_regime_using_lpae_format(env, arm_mmu_idx)) {
        /* long descriptor form, STATUS 0b010000: synchronous ext abort */
        fsr = (fi.ea << 12) | (1 << 9) | 0x10;
    } else {
        /* short descriptor form, FSR 0b01000 : synchronous ext abort */
        fsr = (fi.ea << 12) | 0x8;
    }
    fsc = 0x10;

    deliver_fault(cpu, addr, access_type, fsr, fsc, &fi);
}

275
#endif /* !defined(CONFIG_USER_ONLY) */
P
pbrook 已提交
276

277
uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b)
P
pbrook 已提交
278 279 280 281 282 283 284
{
    uint32_t res = a + b;
    if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT))
        env->QF = 1;
    return res;
}

285
uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
P
pbrook 已提交
286 287 288 289 290 291 292 293 294
{
    uint32_t res = a + b;
    if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
        env->QF = 1;
        res = ~(((int32_t)a >> 31) ^ SIGNBIT);
    }
    return res;
}

295
uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
P
pbrook 已提交
296 297 298 299 300 301 302 303 304
{
    uint32_t res = a - b;
    if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
        env->QF = 1;
        res = ~(((int32_t)a >> 31) ^ SIGNBIT);
    }
    return res;
}

305
uint32_t HELPER(double_saturate)(CPUARMState *env, int32_t val)
P
pbrook 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319
{
    uint32_t res;
    if (val >= 0x40000000) {
        res = ~SIGNBIT;
        env->QF = 1;
    } else if (val <= (int32_t)0xc0000000) {
        res = SIGNBIT;
        env->QF = 1;
    } else {
        res = val << 1;
    }
    return res;
}

320
uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
P
pbrook 已提交
321 322 323 324 325 326 327 328 329
{
    uint32_t res = a + b;
    if (res < a) {
        env->QF = 1;
        res = ~0;
    }
    return res;
}

330
uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
P
pbrook 已提交
331 332 333 334 335 336 337 338 339
{
    uint32_t res = a - b;
    if (res > a) {
        env->QF = 1;
        res = 0;
    }
    return res;
}

P
pbrook 已提交
340
/* Signed saturation.  */
341
static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift)
P
pbrook 已提交
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
{
    int32_t top;
    uint32_t mask;

    top = val >> shift;
    mask = (1u << shift) - 1;
    if (top > 0) {
        env->QF = 1;
        return mask;
    } else if (top < -1) {
        env->QF = 1;
        return ~mask;
    }
    return val;
}

/* Unsigned saturation.  */
359
static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift)
P
pbrook 已提交
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
{
    uint32_t max;

    max = (1u << shift) - 1;
    if (val < 0) {
        env->QF = 1;
        return 0;
    } else if (val > max) {
        env->QF = 1;
        return max;
    }
    return val;
}

/* Signed saturate.  */
375
uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift)
P
pbrook 已提交
376
{
377
    return do_ssat(env, x, shift);
P
pbrook 已提交
378 379 380
}

/* Dual halfword signed saturate.  */
381
uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift)
P
pbrook 已提交
382 383 384
{
    uint32_t res;

385 386
    res = (uint16_t)do_ssat(env, (int16_t)x, shift);
    res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16;
P
pbrook 已提交
387 388 389 390
    return res;
}

/* Unsigned saturate.  */
391
uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift)
P
pbrook 已提交
392
{
393
    return do_usat(env, x, shift);
P
pbrook 已提交
394 395 396
}

/* Dual halfword unsigned saturate.  */
397
uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift)
P
pbrook 已提交
398 399 400
{
    uint32_t res;

401 402
    res = (uint16_t)do_usat(env, (int16_t)x, shift);
    res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16;
P
pbrook 已提交
403 404
    return res;
}
P
pbrook 已提交
405

P
Paolo Bonzini 已提交
406 407 408 409 410
void HELPER(setend)(CPUARMState *env)
{
    env->uncached_cpsr ^= CPSR_E;
}

411 412 413 414 415 416 417 418 419
/* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
 * The function returns the target EL (1-3) if the instruction is to be trapped;
 * otherwise it returns 0 indicating it is not trapped.
 */
static inline int check_wfx_trap(CPUARMState *env, bool is_wfe)
{
    int cur_el = arm_current_el(env);
    uint64_t mask;

420 421 422 423 424
    if (arm_feature(env, ARM_FEATURE_M)) {
        /* M profile cores can never trap WFI/WFE. */
        return 0;
    }

425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
    /* If we are currently in EL0 then we need to check if SCTLR is set up for
     * WFx instructions being trapped to EL1. These trap bits don't exist in v7.
     */
    if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) {
        int target_el;

        mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI;
        if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) {
            /* Secure EL0 and Secure PL1 is at EL3 */
            target_el = 3;
        } else {
            target_el = 1;
        }

        if (!(env->cp15.sctlr_el[target_el] & mask)) {
            return target_el;
        }
    }

    /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
     * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
     * bits will be zero indicating no trap.
     */
    if (cur_el < 2 && !arm_is_secure(env)) {
        mask = (is_wfe) ? HCR_TWE : HCR_TWI;
        if (env->cp15.hcr_el2 & mask) {
            return 2;
        }
    }

    /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
    if (cur_el < 3) {
        mask = (is_wfe) ? SCR_TWE : SCR_TWI;
        if (env->cp15.scr_el3 & mask) {
            return 3;
        }
    }

    return 0;
}

B
Blue Swirl 已提交
466
void HELPER(wfi)(CPUARMState *env)
P
pbrook 已提交
467
{
468
    CPUState *cs = CPU(arm_env_get_cpu(env));
469
    int target_el = check_wfx_trap(env, false);
470

471 472 473 474 475 476 477
    if (cpu_has_work(cs)) {
        /* Don't bother to go into our "low power state" if
         * we would just wake up immediately.
         */
        return;
    }

478 479 480 481 482
    if (target_el) {
        env->pc -= 4;
        raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0), target_el);
    }

483
    cs->exception_index = EXCP_HLT;
484
    cs->halted = 1;
485
    cpu_loop_exit(cs);
P
pbrook 已提交
486 487
}

488 489
void HELPER(wfe)(CPUARMState *env)
{
490 491 492
    /* This is a hint instruction that is semantically different
     * from YIELD even though we currently implement it identically.
     * Don't actually halt the CPU, just yield back to top
493 494 495
     * level loop. This is not going into a "low power state"
     * (ie halting until some event occurs), so we never take
     * a configurable trap to a different exception level.
496
     */
497 498 499 500 501 502 503 504
    HELPER(yield)(env);
}

void HELPER(yield)(CPUARMState *env)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);

505 506 507 508 509 510 511
    /* When running in MTTCG we don't generate jumps to the yield and
     * WFE helpers as it won't affect the scheduling of other vCPUs.
     * If we wanted to more completely model WFE/SEV so we don't busy
     * spin unnecessarily we would need to do something more involved.
     */
    g_assert(!parallel_cpus);

512 513 514 515
    /* This is a non-trappable hint instruction that generally indicates
     * that the guest is currently busy-looping. Yield control back to the
     * top level loop so that a more deserving VCPU has a chance to run.
     */
516
    cs->exception_index = EXCP_YIELD;
517
    cpu_loop_exit(cs);
518 519
}

520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
/* Raise an internal-to-QEMU exception. This is limited to only
 * those EXCP values which are special cases for QEMU to interrupt
 * execution and not to be used for exceptions which are passed to
 * the guest (those must all have syndrome information and thus should
 * use exception_with_syndrome).
 */
void HELPER(exception_internal)(CPUARMState *env, uint32_t excp)
{
    CPUState *cs = CPU(arm_env_get_cpu(env));

    assert(excp_is_internal(excp));
    cs->exception_index = excp;
    cpu_loop_exit(cs);
}

/* Raise an exception with the specified syndrome register value */
void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp,
537
                                     uint32_t syndrome, uint32_t target_el)
P
pbrook 已提交
538
{
539
    raise_exception(env, excp, syndrome, target_el);
P
pbrook 已提交
540 541
}

542
uint32_t HELPER(cpsr_read)(CPUARMState *env)
P
pbrook 已提交
543
{
544
    return cpsr_read(env) & ~(CPSR_EXEC | CPSR_RESERVED);
P
pbrook 已提交
545 546
}

B
Blue Swirl 已提交
547
void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask)
P
pbrook 已提交
548
{
549
    cpsr_write(env, val, mask, CPSRWriteByInstr);
P
pbrook 已提交
550
}
P
pbrook 已提交
551

552 553 554
/* Write the CPSR for a 32-bit exception return */
void HELPER(cpsr_write_eret)(CPUARMState *env, uint32_t val)
{
555
    cpsr_write(env, val, CPSR_ERET_MASK, CPSRWriteExceptionReturn);
556

557 558 559 560 561 562 563
    /* Generated code has already stored the new PC value, but
     * without masking out its low bits, because which bits need
     * masking depends on whether we're returning to Thumb or ARM
     * state. Do the masking now.
     */
    env->regs[15] &= (env->thumb ? ~1 : ~3);

564
    qemu_mutex_lock_iothread();
565
    arm_call_el_change_hook(arm_env_get_cpu(env));
566
    qemu_mutex_unlock_iothread();
567 568
}

P
pbrook 已提交
569
/* Access to user mode registers from privileged modes.  */
570
uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno)
P
pbrook 已提交
571 572 573 574
{
    uint32_t val;

    if (regno == 13) {
575
        val = env->banked_r13[BANK_USRSYS];
P
pbrook 已提交
576
    } else if (regno == 14) {
577
        val = env->banked_r14[BANK_USRSYS];
P
pbrook 已提交
578 579 580 581 582 583 584 585 586
    } else if (regno >= 8
               && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
        val = env->usr_regs[regno - 8];
    } else {
        val = env->regs[regno];
    }
    return val;
}

B
Blue Swirl 已提交
587
void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val)
P
pbrook 已提交
588 589
{
    if (regno == 13) {
590
        env->banked_r13[BANK_USRSYS] = val;
P
pbrook 已提交
591
    } else if (regno == 14) {
592
        env->banked_r14[BANK_USRSYS] = val;
P
pbrook 已提交
593 594 595 596 597 598 599
    } else if (regno >= 8
               && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
        env->usr_regs[regno - 8] = val;
    } else {
        env->regs[regno] = val;
    }
}
600

601 602 603 604 605 606 607 608 609 610 611
void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
{
    if ((env->uncached_cpsr & CPSR_M) == mode) {
        env->regs[13] = val;
    } else {
        env->banked_r13[bank_number(mode)] = val;
    }
}

uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
{
612 613 614 615 616 617 618 619
    if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SYS) {
        /* SRS instruction is UNPREDICTABLE from System mode; we UNDEF.
         * Other UNPREDICTABLE and UNDEF cases were caught at translate time.
         */
        raise_exception(env, EXCP_UDEF, syn_uncategorized(),
                        exception_target_el(env));
    }

620 621 622 623 624 625 626
    if ((env->uncached_cpsr & CPSR_M) == mode) {
        return env->regs[13];
    } else {
        return env->banked_r13[bank_number(mode)];
    }
}

627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
static void msr_mrs_banked_exc_checks(CPUARMState *env, uint32_t tgtmode,
                                      uint32_t regno)
{
    /* Raise an exception if the requested access is one of the UNPREDICTABLE
     * cases; otherwise return. This broadly corresponds to the pseudocode
     * BankedRegisterAccessValid() and SPSRAccessValid(),
     * except that we have already handled some cases at translate time.
     */
    int curmode = env->uncached_cpsr & CPSR_M;

    if (curmode == tgtmode) {
        goto undef;
    }

    if (tgtmode == ARM_CPU_MODE_USR) {
        switch (regno) {
        case 8 ... 12:
            if (curmode != ARM_CPU_MODE_FIQ) {
                goto undef;
            }
            break;
        case 13:
            if (curmode == ARM_CPU_MODE_SYS) {
                goto undef;
            }
            break;
        case 14:
            if (curmode == ARM_CPU_MODE_HYP || curmode == ARM_CPU_MODE_SYS) {
                goto undef;
            }
            break;
        default:
            break;
        }
    }

    if (tgtmode == ARM_CPU_MODE_HYP) {
        switch (regno) {
        case 17: /* ELR_Hyp */
            if (curmode != ARM_CPU_MODE_HYP && curmode != ARM_CPU_MODE_MON) {
                goto undef;
            }
            break;
        default:
            if (curmode != ARM_CPU_MODE_MON) {
                goto undef;
            }
            break;
        }
    }

    return;

undef:
    raise_exception(env, EXCP_UDEF, syn_uncategorized(),
                    exception_target_el(env));
}

void HELPER(msr_banked)(CPUARMState *env, uint32_t value, uint32_t tgtmode,
                        uint32_t regno)
{
    msr_mrs_banked_exc_checks(env, tgtmode, regno);

    switch (regno) {
    case 16: /* SPSRs */
        env->banked_spsr[bank_number(tgtmode)] = value;
        break;
    case 17: /* ELR_Hyp */
        env->elr_el[2] = value;
        break;
    case 13:
        env->banked_r13[bank_number(tgtmode)] = value;
        break;
    case 14:
        env->banked_r14[bank_number(tgtmode)] = value;
        break;
    case 8 ... 12:
        switch (tgtmode) {
        case ARM_CPU_MODE_USR:
            env->usr_regs[regno - 8] = value;
            break;
        case ARM_CPU_MODE_FIQ:
            env->fiq_regs[regno - 8] = value;
            break;
        default:
            g_assert_not_reached();
        }
        break;
    default:
        g_assert_not_reached();
    }
}

uint32_t HELPER(mrs_banked)(CPUARMState *env, uint32_t tgtmode, uint32_t regno)
{
    msr_mrs_banked_exc_checks(env, tgtmode, regno);

    switch (regno) {
    case 16: /* SPSRs */
        return env->banked_spsr[bank_number(tgtmode)];
    case 17: /* ELR_Hyp */
        return env->elr_el[2];
    case 13:
        return env->banked_r13[bank_number(tgtmode)];
    case 14:
        return env->banked_r14[bank_number(tgtmode)];
    case 8 ... 12:
        switch (tgtmode) {
        case ARM_CPU_MODE_USR:
            return env->usr_regs[regno - 8];
        case ARM_CPU_MODE_FIQ:
            return env->fiq_regs[regno - 8];
        default:
            g_assert_not_reached();
        }
    default:
        g_assert_not_reached();
    }
}

747 748
void HELPER(access_check_cp_reg)(CPUARMState *env, void *rip, uint32_t syndrome,
                                 uint32_t isread)
749 750
{
    const ARMCPRegInfo *ri = rip;
751
    int target_el;
752 753 754

    if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14
        && extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) {
755
        raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
756 757 758 759 760 761
    }

    if (!ri->accessfn) {
        return;
    }

762
    switch (ri->accessfn(env, ri, isread)) {
763 764 765
    case CP_ACCESS_OK:
        return;
    case CP_ACCESS_TRAP:
766 767 768 769 770 771
        target_el = exception_target_el(env);
        break;
    case CP_ACCESS_TRAP_EL2:
        /* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is
         * a bug in the access function.
         */
772
        assert(!arm_is_secure(env) && arm_current_el(env) != 3);
773 774 775 776
        target_el = 2;
        break;
    case CP_ACCESS_TRAP_EL3:
        target_el = 3;
777
        break;
778
    case CP_ACCESS_TRAP_UNCATEGORIZED:
779
        target_el = exception_target_el(env);
780
        syndrome = syn_uncategorized();
781
        break;
782 783 784 785 786 787 788 789
    case CP_ACCESS_TRAP_UNCATEGORIZED_EL2:
        target_el = 2;
        syndrome = syn_uncategorized();
        break;
    case CP_ACCESS_TRAP_UNCATEGORIZED_EL3:
        target_el = 3;
        syndrome = syn_uncategorized();
        break;
790 791 792 793 794 795 796 797 798 799 800 801 802
    case CP_ACCESS_TRAP_FP_EL2:
        target_el = 2;
        /* Since we are an implementation that takes exceptions on a trapped
         * conditional insn only if the insn has passed its condition code
         * check, we take the IMPDEF choice to always report CV=1 COND=0xe
         * (which is also the required value for AArch64 traps).
         */
        syndrome = syn_fp_access_trap(1, 0xe, false);
        break;
    case CP_ACCESS_TRAP_FP_EL3:
        target_el = 3;
        syndrome = syn_fp_access_trap(1, 0xe, false);
        break;
803 804 805
    default:
        g_assert_not_reached();
    }
806

807
    raise_exception(env, EXCP_UDEF, syndrome, target_el);
808 809
}

810 811 812
void HELPER(set_cp_reg)(CPUARMState *env, void *rip, uint32_t value)
{
    const ARMCPRegInfo *ri = rip;
813

814 815 816 817 818 819 820
    if (ri->type & ARM_CP_IO) {
        qemu_mutex_lock_iothread();
        ri->writefn(env, ri, value);
        qemu_mutex_unlock_iothread();
    } else {
        ri->writefn(env, ri, value);
    }
821 822 823 824 825
}

uint32_t HELPER(get_cp_reg)(CPUARMState *env, void *rip)
{
    const ARMCPRegInfo *ri = rip;
826
    uint32_t res;
827

828 829 830 831 832 833 834 835 836
    if (ri->type & ARM_CP_IO) {
        qemu_mutex_lock_iothread();
        res = ri->readfn(env, ri);
        qemu_mutex_unlock_iothread();
    } else {
        res = ri->readfn(env, ri);
    }

    return res;
837 838 839 840 841
}

void HELPER(set_cp_reg64)(CPUARMState *env, void *rip, uint64_t value)
{
    const ARMCPRegInfo *ri = rip;
842

843 844 845 846 847 848 849
    if (ri->type & ARM_CP_IO) {
        qemu_mutex_lock_iothread();
        ri->writefn(env, ri, value);
        qemu_mutex_unlock_iothread();
    } else {
        ri->writefn(env, ri, value);
    }
850 851 852 853 854
}

uint64_t HELPER(get_cp_reg64)(CPUARMState *env, void *rip)
{
    const ARMCPRegInfo *ri = rip;
855 856 857 858 859 860 861 862 863
    uint64_t res;

    if (ri->type & ARM_CP_IO) {
        qemu_mutex_lock_iothread();
        res = ri->readfn(env, ri);
        qemu_mutex_unlock_iothread();
    } else {
        res = ri->readfn(env, ri);
    }
864

865
    return res;
866
}
P
pbrook 已提交
867

868 869 870 871 872 873
void HELPER(msr_i_pstate)(CPUARMState *env, uint32_t op, uint32_t imm)
{
    /* MSR_i to update PSTATE. This is OK from EL0 only if UMA is set.
     * Note that SPSel is never OK from EL0; we rely on handle_msr_i()
     * to catch that case at translate time.
     */
874
    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
875 876 877 878
        uint32_t syndrome = syn_aa64_sysregtrap(0, extract32(op, 0, 3),
                                                extract32(op, 3, 3), 4,
                                                imm, 0x1f, 0);
        raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
879 880 881 882
    }

    switch (op) {
    case 0x05: /* SPSel */
883
        update_spsel(env, imm);
884 885 886 887 888 889 890 891 892 893 894 895
        break;
    case 0x1e: /* DAIFSet */
        env->daif |= (imm << 6) & PSTATE_DAIF;
        break;
    case 0x1f: /* DAIFClear */
        env->daif &= ~((imm << 6) & PSTATE_DAIF);
        break;
    default:
        g_assert_not_reached();
    }
}

896 897 898 899 900
void HELPER(clear_pstate_ss)(CPUARMState *env)
{
    env->pstate &= ~PSTATE_SS;
}

901 902
void HELPER(pre_hvc)(CPUARMState *env)
{
903
    ARMCPU *cpu = arm_env_get_cpu(env);
904
    int cur_el = arm_current_el(env);
905 906 907 908
    /* FIXME: Use actual secure state.  */
    bool secure = false;
    bool undef;

909 910 911 912 913 914 915
    if (arm_is_psci_call(cpu, EXCP_HVC)) {
        /* If PSCI is enabled and this looks like a valid PSCI call then
         * that overrides the architecturally mandated HVC behaviour.
         */
        return;
    }

916 917 918 919 920
    if (!arm_feature(env, ARM_FEATURE_EL2)) {
        /* If EL2 doesn't exist, HVC always UNDEFs */
        undef = true;
    } else if (arm_feature(env, ARM_FEATURE_EL3)) {
        /* EL3.HCE has priority over EL2.HCD. */
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
        undef = !(env->cp15.scr_el3 & SCR_HCE);
    } else {
        undef = env->cp15.hcr_el2 & HCR_HCD;
    }

    /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
     * For ARMv8/AArch64, HVC is allowed in EL3.
     * Note that we've already trapped HVC from EL0 at translation
     * time.
     */
    if (secure && (!is_a64(env) || cur_el == 1)) {
        undef = true;
    }

    if (undef) {
936 937
        raise_exception(env, EXCP_UDEF, syn_uncategorized(),
                        exception_target_el(env));
938 939 940
    }
}

941 942
void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome)
{
943
    ARMCPU *cpu = arm_env_get_cpu(env);
944
    int cur_el = arm_current_el(env);
945
    bool secure = arm_is_secure(env);
946
    bool smd = env->cp15.scr_el3 & SCR_SMD;
947 948 949 950 951 952
    /* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state.
     * On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization
     *  extensions, SMD only applies to NS state.
     * On ARMv7 without the Virtualization extensions, the SMD bit
     * doesn't exist, but we forbid the guest to set it to 1 in scr_write(),
     * so we need not special case this here.
953
     */
954
    bool undef = arm_feature(env, ARM_FEATURE_AARCH64) ? smd : smd && !secure;
955

956 957 958 959 960 961 962
    if (arm_is_psci_call(cpu, EXCP_SMC)) {
        /* If PSCI is enabled and this looks like a valid PSCI call then
         * that overrides the architecturally mandated SMC behaviour.
         */
        return;
    }

963 964 965 966 967
    if (!arm_feature(env, ARM_FEATURE_EL3)) {
        /* If we have no EL3 then SMC always UNDEFs */
        undef = true;
    } else if (!secure && cur_el == 1 && (env->cp15.hcr_el2 & HCR_TSC)) {
        /* In NS EL1, HCR controlled routing to EL2 has priority over SMD. */
968
        raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
969 970 971
    }

    if (undef) {
972 973
        raise_exception(env, EXCP_UDEF, syn_uncategorized(),
                        exception_target_el(env));
974 975 976
    }
}

977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
static int el_from_spsr(uint32_t spsr)
{
    /* Return the exception level that this SPSR is requesting a return to,
     * or -1 if it is invalid (an illegal return)
     */
    if (spsr & PSTATE_nRW) {
        switch (spsr & CPSR_M) {
        case ARM_CPU_MODE_USR:
            return 0;
        case ARM_CPU_MODE_HYP:
            return 2;
        case ARM_CPU_MODE_FIQ:
        case ARM_CPU_MODE_IRQ:
        case ARM_CPU_MODE_SVC:
        case ARM_CPU_MODE_ABT:
        case ARM_CPU_MODE_UND:
        case ARM_CPU_MODE_SYS:
            return 1;
        case ARM_CPU_MODE_MON:
            /* Returning to Mon from AArch64 is never possible,
             * so this is an illegal return.
             */
        default:
            return -1;
        }
    } else {
        if (extract32(spsr, 1, 1)) {
            /* Return with reserved M[1] bit set */
            return -1;
        }
        if (extract32(spsr, 0, 4) == 1) {
            /* return to EL0 with M[0] bit set */
            return -1;
        }
        return extract32(spsr, 2, 2);
    }
}

1015 1016
void HELPER(exception_return)(CPUARMState *env)
{
1017
    int cur_el = arm_current_el(env);
1018
    unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el);
1019
    uint32_t spsr = env->banked_spsr[spsr_idx];
1020
    int new_el;
1021
    bool return_to_aa64 = (spsr & PSTATE_nRW) == 0;
1022

1023
    aarch64_save_sp(env, cur_el);
1024

1025
    arm_clear_exclusive(env);
1026

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
    /* We must squash the PSTATE.SS bit to zero unless both of the
     * following hold:
     *  1. debug exceptions are currently disabled
     *  2. singlestep will be active in the EL we return to
     * We check 1 here and 2 after we've done the pstate/cpsr write() to
     * transition to the EL we're going to.
     */
    if (arm_generate_debug_exceptions(env)) {
        spsr &= ~PSTATE_SS;
    }

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
    new_el = el_from_spsr(spsr);
    if (new_el == -1) {
        goto illegal_return;
    }
    if (new_el > cur_el
        || (new_el == 2 && !arm_feature(env, ARM_FEATURE_EL2))) {
        /* Disallow return to an EL which is unimplemented or higher
         * than the current one.
         */
        goto illegal_return;
    }

    if (new_el != 0 && arm_el_is_aa64(env, new_el) != return_to_aa64) {
        /* Return to an EL which is configured for a different register width */
        goto illegal_return;
    }

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
    if (new_el == 2 && arm_is_secure_below_el3(env)) {
        /* Return to the non-existent secure-EL2 */
        goto illegal_return;
    }

    if (new_el == 1 && (env->cp15.hcr_el2 & HCR_TGE)
        && !arm_is_secure_below_el3(env)) {
        goto illegal_return;
    }

1065
    if (!return_to_aa64) {
1066
        env->aarch64 = 0;
1067 1068 1069 1070
        /* We do a raw CPSR write because aarch64_sync_64_to_32()
         * will sort the register banks out for us, and we've already
         * caught all the bad-mode cases in el_from_spsr().
         */
1071
        cpsr_write(env, spsr, ~0, CPSRWriteRaw);
1072 1073 1074
        if (!arm_singlestep_active(env)) {
            env->uncached_cpsr &= ~PSTATE_SS;
        }
1075
        aarch64_sync_64_to_32(env);
1076

1077 1078 1079 1080 1081
        if (spsr & CPSR_T) {
            env->regs[15] = env->elr_el[cur_el] & ~0x1;
        } else {
            env->regs[15] = env->elr_el[cur_el] & ~0x3;
        }
1082 1083 1084
        qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
                      "AArch32 EL%d PC 0x%" PRIx32 "\n",
                      cur_el, new_el, env->regs[15]);
1085 1086 1087
    } else {
        env->aarch64 = 1;
        pstate_write(env, spsr);
1088 1089 1090
        if (!arm_singlestep_active(env)) {
            env->pstate &= ~PSTATE_SS;
        }
1091
        aarch64_restore_sp(env, new_el);
1092
        env->pc = env->elr_el[cur_el];
1093 1094 1095
        qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
                      "AArch64 EL%d PC 0x%" PRIx64 "\n",
                      cur_el, new_el, env->pc);
1096 1097
    }

1098
    qemu_mutex_lock_iothread();
1099
    arm_call_el_change_hook(arm_env_get_cpu(env));
1100
    qemu_mutex_unlock_iothread();
1101

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
    return;

illegal_return:
    /* Illegal return events of various kinds have architecturally
     * mandated behaviour:
     * restore NZCV and DAIF from SPSR_ELx
     * set PSTATE.IL
     * restore PC from ELR_ELx
     * no change to exception level, execution state or stack pointer
     */
    env->pstate |= PSTATE_IL;
1113
    env->pc = env->elr_el[cur_el];
1114 1115 1116
    spsr &= PSTATE_NZCV | PSTATE_DAIF;
    spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF);
    pstate_write(env, spsr);
1117 1118 1119
    if (!arm_singlestep_active(env)) {
        env->pstate &= ~PSTATE_SS;
    }
1120 1121
    qemu_log_mask(LOG_GUEST_ERROR, "Illegal exception return at EL%d: "
                  "resuming execution at 0x%" PRIx64 "\n", cur_el, env->pc);
1122 1123
}

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
/* Return true if the linked breakpoint entry lbn passes its checks */
static bool linked_bp_matches(ARMCPU *cpu, int lbn)
{
    CPUARMState *env = &cpu->env;
    uint64_t bcr = env->cp15.dbgbcr[lbn];
    int brps = extract32(cpu->dbgdidr, 24, 4);
    int ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
    int bt;
    uint32_t contextidr;

    /* Links to unimplemented or non-context aware breakpoints are
     * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
     * as if linked to an UNKNOWN context-aware breakpoint (in which
     * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
     * We choose the former.
     */
    if (lbn > brps || lbn < (brps - ctx_cmps)) {
        return false;
    }

    bcr = env->cp15.dbgbcr[lbn];

    if (extract64(bcr, 0, 1) == 0) {
        /* Linked breakpoint disabled : generate no events */
        return false;
    }

    bt = extract64(bcr, 20, 4);

    /* We match the whole register even if this is AArch32 using the
     * short descriptor format (in which case it holds both PROCID and ASID),
     * since we don't implement the optional v7 context ID masking.
     */
1157
    contextidr = extract64(env->cp15.contextidr_el[1], 0, 32);
1158 1159 1160

    switch (bt) {
    case 3: /* linked context ID match */
1161
        if (arm_current_el(env) > 1) {
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
            /* Context matches never fire in EL2 or (AArch64) EL3 */
            return false;
        }
        return (contextidr == extract64(env->cp15.dbgbvr[lbn], 0, 32));
    case 5: /* linked address mismatch (reserved in AArch64) */
    case 9: /* linked VMID match (reserved if no EL2) */
    case 11: /* linked context ID and VMID match (reserved if no EL2) */
    default:
        /* Links to Unlinked context breakpoints must generate no
         * events; we choose to do the same for reserved values too.
         */
        return false;
    }

    return false;
}

1179
static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp)
1180 1181
{
    CPUARMState *env = &cpu->env;
1182
    uint64_t cr;
1183
    int pac, hmc, ssc, wt, lbn;
1184 1185 1186 1187
    /* Note that for watchpoints the check is against the CPU security
     * state, not the S/NS attribute on the offending data access.
     */
    bool is_secure = arm_is_secure(env);
1188
    int access_el = arm_current_el(env);
1189

1190
    if (is_wp) {
1191 1192 1193
        CPUWatchpoint *wp = env->cpu_watchpoint[n];

        if (!wp || !(wp->flags & BP_WATCHPOINT_HIT)) {
1194 1195 1196
            return false;
        }
        cr = env->cp15.dbgwcr[n];
1197 1198 1199 1200 1201 1202 1203
        if (wp->hitattrs.user) {
            /* The LDRT/STRT/LDT/STT "unprivileged access" instructions should
             * match watchpoints as if they were accesses done at EL0, even if
             * the CPU is at EL1 or higher.
             */
            access_el = 0;
        }
1204 1205
    } else {
        uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
1206

1207 1208 1209 1210 1211
        if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) {
            return false;
        }
        cr = env->cp15.dbgbcr[n];
    }
1212
    /* The WATCHPOINT_HIT flag guarantees us that the watchpoint is
1213 1214 1215 1216 1217
     * enabled and that the address and access type match; for breakpoints
     * we know the address matched; check the remaining fields, including
     * linked breakpoints. We rely on WCR and BCR having the same layout
     * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
     * Note that some combinations of {PAC, HMC, SSC} are reserved and
1218 1219 1220 1221 1222 1223
     * must act either like some valid combination or as if the watchpoint
     * were disabled. We choose the former, and use this together with
     * the fact that EL3 must always be Secure and EL2 must always be
     * Non-Secure to simplify the code slightly compared to the full
     * table in the ARM ARM.
     */
1224 1225 1226
    pac = extract64(cr, 1, 2);
    hmc = extract64(cr, 13, 1);
    ssc = extract64(cr, 14, 2);
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243

    switch (ssc) {
    case 0:
        break;
    case 1:
    case 3:
        if (is_secure) {
            return false;
        }
        break;
    case 2:
        if (!is_secure) {
            return false;
        }
        break;
    }

1244
    switch (access_el) {
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
    case 3:
    case 2:
        if (!hmc) {
            return false;
        }
        break;
    case 1:
        if (extract32(pac, 0, 1) == 0) {
            return false;
        }
        break;
    case 0:
        if (extract32(pac, 1, 1) == 0) {
            return false;
        }
        break;
    default:
        g_assert_not_reached();
    }

1265 1266
    wt = extract64(cr, 20, 1);
    lbn = extract64(cr, 16, 4);
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288

    if (wt && !linked_bp_matches(cpu, lbn)) {
        return false;
    }

    return true;
}

static bool check_watchpoints(ARMCPU *cpu)
{
    CPUARMState *env = &cpu->env;
    int n;

    /* If watchpoints are disabled globally or we can't take debug
     * exceptions here then watchpoint firings are ignored.
     */
    if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
        || !arm_generate_debug_exceptions(env)) {
        return false;
    }

    for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) {
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
        if (bp_wp_matches(cpu, n, true)) {
            return true;
        }
    }
    return false;
}

static bool check_breakpoints(ARMCPU *cpu)
{
    CPUARMState *env = &cpu->env;
    int n;

    /* If breakpoints are disabled globally or we can't take debug
     * exceptions here then breakpoint firings are ignored.
     */
    if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
        || !arm_generate_debug_exceptions(env)) {
        return false;
    }

    for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) {
        if (bp_wp_matches(cpu, n, false)) {
1311 1312 1313 1314 1315 1316
            return true;
        }
    }
    return false;
}

1317 1318 1319 1320 1321 1322 1323 1324 1325
void HELPER(check_breakpoints)(CPUARMState *env)
{
    ARMCPU *cpu = arm_env_get_cpu(env);

    if (check_breakpoints(cpu)) {
        HELPER(exception_internal(env, EXCP_DEBUG));
    }
}

1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp)
{
    /* Called by core code when a CPU watchpoint fires; need to check if this
     * is also an architectural watchpoint match.
     */
    ARMCPU *cpu = ARM_CPU(cs);

    return check_watchpoints(cpu);
}

1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len)
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;

    /* In BE32 system mode, target memory is stored byteswapped (on a
     * little-endian host system), and by the time we reach here (via an
     * opcode helper) the addresses of subword accesses have been adjusted
     * to account for that, which means that watchpoints will not match.
     * Undo the adjustment here.
     */
    if (arm_sctlr_b(env)) {
        if (len == 1) {
            addr ^= 3;
        } else if (len == 2) {
            addr ^= 2;
        }
    }

    return addr;
}

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
void arm_debug_excp_handler(CPUState *cs)
{
    /* Called by core code when a watchpoint or breakpoint fires;
     * need to check which one and raise the appropriate exception.
     */
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
    CPUWatchpoint *wp_hit = cs->watchpoint_hit;

    if (wp_hit) {
        if (wp_hit->flags & BP_CPU) {
1369 1370 1371
            bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0;
            bool same_el = arm_debug_target_el(env) == arm_current_el(env);

1372
            cs->watchpoint_hit = NULL;
1373 1374 1375

            if (extended_addresses_enabled(env)) {
                env->exception.fsr = (1 << 9) | 0x22;
1376
            } else {
1377
                env->exception.fsr = 0x2;
1378
            }
1379 1380 1381 1382
            env->exception.vaddress = wp_hit->hitaddr;
            raise_exception(env, EXCP_DATA_ABORT,
                    syn_watchpoint(same_el, 0, wnr),
                    arm_debug_target_el(env));
1383
        }
1384
    } else {
1385
        uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
1386
        bool same_el = (arm_debug_target_el(env) == arm_current_el(env));
1387

1388 1389 1390 1391 1392 1393 1394
        /* (1) GDB breakpoints should be handled first.
         * (2) Do not raise a CPU exception if no CPU breakpoint has fired,
         * since singlestep is also done by generating a debug internal
         * exception.
         */
        if (cpu_breakpoint_test(cs, pc, BP_GDB)
            || !cpu_breakpoint_test(cs, pc, BP_CPU)) {
1395 1396 1397
            return;
        }

1398 1399 1400 1401
        if (extended_addresses_enabled(env)) {
            env->exception.fsr = (1 << 9) | 0x22;
        } else {
            env->exception.fsr = 0x2;
1402
        }
1403 1404 1405 1406
        /* FAR is UNKNOWN, so doesn't need setting */
        raise_exception(env, EXCP_PREFETCH_ABORT,
                        syn_breakpoint(same_el),
                        arm_debug_target_el(env));
1407 1408 1409
    }
}

P
pbrook 已提交
1410 1411 1412 1413 1414 1415
/* ??? Flag setting arithmetic is awkward because we need to do comparisons.
   The only way to do that in TCG is a conditional branch, which clobbers
   all our temporaries.  For now implement these as helper functions.  */

/* Similarly for variable shift instructions.  */

1416
uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i)
P
pbrook 已提交
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
{
    int shift = i & 0xff;
    if (shift >= 32) {
        if (shift == 32)
            env->CF = x & 1;
        else
            env->CF = 0;
        return 0;
    } else if (shift != 0) {
        env->CF = (x >> (32 - shift)) & 1;
        return x << shift;
    }
    return x;
}

1432
uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i)
P
pbrook 已提交
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
{
    int shift = i & 0xff;
    if (shift >= 32) {
        if (shift == 32)
            env->CF = (x >> 31) & 1;
        else
            env->CF = 0;
        return 0;
    } else if (shift != 0) {
        env->CF = (x >> (shift - 1)) & 1;
        return x >> shift;
    }
    return x;
}

1448
uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i)
P
pbrook 已提交
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
{
    int shift = i & 0xff;
    if (shift >= 32) {
        env->CF = (x >> 31) & 1;
        return (int32_t)x >> 31;
    } else if (shift != 0) {
        env->CF = (x >> (shift - 1)) & 1;
        return (int32_t)x >> shift;
    }
    return x;
}

1461
uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i)
P
pbrook 已提交
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
{
    int shift1, shift;
    shift1 = i & 0xff;
    shift = shift1 & 0x1f;
    if (shift == 0) {
        if (shift1 != 0)
            env->CF = (x >> 31) & 1;
        return x;
    } else {
        env->CF = (x >> (shift - 1)) & 1;
        return ((uint32_t)x >> shift) | (x << (32 - shift));
    }
}