op_helper.c 28.0 KB
Newer Older
M
Max Filippov 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of the Open Source and Linux Lab nor the
 *       names of its contributors may be used to endorse or promote products
 *       derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "cpu.h"
29
#include "exec/helper-proto.h"
30
#include "qemu/host-utils.h"
31
#include "exec/softmmu_exec.h"
32
#include "exec/address-spaces.h"
M
Max Filippov 已提交
33

34
#define ALIGNED_ONLY
M
Max Filippov 已提交
35 36 37
#define MMUSUFFIX _mmu

#define SHIFT 0
38
#include "exec/softmmu_template.h"
M
Max Filippov 已提交
39 40

#define SHIFT 1
41
#include "exec/softmmu_template.h"
M
Max Filippov 已提交
42 43

#define SHIFT 2
44
#include "exec/softmmu_template.h"
M
Max Filippov 已提交
45 46

#define SHIFT 3
47
#include "exec/softmmu_template.h"
M
Max Filippov 已提交
48

49 50
void xtensa_cpu_do_unaligned_access(CPUState *cs,
        vaddr addr, int is_write, int is_user, uintptr_t retaddr)
51
{
52 53
    XtensaCPU *cpu = XTENSA_CPU(cs);
    CPUXtensaState *env = &cpu->env;
54

55 56
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_UNALIGNED_EXCEPTION) &&
            !xtensa_option_enabled(env->config, XTENSA_OPTION_HW_ALIGNMENT)) {
57
        cpu_restore_state(CPU(cpu), retaddr);
58
        HELPER(exception_cause_vaddr)(env,
59 60 61 62
                env->pc, LOAD_STORE_ALIGNMENT_CAUSE, addr);
    }
}

63 64
void tlb_fill(CPUState *cs,
              target_ulong vaddr, int is_write, int mmu_idx, uintptr_t retaddr)
M
Max Filippov 已提交
65
{
66 67
    XtensaCPU *cpu = XTENSA_CPU(cs);
    CPUXtensaState *env = &cpu->env;
68 69 70 71 72
    uint32_t paddr;
    uint32_t page_size;
    unsigned access;
    int ret = xtensa_get_physical_addr(env, true, vaddr, is_write, mmu_idx,
            &paddr, &page_size, &access);
73

74 75
    qemu_log("%s(%08x, %d, %d) -> %08x, ret = %d\n", __func__,
            vaddr, is_write, mmu_idx, paddr, ret);
76

77
    if (ret == 0) {
78 79 80 81
        tlb_set_page(cs,
                     vaddr & TARGET_PAGE_MASK,
                     paddr & TARGET_PAGE_MASK,
                     access, mmu_idx, page_size);
82
    } else {
83
        cpu_restore_state(cs, retaddr);
84
        HELPER(exception_cause_vaddr)(env, env->pc, ret, vaddr);
85
    }
M
Max Filippov 已提交
86
}
87

88 89 90 91 92
static void tb_invalidate_virtual_addr(CPUXtensaState *env, uint32_t vaddr)
{
    uint32_t paddr;
    uint32_t page_size;
    unsigned access;
93
    int ret = xtensa_get_physical_addr(env, false, vaddr, 2, 0,
94 95
            &paddr, &page_size, &access);
    if (ret == 0) {
96
        tb_invalidate_phys_addr(&address_space_memory, paddr);
97 98 99
    }
}

100
void HELPER(exception)(CPUXtensaState *env, uint32_t excp)
101
{
102 103 104
    CPUState *cs = CPU(xtensa_env_get_cpu(env));

    cs->exception_index = excp;
105 106 107
    if (excp == EXCP_DEBUG) {
        env->exception_taken = 0;
    }
108
    cpu_loop_exit(cs);
109
}
110

111
void HELPER(exception_cause)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
{
    uint32_t vector;

    env->pc = pc;
    if (env->sregs[PS] & PS_EXCM) {
        if (env->config->ndepc) {
            env->sregs[DEPC] = pc;
        } else {
            env->sregs[EPC1] = pc;
        }
        vector = EXC_DOUBLE;
    } else {
        env->sregs[EPC1] = pc;
        vector = (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
    }

    env->sregs[EXCCAUSE] = cause;
    env->sregs[PS] |= PS_EXCM;

131
    HELPER(exception)(env, vector);
132 133
}

134 135
void HELPER(exception_cause_vaddr)(CPUXtensaState *env,
        uint32_t pc, uint32_t cause, uint32_t vaddr)
136 137
{
    env->sregs[EXCVADDR] = vaddr;
138
    HELPER(exception_cause)(env, pc, cause);
139 140
}

141
void debug_exception_env(CPUXtensaState *env, uint32_t cause)
142
{
143 144
    if (xtensa_get_cintlevel(env) < env->config->debug_level) {
        HELPER(debug_exception)(env, env->pc, cause);
145 146 147
    }
}

148
void HELPER(debug_exception)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
149 150 151 152 153 154 155 156 157
{
    unsigned level = env->config->debug_level;

    env->pc = pc;
    env->sregs[DEBUGCAUSE] = cause;
    env->sregs[EPC1 + level - 1] = pc;
    env->sregs[EPS2 + level - 2] = env->sregs[PS];
    env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) | PS_EXCM |
        (level << PS_INTLEVEL_SHIFT);
158
    HELPER(exception)(env, EXC_DEBUG);
159 160
}

161 162 163 164 165 166 167 168 169 170 171 172
uint32_t HELPER(nsa)(uint32_t v)
{
    if (v & 0x80000000) {
        v = ~v;
    }
    return v ? clz32(v) - 1 : 31;
}

uint32_t HELPER(nsau)(uint32_t v)
{
    return v ? clz32(v) : 32;
}
173

174
static void copy_window_from_phys(CPUXtensaState *env,
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
        uint32_t window, uint32_t phys, uint32_t n)
{
    assert(phys < env->config->nareg);
    if (phys + n <= env->config->nareg) {
        memcpy(env->regs + window, env->phys_regs + phys,
                n * sizeof(uint32_t));
    } else {
        uint32_t n1 = env->config->nareg - phys;
        memcpy(env->regs + window, env->phys_regs + phys,
                n1 * sizeof(uint32_t));
        memcpy(env->regs + window + n1, env->phys_regs,
                (n - n1) * sizeof(uint32_t));
    }
}

190
static void copy_phys_from_window(CPUXtensaState *env,
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
        uint32_t phys, uint32_t window, uint32_t n)
{
    assert(phys < env->config->nareg);
    if (phys + n <= env->config->nareg) {
        memcpy(env->phys_regs + phys, env->regs + window,
                n * sizeof(uint32_t));
    } else {
        uint32_t n1 = env->config->nareg - phys;
        memcpy(env->phys_regs + phys, env->regs + window,
                n1 * sizeof(uint32_t));
        memcpy(env->phys_regs, env->regs + window + n1,
                (n - n1) * sizeof(uint32_t));
    }
}


207
static inline unsigned windowbase_bound(unsigned a, const CPUXtensaState *env)
208 209 210 211
{
    return a & (env->config->nareg / 4 - 1);
}

212
static inline unsigned windowstart_bit(unsigned a, const CPUXtensaState *env)
213 214 215 216
{
    return 1 << windowbase_bound(a, env);
}

217
void xtensa_sync_window_from_phys(CPUXtensaState *env)
218 219 220 221
{
    copy_window_from_phys(env, 0, env->sregs[WINDOW_BASE] * 4, 16);
}

222
void xtensa_sync_phys_from_window(CPUXtensaState *env)
223 224 225 226
{
    copy_phys_from_window(env, env->sregs[WINDOW_BASE] * 4, 0, 16);
}

227
static void rotate_window_abs(CPUXtensaState *env, uint32_t position)
228 229 230 231 232 233
{
    xtensa_sync_phys_from_window(env);
    env->sregs[WINDOW_BASE] = windowbase_bound(position, env);
    xtensa_sync_window_from_phys(env);
}

234
static void rotate_window(CPUXtensaState *env, uint32_t delta)
235
{
236
    rotate_window_abs(env, env->sregs[WINDOW_BASE] + delta);
237 238
}

239
void HELPER(wsr_windowbase)(CPUXtensaState *env, uint32_t v)
240
{
241
    rotate_window_abs(env, v);
242 243
}

244
void HELPER(entry)(CPUXtensaState *env, uint32_t pc, uint32_t s, uint32_t imm)
245 246 247 248 249
{
    int callinc = (env->sregs[PS] & PS_CALLINC) >> PS_CALLINC_SHIFT;
    if (s > 3 || ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
        qemu_log("Illegal entry instruction(pc = %08x), PS = %08x\n",
                pc, env->sregs[PS]);
250
        HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
251 252
    } else {
        env->regs[(callinc << 2) | (s & 3)] = env->regs[s] - (imm << 3);
253
        rotate_window(env, callinc);
254 255 256 257 258
        env->sregs[WINDOW_START] |=
            windowstart_bit(env->sregs[WINDOW_BASE], env);
    }
}

259
void HELPER(window_check)(CPUXtensaState *env, uint32_t pc, uint32_t w)
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
{
    uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
    uint32_t windowstart = env->sregs[WINDOW_START];
    uint32_t m, n;

    if ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) {
        return;
    }

    for (n = 1; ; ++n) {
        if (n > w) {
            return;
        }
        if (windowstart & windowstart_bit(windowbase + n, env)) {
            break;
        }
    }

    m = windowbase_bound(windowbase + n, env);
279
    rotate_window(env, n);
280 281 282 283 284
    env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
        (windowbase << PS_OWB_SHIFT) | PS_EXCM;
    env->sregs[EPC1] = env->pc = pc;

    if (windowstart & windowstart_bit(m + 1, env)) {
285
        HELPER(exception)(env, EXC_WINDOW_OVERFLOW4);
286
    } else if (windowstart & windowstart_bit(m + 2, env)) {
287
        HELPER(exception)(env, EXC_WINDOW_OVERFLOW8);
288
    } else {
289
        HELPER(exception)(env, EXC_WINDOW_OVERFLOW12);
290 291 292
    }
}

293
uint32_t HELPER(retw)(CPUXtensaState *env, uint32_t pc)
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
{
    int n = (env->regs[0] >> 30) & 0x3;
    int m = 0;
    uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
    uint32_t windowstart = env->sregs[WINDOW_START];
    uint32_t ret_pc = 0;

    if (windowstart & windowstart_bit(windowbase - 1, env)) {
        m = 1;
    } else if (windowstart & windowstart_bit(windowbase - 2, env)) {
        m = 2;
    } else if (windowstart & windowstart_bit(windowbase - 3, env)) {
        m = 3;
    }

    if (n == 0 || (m != 0 && m != n) ||
            ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
        qemu_log("Illegal retw instruction(pc = %08x), "
                "PS = %08x, m = %d, n = %d\n",
                pc, env->sregs[PS], m, n);
314
        HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
315 316 317 318 319
    } else {
        int owb = windowbase;

        ret_pc = (pc & 0xc0000000) | (env->regs[0] & 0x3fffffff);

320
        rotate_window(env, -n);
321 322 323 324 325 326 327 328 329
        if (windowstart & windowstart_bit(env->sregs[WINDOW_BASE], env)) {
            env->sregs[WINDOW_START] &= ~windowstart_bit(owb, env);
        } else {
            /* window underflow */
            env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
                (windowbase << PS_OWB_SHIFT) | PS_EXCM;
            env->sregs[EPC1] = env->pc = pc;

            if (n == 1) {
330
                HELPER(exception)(env, EXC_WINDOW_UNDERFLOW4);
331
            } else if (n == 2) {
332
                HELPER(exception)(env, EXC_WINDOW_UNDERFLOW8);
333
            } else if (n == 3) {
334
                HELPER(exception)(env, EXC_WINDOW_UNDERFLOW12);
335 336 337 338 339 340
            }
        }
    }
    return ret_pc;
}

341
void HELPER(rotw)(CPUXtensaState *env, uint32_t imm4)
342
{
343
    rotate_window(env, imm4);
344 345
}

346
void HELPER(restore_owb)(CPUXtensaState *env)
347
{
348
    rotate_window_abs(env, (env->sregs[PS] & PS_OWB) >> PS_OWB_SHIFT);
349 350
}

351
void HELPER(movsp)(CPUXtensaState *env, uint32_t pc)
352 353 354 355 356
{
    if ((env->sregs[WINDOW_START] &
            (windowstart_bit(env->sregs[WINDOW_BASE] - 3, env) |
             windowstart_bit(env->sregs[WINDOW_BASE] - 2, env) |
             windowstart_bit(env->sregs[WINDOW_BASE] - 1, env))) == 0) {
357
        HELPER(exception_cause)(env, pc, ALLOCA_CAUSE);
358 359 360
    }
}

361
void HELPER(wsr_lbeg)(CPUXtensaState *env, uint32_t v)
362 363
{
    if (env->sregs[LBEG] != v) {
364
        tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
365 366 367 368
        env->sregs[LBEG] = v;
    }
}

369
void HELPER(wsr_lend)(CPUXtensaState *env, uint32_t v)
370 371
{
    if (env->sregs[LEND] != v) {
372
        tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
373
        env->sregs[LEND] = v;
374
        tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
375 376 377
    }
}

378
void HELPER(dump_state)(CPUXtensaState *env)
379
{
380 381 382
    XtensaCPU *cpu = xtensa_env_get_cpu(env);

    cpu_dump_state(CPU(cpu), stderr, fprintf, 0);
383
}
384

385
void HELPER(waiti)(CPUXtensaState *env, uint32_t pc, uint32_t intlevel)
386
{
387 388
    CPUState *cpu;

389 390 391 392 393
    env->pc = pc;
    env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) |
        (intlevel << PS_INTLEVEL_SHIFT);
    check_interrupts(env);
    if (env->pending_irq_level) {
394
        cpu_loop_exit(CPU(xtensa_env_get_cpu(env)));
395 396 397
        return;
    }

398
    cpu = CPU(xtensa_env_get_cpu(env));
399
    env->halt_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
400
    cpu->halted = 1;
401 402 403
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_TIMER_INTERRUPT)) {
        xtensa_rearm_ccompare_timer(env);
    }
404
    HELPER(exception)(env, EXCP_HLT);
405 406
}

407
void HELPER(timer_irq)(CPUXtensaState *env, uint32_t id, uint32_t active)
408 409 410 411
{
    xtensa_timer_irq(env, id, active);
}

412
void HELPER(advance_ccount)(CPUXtensaState *env, uint32_t d)
413 414 415 416
{
    xtensa_advance_ccount(env, d);
}

417
void HELPER(check_interrupts)(CPUXtensaState *env)
418 419 420
{
    check_interrupts(env);
}
421

422 423 424 425 426
void HELPER(itlb_hit_test)(CPUXtensaState *env, uint32_t vaddr)
{
    get_page_addr_code(env, vaddr);
}

M
Max Filippov 已提交
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
/*!
 * Check vaddr accessibility/cache attributes and raise an exception if
 * specified by the ATOMCTL SR.
 *
 * Note: local memory exclusion is not implemented
 */
void HELPER(check_atomctl)(CPUXtensaState *env, uint32_t pc, uint32_t vaddr)
{
    uint32_t paddr, page_size, access;
    uint32_t atomctl = env->sregs[ATOMCTL];
    int rc = xtensa_get_physical_addr(env, true, vaddr, 1,
            xtensa_get_cring(env), &paddr, &page_size, &access);

    /*
     * s32c1i never causes LOAD_PROHIBITED_CAUSE exceptions,
     * see opcode description in the ISA
     */
    if (rc == 0 &&
            (access & (PAGE_READ | PAGE_WRITE)) != (PAGE_READ | PAGE_WRITE)) {
        rc = STORE_PROHIBITED_CAUSE;
    }

    if (rc) {
        HELPER(exception_cause_vaddr)(env, pc, rc, vaddr);
    }

    /*
     * When data cache is not configured use ATOMCTL bypass field.
     * See ISA, 4.3.12.4 The Atomic Operation Control Register (ATOMCTL)
     * under the Conditional Store Option.
     */
    if (!xtensa_option_enabled(env->config, XTENSA_OPTION_DCACHE)) {
        access = PAGE_CACHE_BYPASS;
    }

    switch (access & PAGE_CACHE_MASK) {
    case PAGE_CACHE_WB:
        atomctl >>= 2;
465
        /* fall through */
M
Max Filippov 已提交
466 467
    case PAGE_CACHE_WT:
        atomctl >>= 2;
468
        /* fall through */
M
Max Filippov 已提交
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
    case PAGE_CACHE_BYPASS:
        if ((atomctl & 0x3) == 0) {
            HELPER(exception_cause_vaddr)(env, pc,
                    LOAD_STORE_ERROR_CAUSE, vaddr);
        }
        break;

    case PAGE_CACHE_ISOLATE:
        HELPER(exception_cause_vaddr)(env, pc,
                LOAD_STORE_ERROR_CAUSE, vaddr);
        break;

    default:
        break;
    }
}

486
void HELPER(wsr_rasid)(CPUXtensaState *env, uint32_t v)
487
{
488 489
    XtensaCPU *cpu = xtensa_env_get_cpu(env);

490 491 492
    v = (v & 0xffffff00) | 0x1;
    if (v != env->sregs[RASID]) {
        env->sregs[RASID] = v;
493
        tlb_flush(CPU(cpu), 1);
494 495 496
    }
}

497
static uint32_t get_page_size(const CPUXtensaState *env, bool dtlb, uint32_t way)
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
{
    uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG];

    switch (way) {
    case 4:
        return (tlbcfg >> 16) & 0x3;

    case 5:
        return (tlbcfg >> 20) & 0x1;

    case 6:
        return (tlbcfg >> 24) & 0x1;

    default:
        return 0;
    }
}

/*!
 * Get bit mask for the virtual address bits translated by the TLB way
 */
519
uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
{
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
        bool varway56 = dtlb ?
            env->config->dtlb.varway56 :
            env->config->itlb.varway56;

        switch (way) {
        case 4:
            return 0xfff00000 << get_page_size(env, dtlb, way) * 2;

        case 5:
            if (varway56) {
                return 0xf8000000 << get_page_size(env, dtlb, way);
            } else {
                return 0xf8000000;
            }

        case 6:
            if (varway56) {
                return 0xf0000000 << (1 - get_page_size(env, dtlb, way));
            } else {
                return 0xf0000000;
            }

        default:
            return 0xfffff000;
        }
    } else {
        return REGION_PAGE_MASK;
    }
}

/*!
 * Get bit mask for the 'VPN without index' field.
 * See ISA, 4.6.5.6, data format for RxTLB0
 */
556
static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
{
    if (way < 4) {
        bool is32 = (dtlb ?
                env->config->dtlb.nrefillentries :
                env->config->itlb.nrefillentries) == 32;
        return is32 ? 0xffff8000 : 0xffffc000;
    } else if (way == 4) {
        return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2;
    } else if (way <= 6) {
        uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way);
        bool varway56 = dtlb ?
            env->config->dtlb.varway56 :
            env->config->itlb.varway56;

        if (varway56) {
            return mask << (way == 5 ? 2 : 3);
        } else {
            return mask << 1;
        }
    } else {
        return 0xfffff000;
    }
}

/*!
 * Split virtual address into VPN (with index) and entry index
 * for the given TLB way
 */
585
void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v, bool dtlb,
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
        uint32_t *vpn, uint32_t wi, uint32_t *ei)
{
    bool varway56 = dtlb ?
        env->config->dtlb.varway56 :
        env->config->itlb.varway56;

    if (!dtlb) {
        wi &= 7;
    }

    if (wi < 4) {
        bool is32 = (dtlb ?
                env->config->dtlb.nrefillentries :
                env->config->itlb.nrefillentries) == 32;
        *ei = (v >> 12) & (is32 ? 0x7 : 0x3);
    } else {
        switch (wi) {
        case 4:
            {
                uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2;
                *ei = (v >> eibase) & 0x3;
            }
            break;

        case 5:
            if (varway56) {
                uint32_t eibase = 27 + get_page_size(env, dtlb, wi);
                *ei = (v >> eibase) & 0x3;
            } else {
                *ei = (v >> 27) & 0x1;
            }
            break;

        case 6:
            if (varway56) {
                uint32_t eibase = 29 - get_page_size(env, dtlb, wi);
                *ei = (v >> eibase) & 0x7;
            } else {
                *ei = (v >> 28) & 0x1;
            }
            break;

        default:
            *ei = 0;
            break;
        }
    }
    *vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi);
}

/*!
 * Split TLB address into TLB way, entry index and VPN (with index).
 * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
 */
640
static void split_tlb_entry_spec(CPUXtensaState *env, uint32_t v, bool dtlb,
641 642 643 644 645 646 647 648 649 650 651 652
        uint32_t *vpn, uint32_t *wi, uint32_t *ei)
{
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
        *wi = v & (dtlb ? 0xf : 0x7);
        split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei);
    } else {
        *vpn = v & REGION_PAGE_MASK;
        *wi = 0;
        *ei = (v >> 29) & 0x7;
    }
}

653 654
static xtensa_tlb_entry *get_tlb_entry(CPUXtensaState *env,
        uint32_t v, bool dtlb, uint32_t *pwi)
655 656 657 658 659
{
    uint32_t vpn;
    uint32_t wi;
    uint32_t ei;

660
    split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
661 662 663 664 665 666
    if (pwi) {
        *pwi = wi;
    }
    return xtensa_tlb_get_entry(env, dtlb, wi, ei);
}

667
uint32_t HELPER(rtlb0)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
668 669 670
{
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
        uint32_t wi;
671
        const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
672 673 674 675 676 677
        return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid;
    } else {
        return v & REGION_PAGE_MASK;
    }
}

678
uint32_t HELPER(rtlb1)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
679
{
680
    const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, NULL);
681 682 683
    return entry->paddr | entry->attr;
}

684
void HELPER(itlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
685 686 687
{
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
        uint32_t wi;
688
        xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
689
        if (entry->variable && entry->asid) {
690
            tlb_flush_page(CPU(xtensa_env_get_cpu(env)), entry->vaddr);
691 692 693 694 695
            entry->asid = 0;
        }
    }
}

696
uint32_t HELPER(ptlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
{
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
        uint32_t wi;
        uint32_t ei;
        uint8_t ring;
        int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring);

        switch (res) {
        case 0:
            if (ring >= xtensa_get_ring(env)) {
                return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8);
            }
            break;

        case INST_TLB_MULTI_HIT_CAUSE:
        case LOAD_STORE_TLB_MULTI_HIT_CAUSE:
713
            HELPER(exception_cause_vaddr)(env, env->pc, res, v);
714 715 716 717 718 719 720 721
            break;
        }
        return 0;
    } else {
        return (v & REGION_PAGE_MASK) | 0x1;
    }
}

722 723 724 725 726 727 728 729 730 731
void xtensa_tlb_set_entry_mmu(const CPUXtensaState *env,
        xtensa_tlb_entry *entry, bool dtlb,
        unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
{
    entry->vaddr = vpn;
    entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi);
    entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff;
    entry->attr = pte & 0xf;
}

732
void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb,
733 734
        unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
{
735 736
    XtensaCPU *cpu = xtensa_env_get_cpu(env);
    CPUState *cs = CPU(cpu);
737 738 739 740 741
    xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);

    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
        if (entry->variable) {
            if (entry->asid) {
742
                tlb_flush_page(cs, entry->vaddr);
743
            }
744
            xtensa_tlb_set_entry_mmu(env, entry, dtlb, wi, ei, vpn, pte);
745
            tlb_flush_page(cs, entry->vaddr);
746 747 748 749 750
        } else {
            qemu_log("%s %d, %d, %d trying to set immutable entry\n",
                    __func__, dtlb, wi, ei);
        }
    } else {
751
        tlb_flush_page(cs, entry->vaddr);
752 753 754 755 756 757 758 759
        if (xtensa_option_enabled(env->config,
                    XTENSA_OPTION_REGION_TRANSLATION)) {
            entry->paddr = pte & REGION_PAGE_MASK;
        }
        entry->attr = pte & 0xf;
    }
}

760
void HELPER(wtlb)(CPUXtensaState *env, uint32_t p, uint32_t v, uint32_t dtlb)
761 762 763 764
{
    uint32_t vpn;
    uint32_t wi;
    uint32_t ei;
765
    split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
766 767
    xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p);
}
768 769


770
void HELPER(wsr_ibreakenable)(CPUXtensaState *env, uint32_t v)
771 772 773 774 775 776
{
    uint32_t change = v ^ env->sregs[IBREAKENABLE];
    unsigned i;

    for (i = 0; i < env->config->nibreak; ++i) {
        if (change & (1 << i)) {
777
            tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
778 779 780 781 782
        }
    }
    env->sregs[IBREAKENABLE] = v & ((1 << env->config->nibreak) - 1);
}

783
void HELPER(wsr_ibreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
784 785
{
    if (env->sregs[IBREAKENABLE] & (1 << i) && env->sregs[IBREAKA + i] != v) {
786 787
        tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
        tb_invalidate_virtual_addr(env, v);
788 789 790
    }
    env->sregs[IBREAKA + i] = v;
}
791

792 793
static void set_dbreak(CPUXtensaState *env, unsigned i, uint32_t dbreaka,
        uint32_t dbreakc)
794
{
795
    CPUState *cs = CPU(xtensa_env_get_cpu(env));
796 797 798 799
    int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
    uint32_t mask = dbreakc | ~DBREAKC_MASK;

    if (env->cpu_watchpoint[i]) {
800
        cpu_watchpoint_remove_by_ref(cs, env->cpu_watchpoint[i]);
801 802 803 804 805 806 807 808 809 810 811 812 813
    }
    if (dbreakc & DBREAKC_SB) {
        flags |= BP_MEM_WRITE;
    }
    if (dbreakc & DBREAKC_LB) {
        flags |= BP_MEM_READ;
    }
    /* contiguous mask after inversion is one less than some power of 2 */
    if ((~mask + 1) & ~mask) {
        qemu_log("DBREAKC mask is not contiguous: 0x%08x\n", dbreakc);
        /* cut mask after the first zero bit */
        mask = 0xffffffff << (32 - clo32(mask));
    }
814
    if (cpu_watchpoint_insert(cs, dbreaka & mask, ~mask + 1,
815 816 817 818 819 820 821
            flags, &env->cpu_watchpoint[i])) {
        env->cpu_watchpoint[i] = NULL;
        qemu_log("Failed to set data breakpoint at 0x%08x/%d\n",
                dbreaka & mask, ~mask + 1);
    }
}

822
void HELPER(wsr_dbreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
823 824 825 826 827
{
    uint32_t dbreakc = env->sregs[DBREAKC + i];

    if ((dbreakc & DBREAKC_SB_LB) &&
            env->sregs[DBREAKA + i] != v) {
828
        set_dbreak(env, i, v, dbreakc);
829 830 831 832
    }
    env->sregs[DBREAKA + i] = v;
}

833
void HELPER(wsr_dbreakc)(CPUXtensaState *env, uint32_t i, uint32_t v)
834 835 836
{
    if ((env->sregs[DBREAKC + i] ^ v) & (DBREAKC_SB_LB | DBREAKC_MASK)) {
        if (v & DBREAKC_SB_LB) {
837
            set_dbreak(env, i, env->sregs[DBREAKA + i], v);
838 839
        } else {
            if (env->cpu_watchpoint[i]) {
840 841 842
                CPUState *cs = CPU(xtensa_env_get_cpu(env));

                cpu_watchpoint_remove_by_ref(cs, env->cpu_watchpoint[i]);
843 844 845 846 847 848
                env->cpu_watchpoint[i] = NULL;
            }
        }
    }
    env->sregs[DBREAKC + i] = v;
}
M
Max Filippov 已提交
849 850 851 852 853 854 855 856 857 858 859 860 861

void HELPER(wur_fcr)(CPUXtensaState *env, uint32_t v)
{
    static const int rounding_mode[] = {
        float_round_nearest_even,
        float_round_to_zero,
        float_round_up,
        float_round_down,
    };

    env->uregs[FCR] = v & 0xfffff07f;
    set_float_rounding_mode(rounding_mode[v & 3], &env->fp_status);
}
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898

float32 HELPER(abs_s)(float32 v)
{
    return float32_abs(v);
}

float32 HELPER(neg_s)(float32 v)
{
    return float32_chs(v);
}

float32 HELPER(add_s)(CPUXtensaState *env, float32 a, float32 b)
{
    return float32_add(a, b, &env->fp_status);
}

float32 HELPER(sub_s)(CPUXtensaState *env, float32 a, float32 b)
{
    return float32_sub(a, b, &env->fp_status);
}

float32 HELPER(mul_s)(CPUXtensaState *env, float32 a, float32 b)
{
    return float32_mul(a, b, &env->fp_status);
}

float32 HELPER(madd_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
{
    return float32_muladd(b, c, a, 0,
            &env->fp_status);
}

float32 HELPER(msub_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
{
    return float32_muladd(b, c, a, float_muladd_negate_product,
            &env->fp_status);
}
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935

uint32_t HELPER(ftoi)(float32 v, uint32_t rounding_mode, uint32_t scale)
{
    float_status fp_status = {0};

    set_float_rounding_mode(rounding_mode, &fp_status);
    return float32_to_int32(
            float32_scalbn(v, scale, &fp_status), &fp_status);
}

uint32_t HELPER(ftoui)(float32 v, uint32_t rounding_mode, uint32_t scale)
{
    float_status fp_status = {0};
    float32 res;

    set_float_rounding_mode(rounding_mode, &fp_status);

    res = float32_scalbn(v, scale, &fp_status);

    if (float32_is_neg(v) && !float32_is_any_nan(v)) {
        return float32_to_int32(res, &fp_status);
    } else {
        return float32_to_uint32(res, &fp_status);
    }
}

float32 HELPER(itof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
{
    return float32_scalbn(int32_to_float32(v, &env->fp_status),
            (int32_t)scale, &env->fp_status);
}

float32 HELPER(uitof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
{
    return float32_scalbn(uint32_to_float32(v, &env->fp_status),
            (int32_t)scale, &env->fp_status);
}
936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982

static inline void set_br(CPUXtensaState *env, bool v, uint32_t br)
{
    if (v) {
        env->sregs[BR] |= br;
    } else {
        env->sregs[BR] &= ~br;
    }
}

void HELPER(un_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
{
    set_br(env, float32_unordered_quiet(a, b, &env->fp_status), br);
}

void HELPER(oeq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
{
    set_br(env, float32_eq_quiet(a, b, &env->fp_status), br);
}

void HELPER(ueq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
{
    int v = float32_compare_quiet(a, b, &env->fp_status);
    set_br(env, v == float_relation_equal || v == float_relation_unordered, br);
}

void HELPER(olt_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
{
    set_br(env, float32_lt_quiet(a, b, &env->fp_status), br);
}

void HELPER(ult_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
{
    int v = float32_compare_quiet(a, b, &env->fp_status);
    set_br(env, v == float_relation_less || v == float_relation_unordered, br);
}

void HELPER(ole_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
{
    set_br(env, float32_le_quiet(a, b, &env->fp_status), br);
}

void HELPER(ule_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
{
    int v = float32_compare_quiet(a, b, &env->fp_status);
    set_br(env, v != float_relation_greater, br);
}