op_helper.c 39.3 KB
Newer Older
B
bellard 已提交
1 2
/*
 *  ARM helper routines
3
 *
P
pbrook 已提交
4
 *  Copyright (c) 2005-2007 CodeSourcery, LLC
B
bellard 已提交
5 6 7 8 9 10 11 12 13 14 15 16
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
B
bellard 已提交
18
 */
P
Peter Maydell 已提交
19
#include "qemu/osdep.h"
20
#include "qemu/log.h"
B
Blue Swirl 已提交
21
#include "cpu.h"
22
#include "exec/helper-proto.h"
23
#include "internals.h"
24
#include "exec/exec-all.h"
P
Paolo Bonzini 已提交
25
#include "exec/cpu_ldst.h"
B
bellard 已提交
26

P
pbrook 已提交
27 28 29
#define SIGNBIT (uint32_t)0x80000000
#define SIGNBIT64 ((uint64_t)1 << 63)

30 31
static void raise_exception(CPUARMState *env, uint32_t excp,
                            uint32_t syndrome, uint32_t target_el)
B
bellard 已提交
32
{
33
    CPUState *cs = CPU(arm_env_get_cpu(env));
34

35 36 37 38
    assert(!excp_is_internal(excp));
    cs->exception_index = excp;
    env->exception.syndrome = syndrome;
    env->exception.target_el = target_el;
39
    cpu_loop_exit(cs);
B
bellard 已提交
40 41
}

42 43 44 45 46 47 48 49 50 51 52 53 54 55
static int exception_target_el(CPUARMState *env)
{
    int target_el = MAX(1, arm_current_el(env));

    /* No such thing as secure EL1 if EL3 is aarch32, so update the target EL
     * to EL3 in this case.
     */
    if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
        target_el = 3;
    }

    return target_el;
}

56
uint32_t HELPER(neon_tbl)(CPUARMState *env, uint32_t ireg, uint32_t def,
P
pbrook 已提交
57
                          uint32_t rn, uint32_t maxindex)
P
pbrook 已提交
58 59 60 61 62 63 64 65 66
{
    uint32_t val;
    uint32_t tmp;
    int index;
    int shift;
    uint64_t *table;
    table = (uint64_t *)&env->vfp.regs[rn];
    val = 0;
    for (shift = 0; shift < 32; shift += 8) {
P
pbrook 已提交
67 68
        index = (ireg >> shift) & 0xff;
        if (index < maxindex) {
P
pbrook 已提交
69
            tmp = (table[index >> 3] >> ((index & 7) << 3)) & 0xff;
P
pbrook 已提交
70 71
            val |= tmp << shift;
        } else {
P
pbrook 已提交
72
            val |= def & (0xff << shift);
P
pbrook 已提交
73 74
        }
    }
P
pbrook 已提交
75
    return val;
P
pbrook 已提交
76 77
}

B
bellard 已提交
78 79
#if !defined(CONFIG_USER_ONLY)

80 81 82
static inline uint32_t merge_syn_data_abort(uint32_t template_syn,
                                            unsigned int target_el,
                                            bool same_el,
83
                                            bool s1ptw, bool is_write,
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
                                            int fsc)
{
    uint32_t syn;

    /* ISV is only set for data aborts routed to EL2 and
     * never for stage-1 page table walks faulting on stage 2.
     *
     * Furthermore, ISV is only set for certain kinds of load/stores.
     * If the template syndrome does not have ISV set, we should leave
     * it cleared.
     *
     * See ARMv8 specs, D7-1974:
     * ISS encoding for an exception from a Data Abort, the
     * ISV field.
     */
    if (!(template_syn & ARM_EL_ISV) || target_el != 2 || s1ptw) {
        syn = syn_data_abort_no_iss(same_el,
101
                                    0, 0, s1ptw, is_write, fsc);
102 103 104 105 106 107 108
    } else {
        /* Fields: IL, ISV, SAS, SSE, SRT, SF and AR come from the template
         * syndrome created at translation time.
         * Now we create the runtime syndrome with the remaining fields.
         */
        syn = syn_data_abort_with_iss(same_el,
                                      0, 0, 0, 0, 0,
109
                                      0, 0, s1ptw, is_write, fsc,
110 111 112 113 114 115 116
                                      false);
        /* Merge the runtime syndrome with the template syndrome.  */
        syn |= template_syn;
    }
    return syn;
}

B
bellard 已提交
117
/* try to fill the TLB and return an exception if error. If retaddr is
118 119 120
 * NULL, it means that the function was called in C code (i.e. not
 * from generated code or from helper.c)
 */
121 122
void tlb_fill(CPUState *cs, target_ulong addr, MMUAccessType access_type,
              int mmu_idx, uintptr_t retaddr)
B
bellard 已提交
123
{
124 125
    bool ret;
    uint32_t fsr = 0;
126
    ARMMMUFaultInfo fi = {};
B
bellard 已提交
127

128
    ret = arm_tlb_fill(cs, addr, access_type, mmu_idx, &fsr, &fi);
129
    if (unlikely(ret)) {
130 131
        ARMCPU *cpu = ARM_CPU(cs);
        CPUARMState *env = &cpu->env;
132
        uint32_t syn, exc;
133 134
        unsigned int target_el;
        bool same_el;
135

B
bellard 已提交
136 137
        if (retaddr) {
            /* now we have a real cpu fault */
138
            cpu_restore_state(cs, retaddr);
B
bellard 已提交
139
        }
140

141 142 143
        target_el = exception_target_el(env);
        if (fi.stage2) {
            target_el = 2;
144
            env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
145 146
        }
        same_el = arm_current_el(env) == target_el;
147
        /* AArch64 syndrome does not have an LPAE bit */
148
        syn = fsr & ~(1 << 9);
149 150 151 152

        /* For insn and data aborts we assume there is no instruction syndrome
         * information; this is always true for exceptions reported to EL1.
         */
153
        if (access_type == MMU_INST_FETCH) {
154
            syn = syn_insn_abort(same_el, 0, fi.s1ptw, syn);
155 156
            exc = EXCP_PREFETCH_ABORT;
        } else {
157
            syn = merge_syn_data_abort(env->exception.syndrome, target_el,
158 159 160 161
                                       same_el, fi.s1ptw,
                                       access_type == MMU_DATA_STORE, syn);
            if (access_type == MMU_DATA_STORE
                && arm_feature(env, ARM_FEATURE_V6)) {
162
                fsr |= (1 << 11);
163 164 165 166 167
            }
            exc = EXCP_DATA_ABORT;
        }

        env->exception.vaddress = addr;
168
        env->exception.fsr = fsr;
169
        raise_exception(env, exc, syn, target_el);
B
bellard 已提交
170 171
    }
}
172 173

/* Raise a data fault alignment exception for the specified virtual address */
174 175 176
void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
                                 MMUAccessType access_type,
                                 int mmu_idx, uintptr_t retaddr)
177 178 179 180 181
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
    int target_el;
    bool same_el;
182
    uint32_t syn;
183 184 185 186 187 188 189 190 191 192 193 194 195 196

    if (retaddr) {
        /* now we have a real cpu fault */
        cpu_restore_state(cs, retaddr);
    }

    target_el = exception_target_el(env);
    same_el = (arm_current_el(env) == target_el);

    env->exception.vaddress = vaddr;

    /* the DFSR for an alignment fault depends on whether we're using
     * the LPAE long descriptor format, or the short descriptor format
     */
197
    if (arm_s1_regime_using_lpae_format(env, cpu_mmu_index(env, false))) {
198
        env->exception.fsr = (1 << 9) | 0x21;
199 200 201 202
    } else {
        env->exception.fsr = 0x1;
    }

203
    if (access_type == MMU_DATA_STORE && arm_feature(env, ARM_FEATURE_V6)) {
204 205 206
        env->exception.fsr |= (1 << 11);
    }

207
    syn = merge_syn_data_abort(env->exception.syndrome, target_el,
208 209
                               same_el, 0, access_type == MMU_DATA_STORE,
                               0x21);
210
    raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
211 212 213
}

#endif /* !defined(CONFIG_USER_ONLY) */
P
pbrook 已提交
214

215
uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b)
P
pbrook 已提交
216 217 218 219 220 221 222
{
    uint32_t res = a + b;
    if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT))
        env->QF = 1;
    return res;
}

223
uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
P
pbrook 已提交
224 225 226 227 228 229 230 231 232
{
    uint32_t res = a + b;
    if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
        env->QF = 1;
        res = ~(((int32_t)a >> 31) ^ SIGNBIT);
    }
    return res;
}

233
uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
P
pbrook 已提交
234 235 236 237 238 239 240 241 242
{
    uint32_t res = a - b;
    if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
        env->QF = 1;
        res = ~(((int32_t)a >> 31) ^ SIGNBIT);
    }
    return res;
}

243
uint32_t HELPER(double_saturate)(CPUARMState *env, int32_t val)
P
pbrook 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257
{
    uint32_t res;
    if (val >= 0x40000000) {
        res = ~SIGNBIT;
        env->QF = 1;
    } else if (val <= (int32_t)0xc0000000) {
        res = SIGNBIT;
        env->QF = 1;
    } else {
        res = val << 1;
    }
    return res;
}

258
uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
P
pbrook 已提交
259 260 261 262 263 264 265 266 267
{
    uint32_t res = a + b;
    if (res < a) {
        env->QF = 1;
        res = ~0;
    }
    return res;
}

268
uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
P
pbrook 已提交
269 270 271 272 273 274 275 276 277
{
    uint32_t res = a - b;
    if (res > a) {
        env->QF = 1;
        res = 0;
    }
    return res;
}

P
pbrook 已提交
278
/* Signed saturation.  */
279
static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift)
P
pbrook 已提交
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
{
    int32_t top;
    uint32_t mask;

    top = val >> shift;
    mask = (1u << shift) - 1;
    if (top > 0) {
        env->QF = 1;
        return mask;
    } else if (top < -1) {
        env->QF = 1;
        return ~mask;
    }
    return val;
}

/* Unsigned saturation.  */
297
static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift)
P
pbrook 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
{
    uint32_t max;

    max = (1u << shift) - 1;
    if (val < 0) {
        env->QF = 1;
        return 0;
    } else if (val > max) {
        env->QF = 1;
        return max;
    }
    return val;
}

/* Signed saturate.  */
313
uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift)
P
pbrook 已提交
314
{
315
    return do_ssat(env, x, shift);
P
pbrook 已提交
316 317 318
}

/* Dual halfword signed saturate.  */
319
uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift)
P
pbrook 已提交
320 321 322
{
    uint32_t res;

323 324
    res = (uint16_t)do_ssat(env, (int16_t)x, shift);
    res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16;
P
pbrook 已提交
325 326 327 328
    return res;
}

/* Unsigned saturate.  */
329
uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift)
P
pbrook 已提交
330
{
331
    return do_usat(env, x, shift);
P
pbrook 已提交
332 333 334
}

/* Dual halfword unsigned saturate.  */
335
uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift)
P
pbrook 已提交
336 337 338
{
    uint32_t res;

339 340
    res = (uint16_t)do_usat(env, (int16_t)x, shift);
    res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16;
P
pbrook 已提交
341 342
    return res;
}
P
pbrook 已提交
343

P
Paolo Bonzini 已提交
344 345 346 347 348
void HELPER(setend)(CPUARMState *env)
{
    env->uncached_cpsr ^= CPSR_E;
}

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
/* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
 * The function returns the target EL (1-3) if the instruction is to be trapped;
 * otherwise it returns 0 indicating it is not trapped.
 */
static inline int check_wfx_trap(CPUARMState *env, bool is_wfe)
{
    int cur_el = arm_current_el(env);
    uint64_t mask;

    /* If we are currently in EL0 then we need to check if SCTLR is set up for
     * WFx instructions being trapped to EL1. These trap bits don't exist in v7.
     */
    if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) {
        int target_el;

        mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI;
        if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) {
            /* Secure EL0 and Secure PL1 is at EL3 */
            target_el = 3;
        } else {
            target_el = 1;
        }

        if (!(env->cp15.sctlr_el[target_el] & mask)) {
            return target_el;
        }
    }

    /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
     * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
     * bits will be zero indicating no trap.
     */
    if (cur_el < 2 && !arm_is_secure(env)) {
        mask = (is_wfe) ? HCR_TWE : HCR_TWI;
        if (env->cp15.hcr_el2 & mask) {
            return 2;
        }
    }

    /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
    if (cur_el < 3) {
        mask = (is_wfe) ? SCR_TWE : SCR_TWI;
        if (env->cp15.scr_el3 & mask) {
            return 3;
        }
    }

    return 0;
}

B
Blue Swirl 已提交
399
void HELPER(wfi)(CPUARMState *env)
P
pbrook 已提交
400
{
401
    CPUState *cs = CPU(arm_env_get_cpu(env));
402
    int target_el = check_wfx_trap(env, false);
403

404 405 406 407 408 409 410
    if (cpu_has_work(cs)) {
        /* Don't bother to go into our "low power state" if
         * we would just wake up immediately.
         */
        return;
    }

411 412 413 414 415
    if (target_el) {
        env->pc -= 4;
        raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0), target_el);
    }

416
    cs->exception_index = EXCP_HLT;
417
    cs->halted = 1;
418
    cpu_loop_exit(cs);
P
pbrook 已提交
419 420
}

421 422
void HELPER(wfe)(CPUARMState *env)
{
423 424 425
    /* This is a hint instruction that is semantically different
     * from YIELD even though we currently implement it identically.
     * Don't actually halt the CPU, just yield back to top
426 427 428
     * level loop. This is not going into a "low power state"
     * (ie halting until some event occurs), so we never take
     * a configurable trap to a different exception level.
429
     */
430 431 432 433 434 435 436 437 438 439 440 441
    HELPER(yield)(env);
}

void HELPER(yield)(CPUARMState *env)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);

    /* This is a non-trappable hint instruction that generally indicates
     * that the guest is currently busy-looping. Yield control back to the
     * top level loop so that a more deserving VCPU has a chance to run.
     */
442
    cs->exception_index = EXCP_YIELD;
443
    cpu_loop_exit(cs);
444 445
}

446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
/* Raise an internal-to-QEMU exception. This is limited to only
 * those EXCP values which are special cases for QEMU to interrupt
 * execution and not to be used for exceptions which are passed to
 * the guest (those must all have syndrome information and thus should
 * use exception_with_syndrome).
 */
void HELPER(exception_internal)(CPUARMState *env, uint32_t excp)
{
    CPUState *cs = CPU(arm_env_get_cpu(env));

    assert(excp_is_internal(excp));
    cs->exception_index = excp;
    cpu_loop_exit(cs);
}

/* Raise an exception with the specified syndrome register value */
void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp,
463
                                     uint32_t syndrome, uint32_t target_el)
P
pbrook 已提交
464
{
465
    raise_exception(env, excp, syndrome, target_el);
P
pbrook 已提交
466 467
}

468
uint32_t HELPER(cpsr_read)(CPUARMState *env)
P
pbrook 已提交
469
{
470
    return cpsr_read(env) & ~(CPSR_EXEC | CPSR_RESERVED);
P
pbrook 已提交
471 472
}

B
Blue Swirl 已提交
473
void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask)
P
pbrook 已提交
474
{
475
    cpsr_write(env, val, mask, CPSRWriteByInstr);
P
pbrook 已提交
476
}
P
pbrook 已提交
477

478 479 480
/* Write the CPSR for a 32-bit exception return */
void HELPER(cpsr_write_eret)(CPUARMState *env, uint32_t val)
{
481
    cpsr_write(env, val, CPSR_ERET_MASK, CPSRWriteExceptionReturn);
482

483 484 485 486 487 488 489
    /* Generated code has already stored the new PC value, but
     * without masking out its low bits, because which bits need
     * masking depends on whether we're returning to Thumb or ARM
     * state. Do the masking now.
     */
    env->regs[15] &= (env->thumb ? ~1 : ~3);

490
    arm_call_el_change_hook(arm_env_get_cpu(env));
491 492
}

P
pbrook 已提交
493
/* Access to user mode registers from privileged modes.  */
494
uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno)
P
pbrook 已提交
495 496 497 498
{
    uint32_t val;

    if (regno == 13) {
499
        val = env->banked_r13[BANK_USRSYS];
P
pbrook 已提交
500
    } else if (regno == 14) {
501
        val = env->banked_r14[BANK_USRSYS];
P
pbrook 已提交
502 503 504 505 506 507 508 509 510
    } else if (regno >= 8
               && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
        val = env->usr_regs[regno - 8];
    } else {
        val = env->regs[regno];
    }
    return val;
}

B
Blue Swirl 已提交
511
void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val)
P
pbrook 已提交
512 513
{
    if (regno == 13) {
514
        env->banked_r13[BANK_USRSYS] = val;
P
pbrook 已提交
515
    } else if (regno == 14) {
516
        env->banked_r14[BANK_USRSYS] = val;
P
pbrook 已提交
517 518 519 520 521 522 523
    } else if (regno >= 8
               && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
        env->usr_regs[regno - 8] = val;
    } else {
        env->regs[regno] = val;
    }
}
524

525 526 527 528 529 530 531 532 533 534 535
void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
{
    if ((env->uncached_cpsr & CPSR_M) == mode) {
        env->regs[13] = val;
    } else {
        env->banked_r13[bank_number(mode)] = val;
    }
}

uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
{
536 537 538 539 540 541 542 543
    if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SYS) {
        /* SRS instruction is UNPREDICTABLE from System mode; we UNDEF.
         * Other UNPREDICTABLE and UNDEF cases were caught at translate time.
         */
        raise_exception(env, EXCP_UDEF, syn_uncategorized(),
                        exception_target_el(env));
    }

544 545 546 547 548 549 550
    if ((env->uncached_cpsr & CPSR_M) == mode) {
        return env->regs[13];
    } else {
        return env->banked_r13[bank_number(mode)];
    }
}

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
static void msr_mrs_banked_exc_checks(CPUARMState *env, uint32_t tgtmode,
                                      uint32_t regno)
{
    /* Raise an exception if the requested access is one of the UNPREDICTABLE
     * cases; otherwise return. This broadly corresponds to the pseudocode
     * BankedRegisterAccessValid() and SPSRAccessValid(),
     * except that we have already handled some cases at translate time.
     */
    int curmode = env->uncached_cpsr & CPSR_M;

    if (curmode == tgtmode) {
        goto undef;
    }

    if (tgtmode == ARM_CPU_MODE_USR) {
        switch (regno) {
        case 8 ... 12:
            if (curmode != ARM_CPU_MODE_FIQ) {
                goto undef;
            }
            break;
        case 13:
            if (curmode == ARM_CPU_MODE_SYS) {
                goto undef;
            }
            break;
        case 14:
            if (curmode == ARM_CPU_MODE_HYP || curmode == ARM_CPU_MODE_SYS) {
                goto undef;
            }
            break;
        default:
            break;
        }
    }

    if (tgtmode == ARM_CPU_MODE_HYP) {
        switch (regno) {
        case 17: /* ELR_Hyp */
            if (curmode != ARM_CPU_MODE_HYP && curmode != ARM_CPU_MODE_MON) {
                goto undef;
            }
            break;
        default:
            if (curmode != ARM_CPU_MODE_MON) {
                goto undef;
            }
            break;
        }
    }

    return;

undef:
    raise_exception(env, EXCP_UDEF, syn_uncategorized(),
                    exception_target_el(env));
}

void HELPER(msr_banked)(CPUARMState *env, uint32_t value, uint32_t tgtmode,
                        uint32_t regno)
{
    msr_mrs_banked_exc_checks(env, tgtmode, regno);

    switch (regno) {
    case 16: /* SPSRs */
        env->banked_spsr[bank_number(tgtmode)] = value;
        break;
    case 17: /* ELR_Hyp */
        env->elr_el[2] = value;
        break;
    case 13:
        env->banked_r13[bank_number(tgtmode)] = value;
        break;
    case 14:
        env->banked_r14[bank_number(tgtmode)] = value;
        break;
    case 8 ... 12:
        switch (tgtmode) {
        case ARM_CPU_MODE_USR:
            env->usr_regs[regno - 8] = value;
            break;
        case ARM_CPU_MODE_FIQ:
            env->fiq_regs[regno - 8] = value;
            break;
        default:
            g_assert_not_reached();
        }
        break;
    default:
        g_assert_not_reached();
    }
}

uint32_t HELPER(mrs_banked)(CPUARMState *env, uint32_t tgtmode, uint32_t regno)
{
    msr_mrs_banked_exc_checks(env, tgtmode, regno);

    switch (regno) {
    case 16: /* SPSRs */
        return env->banked_spsr[bank_number(tgtmode)];
    case 17: /* ELR_Hyp */
        return env->elr_el[2];
    case 13:
        return env->banked_r13[bank_number(tgtmode)];
    case 14:
        return env->banked_r14[bank_number(tgtmode)];
    case 8 ... 12:
        switch (tgtmode) {
        case ARM_CPU_MODE_USR:
            return env->usr_regs[regno - 8];
        case ARM_CPU_MODE_FIQ:
            return env->fiq_regs[regno - 8];
        default:
            g_assert_not_reached();
        }
    default:
        g_assert_not_reached();
    }
}

671 672
void HELPER(access_check_cp_reg)(CPUARMState *env, void *rip, uint32_t syndrome,
                                 uint32_t isread)
673 674
{
    const ARMCPRegInfo *ri = rip;
675
    int target_el;
676 677 678

    if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14
        && extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) {
679
        raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
680 681 682 683 684 685
    }

    if (!ri->accessfn) {
        return;
    }

686
    switch (ri->accessfn(env, ri, isread)) {
687 688 689
    case CP_ACCESS_OK:
        return;
    case CP_ACCESS_TRAP:
690 691 692 693 694 695
        target_el = exception_target_el(env);
        break;
    case CP_ACCESS_TRAP_EL2:
        /* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is
         * a bug in the access function.
         */
696
        assert(!arm_is_secure(env) && arm_current_el(env) != 3);
697 698 699 700
        target_el = 2;
        break;
    case CP_ACCESS_TRAP_EL3:
        target_el = 3;
701
        break;
702
    case CP_ACCESS_TRAP_UNCATEGORIZED:
703
        target_el = exception_target_el(env);
704
        syndrome = syn_uncategorized();
705
        break;
706 707 708 709 710 711 712 713
    case CP_ACCESS_TRAP_UNCATEGORIZED_EL2:
        target_el = 2;
        syndrome = syn_uncategorized();
        break;
    case CP_ACCESS_TRAP_UNCATEGORIZED_EL3:
        target_el = 3;
        syndrome = syn_uncategorized();
        break;
714 715 716 717 718 719 720 721 722 723 724 725 726
    case CP_ACCESS_TRAP_FP_EL2:
        target_el = 2;
        /* Since we are an implementation that takes exceptions on a trapped
         * conditional insn only if the insn has passed its condition code
         * check, we take the IMPDEF choice to always report CV=1 COND=0xe
         * (which is also the required value for AArch64 traps).
         */
        syndrome = syn_fp_access_trap(1, 0xe, false);
        break;
    case CP_ACCESS_TRAP_FP_EL3:
        target_el = 3;
        syndrome = syn_fp_access_trap(1, 0xe, false);
        break;
727 728 729
    default:
        g_assert_not_reached();
    }
730

731
    raise_exception(env, EXCP_UDEF, syndrome, target_el);
732 733
}

734 735 736
void HELPER(set_cp_reg)(CPUARMState *env, void *rip, uint32_t value)
{
    const ARMCPRegInfo *ri = rip;
737 738

    ri->writefn(env, ri, value);
739 740 741 742 743
}

uint32_t HELPER(get_cp_reg)(CPUARMState *env, void *rip)
{
    const ARMCPRegInfo *ri = rip;
744 745

    return ri->readfn(env, ri);
746 747 748 749 750
}

void HELPER(set_cp_reg64)(CPUARMState *env, void *rip, uint64_t value)
{
    const ARMCPRegInfo *ri = rip;
751 752

    ri->writefn(env, ri, value);
753 754 755 756 757
}

uint64_t HELPER(get_cp_reg64)(CPUARMState *env, void *rip)
{
    const ARMCPRegInfo *ri = rip;
758 759

    return ri->readfn(env, ri);
760
}
P
pbrook 已提交
761

762 763 764 765 766 767
void HELPER(msr_i_pstate)(CPUARMState *env, uint32_t op, uint32_t imm)
{
    /* MSR_i to update PSTATE. This is OK from EL0 only if UMA is set.
     * Note that SPSel is never OK from EL0; we rely on handle_msr_i()
     * to catch that case at translate time.
     */
768
    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
769 770 771 772
        uint32_t syndrome = syn_aa64_sysregtrap(0, extract32(op, 0, 3),
                                                extract32(op, 3, 3), 4,
                                                imm, 0x1f, 0);
        raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
773 774 775 776
    }

    switch (op) {
    case 0x05: /* SPSel */
777
        update_spsel(env, imm);
778 779 780 781 782 783 784 785 786 787 788 789
        break;
    case 0x1e: /* DAIFSet */
        env->daif |= (imm << 6) & PSTATE_DAIF;
        break;
    case 0x1f: /* DAIFClear */
        env->daif &= ~((imm << 6) & PSTATE_DAIF);
        break;
    default:
        g_assert_not_reached();
    }
}

790 791 792 793 794
void HELPER(clear_pstate_ss)(CPUARMState *env)
{
    env->pstate &= ~PSTATE_SS;
}

795 796
void HELPER(pre_hvc)(CPUARMState *env)
{
797
    ARMCPU *cpu = arm_env_get_cpu(env);
798
    int cur_el = arm_current_el(env);
799 800 801 802
    /* FIXME: Use actual secure state.  */
    bool secure = false;
    bool undef;

803 804 805 806 807 808 809
    if (arm_is_psci_call(cpu, EXCP_HVC)) {
        /* If PSCI is enabled and this looks like a valid PSCI call then
         * that overrides the architecturally mandated HVC behaviour.
         */
        return;
    }

810 811 812 813 814
    if (!arm_feature(env, ARM_FEATURE_EL2)) {
        /* If EL2 doesn't exist, HVC always UNDEFs */
        undef = true;
    } else if (arm_feature(env, ARM_FEATURE_EL3)) {
        /* EL3.HCE has priority over EL2.HCD. */
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
        undef = !(env->cp15.scr_el3 & SCR_HCE);
    } else {
        undef = env->cp15.hcr_el2 & HCR_HCD;
    }

    /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
     * For ARMv8/AArch64, HVC is allowed in EL3.
     * Note that we've already trapped HVC from EL0 at translation
     * time.
     */
    if (secure && (!is_a64(env) || cur_el == 1)) {
        undef = true;
    }

    if (undef) {
830 831
        raise_exception(env, EXCP_UDEF, syn_uncategorized(),
                        exception_target_el(env));
832 833 834
    }
}

835 836
void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome)
{
837
    ARMCPU *cpu = arm_env_get_cpu(env);
838
    int cur_el = arm_current_el(env);
839
    bool secure = arm_is_secure(env);
840
    bool smd = env->cp15.scr_el3 & SCR_SMD;
841 842 843 844 845 846
    /* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state.
     * On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization
     *  extensions, SMD only applies to NS state.
     * On ARMv7 without the Virtualization extensions, the SMD bit
     * doesn't exist, but we forbid the guest to set it to 1 in scr_write(),
     * so we need not special case this here.
847
     */
848
    bool undef = arm_feature(env, ARM_FEATURE_AARCH64) ? smd : smd && !secure;
849

850 851 852 853 854 855 856
    if (arm_is_psci_call(cpu, EXCP_SMC)) {
        /* If PSCI is enabled and this looks like a valid PSCI call then
         * that overrides the architecturally mandated SMC behaviour.
         */
        return;
    }

857 858 859 860 861
    if (!arm_feature(env, ARM_FEATURE_EL3)) {
        /* If we have no EL3 then SMC always UNDEFs */
        undef = true;
    } else if (!secure && cur_el == 1 && (env->cp15.hcr_el2 & HCR_TSC)) {
        /* In NS EL1, HCR controlled routing to EL2 has priority over SMD. */
862
        raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
863 864 865
    }

    if (undef) {
866 867
        raise_exception(env, EXCP_UDEF, syn_uncategorized(),
                        exception_target_el(env));
868 869 870
    }
}

871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
static int el_from_spsr(uint32_t spsr)
{
    /* Return the exception level that this SPSR is requesting a return to,
     * or -1 if it is invalid (an illegal return)
     */
    if (spsr & PSTATE_nRW) {
        switch (spsr & CPSR_M) {
        case ARM_CPU_MODE_USR:
            return 0;
        case ARM_CPU_MODE_HYP:
            return 2;
        case ARM_CPU_MODE_FIQ:
        case ARM_CPU_MODE_IRQ:
        case ARM_CPU_MODE_SVC:
        case ARM_CPU_MODE_ABT:
        case ARM_CPU_MODE_UND:
        case ARM_CPU_MODE_SYS:
            return 1;
        case ARM_CPU_MODE_MON:
            /* Returning to Mon from AArch64 is never possible,
             * so this is an illegal return.
             */
        default:
            return -1;
        }
    } else {
        if (extract32(spsr, 1, 1)) {
            /* Return with reserved M[1] bit set */
            return -1;
        }
        if (extract32(spsr, 0, 4) == 1) {
            /* return to EL0 with M[0] bit set */
            return -1;
        }
        return extract32(spsr, 2, 2);
    }
}

909 910
void HELPER(exception_return)(CPUARMState *env)
{
911
    int cur_el = arm_current_el(env);
912
    unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el);
913
    uint32_t spsr = env->banked_spsr[spsr_idx];
914
    int new_el;
915
    bool return_to_aa64 = (spsr & PSTATE_nRW) == 0;
916

917
    aarch64_save_sp(env, cur_el);
918 919 920

    env->exclusive_addr = -1;

921 922 923 924 925 926 927 928 929 930 931
    /* We must squash the PSTATE.SS bit to zero unless both of the
     * following hold:
     *  1. debug exceptions are currently disabled
     *  2. singlestep will be active in the EL we return to
     * We check 1 here and 2 after we've done the pstate/cpsr write() to
     * transition to the EL we're going to.
     */
    if (arm_generate_debug_exceptions(env)) {
        spsr &= ~PSTATE_SS;
    }

932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
    new_el = el_from_spsr(spsr);
    if (new_el == -1) {
        goto illegal_return;
    }
    if (new_el > cur_el
        || (new_el == 2 && !arm_feature(env, ARM_FEATURE_EL2))) {
        /* Disallow return to an EL which is unimplemented or higher
         * than the current one.
         */
        goto illegal_return;
    }

    if (new_el != 0 && arm_el_is_aa64(env, new_el) != return_to_aa64) {
        /* Return to an EL which is configured for a different register width */
        goto illegal_return;
    }

949 950 951 952 953 954 955 956 957 958
    if (new_el == 2 && arm_is_secure_below_el3(env)) {
        /* Return to the non-existent secure-EL2 */
        goto illegal_return;
    }

    if (new_el == 1 && (env->cp15.hcr_el2 & HCR_TGE)
        && !arm_is_secure_below_el3(env)) {
        goto illegal_return;
    }

959
    if (!return_to_aa64) {
960
        env->aarch64 = 0;
961 962 963 964
        /* We do a raw CPSR write because aarch64_sync_64_to_32()
         * will sort the register banks out for us, and we've already
         * caught all the bad-mode cases in el_from_spsr().
         */
965
        cpsr_write(env, spsr, ~0, CPSRWriteRaw);
966 967 968
        if (!arm_singlestep_active(env)) {
            env->uncached_cpsr &= ~PSTATE_SS;
        }
969
        aarch64_sync_64_to_32(env);
970

971 972 973 974 975
        if (spsr & CPSR_T) {
            env->regs[15] = env->elr_el[cur_el] & ~0x1;
        } else {
            env->regs[15] = env->elr_el[cur_el] & ~0x3;
        }
976 977 978
        qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
                      "AArch32 EL%d PC 0x%" PRIx32 "\n",
                      cur_el, new_el, env->regs[15]);
979 980 981
    } else {
        env->aarch64 = 1;
        pstate_write(env, spsr);
982 983 984
        if (!arm_singlestep_active(env)) {
            env->pstate &= ~PSTATE_SS;
        }
985
        aarch64_restore_sp(env, new_el);
986
        env->pc = env->elr_el[cur_el];
987 988 989
        qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
                      "AArch64 EL%d PC 0x%" PRIx64 "\n",
                      cur_el, new_el, env->pc);
990 991
    }

992 993
    arm_call_el_change_hook(arm_env_get_cpu(env));

994 995 996 997 998 999 1000 1001 1002 1003 1004
    return;

illegal_return:
    /* Illegal return events of various kinds have architecturally
     * mandated behaviour:
     * restore NZCV and DAIF from SPSR_ELx
     * set PSTATE.IL
     * restore PC from ELR_ELx
     * no change to exception level, execution state or stack pointer
     */
    env->pstate |= PSTATE_IL;
1005
    env->pc = env->elr_el[cur_el];
1006 1007 1008
    spsr &= PSTATE_NZCV | PSTATE_DAIF;
    spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF);
    pstate_write(env, spsr);
1009 1010 1011
    if (!arm_singlestep_active(env)) {
        env->pstate &= ~PSTATE_SS;
    }
1012 1013
    qemu_log_mask(LOG_GUEST_ERROR, "Illegal exception return at EL%d: "
                  "resuming execution at 0x%" PRIx64 "\n", cur_el, env->pc);
1014 1015
}

1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
/* Return true if the linked breakpoint entry lbn passes its checks */
static bool linked_bp_matches(ARMCPU *cpu, int lbn)
{
    CPUARMState *env = &cpu->env;
    uint64_t bcr = env->cp15.dbgbcr[lbn];
    int brps = extract32(cpu->dbgdidr, 24, 4);
    int ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
    int bt;
    uint32_t contextidr;

    /* Links to unimplemented or non-context aware breakpoints are
     * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
     * as if linked to an UNKNOWN context-aware breakpoint (in which
     * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
     * We choose the former.
     */
    if (lbn > brps || lbn < (brps - ctx_cmps)) {
        return false;
    }

    bcr = env->cp15.dbgbcr[lbn];

    if (extract64(bcr, 0, 1) == 0) {
        /* Linked breakpoint disabled : generate no events */
        return false;
    }

    bt = extract64(bcr, 20, 4);

    /* We match the whole register even if this is AArch32 using the
     * short descriptor format (in which case it holds both PROCID and ASID),
     * since we don't implement the optional v7 context ID masking.
     */
1049
    contextidr = extract64(env->cp15.contextidr_el[1], 0, 32);
1050 1051 1052

    switch (bt) {
    case 3: /* linked context ID match */
1053
        if (arm_current_el(env) > 1) {
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
            /* Context matches never fire in EL2 or (AArch64) EL3 */
            return false;
        }
        return (contextidr == extract64(env->cp15.dbgbvr[lbn], 0, 32));
    case 5: /* linked address mismatch (reserved in AArch64) */
    case 9: /* linked VMID match (reserved if no EL2) */
    case 11: /* linked context ID and VMID match (reserved if no EL2) */
    default:
        /* Links to Unlinked context breakpoints must generate no
         * events; we choose to do the same for reserved values too.
         */
        return false;
    }

    return false;
}

1071
static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp)
1072 1073
{
    CPUARMState *env = &cpu->env;
1074
    uint64_t cr;
1075
    int pac, hmc, ssc, wt, lbn;
1076 1077 1078 1079
    /* Note that for watchpoints the check is against the CPU security
     * state, not the S/NS attribute on the offending data access.
     */
    bool is_secure = arm_is_secure(env);
1080
    int access_el = arm_current_el(env);
1081

1082
    if (is_wp) {
1083 1084 1085
        CPUWatchpoint *wp = env->cpu_watchpoint[n];

        if (!wp || !(wp->flags & BP_WATCHPOINT_HIT)) {
1086 1087 1088
            return false;
        }
        cr = env->cp15.dbgwcr[n];
1089 1090 1091 1092 1093 1094 1095
        if (wp->hitattrs.user) {
            /* The LDRT/STRT/LDT/STT "unprivileged access" instructions should
             * match watchpoints as if they were accesses done at EL0, even if
             * the CPU is at EL1 or higher.
             */
            access_el = 0;
        }
1096 1097
    } else {
        uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
1098

1099 1100 1101 1102 1103
        if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) {
            return false;
        }
        cr = env->cp15.dbgbcr[n];
    }
1104
    /* The WATCHPOINT_HIT flag guarantees us that the watchpoint is
1105 1106 1107 1108 1109
     * enabled and that the address and access type match; for breakpoints
     * we know the address matched; check the remaining fields, including
     * linked breakpoints. We rely on WCR and BCR having the same layout
     * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
     * Note that some combinations of {PAC, HMC, SSC} are reserved and
1110 1111 1112 1113 1114 1115
     * must act either like some valid combination or as if the watchpoint
     * were disabled. We choose the former, and use this together with
     * the fact that EL3 must always be Secure and EL2 must always be
     * Non-Secure to simplify the code slightly compared to the full
     * table in the ARM ARM.
     */
1116 1117 1118
    pac = extract64(cr, 1, 2);
    hmc = extract64(cr, 13, 1);
    ssc = extract64(cr, 14, 2);
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135

    switch (ssc) {
    case 0:
        break;
    case 1:
    case 3:
        if (is_secure) {
            return false;
        }
        break;
    case 2:
        if (!is_secure) {
            return false;
        }
        break;
    }

1136
    switch (access_el) {
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
    case 3:
    case 2:
        if (!hmc) {
            return false;
        }
        break;
    case 1:
        if (extract32(pac, 0, 1) == 0) {
            return false;
        }
        break;
    case 0:
        if (extract32(pac, 1, 1) == 0) {
            return false;
        }
        break;
    default:
        g_assert_not_reached();
    }

1157 1158
    wt = extract64(cr, 20, 1);
    lbn = extract64(cr, 16, 4);
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180

    if (wt && !linked_bp_matches(cpu, lbn)) {
        return false;
    }

    return true;
}

static bool check_watchpoints(ARMCPU *cpu)
{
    CPUARMState *env = &cpu->env;
    int n;

    /* If watchpoints are disabled globally or we can't take debug
     * exceptions here then watchpoint firings are ignored.
     */
    if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
        || !arm_generate_debug_exceptions(env)) {
        return false;
    }

    for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) {
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
        if (bp_wp_matches(cpu, n, true)) {
            return true;
        }
    }
    return false;
}

static bool check_breakpoints(ARMCPU *cpu)
{
    CPUARMState *env = &cpu->env;
    int n;

    /* If breakpoints are disabled globally or we can't take debug
     * exceptions here then breakpoint firings are ignored.
     */
    if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
        || !arm_generate_debug_exceptions(env)) {
        return false;
    }

    for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) {
        if (bp_wp_matches(cpu, n, false)) {
1203 1204 1205 1206 1207 1208
            return true;
        }
    }
    return false;
}

1209 1210 1211 1212 1213 1214 1215 1216 1217
void HELPER(check_breakpoints)(CPUARMState *env)
{
    ARMCPU *cpu = arm_env_get_cpu(env);

    if (check_breakpoints(cpu)) {
        HELPER(exception_internal(env, EXCP_DEBUG));
    }
}

1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp)
{
    /* Called by core code when a CPU watchpoint fires; need to check if this
     * is also an architectural watchpoint match.
     */
    ARMCPU *cpu = ARM_CPU(cs);

    return check_watchpoints(cpu);
}

1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len)
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;

    /* In BE32 system mode, target memory is stored byteswapped (on a
     * little-endian host system), and by the time we reach here (via an
     * opcode helper) the addresses of subword accesses have been adjusted
     * to account for that, which means that watchpoints will not match.
     * Undo the adjustment here.
     */
    if (arm_sctlr_b(env)) {
        if (len == 1) {
            addr ^= 3;
        } else if (len == 2) {
            addr ^= 2;
        }
    }

    return addr;
}

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
void arm_debug_excp_handler(CPUState *cs)
{
    /* Called by core code when a watchpoint or breakpoint fires;
     * need to check which one and raise the appropriate exception.
     */
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
    CPUWatchpoint *wp_hit = cs->watchpoint_hit;

    if (wp_hit) {
        if (wp_hit->flags & BP_CPU) {
1261 1262 1263
            bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0;
            bool same_el = arm_debug_target_el(env) == arm_current_el(env);

1264
            cs->watchpoint_hit = NULL;
1265 1266 1267

            if (extended_addresses_enabled(env)) {
                env->exception.fsr = (1 << 9) | 0x22;
1268
            } else {
1269
                env->exception.fsr = 0x2;
1270
            }
1271 1272 1273 1274
            env->exception.vaddress = wp_hit->hitaddr;
            raise_exception(env, EXCP_DATA_ABORT,
                    syn_watchpoint(same_el, 0, wnr),
                    arm_debug_target_el(env));
1275
        }
1276
    } else {
1277
        uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
1278
        bool same_el = (arm_debug_target_el(env) == arm_current_el(env));
1279

1280 1281 1282 1283 1284 1285 1286
        /* (1) GDB breakpoints should be handled first.
         * (2) Do not raise a CPU exception if no CPU breakpoint has fired,
         * since singlestep is also done by generating a debug internal
         * exception.
         */
        if (cpu_breakpoint_test(cs, pc, BP_GDB)
            || !cpu_breakpoint_test(cs, pc, BP_CPU)) {
1287 1288 1289
            return;
        }

1290 1291 1292 1293
        if (extended_addresses_enabled(env)) {
            env->exception.fsr = (1 << 9) | 0x22;
        } else {
            env->exception.fsr = 0x2;
1294
        }
1295 1296 1297 1298
        /* FAR is UNKNOWN, so doesn't need setting */
        raise_exception(env, EXCP_PREFETCH_ABORT,
                        syn_breakpoint(same_el),
                        arm_debug_target_el(env));
1299 1300 1301
    }
}

P
pbrook 已提交
1302 1303 1304 1305 1306 1307
/* ??? Flag setting arithmetic is awkward because we need to do comparisons.
   The only way to do that in TCG is a conditional branch, which clobbers
   all our temporaries.  For now implement these as helper functions.  */

/* Similarly for variable shift instructions.  */

1308
uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i)
P
pbrook 已提交
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
{
    int shift = i & 0xff;
    if (shift >= 32) {
        if (shift == 32)
            env->CF = x & 1;
        else
            env->CF = 0;
        return 0;
    } else if (shift != 0) {
        env->CF = (x >> (32 - shift)) & 1;
        return x << shift;
    }
    return x;
}

1324
uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i)
P
pbrook 已提交
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
{
    int shift = i & 0xff;
    if (shift >= 32) {
        if (shift == 32)
            env->CF = (x >> 31) & 1;
        else
            env->CF = 0;
        return 0;
    } else if (shift != 0) {
        env->CF = (x >> (shift - 1)) & 1;
        return x >> shift;
    }
    return x;
}

1340
uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i)
P
pbrook 已提交
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
{
    int shift = i & 0xff;
    if (shift >= 32) {
        env->CF = (x >> 31) & 1;
        return (int32_t)x >> 31;
    } else if (shift != 0) {
        env->CF = (x >> (shift - 1)) & 1;
        return (int32_t)x >> shift;
    }
    return x;
}

1353
uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i)
P
pbrook 已提交
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
{
    int shift1, shift;
    shift1 = i & 0xff;
    shift = shift1 & 0x1f;
    if (shift == 0) {
        if (shift1 != 0)
            env->CF = (x >> 31) & 1;
        return x;
    } else {
        env->CF = (x >> (shift - 1)) & 1;
        return ((uint32_t)x >> shift) | (x << (32 - shift));
    }
}