op_helper.c 27.2 KB
Newer Older
M
Max Filippov 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of the Open Source and Linux Lab nor the
 *       names of its contributors may be used to endorse or promote products
 *       derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "cpu.h"
29
#include "helper.h"
30
#include "qemu/host-utils.h"
M
Max Filippov 已提交
31

32 33
static void do_unaligned_access(CPUXtensaState *env,
        target_ulong addr, int is_write, int is_user, uintptr_t retaddr);
34 35

#define ALIGNED_ONLY
M
Max Filippov 已提交
36 37 38
#define MMUSUFFIX _mmu

#define SHIFT 0
39
#include "exec/softmmu_template.h"
M
Max Filippov 已提交
40 41

#define SHIFT 1
42
#include "exec/softmmu_template.h"
M
Max Filippov 已提交
43 44

#define SHIFT 2
45
#include "exec/softmmu_template.h"
M
Max Filippov 已提交
46 47

#define SHIFT 3
48
#include "exec/softmmu_template.h"
M
Max Filippov 已提交
49

50 51
static void do_unaligned_access(CPUXtensaState *env,
        target_ulong addr, int is_write, int is_user, uintptr_t retaddr)
52 53 54
{
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_UNALIGNED_EXCEPTION) &&
            !xtensa_option_enabled(env->config, XTENSA_OPTION_HW_ALIGNMENT)) {
B
Blue Swirl 已提交
55
        cpu_restore_state(env, retaddr);
56
        HELPER(exception_cause_vaddr)(env,
57 58 59 60
                env->pc, LOAD_STORE_ALIGNMENT_CAUSE, addr);
    }
}

61 62
void tlb_fill(CPUXtensaState *env,
        target_ulong vaddr, int is_write, int mmu_idx, uintptr_t retaddr)
M
Max Filippov 已提交
63
{
64 65 66 67 68
    uint32_t paddr;
    uint32_t page_size;
    unsigned access;
    int ret = xtensa_get_physical_addr(env, true, vaddr, is_write, mmu_idx,
            &paddr, &page_size, &access);
69

70 71
    qemu_log("%s(%08x, %d, %d) -> %08x, ret = %d\n", __func__,
            vaddr, is_write, mmu_idx, paddr, ret);
72

73 74 75 76 77 78
    if (ret == 0) {
        tlb_set_page(env,
                vaddr & TARGET_PAGE_MASK,
                paddr & TARGET_PAGE_MASK,
                access, mmu_idx, page_size);
    } else {
B
Blue Swirl 已提交
79
        cpu_restore_state(env, retaddr);
80
        HELPER(exception_cause_vaddr)(env, env->pc, ret, vaddr);
81
    }
M
Max Filippov 已提交
82
}
83

84 85 86 87 88
static void tb_invalidate_virtual_addr(CPUXtensaState *env, uint32_t vaddr)
{
    uint32_t paddr;
    uint32_t page_size;
    unsigned access;
89
    int ret = xtensa_get_physical_addr(env, false, vaddr, 2, 0,
90 91 92 93 94 95
            &paddr, &page_size, &access);
    if (ret == 0) {
        tb_invalidate_phys_addr(paddr);
    }
}

96
void HELPER(exception)(CPUXtensaState *env, uint32_t excp)
97 98 99 100
{
    env->exception_index = excp;
    cpu_loop_exit(env);
}
101

102
void HELPER(exception_cause)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
{
    uint32_t vector;

    env->pc = pc;
    if (env->sregs[PS] & PS_EXCM) {
        if (env->config->ndepc) {
            env->sregs[DEPC] = pc;
        } else {
            env->sregs[EPC1] = pc;
        }
        vector = EXC_DOUBLE;
    } else {
        env->sregs[EPC1] = pc;
        vector = (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
    }

    env->sregs[EXCCAUSE] = cause;
    env->sregs[PS] |= PS_EXCM;

122
    HELPER(exception)(env, vector);
123 124
}

125 126
void HELPER(exception_cause_vaddr)(CPUXtensaState *env,
        uint32_t pc, uint32_t cause, uint32_t vaddr)
127 128
{
    env->sregs[EXCVADDR] = vaddr;
129
    HELPER(exception_cause)(env, pc, cause);
130 131
}

132
void debug_exception_env(CPUXtensaState *env, uint32_t cause)
133
{
134 135
    if (xtensa_get_cintlevel(env) < env->config->debug_level) {
        HELPER(debug_exception)(env, env->pc, cause);
136 137 138
    }
}

139
void HELPER(debug_exception)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
140 141 142 143 144 145 146 147 148
{
    unsigned level = env->config->debug_level;

    env->pc = pc;
    env->sregs[DEBUGCAUSE] = cause;
    env->sregs[EPC1 + level - 1] = pc;
    env->sregs[EPS2 + level - 2] = env->sregs[PS];
    env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) | PS_EXCM |
        (level << PS_INTLEVEL_SHIFT);
149
    HELPER(exception)(env, EXC_DEBUG);
150 151
}

152 153 154 155 156 157 158 159 160 161 162 163
uint32_t HELPER(nsa)(uint32_t v)
{
    if (v & 0x80000000) {
        v = ~v;
    }
    return v ? clz32(v) - 1 : 31;
}

uint32_t HELPER(nsau)(uint32_t v)
{
    return v ? clz32(v) : 32;
}
164

165
static void copy_window_from_phys(CPUXtensaState *env,
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
        uint32_t window, uint32_t phys, uint32_t n)
{
    assert(phys < env->config->nareg);
    if (phys + n <= env->config->nareg) {
        memcpy(env->regs + window, env->phys_regs + phys,
                n * sizeof(uint32_t));
    } else {
        uint32_t n1 = env->config->nareg - phys;
        memcpy(env->regs + window, env->phys_regs + phys,
                n1 * sizeof(uint32_t));
        memcpy(env->regs + window + n1, env->phys_regs,
                (n - n1) * sizeof(uint32_t));
    }
}

181
static void copy_phys_from_window(CPUXtensaState *env,
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
        uint32_t phys, uint32_t window, uint32_t n)
{
    assert(phys < env->config->nareg);
    if (phys + n <= env->config->nareg) {
        memcpy(env->phys_regs + phys, env->regs + window,
                n * sizeof(uint32_t));
    } else {
        uint32_t n1 = env->config->nareg - phys;
        memcpy(env->phys_regs + phys, env->regs + window,
                n1 * sizeof(uint32_t));
        memcpy(env->phys_regs, env->regs + window + n1,
                (n - n1) * sizeof(uint32_t));
    }
}


198
static inline unsigned windowbase_bound(unsigned a, const CPUXtensaState *env)
199 200 201 202
{
    return a & (env->config->nareg / 4 - 1);
}

203
static inline unsigned windowstart_bit(unsigned a, const CPUXtensaState *env)
204 205 206 207
{
    return 1 << windowbase_bound(a, env);
}

208
void xtensa_sync_window_from_phys(CPUXtensaState *env)
209 210 211 212
{
    copy_window_from_phys(env, 0, env->sregs[WINDOW_BASE] * 4, 16);
}

213
void xtensa_sync_phys_from_window(CPUXtensaState *env)
214 215 216 217
{
    copy_phys_from_window(env, env->sregs[WINDOW_BASE] * 4, 0, 16);
}

218
static void rotate_window_abs(CPUXtensaState *env, uint32_t position)
219 220 221 222 223 224
{
    xtensa_sync_phys_from_window(env);
    env->sregs[WINDOW_BASE] = windowbase_bound(position, env);
    xtensa_sync_window_from_phys(env);
}

225
static void rotate_window(CPUXtensaState *env, uint32_t delta)
226
{
227
    rotate_window_abs(env, env->sregs[WINDOW_BASE] + delta);
228 229
}

230
void HELPER(wsr_windowbase)(CPUXtensaState *env, uint32_t v)
231
{
232
    rotate_window_abs(env, v);
233 234
}

235
void HELPER(entry)(CPUXtensaState *env, uint32_t pc, uint32_t s, uint32_t imm)
236 237 238 239 240
{
    int callinc = (env->sregs[PS] & PS_CALLINC) >> PS_CALLINC_SHIFT;
    if (s > 3 || ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
        qemu_log("Illegal entry instruction(pc = %08x), PS = %08x\n",
                pc, env->sregs[PS]);
241
        HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
242 243
    } else {
        env->regs[(callinc << 2) | (s & 3)] = env->regs[s] - (imm << 3);
244
        rotate_window(env, callinc);
245 246 247 248 249
        env->sregs[WINDOW_START] |=
            windowstart_bit(env->sregs[WINDOW_BASE], env);
    }
}

250
void HELPER(window_check)(CPUXtensaState *env, uint32_t pc, uint32_t w)
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
{
    uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
    uint32_t windowstart = env->sregs[WINDOW_START];
    uint32_t m, n;

    if ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) {
        return;
    }

    for (n = 1; ; ++n) {
        if (n > w) {
            return;
        }
        if (windowstart & windowstart_bit(windowbase + n, env)) {
            break;
        }
    }

    m = windowbase_bound(windowbase + n, env);
270
    rotate_window(env, n);
271 272 273 274 275
    env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
        (windowbase << PS_OWB_SHIFT) | PS_EXCM;
    env->sregs[EPC1] = env->pc = pc;

    if (windowstart & windowstart_bit(m + 1, env)) {
276
        HELPER(exception)(env, EXC_WINDOW_OVERFLOW4);
277
    } else if (windowstart & windowstart_bit(m + 2, env)) {
278
        HELPER(exception)(env, EXC_WINDOW_OVERFLOW8);
279
    } else {
280
        HELPER(exception)(env, EXC_WINDOW_OVERFLOW12);
281 282 283
    }
}

284
uint32_t HELPER(retw)(CPUXtensaState *env, uint32_t pc)
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
{
    int n = (env->regs[0] >> 30) & 0x3;
    int m = 0;
    uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
    uint32_t windowstart = env->sregs[WINDOW_START];
    uint32_t ret_pc = 0;

    if (windowstart & windowstart_bit(windowbase - 1, env)) {
        m = 1;
    } else if (windowstart & windowstart_bit(windowbase - 2, env)) {
        m = 2;
    } else if (windowstart & windowstart_bit(windowbase - 3, env)) {
        m = 3;
    }

    if (n == 0 || (m != 0 && m != n) ||
            ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
        qemu_log("Illegal retw instruction(pc = %08x), "
                "PS = %08x, m = %d, n = %d\n",
                pc, env->sregs[PS], m, n);
305
        HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
306 307 308 309 310
    } else {
        int owb = windowbase;

        ret_pc = (pc & 0xc0000000) | (env->regs[0] & 0x3fffffff);

311
        rotate_window(env, -n);
312 313 314 315 316 317 318 319 320
        if (windowstart & windowstart_bit(env->sregs[WINDOW_BASE], env)) {
            env->sregs[WINDOW_START] &= ~windowstart_bit(owb, env);
        } else {
            /* window underflow */
            env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
                (windowbase << PS_OWB_SHIFT) | PS_EXCM;
            env->sregs[EPC1] = env->pc = pc;

            if (n == 1) {
321
                HELPER(exception)(env, EXC_WINDOW_UNDERFLOW4);
322
            } else if (n == 2) {
323
                HELPER(exception)(env, EXC_WINDOW_UNDERFLOW8);
324
            } else if (n == 3) {
325
                HELPER(exception)(env, EXC_WINDOW_UNDERFLOW12);
326 327 328 329 330 331
            }
        }
    }
    return ret_pc;
}

332
void HELPER(rotw)(CPUXtensaState *env, uint32_t imm4)
333
{
334
    rotate_window(env, imm4);
335 336
}

337
void HELPER(restore_owb)(CPUXtensaState *env)
338
{
339
    rotate_window_abs(env, (env->sregs[PS] & PS_OWB) >> PS_OWB_SHIFT);
340 341
}

342
void HELPER(movsp)(CPUXtensaState *env, uint32_t pc)
343 344 345 346 347
{
    if ((env->sregs[WINDOW_START] &
            (windowstart_bit(env->sregs[WINDOW_BASE] - 3, env) |
             windowstart_bit(env->sregs[WINDOW_BASE] - 2, env) |
             windowstart_bit(env->sregs[WINDOW_BASE] - 1, env))) == 0) {
348
        HELPER(exception_cause)(env, pc, ALLOCA_CAUSE);
349 350 351
    }
}

352
void HELPER(wsr_lbeg)(CPUXtensaState *env, uint32_t v)
353 354
{
    if (env->sregs[LBEG] != v) {
355
        tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
356 357 358 359
        env->sregs[LBEG] = v;
    }
}

360
void HELPER(wsr_lend)(CPUXtensaState *env, uint32_t v)
361 362
{
    if (env->sregs[LEND] != v) {
363
        tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
364
        env->sregs[LEND] = v;
365
        tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
366 367 368
    }
}

369
void HELPER(dump_state)(CPUXtensaState *env)
370 371 372
{
    cpu_dump_state(env, stderr, fprintf, 0);
}
373

374
void HELPER(waiti)(CPUXtensaState *env, uint32_t pc, uint32_t intlevel)
375
{
376 377
    CPUState *cpu;

378 379 380 381 382 383 384 385 386
    env->pc = pc;
    env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) |
        (intlevel << PS_INTLEVEL_SHIFT);
    check_interrupts(env);
    if (env->pending_irq_level) {
        cpu_loop_exit(env);
        return;
    }

387
    cpu = CPU(xtensa_env_get_cpu(env));
388
    env->halt_clock = qemu_get_clock_ns(vm_clock);
389
    cpu->halted = 1;
390 391 392
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_TIMER_INTERRUPT)) {
        xtensa_rearm_ccompare_timer(env);
    }
393
    HELPER(exception)(env, EXCP_HLT);
394 395
}

396
void HELPER(timer_irq)(CPUXtensaState *env, uint32_t id, uint32_t active)
397 398 399 400
{
    xtensa_timer_irq(env, id, active);
}

401
void HELPER(advance_ccount)(CPUXtensaState *env, uint32_t d)
402 403 404 405
{
    xtensa_advance_ccount(env, d);
}

406
void HELPER(check_interrupts)(CPUXtensaState *env)
407 408 409
{
    check_interrupts(env);
}
410

M
Max Filippov 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
/*!
 * Check vaddr accessibility/cache attributes and raise an exception if
 * specified by the ATOMCTL SR.
 *
 * Note: local memory exclusion is not implemented
 */
void HELPER(check_atomctl)(CPUXtensaState *env, uint32_t pc, uint32_t vaddr)
{
    uint32_t paddr, page_size, access;
    uint32_t atomctl = env->sregs[ATOMCTL];
    int rc = xtensa_get_physical_addr(env, true, vaddr, 1,
            xtensa_get_cring(env), &paddr, &page_size, &access);

    /*
     * s32c1i never causes LOAD_PROHIBITED_CAUSE exceptions,
     * see opcode description in the ISA
     */
    if (rc == 0 &&
            (access & (PAGE_READ | PAGE_WRITE)) != (PAGE_READ | PAGE_WRITE)) {
        rc = STORE_PROHIBITED_CAUSE;
    }

    if (rc) {
        HELPER(exception_cause_vaddr)(env, pc, rc, vaddr);
    }

    /*
     * When data cache is not configured use ATOMCTL bypass field.
     * See ISA, 4.3.12.4 The Atomic Operation Control Register (ATOMCTL)
     * under the Conditional Store Option.
     */
    if (!xtensa_option_enabled(env->config, XTENSA_OPTION_DCACHE)) {
        access = PAGE_CACHE_BYPASS;
    }

    switch (access & PAGE_CACHE_MASK) {
    case PAGE_CACHE_WB:
        atomctl >>= 2;
    case PAGE_CACHE_WT:
        atomctl >>= 2;
    case PAGE_CACHE_BYPASS:
        if ((atomctl & 0x3) == 0) {
            HELPER(exception_cause_vaddr)(env, pc,
                    LOAD_STORE_ERROR_CAUSE, vaddr);
        }
        break;

    case PAGE_CACHE_ISOLATE:
        HELPER(exception_cause_vaddr)(env, pc,
                LOAD_STORE_ERROR_CAUSE, vaddr);
        break;

    default:
        break;
    }
}

468
void HELPER(wsr_rasid)(CPUXtensaState *env, uint32_t v)
469 470 471 472 473 474 475 476
{
    v = (v & 0xffffff00) | 0x1;
    if (v != env->sregs[RASID]) {
        env->sregs[RASID] = v;
        tlb_flush(env, 1);
    }
}

477
static uint32_t get_page_size(const CPUXtensaState *env, bool dtlb, uint32_t way)
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
{
    uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG];

    switch (way) {
    case 4:
        return (tlbcfg >> 16) & 0x3;

    case 5:
        return (tlbcfg >> 20) & 0x1;

    case 6:
        return (tlbcfg >> 24) & 0x1;

    default:
        return 0;
    }
}

/*!
 * Get bit mask for the virtual address bits translated by the TLB way
 */
499
uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
{
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
        bool varway56 = dtlb ?
            env->config->dtlb.varway56 :
            env->config->itlb.varway56;

        switch (way) {
        case 4:
            return 0xfff00000 << get_page_size(env, dtlb, way) * 2;

        case 5:
            if (varway56) {
                return 0xf8000000 << get_page_size(env, dtlb, way);
            } else {
                return 0xf8000000;
            }

        case 6:
            if (varway56) {
                return 0xf0000000 << (1 - get_page_size(env, dtlb, way));
            } else {
                return 0xf0000000;
            }

        default:
            return 0xfffff000;
        }
    } else {
        return REGION_PAGE_MASK;
    }
}

/*!
 * Get bit mask for the 'VPN without index' field.
 * See ISA, 4.6.5.6, data format for RxTLB0
 */
536
static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
{
    if (way < 4) {
        bool is32 = (dtlb ?
                env->config->dtlb.nrefillentries :
                env->config->itlb.nrefillentries) == 32;
        return is32 ? 0xffff8000 : 0xffffc000;
    } else if (way == 4) {
        return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2;
    } else if (way <= 6) {
        uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way);
        bool varway56 = dtlb ?
            env->config->dtlb.varway56 :
            env->config->itlb.varway56;

        if (varway56) {
            return mask << (way == 5 ? 2 : 3);
        } else {
            return mask << 1;
        }
    } else {
        return 0xfffff000;
    }
}

/*!
 * Split virtual address into VPN (with index) and entry index
 * for the given TLB way
 */
565
void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v, bool dtlb,
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
        uint32_t *vpn, uint32_t wi, uint32_t *ei)
{
    bool varway56 = dtlb ?
        env->config->dtlb.varway56 :
        env->config->itlb.varway56;

    if (!dtlb) {
        wi &= 7;
    }

    if (wi < 4) {
        bool is32 = (dtlb ?
                env->config->dtlb.nrefillentries :
                env->config->itlb.nrefillentries) == 32;
        *ei = (v >> 12) & (is32 ? 0x7 : 0x3);
    } else {
        switch (wi) {
        case 4:
            {
                uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2;
                *ei = (v >> eibase) & 0x3;
            }
            break;

        case 5:
            if (varway56) {
                uint32_t eibase = 27 + get_page_size(env, dtlb, wi);
                *ei = (v >> eibase) & 0x3;
            } else {
                *ei = (v >> 27) & 0x1;
            }
            break;

        case 6:
            if (varway56) {
                uint32_t eibase = 29 - get_page_size(env, dtlb, wi);
                *ei = (v >> eibase) & 0x7;
            } else {
                *ei = (v >> 28) & 0x1;
            }
            break;

        default:
            *ei = 0;
            break;
        }
    }
    *vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi);
}

/*!
 * Split TLB address into TLB way, entry index and VPN (with index).
 * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
 */
620
static void split_tlb_entry_spec(CPUXtensaState *env, uint32_t v, bool dtlb,
621 622 623 624 625 626 627 628 629 630 631 632
        uint32_t *vpn, uint32_t *wi, uint32_t *ei)
{
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
        *wi = v & (dtlb ? 0xf : 0x7);
        split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei);
    } else {
        *vpn = v & REGION_PAGE_MASK;
        *wi = 0;
        *ei = (v >> 29) & 0x7;
    }
}

633 634
static xtensa_tlb_entry *get_tlb_entry(CPUXtensaState *env,
        uint32_t v, bool dtlb, uint32_t *pwi)
635 636 637 638 639
{
    uint32_t vpn;
    uint32_t wi;
    uint32_t ei;

640
    split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
641 642 643 644 645 646
    if (pwi) {
        *pwi = wi;
    }
    return xtensa_tlb_get_entry(env, dtlb, wi, ei);
}

647
uint32_t HELPER(rtlb0)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
648 649 650
{
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
        uint32_t wi;
651
        const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
652 653 654 655 656 657
        return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid;
    } else {
        return v & REGION_PAGE_MASK;
    }
}

658
uint32_t HELPER(rtlb1)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
659
{
660
    const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, NULL);
661 662 663
    return entry->paddr | entry->attr;
}

664
void HELPER(itlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
665 666 667
{
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
        uint32_t wi;
668
        xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
669 670 671 672 673 674 675
        if (entry->variable && entry->asid) {
            tlb_flush_page(env, entry->vaddr);
            entry->asid = 0;
        }
    }
}

676
uint32_t HELPER(ptlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
{
    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
        uint32_t wi;
        uint32_t ei;
        uint8_t ring;
        int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring);

        switch (res) {
        case 0:
            if (ring >= xtensa_get_ring(env)) {
                return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8);
            }
            break;

        case INST_TLB_MULTI_HIT_CAUSE:
        case LOAD_STORE_TLB_MULTI_HIT_CAUSE:
693
            HELPER(exception_cause_vaddr)(env, env->pc, res, v);
694 695 696 697 698 699 700 701
            break;
        }
        return 0;
    } else {
        return (v & REGION_PAGE_MASK) | 0x1;
    }
}

702 703 704 705 706 707 708 709 710 711
void xtensa_tlb_set_entry_mmu(const CPUXtensaState *env,
        xtensa_tlb_entry *entry, bool dtlb,
        unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
{
    entry->vaddr = vpn;
    entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi);
    entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff;
    entry->attr = pte & 0xf;
}

712
void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb,
713 714 715 716 717 718 719 720 721
        unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
{
    xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);

    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
        if (entry->variable) {
            if (entry->asid) {
                tlb_flush_page(env, entry->vaddr);
            }
722
            xtensa_tlb_set_entry_mmu(env, entry, dtlb, wi, ei, vpn, pte);
723
            tlb_flush_page(env, entry->vaddr);
724 725 726 727 728 729 730 731 732 733 734 735 736 737
        } else {
            qemu_log("%s %d, %d, %d trying to set immutable entry\n",
                    __func__, dtlb, wi, ei);
        }
    } else {
        tlb_flush_page(env, entry->vaddr);
        if (xtensa_option_enabled(env->config,
                    XTENSA_OPTION_REGION_TRANSLATION)) {
            entry->paddr = pte & REGION_PAGE_MASK;
        }
        entry->attr = pte & 0xf;
    }
}

738
void HELPER(wtlb)(CPUXtensaState *env, uint32_t p, uint32_t v, uint32_t dtlb)
739 740 741 742
{
    uint32_t vpn;
    uint32_t wi;
    uint32_t ei;
743
    split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
744 745
    xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p);
}
746 747


748
void HELPER(wsr_ibreakenable)(CPUXtensaState *env, uint32_t v)
749 750 751 752 753 754
{
    uint32_t change = v ^ env->sregs[IBREAKENABLE];
    unsigned i;

    for (i = 0; i < env->config->nibreak; ++i) {
        if (change & (1 << i)) {
755
            tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
756 757 758 759 760
        }
    }
    env->sregs[IBREAKENABLE] = v & ((1 << env->config->nibreak) - 1);
}

761
void HELPER(wsr_ibreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
762 763
{
    if (env->sregs[IBREAKENABLE] & (1 << i) && env->sregs[IBREAKA + i] != v) {
764 765
        tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
        tb_invalidate_virtual_addr(env, v);
766 767 768
    }
    env->sregs[IBREAKA + i] = v;
}
769

770 771
static void set_dbreak(CPUXtensaState *env, unsigned i, uint32_t dbreaka,
        uint32_t dbreakc)
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
{
    int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
    uint32_t mask = dbreakc | ~DBREAKC_MASK;

    if (env->cpu_watchpoint[i]) {
        cpu_watchpoint_remove_by_ref(env, env->cpu_watchpoint[i]);
    }
    if (dbreakc & DBREAKC_SB) {
        flags |= BP_MEM_WRITE;
    }
    if (dbreakc & DBREAKC_LB) {
        flags |= BP_MEM_READ;
    }
    /* contiguous mask after inversion is one less than some power of 2 */
    if ((~mask + 1) & ~mask) {
        qemu_log("DBREAKC mask is not contiguous: 0x%08x\n", dbreakc);
        /* cut mask after the first zero bit */
        mask = 0xffffffff << (32 - clo32(mask));
    }
    if (cpu_watchpoint_insert(env, dbreaka & mask, ~mask + 1,
            flags, &env->cpu_watchpoint[i])) {
        env->cpu_watchpoint[i] = NULL;
        qemu_log("Failed to set data breakpoint at 0x%08x/%d\n",
                dbreaka & mask, ~mask + 1);
    }
}

799
void HELPER(wsr_dbreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
800 801 802 803 804
{
    uint32_t dbreakc = env->sregs[DBREAKC + i];

    if ((dbreakc & DBREAKC_SB_LB) &&
            env->sregs[DBREAKA + i] != v) {
805
        set_dbreak(env, i, v, dbreakc);
806 807 808 809
    }
    env->sregs[DBREAKA + i] = v;
}

810
void HELPER(wsr_dbreakc)(CPUXtensaState *env, uint32_t i, uint32_t v)
811 812 813
{
    if ((env->sregs[DBREAKC + i] ^ v) & (DBREAKC_SB_LB | DBREAKC_MASK)) {
        if (v & DBREAKC_SB_LB) {
814
            set_dbreak(env, i, env->sregs[DBREAKA + i], v);
815 816 817 818 819 820 821 822 823
        } else {
            if (env->cpu_watchpoint[i]) {
                cpu_watchpoint_remove_by_ref(env, env->cpu_watchpoint[i]);
                env->cpu_watchpoint[i] = NULL;
            }
        }
    }
    env->sregs[DBREAKC + i] = v;
}
M
Max Filippov 已提交
824 825 826 827 828 829 830 831 832 833 834 835 836

void HELPER(wur_fcr)(CPUXtensaState *env, uint32_t v)
{
    static const int rounding_mode[] = {
        float_round_nearest_even,
        float_round_to_zero,
        float_round_up,
        float_round_down,
    };

    env->uregs[FCR] = v & 0xfffff07f;
    set_float_rounding_mode(rounding_mode[v & 3], &env->fp_status);
}
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873

float32 HELPER(abs_s)(float32 v)
{
    return float32_abs(v);
}

float32 HELPER(neg_s)(float32 v)
{
    return float32_chs(v);
}

float32 HELPER(add_s)(CPUXtensaState *env, float32 a, float32 b)
{
    return float32_add(a, b, &env->fp_status);
}

float32 HELPER(sub_s)(CPUXtensaState *env, float32 a, float32 b)
{
    return float32_sub(a, b, &env->fp_status);
}

float32 HELPER(mul_s)(CPUXtensaState *env, float32 a, float32 b)
{
    return float32_mul(a, b, &env->fp_status);
}

float32 HELPER(madd_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
{
    return float32_muladd(b, c, a, 0,
            &env->fp_status);
}

float32 HELPER(msub_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
{
    return float32_muladd(b, c, a, float_muladd_negate_product,
            &env->fp_status);
}
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910

uint32_t HELPER(ftoi)(float32 v, uint32_t rounding_mode, uint32_t scale)
{
    float_status fp_status = {0};

    set_float_rounding_mode(rounding_mode, &fp_status);
    return float32_to_int32(
            float32_scalbn(v, scale, &fp_status), &fp_status);
}

uint32_t HELPER(ftoui)(float32 v, uint32_t rounding_mode, uint32_t scale)
{
    float_status fp_status = {0};
    float32 res;

    set_float_rounding_mode(rounding_mode, &fp_status);

    res = float32_scalbn(v, scale, &fp_status);

    if (float32_is_neg(v) && !float32_is_any_nan(v)) {
        return float32_to_int32(res, &fp_status);
    } else {
        return float32_to_uint32(res, &fp_status);
    }
}

float32 HELPER(itof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
{
    return float32_scalbn(int32_to_float32(v, &env->fp_status),
            (int32_t)scale, &env->fp_status);
}

float32 HELPER(uitof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
{
    return float32_scalbn(uint32_to_float32(v, &env->fp_status),
            (int32_t)scale, &env->fp_status);
}
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957

static inline void set_br(CPUXtensaState *env, bool v, uint32_t br)
{
    if (v) {
        env->sregs[BR] |= br;
    } else {
        env->sregs[BR] &= ~br;
    }
}

void HELPER(un_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
{
    set_br(env, float32_unordered_quiet(a, b, &env->fp_status), br);
}

void HELPER(oeq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
{
    set_br(env, float32_eq_quiet(a, b, &env->fp_status), br);
}

void HELPER(ueq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
{
    int v = float32_compare_quiet(a, b, &env->fp_status);
    set_br(env, v == float_relation_equal || v == float_relation_unordered, br);
}

void HELPER(olt_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
{
    set_br(env, float32_lt_quiet(a, b, &env->fp_status), br);
}

void HELPER(ult_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
{
    int v = float32_compare_quiet(a, b, &env->fp_status);
    set_br(env, v == float_relation_less || v == float_relation_unordered, br);
}

void HELPER(ole_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
{
    set_br(env, float32_le_quiet(a, b, &env->fp_status), br);
}

void HELPER(ule_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
{
    int v = float32_compare_quiet(a, b, &env->fp_status);
    set_br(env, v != float_relation_greater, br);
}